JP7302516B2 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
JP7302516B2
JP7302516B2 JP2020057545A JP2020057545A JP7302516B2 JP 7302516 B2 JP7302516 B2 JP 7302516B2 JP 2020057545 A JP2020057545 A JP 2020057545A JP 2020057545 A JP2020057545 A JP 2020057545A JP 7302516 B2 JP7302516 B2 JP 7302516B2
Authority
JP
Japan
Prior art keywords
waveguide
straight
ridge
height
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020057545A
Other languages
English (en)
Other versions
JP2021157065A (ja
Inventor
裕貴 原
信治 岩塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2020057545A priority Critical patent/JP7302516B2/ja
Publication of JP2021157065A publication Critical patent/JP2021157065A/ja
Application granted granted Critical
Publication of JP7302516B2 publication Critical patent/JP7302516B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光変調器に関し、特に、マッハツェンダー型光変調器の導波路構造に関する。
インターネットの普及に伴い通信量は飛躍的に増大しており、光ファイバ通信の重要性が非常に高まっている。光ファイバ通信は、電気信号を光信号に変換し、光信号を光ファイバにより伝送するものであり、広帯域、低損失、ノイズに強いという特徴を有する。
電気信号を光信号に変換する方式としては、半導体レーザによる直接変調方式と光変調器を用いた外部変調方式が知られている。直接変調は光変調器が不要で低コストであるが、高速変調には限界があり、高速で長距離の用途では外部変調方式が使われている。
光変調器としては、ニオブ酸リチウム単結晶基板の表面付近にTi(チタン)拡散により光導波路を形成したマッハツェンダー型光変調器が実用化されている(例えば特許文献1参照)。マッハツェンダー型光変調器は、1つの光源から出た光を2つに分け、異なる経路を通過させた後、再び重ね合わせて干渉を起こさせるマッハツェンダー干渉計の構造を有する光導波路(マッハツェンダー光導波路)を用いるものであり、40Gb/s以上の高速の光変調器が商用化されているが、全長が10cm前後と長いことが大きな欠点になっている。
これに対して、特許文献2には、c軸配向のニオブ酸リチウム膜を用いたマッハツェンダー型光変調器が開示されている。ニオブ酸リチウム膜を用いた光変調器は、ニオブ酸リチウム単結晶基板を用いた光変調器と比較して大幅な小型化及び低駆動電圧化が可能である。
マッハツェンダー型光変調器に関し、例えば特許文献3には、曲がり導波路の後段にY字状の分岐部が設けられた構成において、曲がり導波路中で偏ったモードが分岐部に入射することで分岐比が50%からずれて実効屈折率の差が生じ、消光比が悪化することを防止するため、曲がり導波路の始点から分岐部に至るまでの間に低屈折率部を設けることが記載されている。
特許第4485218号公報 特開2006-195383号公報 特許第5488226号公報
マッハツェンダー光導波路を構成する互いに平行な2本の導波路部の線幅が例えば製造プロセス要因により非対称性を持つことがある。このとき2本の導波路部間の実効屈折率が異なることから、光の伝搬特性に波長依存性が生じる。光の伝搬特性に波長依存性が生じる場合、入出力光の動作波長が消光状態であっても入出力光に混在する動作波長以外のバックグランド光が導光状態となるため、オフ状態のときの光強度が大きくなり、消光比が悪化する。なお、この場合の実効屈折率は導波路中を伝搬する光の群速度により決まる。
したがって、本発明の目的は、一対の光導波路の非対称性に起因する消光比の悪化を改善することが可能な光変調器を提供することにある。
