JP7319630B2 - Adhesive composition, method for producing adhesive composition, and adhesive film - Google Patents

Adhesive composition, method for producing adhesive composition, and adhesive film Download PDF

Info

Publication number
JP7319630B2
JP7319630B2 JP2019171992A JP2019171992A JP7319630B2 JP 7319630 B2 JP7319630 B2 JP 7319630B2 JP 2019171992 A JP2019171992 A JP 2019171992A JP 2019171992 A JP2019171992 A JP 2019171992A JP 7319630 B2 JP7319630 B2 JP 7319630B2
Authority
JP
Japan
Prior art keywords
adhesive composition
inorganic nanoparticles
adhesive
cnf
base resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019171992A
Other languages
Japanese (ja)
Other versions
JP2021050250A (en
Inventor
達也 熊田
弘行 伊澤
貴弘 田邉
茂 栗本
昂平 平尾
麗 佐竹
志行 飯島
鞠奈 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Yokohama National University NUC
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Yokohama National University NUC, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2019171992A priority Critical patent/JP7319630B2/en
Publication of JP2021050250A publication Critical patent/JP2021050250A/en
Application granted granted Critical
Publication of JP7319630B2 publication Critical patent/JP7319630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Description

特許法第30条第2項適用 ウェブサイトの掲載日 令和01年9月18日 ウェブサイトのアドレス(URL) https://clicktime.symantec.com/3XeG2oTSxcKFUnPG3nWsw8v7Vc?u=http%3A%2F%2Fwww.apcche2019.org%2FApplication of Article 30, Paragraph 2 of the Patent Law Date of publication of the website September 18, 2001 Website address (URL) https://clicktime. Symantec. com/3XeG2oTSxcKFUnPG3nWsw8v7Vc? u=http%3A%2F%2Fwww. apcche2019. org%2F

本発明は、接着剤組成物、接着剤組成物の製造方法、及び接着剤フィルムに関する。 The present invention relates to an adhesive composition, a method for producing an adhesive composition, and an adhesive film.

軽くて強い、比表面積が大きい、熱による寸法変化が小さい、ガスバリア性が高い、特徴的な粘性を示すといった特性を有する材料として、セルロースナノファイバーが知られている。セルロースナノファイバーの特性は、セルロースナノファイバー間の水素結合によるネットワークが形成されることで発現すると考えられている。 Cellulose nanofibers are known as materials that are light and strong, have a large specific surface area, have small dimensional changes due to heat, have high gas barrier properties, and exhibit characteristic viscosity. It is believed that the properties of cellulose nanofibers are manifested by the formation of a network due to hydrogen bonding between cellulose nanofibers.

特許文献1には、樹脂組成物にセルロースナノファイバーを含有させることで、高い接着性を有する樹脂組成物及び接着剤が得られることが開示されている。また、特許文献2には、セルロースナノファイバーを含有することで、基材への接着強度と易剥離性とを両立できる易剥離性接着剤組成物が開示されている。 Patent Literature 1 discloses that a resin composition and an adhesive having high adhesiveness can be obtained by including cellulose nanofibers in the resin composition. Moreover, Patent Document 2 discloses an easily peelable adhesive composition that can achieve both adhesive strength to a substrate and easy peelability by containing cellulose nanofibers.

一方、セルロースナノファイバーは親水性が高く、疎水性の有機溶剤及び樹脂中で凝集し易いことから、樹脂組成物中に均一に分散することが難しい。これに対して、特許文献3では、セルロースナノファイバーを親油化することで、樹脂中での分散性を向上させることが検討されている。 On the other hand, cellulose nanofibers are highly hydrophilic and tend to aggregate in hydrophobic organic solvents and resins, making it difficult to uniformly disperse them in the resin composition. On the other hand, in Patent Document 3, it is considered to improve the dispersibility in resin by making cellulose nanofibers lipophilic.

特開2016-138220号公報JP 2016-138220 A 特開2017-025130号公報JP 2017-025130 A 特開2018-044097号公報JP 2018-044097 A

接着剤組成物から形成される接着剤層には、ガラス転移温度(Tg)以上での貯蔵弾性率(E’)の低下を抑制することで、高温条件下での接着力を維持して接続信頼性を向上することが求められている。しかしながら、セルロースナノファイバーが接着剤組成物中に十分に分散されていない場合、セルロースナノファイバー間の水素結合ネットワークが形成されないため、接着力を発現することが難しい。一方、セルロースナノファイバーの分散性を向上するために、セルロースナノファイバーを親油化してしまうと、セルロースナノファイバー同士の水素結合力が弱まるため、高温条件下では接着性が低下し易い。 The adhesive layer formed from the adhesive composition maintains adhesive strength under high-temperature conditions by suppressing a decrease in the storage elastic modulus (E') at a temperature higher than the glass transition temperature (Tg). There is a demand for improved reliability. However, when the cellulose nanofibers are not sufficiently dispersed in the adhesive composition, a hydrogen bonding network between the cellulose nanofibers is not formed, making it difficult to develop adhesive strength. On the other hand, if the cellulose nanofibers are made lipophilic in order to improve the dispersibility of the cellulose nanofibers, the hydrogen bonding force between the cellulose nanofibers is weakened, and the adhesiveness tends to decrease under high temperature conditions.

本発明は、セルロースナノファイバーの分散性を向上し、接続信頼性の向上が期待できる接着剤組成物、接着剤組成物の製造方法、及び接着剤フィルムを提供することを目的とする。 An object of the present invention is to provide an adhesive composition, a method for producing the adhesive composition, and an adhesive film that are expected to improve the dispersibility of cellulose nanofibers and improve the connection reliability.

本発明の一態様は、無機ナノ粒子を、ポリエチレンイミン及び脂肪酸の会合体と混合した後、エポキシ基を有する化合物と更に混合して、会合体及びエポキシ基を有する化合物を含む被覆層を有する無機ナノ粒子を得る工程と、被覆層を有する無機ナノ粒子と、セルロースナノファイバーとを混合して、無機ナノ粒子とセルロースナノファイバーとの分散液を得る工程と、該分散液とベース樹脂とを混合して接着剤組成物を得る工程とを備える接着剤組成物の製造方法に関する。 In one aspect of the present invention, inorganic nanoparticles are mixed with an association of polyethyleneimine and a fatty acid, and then further mixed with a compound having an epoxy group to form an inorganic coating layer containing the association and the compound having an epoxy group. obtaining nanoparticles; mixing inorganic nanoparticles having a coating layer with cellulose nanofibers to obtain a dispersion of the inorganic nanoparticles and cellulose nanofibers; and mixing the dispersion with a base resin. and obtaining an adhesive composition.

本発明の一態様に係る接着剤組成物は、ポリエチレンイミン、脂肪酸及びエポキシ基を有する化合物により被覆されている無機ナノ粒子と、セルロースナノファイバーと、ベース樹脂とを含有する。また、本発明の他の態様は、上記接着剤組成物を含む、接着剤フィルムに関する。 An adhesive composition according to one aspect of the present invention contains inorganic nanoparticles coated with polyethyleneimine, a fatty acid, and a compound having an epoxy group, cellulose nanofibers, and a base resin. Another aspect of the present invention relates to an adhesive film containing the above adhesive composition.

本発明によれば、セルロースナノファイバーの分散性を向上し、接続信頼性の向上が期待できる接着剤組成物、接着剤組成物の製造方法、及び接着剤フィルムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the dispersibility of a cellulose nanofiber is improved and the adhesive composition which can be expected to improve connection reliability, the manufacturing method of an adhesive composition, and an adhesive film can be provided.

本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In this specification, a numerical range indicated using "to" indicates a range including the numerical values before and after "to" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step. Moreover, in the numerical ranges described in this specification, the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.

本明細書において、「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, the term "process" includes not only an independent process, but also if the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. be The materials exemplified in this specification can be used singly or in combination of two or more unless otherwise specified. As used herein, the content of each component in the composition refers to the total amount of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified. means

以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 DETAILED DESCRIPTION OF THE INVENTION Embodiments for carrying out the present invention will be described in detail below. However, the present invention is not limited to the following embodiments.

[接着剤組成物及びその製造方法]
本実施形態に係る接着剤組成物は、ポリエチレンイミン、脂肪酸及びエポキシ基を有する化合物により被覆されている無機ナノ粒子と、セルロースナノファイバー(以下、「CNF」と表記する。)と、ベース樹脂とを含有する。
[Adhesive composition and its manufacturing method]
The adhesive composition according to the present embodiment includes inorganic nanoparticles coated with polyethyleneimine, a fatty acid and a compound having an epoxy group, cellulose nanofibers (hereinafter referred to as "CNF"), and a base resin. contains

本実施形態に係る接着剤組成物の製造方法は、無機ナノ粒子を、ポリエチレンイミン及び脂肪酸の会合体と混合した後、エポキシ基を有する化合物と更に混合して、会合体及びエポキシ基を有する化合物を含む被覆層を有する無機ナノ粒子を得る第1の工程と、被覆層を有する無機ナノ粒子と、CNFとを混合して、無機ナノ粒子とCNFとの分散液を得る第2の工程と、該分散液とベース樹脂とを混合して接着剤組成物を得る第3の工程と、を備える。 In the method for producing an adhesive composition according to the present embodiment, inorganic nanoparticles are mixed with an association of polyethyleneimine and a fatty acid, and then further mixed with a compound having an epoxy group to obtain an association and a compound having an epoxy group. A first step of obtaining inorganic nanoparticles having a coating layer containing and a third step of mixing the dispersion and a base resin to obtain an adhesive composition.

第1の工程では、ポリエチレンイミン及び脂肪酸の会合体を含む溶液に、無機ナノ粒子を添加して、無機ナノ粒子を処理した後、エポキシ基を有する化合物を添加して、無機ナノ粒子を更に処理する。これにより、無機ナノ粒子の表面の少なくとも一部に、ポリエチレンイミン及び脂肪酸の会合体並びにエポキシ基を有する化合物を含む被覆層を形成することができる。被覆層を有する無機ナノ粒子は、遠心分離による粒子洗浄操作を施すことで、ナノ粒子ケーキ層として回収することができる。ナノ粒子ケーキ層を溶剤と混合して、被覆層を有する無機ナノ粒子の分散液としてもよい。溶剤としては、例えば、酢酸エチルを用いることができる。 In the first step, inorganic nanoparticles are added to a solution containing an association of polyethyleneimine and fatty acid to treat the inorganic nanoparticles, and then a compound having an epoxy group is added to further treat the inorganic nanoparticles. do. As a result, a coating layer containing the association of polyethyleneimine and fatty acid and the compound having an epoxy group can be formed on at least part of the surfaces of the inorganic nanoparticles. Inorganic nanoparticles having a coating layer can be collected as a nanoparticle cake layer by subjecting the particles to washing by centrifugation. The nanoparticle cake layer may be mixed with a solvent to form a dispersion of inorganic nanoparticles with a coating layer. Ethyl acetate, for example, can be used as the solvent.

第2の工程では、被覆層を有する無機ナノ粒子と、CNFとを混合することで、無機ナノ粒子とCNFとが均一に分散された分散液を得ることができる。CNFの表面が被覆層を有する無機ナノ粒子で修飾されて、CNFの凝集を防ぐことができると考えられる。第1の工程を経ずに、ポリエチレンイミンと脂肪酸との会合体、エポキシ基を有する化合物、無機ナノ粒子、及びCNFを混合した場合は、無機ナノ粒子に被覆層を形成することができず、CNFが凝集してしまう。 In the second step, the inorganic nanoparticles having the coating layer and the CNF are mixed to obtain a dispersion liquid in which the inorganic nanoparticles and the CNF are uniformly dispersed. It is believed that the surface of CNFs can be modified with inorganic nanoparticles having a coating layer to prevent aggregation of CNFs. When the association of polyethyleneimine and fatty acid, the compound having an epoxy group, the inorganic nanoparticles, and the CNF are mixed without going through the first step, a coating layer cannot be formed on the inorganic nanoparticles, CNF aggregates.

第3の工程では、上記無機ナノ粒子及びCNFを含む分散液と、ベース樹脂とを混合して接着剤組成物を得る。 In the third step, the dispersion containing the inorganic nanoparticles and CNF is mixed with a base resin to obtain an adhesive composition.

上記接着剤組成物は、特定の化合物で被覆されている無機ナノ粒子と、CNFとの分散液を用いることで、CNFを親油化しなくとも接着剤組成物への分散性を向上できると共に、Tg以上での貯蔵弾性率に低下を抑制することができる。本発明者らは、CNFが無機ナノ粒子で修飾されることで分散性が向上し、CNF同士が水素結合しつつも無機ナノ粒子により立体的に凝集が抑制されていると推定している。Tg以上での貯蔵弾性率が向上することで、高温条件下での接着力低下の抑制、クリープ特性の向上が期待できる。 The adhesive composition uses a dispersion of inorganic nanoparticles coated with a specific compound and CNF to improve dispersibility in the adhesive composition without making CNF lipophilic. A decrease in storage elastic modulus at Tg or higher can be suppressed. The present inventors presume that dispersibility is improved by modifying CNFs with inorganic nanoparticles, and that while CNFs are hydrogen-bonded to each other, aggregation is sterically suppressed by the inorganic nanoparticles. By improving the storage elastic modulus at Tg or higher, it can be expected to suppress a decrease in adhesive strength under high temperature conditions and improve creep properties.

(被覆層を有する無機ナノ粒子)
無機ナノ粒子としては、例えば、シリカ、アルミナ、窒化ケイ素、窒化アルミニウム等を材料とする粒子が挙げられる。「ナノ粒子」とは、例えば、粒径が1nm以上900nm以下である粒子をいう。
(Inorganic nanoparticles having a coating layer)
Examples of inorganic nanoparticles include particles made of silica, alumina, silicon nitride, aluminum nitride, and the like. "Nanoparticles" refer to particles having a particle size of, for example, 1 nm or more and 900 nm or less.

本実施形態に係る無機ナノ粒子は、ポリエチレンイミン及び脂肪酸の会合体並びにエポキシ基を有する化合物により、表面の少なくとも一部が被覆されている。 At least part of the surface of the inorganic nanoparticles according to the present embodiment is coated with an association of polyethyleneimine and fatty acid and a compound having an epoxy group.