上記課題を解決するため、本発明による光変調器は、入力導波路部と、前記入力導波路部を伝搬する光を分波する分波部と、前記分波部から延びて互いに平行に設けられた第1及び第2導波路部と、前記第1及び第2導波路部を伝搬する光を合波する合波部と、前記合波部から出力される光を伝搬する出力導波路部とを有するマッハツェンダー光導波路と、前記マッハツェンダー光導波路を伝搬する光の位相を制御する信号電極とを備え、前記第2導波路部の線幅は前記第1導波路部の線幅よりも広く、前記第2導波路部の高さは前記第1導波路部の高さよりも低いことを特徴とする。
本発明によれば、線幅が異なることによる第1及び第2導波路部間の実効屈折率差を小さくすることができる。したがって、消光比が良好な光変調器を提供することができる。
本発明において、前記第1及び第2導波路部は、互いに平行に設けられた第1及び第2直線部と、前記第1直線部と前記第2直線部とを繋ぐ第1湾曲部とを有し、前記第2直線部の前記第2導波路部は、前記第1直線部の第2導波路部と前記第2直線部の第1導波路部との間に位置し、前記第1直線部の前記第1導波路部は、前記第1湾曲部の前記第1導波路部を介して前記第2直線部の前記第1導波路部に接続され、前記第1直線部の前記第2導波路部は、前記第1湾曲部の前記第2導波路部を介して前記第2直線部の前記第2導波路部に接続され、前記第1直線部において、前記第2導波路部の線幅は前記第1導波路部の線幅よりも広く、且つ、前記第2導波路部の高さは前記第1導波路部の高さよりも低く、前記第2直線部において、前記第1導波路部の線幅は前記第2導波路部の線幅よりも広く、且つ、前記第1導波路部の高さは前記第2導波路部の高さよりも低いことが好ましい。このように、第1及び第2導波路部を折り返し構造とすることで導波路(相互作用部)の全長を長くすることができ、低駆動電圧化と小型化の両立が可能である。また、線幅が異なることによる第1及び第2導波路部間の実効屈折率差を小さくすることができ、消光比が良好な光変調器を提供することができる。
本発明において、前記第1及び第2導波路部は、前記第1及び第2直線部と平行に設けられ、前記第2直線部から見て前記第1直線部と反対側に位置する第3直線部と、前記第2直線部と前記第3直線部とを繋ぐ第2湾曲部とをさらに有し、前記第3直線部の前記第1導波路部は、前記第2直線部の前記第1導波路部と前記第3直線部の前記第2導波路部との間に位置し、前記第2直線部の前記第1導波路部は、前記第2湾曲部の前記第1導波路部を介して前記第3直線部の前記第1導波路部に接続され、前記第2直線部の前記第2導波路部は、前記第2湾曲部の前記第2導波路部を介して前記第3直線部の前記第2導波路部に接続され、前記第3直線部において、前記第2導波路部の線幅は前記第1導波路部の線幅よりも広く、且つ、前記第2導波路部の高さは前記第1導波路部の高さよりも低いことが好ましい。この構成によれば、導波路(相互作用部)の全長をさらに長くすることができ、低駆動電圧化と小型化の両立が可能である。
本発明において、前記マッハツェンダー光導波路は、基板上のニオブ酸リチウム膜がリッジ状に形成されたリッジ導波路であることが好ましい。光変調器のマッハツェンダー光導波路をニオブ酸リチウム膜により形成する場合、曲率が小さな光導波路を形成することができ、小型で高品質な光変調器を構成することが可能である。
本発明による光変調器の製造方法は、ウェーハ上に導波層を形成する工程と、前記導波層をリッジ状に加工して複数の光導波路を形成する工程と、前記複数の光導波路に対応する複数の電極を形成する工程とを備え、前記複数の光導波路の各々は、前記ウェーハの第1方向と平行に設けられた第1及び第2導波路部を含み、前記第2導波路部が前記第2導波路部よりも前記第1方向と直交する第2方向における前記ウェーハの外周寄りに位置し、前記複数の光導波路は、第1光導波路と、前記第1光導波路よりも前記第1方向と直交する前記ウェーハの第2方向の外周側に設けられた第2光導波路とを含み、前記第2光導波路の前記第2導波路部のリッジ幅は、前記第2光導波路の前記第1導波路部のリッジ幅よりも広く、前記第2光導波路の前記第2導波路部のリッジ高さは、前記第2光導波路の前記第1導波路部のリッジ高さよりも低いことを特徴とする。この場合、前記第1光導波路の前記第2導波路部のリッジ幅は、前記第1光導波路の前記第1導波路部と等しく、前記第1光導波路の前記第2導波路部のリッジ高さは、前記第1光導波路の前記第1導波路部と等しいことが好ましい。本発明によれば、ウェーハ上の形成位置によらず、マッハツェンダー光導波路の一対の導波路間の実効屈折率差を小さく、これにより消光比が良好な光変調器を製造することができる。