接着剤組成物の硬化物の低熱膨張化及び高弾性化の観点から、無機ナノ粒子はシリカナノ粒子であることが好ましい。シリカナノ粒子は、粒径が小さいほど、硬化物の物性を効果的に向上させることができ、また接着剤組成物の流動性に影響する溶融粘度を広範囲に設定できる。シリカナノ粒子の平均粒径は、1~800nm、5~500nm、又は10~200nmであってよい。シリカナノ粒子の粒径がこの範囲であると、接着剤組成物の流動性に影響する溶融粘度の調整が容易であり、ポリエチレンイミン、脂肪酸及びエポキシ基を有する化合物を含む被覆をより適切な状態で維持することができる。 From the viewpoint of low thermal expansion and high elasticity of the cured product of the adhesive composition, the inorganic nanoparticles are preferably silica nanoparticles. The smaller the particle size of the silica nanoparticles, the more effectively the physical properties of the cured product can be improved, and the melt viscosity, which affects the fluidity of the adhesive composition, can be set in a wide range. The silica nanoparticles may have an average particle size of 1-800 nm, 5-500 nm, or 10-200 nm. When the particle size of the silica nanoparticles is within this range, the melt viscosity, which affects the fluidity of the adhesive composition, can be easily adjusted, and the coating containing polyethyleneimine, fatty acid, and epoxy group-containing compound can be formed in a more appropriate state. can be maintained.

ポリエチレンイミンの重量平均分子量(Mw)は、500以上20000以下が好ましく、600以上10000以下がより好ましい。ポリエチレンイミンのMwが上記範囲内であると、無機ナノ粒子の凝集体生成を更に良好に抑制できる傾向がある。 The weight average molecular weight (Mw) of polyethyleneimine is preferably 500 or more and 20,000 or less, more preferably 600 or more and 10,000 or less. When the Mw of polyethyleneimine is within the above range, there is a tendency that the formation of aggregates of inorganic nanoparticles can be suppressed more satisfactorily.

脂肪酸は、長鎖炭化水素の1価のカルボン酸であってよい。長鎖炭化水素の炭素数は、4以上30以下であると好ましく、6以上24以下であるとより好ましく、10以上20以下であると更に好ましい。長鎖炭化水素は、直鎖状又は分岐状であってもよく、不飽和結合を有してもよい。長鎖炭化水素の1価のカルボン酸を用いることで、接着剤組成物中の他の成分との相溶性が向上し、無機ナノ粒子の分散性が更に向上し、効率的に接着剤組成物の物性を向上することができるため、接着剤層の低熱膨張化及び高弾性化をし易くなる。 The fatty acid may be a long chain hydrocarbon monovalent carboxylic acid. The number of carbon atoms in the long-chain hydrocarbon is preferably 4 or more and 30 or less, more preferably 6 or more and 24 or less, and even more preferably 10 or more and 20 or less. Long chain hydrocarbons may be linear or branched and may have unsaturated bonds. By using a long-chain hydrocarbon monovalent carboxylic acid, the compatibility with other components in the adhesive composition is improved, the dispersibility of the inorganic nanoparticles is further improved, and the adhesive composition is efficiently formed. Since the physical properties of the adhesive layer can be improved, it becomes easy to achieve low thermal expansion and high elasticity of the adhesive layer.

無機ナノ粒子の分散性がより向上することから、脂肪酸は、炭素数が10~20であり、かつ、不飽和結合を有するカルボン酸を含むことが好ましく、オレイン酸を含むことがより好ましい。オレイン酸を含む会合体を用いることで、エポキシ基を有する化合物で無機ナノ粒子を被覆する際の凝集体生成をより効果的に抑制できる傾向がある。 The fatty acid preferably contains a carboxylic acid having 10 to 20 carbon atoms and an unsaturated bond, and more preferably contains oleic acid, since the dispersibility of the inorganic nanoparticles is further improved. By using an association containing oleic acid, there is a tendency to more effectively suppress the formation of aggregates when inorganic nanoparticles are coated with a compound having an epoxy group.

ポリエチレンイミン及び脂肪酸は、溶媒の存在下で混合することにより容易に会合させることができる。 Polyethylenimine and fatty acids can be readily associated by mixing in the presence of a solvent.

エポキシ基を有する化合物としては、例えば、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂等の1分子内に2個以上のグリシジル基を有するエポキシ化合物が挙げられる。これらは1種を単独で又は2種以上を混合して用いることができる。これらのエポキシ樹脂は、不純物イオン(Na、Cl等)、加水分解性塩素等を300ppm以下に低減した高純度品を用いることがエレクトロマイグレーション防止のために好ましい。 Examples of compounds having an epoxy group include bisphenol-type epoxy resins, naphthalene-type epoxy resins, glycidylamine-type epoxy resins, glycidyl ether-type epoxy resins, biphenyl-type epoxy resins, alicyclic epoxy resins, and the like. Epoxy compounds having the above glycidyl groups can be mentioned. These can be used individually by 1 type or in mixture of 2 or more types. These epoxy resins are preferably high-purity products in which impurity ions (Na + , Cl − , etc.) and hydrolyzable chlorine are reduced to 300 ppm or less in order to prevent electromigration.

本実施形態に係る無機ナノ粒子の含有量は、接着剤組成物中のCNFの分散性をより向上する観点から、ベース樹脂100質量部に対して1~30質量部、5~25質量部、又は10~20質量部であってよい。 From the viewpoint of further improving the dispersibility of CNF in the adhesive composition, the content of the inorganic nanoparticles according to the present embodiment is 1 to 30 parts by mass, 5 to 25 parts by mass, based on 100 parts by mass of the base resin. Or it may be 10 to 20 parts by mass.

(セルロースナノファイバー)
CNFとしては、繊維径が1~150nmであり、アスペクト比が100以上のCNFを用いることができる。接着剤組成物中での分散性を向上する観点から、CNFの繊維径は、1~100nm、2~100nm、又は3~80nmであってもよく、CNFのアスペクト比は、100~1000、150~800、又は200~500であってもよい。CNFは、綿花、木材等から得られたセルロースに対して、酸又は塩基を用いた分解、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)触媒酸化、機械解砕等の処理を行うことで作製してもよい。
(cellulose nanofiber)
As CNF, CNF having a fiber diameter of 1 to 150 nm and an aspect ratio of 100 or more can be used. From the viewpoint of improving dispersibility in the adhesive composition, the CNF fiber diameter may be 1 to 100 nm, 2 to 100 nm, or 3 to 80 nm, and the CNF aspect ratio is 100 to 1000, 150. ~800, or 200-500. CNF is used for cellulose obtained from cotton, wood, etc., decomposition using acid or base, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) catalytic oxidation, mechanical crushing, etc. It may be produced by processing.

CNFの種類は、特に制限されるものではないが、CNFが水中に分散された液を用いることができる。CNFの分散液の市販品としては、例えば、第一工業製薬株式会社製、商品名「レオクリスタI-2SX」、「レオクリスタI-2AX」、「レオクリスタI-2AE」、及び「レオクリスタI-2SP」が挙げられる。 The type of CNF is not particularly limited, but a liquid in which CNF is dispersed in water can be used. Commercially available CNF dispersions include, for example, products manufactured by Daiichi Kogyo Seiyaku Co., Ltd. under the trade names of “Rheocrysta I-2SX”, “Rheocrysta I-2AX”, “Rheocrysta I-2AE”, and “Rheocrysta I-2SP”. is mentioned.

接着剤組成物中のCNFの含有量は、CNFの分散性により優れることから、無機ナノ粒子の1g当たり0.1~5.0mg、0.5~3.5mg、1.0~3.0mgであってよい。 The content of CNF in the adhesive composition is 0.1 to 5.0 mg, 0.5 to 3.5 mg, 1.0 to 3.0 mg per 1 g of inorganic nanoparticles, because CNF dispersibility is superior. can be

(ベース樹脂)
本実施形態に係るベース樹脂は、エポキシ樹脂及び硬化剤を含んでよい。無機ナノ粒子を被覆するエポキシ基を有する化合物と、ベース樹脂に含まれるエポキシ樹脂とが反応することにより相溶性が向上し、接着剤組成物の低熱膨張化及び高弾性化が可能となる。
(base resin)
The base resin according to this embodiment may contain an epoxy resin and a curing agent. A compound having an epoxy group that coats the inorganic nanoparticles reacts with the epoxy resin contained in the base resin to improve compatibility, and it is possible to reduce the thermal expansion and increase the elasticity of the adhesive composition.

エポキシ樹脂としては、従来公知のエポキシ化合物を特に制限無く使用することができる。エポキシ樹脂として、例えば、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、及び脂環式エポキシ樹脂が挙げられる。エポキシ樹脂は、1種を単独で又は2種以上を混合して用いることができる。エポキシ樹脂は、無機ナノ粒子を被覆するエポキシ基を有する化合物と同一でも異なっていてもよい。 As the epoxy resin, conventionally known epoxy compounds can be used without particular limitation. Examples of epoxy resins include bisphenol-type epoxy resins, naphthalene-type epoxy resins, glycidylamine-type epoxy resins, glycidyl ether-type epoxy resins, biphenyl-type epoxy resins, and alicyclic epoxy resins. An epoxy resin can be used individually by 1 type or in mixture of 2 or more types. The epoxy resin may be the same as or different from the epoxy group-containing compound that coats the inorganic nanoparticles.

硬化剤としては、従来公知の化合物を特に制限無く使用することできる。硬化剤として、速硬化性を得易く、また化学当量的な考慮が少なくてよいことから、アニオン又はカチオン重合性の触媒型硬化剤を用いてもよい、触媒型硬化剤として、例えば、イミダゾール系硬化剤、ヒドラジド系硬化剤、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ジアミノマレオニトリル、メラミン及びその誘導体、ポリアミンの塩、ジシアンジアミド、及びこれらの変性物が挙げられる。硬化剤として、ポリアミン類、ポリメルカプタン、ポリフェノール、酸無水物等の重付加型の硬化剤を用いてもよい。硬化剤は、1種を単独で又は2種以上を組み合わせて用いることができる。重付加型硬化剤と触媒型硬化剤との併用も可能である。硬化剤は、潜在性硬化剤であってもよい。 As the curing agent, conventionally known compounds can be used without particular limitation. As a curing agent, an anion- or cationic-polymerizable catalyst-type curing agent may be used because it is easy to obtain rapid curing and chemical equivalents may be considered less. Curing agents, hydrazide-based curing agents, boron trifluoride-amine complexes, sulfonium salts, amine imides, diaminomaleonitrile, melamine and its derivatives, polyamine salts, dicyandiamide, and modified products thereof. As the curing agent, polyaddition type curing agents such as polyamines, polymercaptans, polyphenols and acid anhydrides may be used. Curing agents may be used singly or in combination of two or more. A combination of a polyaddition type curing agent and a catalyst type curing agent is also possible. The hardener may be a latent hardener.

アニオン重合性の触媒型硬化剤としては、イミダゾール系硬化剤又は第3アミン類が好ましい。エネルギー線照射によりエポキシ樹脂を硬化させる場合は、カチオン重合性型の触媒型硬化剤として、芳香族ジアゾニウム塩、芳香族スルホニウム塩等の感光性オニウム塩を用いてもよい。加熱によって活性化してエポキシ樹脂を硬化させる場合は、硬化剤として、脂肪族スルホニウム塩を用いてもよい。 As the anionic polymerizable catalyst-type curing agent, imidazole-based curing agents or tertiary amines are preferred. When the epoxy resin is cured by energy ray irradiation, a photosensitive onium salt such as an aromatic diazonium salt or an aromatic sulfonium salt may be used as a cationic polymerizable catalyst-type curing agent. When the epoxy resin is cured by activation by heating, an aliphatic sulfonium salt may be used as the curing agent.

接着剤組成物をフィルム状に形成して用いる場合、ベース樹脂は、熱可塑性樹脂を更に含んでよい。熱可塑性樹脂としては、従来公知の化合物を特に制限無く使用することができる。熱可塑性樹脂は、加熱により粘度の高い液状状態になって外力により自由に変形し、冷却し外力を取り除くとその形状を保ったままで硬くなり、この過程を繰り返し行える性質を持つ樹脂(高分子)をいう。また、熱可塑性樹脂は、上記の性質を有する反応性官能基を有する樹脂(高分子)であってもよい。熱可塑性樹脂のTgは、-30℃以上190℃以下が好ましく、-25℃以上170℃以下がより好ましく、-20℃以上150℃以下が更に好ましい。 When the adhesive composition is used in the form of a film, the base resin may further contain a thermoplastic resin. As the thermoplastic resin, conventionally known compounds can be used without particular limitation. Thermoplastic resin becomes a highly viscous liquid when heated, and can be freely deformed by an external force. When cooled and the external force is removed, it hardens while maintaining its shape. A resin (polymer) that has the property of repeating this process. Say. Moreover, the thermoplastic resin may be a resin (polymer) having a reactive functional group having the properties described above. The Tg of the thermoplastic resin is preferably -30°C or higher and 190°C or lower, more preferably -25°C or higher and 170°C or lower, and still more preferably -20°C or higher and 150°C or lower.

熱可塑性樹脂として、例えば、フェノキシ樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、ブチラール樹脂(例えばポリビニルブチラール樹脂)、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、及び酢酸ビニルを構造単位として有する共重合体(酢酸ビニル共重合体、例えばエチレン-酢酸ビニル共重合体)が挙げられる。熱可塑性樹脂は、1種を単独で又は2種以上を混合して用いることができる。熱可塑性樹脂は、シロキサン結合又はフッ素置換基を有してもよい。 Examples of thermoplastic resins include phenoxy resins, polyurethane resins, polyester urethane resins, butyral resins (e.g., polyvinyl butyral resins), acrylic resins, polyimide resins, polyamide resins, and copolymers having vinyl acetate as structural units (vinyl acetate copolymers). polymers such as ethylene-vinyl acetate copolymers). A thermoplastic resin can be used individually by 1 type or in mixture of 2 or more types. The thermoplastic resin may have siloxane bonds or fluorine substituents.