本発明によれば、互いに平行な一対の光導波路の非対称性に起因する消光比の悪化を改善することが可能な光変調器を提供することができる。
図1(a)及び(b)は、本発明の第1の実施の形態による光変調器の構成を示す略平面図であり、図1(a)は光導波路のみ図示し、図1(b)は進行波電極を含めた光変調器の全体を図示している。 図2は、図1(a)及び(b)のX-X'線に沿った光変調器1の略断面図である。 図3は、ウェーハ上に形成される複数の光変調器のレイアウトを示す略平面図である。 図4は、本発明の第2実施の形態による光変調器の構成を示す略平面図である。 図5は、図4のX-X'線に沿った光導波路パターンの略断面図である。 図6は、リッジ導波路のリッジ幅Wridgeと実効屈折率との関係を示すグラフである。 図7は、リッジ導波路のリッジ高さTLNと実効屈折率との関係を示すグラフである。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図1(a)及び(b)は、本発明の第1の実施の形態による光変調器の構成を示す略平面図であり、図1(a)は光導波路のみ図示し、図1(b)は進行波電極を含めた光変調器の全体を図示している。
図1(a)及び(b)に示すように、この光変調器1は、基板10上に形成され、互いに平行に設けられた第1及び第2導波路部2a,2bを有するマッハツェンダー光導波路2と、第1導波路部2aに沿って設けられた第1信号電極4aと、第2導波路部2bに沿って設けられた第2信号電極4bと、第1導波路部2aに沿って設けられた第1バイアス電極5aと、第2導波路部2bに沿って設けられた第2バイアス電極5bとを備えている。第1及び第2信号電極4a,4bは、第1及び第2導波路部2a,2bと共にマッハツェンダー光変調器のRF相互作用部3aを構成している。また、第1及び第2バイアス電極5a,5bは、第1及び第2導波路部2a,2bと共にマッハツェンダー光変調器のDC相互作用部3bを構成している。
マッハツェンダー光導波路2は、マッハツェンダー干渉計の構造を有する光導波路であって、入力導波路部2iと、入力導波路部2iを伝搬する光を分波する分波部2cと、分波部2cから延びて互いに平行に設けられた第1及び第2導波路部2a,2bと、第1及び第2導波路部2a,2bを伝搬する光を合波する合波部2dと、合波部2dから出力される光を伝搬する出力導波路部2oとを有している。入力導波路部2iに入力された入力光は、分波部2cで分波されて第1及び第2導波路部2a,2bをそれぞれ進行した後、合波部2dで合波され、出力導波路部2oから変調光として出力される。
第1及び第2信号電極4a,4bは第1及び第2導波路部2a,2bにRF信号を印加するために設けられている。第1及び第2信号電極4a,4bは、平面視で第1及び第2導波路部2a,2bと重なる線状の電極パターンであり、その両端は基板10の外周端付近まで引き出されている。すなわち、第1及び第2信号電極4a,4bの一端4a,4bは基板10のエッジ近傍まで引き出されて信号入力ポートを構成しており、信号入力ポートにはドライバ回路9aが接続される。また、第1及び第2信号電極4a,4bの他端4a,4bは基板10のエッジ近傍まで引き出されると共に終端抵抗9bを介して互いに接続されている。これにより、第1及び第2信号電極4a,4bは、差動のコプレーナ型進行波電極として機能する。
第1及び第2バイアス電極5a,5bは、第1及び第2導波路部2a,2bに直流電圧(DCバイアス)を印加するために第1及び第2信号電極4a,4bとは独立に設けられている。第1及び第2バイアス電極5a,5bの一端5a,5bは基板10のエッジ近傍まで引き出されてDCバイアス入力ポートを構成しており、DCバイアスポートにはバイアス回路9cが接続される。本実施形態において、第1及び第2バイアス電極5a,5bの形成領域は、第1及び第2信号電極4a,4bの形成領域よりもマッハツェンダー光導波路2の出力端側に設けられているが、入力端側に設けられていてもよい。また、第1及び第2バイアス電極5a,5bを省略し、DCバイアスを予め重畳させた変調信号を第1及び第2信号電極4a,4bに入力することも可能である。
第1及び第2信号電極4a,4bの一端には、絶対値が同じで正負の異なる差動信号(変調信号)が入力される。第1及び第2導波路部2a,2bはニオブ酸リチウムなどの電気光学効果を有する材料からなるので、第1及び第2導波路部2a,2bに与えられる電界によって第1及び第2導波路部2a,2bの屈折率がそれぞれ+Δn、-Δnのように変化し、一対の光導波路間の位相差が変化する。この位相差の変化により変調された信号光が出力導波路部2oから出力される。