接着剤組成物をフィルム状にして利用する場合、熱可塑性樹脂のMwが大きいほど、良好なフィルム形成性が容易に得られ、また、接着剤フィルムとしての流動性に影響する溶融粘度を広範囲に設定できる。熱可塑性樹脂のMwは、5000以上が好ましく、7000以上がより好ましく、10000以上が更に好ましい。熱可塑性樹脂のMwが5000以上であると、良好なフィルム形成性が得られ易い。熱可塑性樹脂のMwは、150000以下が好ましく、100000以下がより好ましく、80000以下が更に好ましい。熱可塑性樹脂のMwが150000以下であると、他の成分との良好な相溶性が得られ易い。 When the adhesive composition is used in the form of a film, the greater the Mw of the thermoplastic resin, the easier it is to obtain good film formability, and the more the melt viscosity, which affects the fluidity of the adhesive film, can be adjusted over a wide range. Can be set. Mw of the thermoplastic resin is preferably 5,000 or more, more preferably 7,000 or more, and even more preferably 10,000 or more. When the Mw of the thermoplastic resin is 5,000 or more, good film formability is likely to be obtained. Mw of the thermoplastic resin is preferably 150,000 or less, more preferably 100,000 or less, and even more preferably 80,000 or less. When the Mw of the thermoplastic resin is 150,000 or less, good compatibility with other components is likely to be obtained.

(その他の成分)
本実施形態に係る接着剤組成物には、硬化速度の制御のため、及び、貯蔵安定性を向上させるために、安定化剤を添加してよい。安定化剤としては、特に制限無く公知の化合物を使用することができる。安定剤として、例えば、ベンゾキノン、ハイドロキノン等のキノン誘導体;4-メトキシフェノール、4-t-ブチルカテコール等のフェノール誘導体;2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等のアミノキシル誘導体;及びテトラメチルピペリジルメタクリレート等のヒンダードアミン誘導体が挙げられる。安定化剤は、1種を単独で又は2種以上を混合して用いることができる。
(other ingredients)
A stabilizer may be added to the adhesive composition according to the present embodiment in order to control the curing speed and improve the storage stability. As the stabilizer, known compounds can be used without particular limitation. Examples of stabilizers include quinone derivatives such as benzoquinone and hydroquinone; phenol derivatives such as 4-methoxyphenol and 4-t-butylcatechol; 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy- Aminoxyl derivatives such as 2,2,6,6-tetramethylpiperidine-1-oxyl; and hindered amine derivatives such as tetramethylpiperidyl methacrylate. A stabilizer can be used individually by 1 type or in mixture of 2 or more types.

接着剤組成物における安定化剤の含有量は、ベース樹脂の総量を基準として、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましい。安定化剤の含有量が0.005質量%以上であると、硬化速度を制御し易いとともに貯蔵安定性が向上し易い傾向がある。安定化剤の含有量は、ベース樹脂の総量を基準として、10質量%以下が好ましく、8質量%以下がより好ましく、5質量%以下が更に好ましい。安定化剤の含有量が10質量%以下であると、他の成分との相溶性が低下し難い。 The content of the stabilizer in the adhesive composition is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and even more preferably 0.02% by mass or more, based on the total amount of the base resin. When the content of the stabilizer is 0.005% by mass or more, the curing speed tends to be easily controlled and the storage stability tends to be improved. The content of the stabilizer is preferably 10% by mass or less, more preferably 8% by mass or less, and even more preferably 5% by mass or less, based on the total amount of the base resin. When the content of the stabilizer is 10% by mass or less, the compatibility with other components is less likely to decrease.

本実施形態に係る接着剤組成物には、アルコキシシラン誘導体及びシラザン誘導体に代表されるカップリング剤、密着向上剤及びレベリング剤等の接着助剤を適宜添加してもよい。 Adhesion assistants such as coupling agents, adhesion improvers, and leveling agents typified by alkoxysilane derivatives and silazane derivatives may be added to the adhesive composition according to the present embodiment as appropriate.

本実施形態に係る接着剤組成物には、応力緩和及び接着性向上を目的として、ゴム成分を添加してもよい。ゴム成分とは、そのままの状態でゴム弾性(JIS K6200)を示す成分又は反応によりゴム弾性を示す成分をいう。ゴム成分は、室温(25℃)で固形でも液状でもよいが、流動性向上の観点から液状であることが好ましい。ゴム成分としては、ポリブタジエン骨格を有する化合物が好ましい。ゴム成分は、シアノ基、カルボキシル基、水酸基、(メタ)アクリロイル基又はモルホリン基を有していてもよい。また、接着性を更に向上する観点から、高極性基であるシアノ基、カルボキシル基を側鎖又は末端に含むゴム成分を用いてもよい。なお、ゴム成分が、ポリブタジエン骨格を有していても熱可塑性を示す場合は、熱可塑性樹脂に分類する。 A rubber component may be added to the adhesive composition according to the present embodiment for the purpose of relaxing stress and improving adhesion. The rubber component refers to a component that exhibits rubber elasticity (JIS K6200) as it is or a component that exhibits rubber elasticity upon reaction. The rubber component may be solid or liquid at room temperature (25° C.), but is preferably liquid from the viewpoint of improving fluidity. A compound having a polybutadiene skeleton is preferable as the rubber component. The rubber component may have a cyano group, a carboxyl group, a hydroxyl group, a (meth)acryloyl group or a morpholine group. Moreover, from the viewpoint of further improving adhesiveness, a rubber component containing a highly polar group such as a cyano group or a carboxyl group in a side chain or terminal may be used. If the rubber component exhibits thermoplasticity even if it has a polybutadiene skeleton, it is classified as a thermoplastic resin.

ゴム成分として、例えば、ポリイソプレン、ポリブタジエン、カルボキシル基末端ポリブタジエン、水酸基末端ポリブタジエン、1,2-ポリブタジエン、カルボキシル基末端1,2-ポリブタジエン、水酸基末端1,2-ポリブタジエン、アクリルゴム、スチレン-ブタジエンゴム、水酸基末端スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、カルボキシル基、水酸基、(メタ)アクリロイル基又はモルホリン基をポリマー末端に含有するアクリロニトリル-ブタジエンゴム、カルボキシル化ニトリルゴム、水酸基末端ポリ(オキシプロピレン)、アルコキシシリル基末端ポリ(オキシプロピレン)、ポリ(オキシテトラメチレン)グリコール、及びポリオレフィングリコールが挙げられる。 Examples of rubber components include polyisoprene, polybutadiene, carboxyl-terminated polybutadiene, hydroxyl-terminated polybutadiene, 1,2-polybutadiene, carboxyl-terminated 1,2-polybutadiene, hydroxyl-terminated 1,2-polybutadiene, acrylic rubber, and styrene-butadiene rubber. , hydroxyl group-terminated styrene-butadiene rubber, acrylonitrile-butadiene rubber, acrylonitrile-butadiene rubber containing carboxyl group, hydroxyl group, (meth)acryloyl group or morpholine group at the polymer end, carboxylated nitrile rubber, hydroxyl group-terminated poly(oxypropylene), Alkoxysilyl group-terminated poly(oxypropylene), poly(oxytetramethylene) glycols, and polyolefin glycols are included.

高極性基を有し、室温で液状であるゴム成分として、例えば、液状アクリロニトリル-ブタジエンゴム、カルボキシル基、水酸基、(メタ)アクリロイル基又はモルホリン基をポリマー末端に含有する液状アクリロニトリル-ブタジエンゴム、及び液状カルボキシル化ニトリルゴムが挙げられる。極性基であるアクリロニトリルに基づく単位の割合は、10~60質量%が好ましい。ゴム成分は、1種を単独で又は2種以上を混合して用いることができる。 Examples of the rubber component having a highly polar group and being liquid at room temperature include liquid acrylonitrile-butadiene rubber, liquid acrylonitrile-butadiene rubber containing a carboxyl group, hydroxyl group, (meth)acryloyl group or morpholine group at the polymer terminal, and Liquid carboxylated nitrile rubbers may be mentioned. The proportion of units based on acrylonitrile, which is a polar group, is preferably 10 to 60% by mass. A rubber component can be used individually by 1 type or in mixture of 2 or more types.

[接着剤フィルム]
本実施形態に係る接着剤組成物は、フィルム状に成形して、接着剤フィルムとして用いることもできる。本実施形態に係る接着剤フィルムは、上記接着剤組成物を含む。接着剤フィルムは、必要により溶媒を加えた接着剤組成物の溶液を、基材に塗布して溶媒を除去した後、基材を剥離して作製してもよく、接着剤組成物の溶液を不織布等に含浸させた後、溶媒を除去して作製してもよい。基材としては、フッ素樹脂フィルム、ポリエチレンテレフタレート(PET)フィルム、離型紙等を用いることができる。接着剤組成物をフィルムの形状で使用すると、取扱性の点から一層便利である。本実施形態に係る接着剤組成物は、基材と基材上に設けられた接着剤フィルム(接着剤層)とを備える接着シートの形態であってもよい。
[Adhesive film]
The adhesive composition according to this embodiment can also be molded into a film and used as an adhesive film. The adhesive film according to this embodiment contains the above adhesive composition. The adhesive film may be produced by applying a solution of the adhesive composition to which a solvent is added, if necessary, to the substrate, removing the solvent, and then peeling off the substrate. After impregnating a nonwoven fabric or the like, it may be produced by removing the solvent. As the substrate, a fluororesin film, a polyethylene terephthalate (PET) film, a release paper, or the like can be used. Using the adhesive composition in the form of a film is more convenient from the standpoint of handling. The adhesive composition according to this embodiment may be in the form of an adhesive sheet comprising a substrate and an adhesive film (adhesive layer) provided on the substrate.

本実施形態に係る接着剤組成物又は接着剤フィルムは、加熱及び加圧を併用して被着体を接着させることができる。加熱温度は、100~200℃の温度であってよい。圧力は、被着体に損傷を与えない範囲が好ましく、一般的には0.1~10MPaであってよい。これらの加熱及び加圧は、0.5~120秒間の範囲で行うことが好ましく、120~190℃、3MPa、10秒の加熱でも接着させることが可能である。 The adhesive composition or adhesive film according to the present embodiment can adhere adherends by applying heat and pressure in combination. The heating temperature may be a temperature of 100-200°C. The pressure is preferably in a range that does not damage the adherend, and may generally be 0.1 to 10 MPa. These heating and pressurization are preferably carried out in the range of 0.5 to 120 seconds, and adhesion can be achieved by heating at 120 to 190° C. and 3 MPa for 10 seconds.

以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The content of the present invention will be described in more detail below using examples and comparative examples, but the present invention is not limited to the following examples.

(調製例1)
ポリエチレンイミン(PEI)1.50g(富士フイルム和光純薬株式会社)とオレイン酸(OA)2.96g(富士フイルム和光純薬株式会社)をトルエン中で混合してPEI-OAの会合体溶液30gを得た。会合体溶液に、トルエン171.7g、シリカナノ粒子(EVONIC Industries製、商品名:AEROSIL 200、一次粒子径:約12nm)12.0gを加えて90分間撹拌して懸濁液を得た。懸濁液に、ビスフェノールA型エポキシ樹脂(三菱ケミカル株式会社製、商品名:jER YL980)26.6gをトルエン26.6gに溶解させた溶液及びテトラブチルアンモニウムブロミド(富士フイルム和光純薬株式会社)1.2gを加え、ビーズミル(50μmZrOビーズ、ビーズ充填率:50体積%、ロータ周速:12m/秒)により20分間の処理を施してシリカナノ粒子のスラリーを得た。スラリーに貧溶媒としてヘキサン(スラリー:ヘキサン=1:2)を加え、遠心分離により粒子を沈澱させたのち、トルエンへの分散、ヘキサン添加、遠心分離による粒子洗浄操作を施した。最後の遠心分離操作後に得られるナノ粒子ケーキ層を回収し、粒子濃度が20体積%となるように酢酸エチルに再分散させて、PEI-OA-EPにより被覆されたシリカナノ粒子(SiO-PEI-OA-EP)の分散液を得た。
(Preparation Example 1)
1.50 g of polyethyleneimine (PEI) (FUJIFILM Wako Pure Chemical Industries, Ltd.) and 2.96 g of oleic acid (OA) (FUJIFILM Wako Pure Chemical Industries, Ltd.) were mixed in toluene to obtain 30 g of a PEI-OA aggregate solution. got To the aggregate solution, 171.7 g of toluene and 12.0 g of silica nanoparticles (manufactured by EVONIC Industries, trade name: AEROSIL 200, primary particle size: about 12 nm) were added and stirred for 90 minutes to obtain a suspension. To the suspension, a solution obtained by dissolving 26.6 g of bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER YL980) in 26.6 g of toluene and tetrabutylammonium bromide (Fujifilm Wako Pure Chemical Industries, Ltd.). 1.2 g was added and treated for 20 minutes by a bead mill (50 μm ZrO 2 beads, bead filling rate: 50% by volume, rotor peripheral speed: 12 m/sec) to obtain a slurry of silica nanoparticles. Hexane (slurry:hexane=1:2) was added as a poor solvent to the slurry, and the particles were precipitated by centrifugation, followed by dispersion in toluene, addition of hexane, and particle washing by centrifugation. The nanoparticle cake layer obtained after the last centrifugation operation was recovered and redispersed in ethyl acetate to a particle concentration of 20% by volume to obtain silica nanoparticles coated with PEI-OA-EP (SiO 2 -PEI -OA-EP) was obtained.

(調製例2)
CNFの分散液(第一工業製薬株式会社製、商品名「レオクリスタI-2SK」、CNF含有量:2.2質量%)0.38gに純水5mL、イソプロピルアルコール10mL、エタノール3mLを加えて攪拌した後、遠心分離して上澄み液を除去した。次いで、残留物にエタノールを20mL更に加えて遠心分離して上澄み液を除去する操作を繰り返して、CNFを取り出した。
次いで、CNF0.03344gと、調製例1のシリカナノ粒子の分散液66.88gとをホモジナイザーで混合し、CNF及びSiOの分散液A(SiO-PEI-OA-EP-CNF/酢酸エチル=20/80質量部、CNF量:2.5mg/SiO 1g)を得た。
(Preparation Example 2)
5 mL of pure water, 10 mL of isopropyl alcohol, and 3 mL of ethanol were added to 0.38 g of a CNF dispersion (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name “Rheocrysta I-2SK”, CNF content: 2.2% by mass) and stirred. After that, it was centrifuged and the supernatant was removed. Next, the operation of adding 20 mL of ethanol to the residue, centrifuging and removing the supernatant was repeated to take out CNF.
Next, 0.03344 g of CNF and 66.88 g of the silica nanoparticle dispersion of Preparation Example 1 were mixed with a homogenizer, and CNF and SiO 2 dispersion A (SiO 2 -PEI-OA-EP-CNF/ethyl acetate = 20 /80 parts by mass, CNF amount: 2.5 mg/SiO 2 1 g).

(調製例3)
CNFの量を変更した以外は調製例2と同様に操作して、CNF及びSiOの分散液B(CNF量:2.0mg/SiO 1g)を得た。
(Preparation Example 3)
Dispersion B of CNF and SiO 2 (CNF amount: 2.0 mg/SiO 2 1 g) was obtained in the same manner as in Preparation Example 2 except that the amount of CNF was changed.

(調製例4)
CNFの量を変更した以外は調製例2と同様に操作して、CNF及びSiOの分散液C(CNF量:1.0mg/SiO 1g)を得た。
(Preparation Example 4)
Dispersion C of CNF and SiO 2 (amount of CNF: 1.0 mg/SiO 2 1 g) was obtained in the same manner as in Preparation Example 2 except that the amount of CNF was changed.

[接着剤組成物]
(実施例1)
分散液Aを75質量部(SiO-PEI-OA-EP-CNF:15質量部、CNF:0.0375質量部)、フェノキシ樹脂(新日鉄住金化学株式会社社製、商品名:ZX-1356-2)を50質量部、トルエンを37.5質量部、酢酸エチルを37.5質量部、ビスフェノールA型エポキシ樹脂(jER YL980)を50質量部、2-エチル-4-メチルイミダゾールを5質量部混合して、接着剤組成物の溶液を作製した。
[Adhesive composition]
(Example 1)
75 parts by mass of dispersion liquid A (SiO 2 -PEI-OA-EP-CNF: 15 parts by mass, CNF: 0.0375 parts by mass), phenoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: ZX-1356- 2) 50 parts by mass, 37.5 parts by mass of toluene, 37.5 parts by mass of ethyl acetate, 50 parts by mass of bisphenol A type epoxy resin (jER YL980), 5 parts by mass of 2-ethyl-4-methylimidazole Mixed to form a solution of the adhesive composition.

(実施例2)
分散液Aを分散液Bに変更した以外は実施例1と同様にして、接着剤組成物の溶液を作製した。
(Example 2)
A solution of the adhesive composition was prepared in the same manner as in Example 1, except that the dispersion liquid A was changed to the dispersion liquid B.

(実施例3)
分散液Aを分散液Cに変更した以外は実施例1と同様にして、接着剤組成物の溶液を作製した。
(Example 3)
A solution of an adhesive composition was prepared in the same manner as in Example 1, except that Dispersion A was changed to Dispersion C.

(比較例1)
分散液Aを混合しなかった以外は実施例1と同様にして、接着剤組成物の溶液を作製した。
(Comparative example 1)
A solution of the adhesive composition was prepared in the same manner as in Example 1, except that the dispersion liquid A was not mixed.

(比較例2)
分散液AをCNF分散液(レオクリスタI-2SK)に変更した以外は実施例1と同様にして、接着剤組成物の溶液を作製した。
(Comparative example 2)
A solution of the adhesive composition was prepared in the same manner as in Example 1, except that the dispersion A was changed to a CNF dispersion (Rheocrysta I-2SK).

(比較例3)
分散液Aを、CNF、シリカナノ粒子(AEROSIL 200)及び酢酸エチルの分散液(AEROSIL 200/酢酸エチル=20/80質量部)に変更した以外は実施例1と同様にして、接着剤組成物の溶液を作製した。
(Comparative Example 3)
An adhesive composition was prepared in the same manner as in Example 1 except that dispersion A was changed to a dispersion of CNF, silica nanoparticles (AEROSIL 200) and ethyl acetate (AEROSIL 200/ethyl acetate = 20/80 parts by mass). A solution was prepared.

(セルロースナノファイバーの分散性)
接着剤組成物の溶液を目開き25μmの濾紙で濾過して、異物の有無を確認した。異物があれば分散性「NG」、異物がなければ分散性が「OK」と評価した。結果を表1に示す。
(Dispersibility of cellulose nanofibers)
The solution of the adhesive composition was filtered through a filter paper with an opening of 25 μm to confirm the presence or absence of foreign matter. If foreign matter was present, the dispersibility was evaluated as "NG", and if there was no foreign matter, the dispersibility was evaluated as "OK". Table 1 shows the results.

Figure 0007319630000001
Figure 0007319630000001

[接着剤フィルム]
実施例1及び比較例1の接着剤組成物の溶液を片面表面処理した厚み50μmのPETフィルムに塗布し、70℃で5分間熱風乾燥することにより、厚みが20μmの接着剤フィルムを作製した。
[Adhesive film]
The solutions of the adhesive compositions of Example 1 and Comparative Example 1 were applied to a PET film having a thickness of 50 μm, which had been surface-treated on one side, and dried with hot air at 70° C. for 5 minutes to prepare an adhesive film having a thickness of 20 μm.

(動的粘弾性の測定)
接着剤フィルムを200℃のオーブンで1時間加熱して、樹脂フィルムを得た。樹脂フィルムを1.0cm×5.0cmにカットして試験片を作製した。粘弾性測定装置(TAインスツルメンツ社製、商品名:RSA-3、)を用いた引張試験により、試験片のTg(℃)及びE’(Pa)を測定した。測定条件は、測定温度:-10~250℃、昇温速度:5℃/分、周波数:1.0Hz、ひずみ:0.1%とした。結果を表2に示す。
(Measurement of dynamic viscoelasticity)
The adhesive film was heated in an oven at 200° C. for 1 hour to obtain a resin film. A test piece was prepared by cutting the resin film into a size of 1.0 cm×5.0 cm. Tg (° C.) and E′ (Pa) of the test piece were measured by a tensile test using a viscoelasticity measuring device (manufactured by TA Instruments, trade name: RSA-3). The measurement conditions were as follows: measurement temperature: -10 to 250°C, heating rate: 5°C/min, frequency: 1.0 Hz, strain: 0.1%. Table 2 shows the results.

Figure 0007319630000002
Figure 0007319630000002

実施例1では、比較例1に比べて、Tg以上の温度域での貯蔵弾性率の低下を抑制できることが確認できた。本発明に係る接着剤組成物は、高温条件下での接着力を維持して接続信頼性を向上することが期待される。 In Example 1, compared with Comparative Example 1, it was confirmed that the decrease in storage elastic modulus in the temperature range above Tg can be suppressed. The adhesive composition according to the present invention is expected to maintain adhesive strength under high temperature conditions and improve connection reliability.

Claims (9)

無機ナノ粒子を、ポリエチレンイミン及び脂肪酸の会合体と混合した後、エポキシ基を有する化合物と更に混合して、前記会合体及び前記エポキシ基を有する化合物を含む被覆層を有する無機ナノ粒子を得る工程と、
前記被覆層を有する無機ナノ粒子と、セルロースナノファイバーとを混合して、前記無機ナノ粒子と前記セルロースナノファイバーとの分散液を得る工程と、
前記分散液と、ベース樹脂組成物とを混合して、接着剤組成物を得る工程と、
を備え
前記ベース樹脂組成物が、エポキシ樹脂及び硬化剤を含む、接着剤組成物の製造方法。
A step of mixing inorganic nanoparticles with an association of polyethyleneimine and fatty acid, and then further mixing with a compound having an epoxy group to obtain inorganic nanoparticles having a coating layer containing the association and the compound having an epoxy group. and,
a step of mixing the inorganic nanoparticles having the coating layer and cellulose nanofibers to obtain a dispersion of the inorganic nanoparticles and the cellulose nanofibers;
mixing the dispersion and a base resin composition to obtain an adhesive composition;
with
A method for producing an adhesive composition, wherein the base resin composition contains an epoxy resin and a curing agent .
前記脂肪酸がオレイン酸を含む、請求項1に記載の製造方法。 2. The production method according to claim 1, wherein said fatty acid comprises oleic acid. 前記無機ナノ粒子がシリカナノ粒子である、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the inorganic nanoparticles are silica nanoparticles. 前記ベース樹脂組成物が、熱可塑性樹脂を更に含む、請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3 , wherein the base resin composition further contains a thermoplastic resin. ポリエチレンイミン、脂肪酸及びエポキシ基を有する化合物により被覆されている無機ナノ粒子と、セルロースナノファイバーと、ベース樹脂組成物とを含有し、
前記ベース樹脂組成物が、エポキシ樹脂及び硬化剤を含む、接着剤組成物。
Containing inorganic nanoparticles coated with polyethylenimine, fatty acid and a compound having an epoxy group, cellulose nanofibers, and a base resin composition ,
An adhesive composition, wherein the base resin composition comprises an epoxy resin and a curing agent .
前記脂肪酸がオレイン酸を含む、請求項に記載の接着剤組成物。 6. The adhesive composition of Claim 5 , wherein said fatty acid comprises oleic acid. 前記無機ナノ粒子がシリカナノ粒子である、請求項又はに記載の接着剤組成物。 7. The adhesive composition according to claim 5 or 6 , wherein said inorganic nanoparticles are silica nanoparticles. 前記ベース樹脂組成物が、熱可塑性樹脂を更に含む、請求項5~7のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 5 to 7 , wherein the base resin composition further comprises a thermoplastic resin. 請求項のいずれか一項に記載の接着剤組成物を含む、接着剤フィルム。 An adhesive film comprising the adhesive composition according to any one of claims 5-8 .
JP2019171992A 2019-09-20 2019-09-20 Adhesive composition, method for producing adhesive composition, and adhesive film Active JP7319630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019171992A JP7319630B2 (en) 2019-09-20 2019-09-20 Adhesive composition, method for producing adhesive composition, and adhesive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019171992A JP7319630B2 (en) 2019-09-20 2019-09-20 Adhesive composition, method for producing adhesive composition, and adhesive film

Publications (2)

Publication Number Publication Date
JP2021050250A JP2021050250A (en) 2021-04-01
JP7319630B2 true JP7319630B2 (en) 2023-08-02

Family

ID=75157089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019171992A Active JP7319630B2 (en) 2019-09-20 2019-09-20 Adhesive composition, method for producing adhesive composition, and adhesive film

Country Status (1)

Country Link
JP (1) JP7319630B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286757A1 (en) * 2021-07-14 2023-01-19 東亞合成株式会社 Adhesive agent composition and method for producing same, and article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306711A (en) 2005-04-01 2006-11-09 Kawamura Inst Of Chem Res Monodisperse silica microparticle containing polyamine and process for producing the same
JP2013519782A (en) 2010-02-17 2013-05-30 ビーエーエスエフ ソシエタス・ヨーロピア Method for preparing conductive adhesive between solar cells
JP2016138220A (en) 2015-01-29 2016-08-04 Dic株式会社 Resin composition and adhesive
JP2018030971A (en) 2016-08-26 2018-03-01 国立大学法人横浜国立大学 Adhesive composition
JP2018070852A (en) 2016-11-04 2018-05-10 株式会社服部商店 Resin composition
JP2019070064A (en) 2017-10-06 2019-05-09 国立大学法人横浜国立大学 Photocurable slurry
JP2019077762A (en) 2017-10-24 2019-05-23 日立化成株式会社 Epoxy resin composition for sealing and electronic part device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306711A (en) 2005-04-01 2006-11-09 Kawamura Inst Of Chem Res Monodisperse silica microparticle containing polyamine and process for producing the same
JP2013519782A (en) 2010-02-17 2013-05-30 ビーエーエスエフ ソシエタス・ヨーロピア Method for preparing conductive adhesive between solar cells
JP2016138220A (en) 2015-01-29 2016-08-04 Dic株式会社 Resin composition and adhesive
JP2018030971A (en) 2016-08-26 2018-03-01 国立大学法人横浜国立大学 Adhesive composition
JP2018070852A (en) 2016-11-04 2018-05-10 株式会社服部商店 Resin composition
JP2019070064A (en) 2017-10-06 2019-05-09 国立大学法人横浜国立大学 Photocurable slurry
JP2019077762A (en) 2017-10-24 2019-05-23 日立化成株式会社 Epoxy resin composition for sealing and electronic part device

Also Published As

Publication number Publication date
JP2021050250A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
Aradhana et al. High performance epoxy nanocomposite adhesive: Effect of nanofillers on adhesive strength, curing and degradation kinetics
May et al. Effects of the addition of inorganic nanoparticles on the adhesive strength of a hybrid sol–gel epoxy system
TWI634184B (en) Adhesive sheet
KR101698231B1 (en) Adhesive sheet and bonding method using same
JP6067828B2 (en) Adhesive composition and adhesive sheet using the same
JP5139410B2 (en) Adhesive tape and method for producing adhesive tape
JP5570706B2 (en) Acrylic pressure sensitive adhesive tape or sheet
JPH04275383A (en) High-performance epoxy adhesive
Leelachai et al. Toughening of epoxy hybrid nanocomposites modified with silica nanoparticles and epoxidized natural rubber
JP6748999B2 (en) Adhesive composition
JP2017518391A (en) Epoxy resin composition for pregel furnace
JP4851753B2 (en) Adhesive composition and adhesive sheet
JP7319630B2 (en) Adhesive composition, method for producing adhesive composition, and adhesive film
Brantseva et al. Adhesion properties of the nanocomposites filled with aluminosilicates and factors affecting them: a review
JP4374395B1 (en) Adhesive film
Panta et al. High-performance carbon nanofiber reinforced epoxy-based nanocomposite adhesive materials modified with novel functionalization method and triblock copolymer
JP5560746B2 (en) Adhesive sheet
Panta et al. Ozone functionalized graphene nanoplatelets and triblock copolymer hybrids as nanoscale modifiers to enhance the mechanical performance of epoxy adhesives
JP2011202043A (en) Tacky adhesive sheet
WO2011059883A2 (en) One-pack type liquid epoxy resin composition and adhesion method using same
WO2014050369A1 (en) Adhesive tape and method for producing adhesive tape
JP2011225812A (en) Water dispersion type acrylic adhesive composition, and method for manufacturing adhesive layer
JP3615470B2 (en) Damping adhesive rubber composition
Xu et al. Enhanced adhesion property of epoxy resin composites through dual reinforcement mechanisms
JP2009275102A (en) Circuit connecting material

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230712

R150 Certificate of patent or registration of utility model

Ref document number: 7319630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350