このように、本実施形態による光変調器1は、一対の信号電極で構成されたデュアル駆動型であるため、一対の光導波路に印加される電界の対称性を高めることができ、波長チャープを抑制することができる。
図2は、図1(a)及び(b)のX-X'線に沿った光変調器1の略断面図である。
図2に示すように、光変調器1は、基板10、導波層11、バッファ層13、及び電極層14がこの順で積層された多層構造を有している。
基板10は例えばサファイア単結晶基板であり、基板10の主面にはニオブ酸リチウムに代表される電気光学材料からなる導波層11が形成されている。導波層11は、突出した部分であるリッジ部11rと、リッジ部11rの両側に設けられた膜厚が薄い部分であるスラブ部11sとを有し、リッジ部11rが第1及び第2導波路部2a、2bを構成している。本実施形態において、リッジ部11rの幅W,Wは0.5~5μmとすることができる。また、本実施形態において、第1導波路部2aのリッジ部11rの幅Wは第2導波路部2bのリッジ部11rの幅Wと異なっている。
リッジ部11rは光導波路の中心となる部分であり、上方に突き出した場所を指す。この上方に突き出した場所は、左右の場所と比較して、電気光学材料膜の膜厚が厚くなっているので、実効屈折率が高くなっている。そのため、左右方向についても光を閉じ込めることができ、3次元光導波路として機能する。リッジ部11rの形状は光を導波可能とする形状であればよく、リッジ部11rにおける電気光学材料膜の膜厚が、左右の電気光学材料膜の膜厚より厚い凸形状であればよい。したがって、上に凸のドーム形状、三角形状などであってもよい。リッジ部11rは、電気光学材料膜上にレジストなどのマスクを形成し、電気光学材料膜を選択的にエッチングしてパターニングすることにより形成することができる。リッジ部11rの幅、高さ、形状等はデバイス特性が向上するように最適化する必要がある。
通常、リッジ部11rの厚さは電気光学材料膜の厚さと等しい。リッジ部11rの幅(リッジ幅W,W)は、リッジ部11rの上面の幅として定義される。図示のリッジ部11rの側面は基板10に対して垂直であるが、傾斜した側面である場合もあるからである。リッジ部11rの側面の傾斜角度は90°に近いことが好ましいが、少なくとも70°以上であれば足りる。このようにリッジ幅をリッジ部11rの上面の幅とする場合には、リッジ部11rが台形形状を有する場合でもリッジ幅を明確に定義することができる。
リッジ部11rの両側に設けられたスラブ部11sは、リッジ部11rから左右に広がるリッジ部11rよりも薄い電気光学材料膜からなる部分である。本実施形態において、スラブ部11sは実質的に一定の厚さを有しているが、リッジ部11rの根元付近のスラブ膜厚は安定しておらず、なだらかなテーパー形状が残留していたり、陥没していたりする場合がある。そのため、スラブ部11sの厚さは、膜厚が過渡的に変化するところでの厚さではなく、リッジ部11rの根元から少し離れた膜厚が安定しているところでの厚さとして定義される。第1及び第2導波路部2a,2bを構成するリッジ部11rのリッジ高さTra,Trbは、リッジ部11rを構成する電気光学材料膜の厚さである。
本実施形態において、第2導波路部2bのリッジ幅Wは第1導波路部2aのリッジ幅Wと異なっており、特に第2導波路部2bのリッジ幅Wは第1導波路部2aのリッジ幅Wよりも広い(W>W)。このようなリッジ幅の違いは、後述する導波層11の加工ばらつきによって生じるものである。第1及び第2導波路部2a,2bのリッジ高さTra,Trbが等しく、さらに第1及び第2導波路部2a,2bのリッジ幅W,Wが互いに異なる場合、第1及び第2導波路部2a,2b間の実効屈折率差が大きくなることにより光変調器1の消光比が悪化する。しかし、本実施形態ではリッジ幅の違いに合わせて第2導波路部2bのリッジ高さを第1導波路部2aと異ならせており、特に第2導波路部2bのリッジ高さTrbを第1導波路部2aのリッジ高さTraよりも低くしているので、第2導波路部2bの実効屈折率を第1導波路部2aの実効屈折率に近づけることができ、光変調器の消光比の悪化を改善することができる。
バッファ層13は、第1及び第2導波路部2a、2b中を伝搬する光が第1及び第2信号電極4a,4bに吸収されることを防ぐため、少なくともリッジ部11rの上面に形成されるものである。本実施形態においてバッファ層13はリッジ部11rの上面及び側面を含む導波層11の全面を覆っている。バッファ層13は、導波層11よりも屈折率が小さく、透明性が高い材料からなることが好ましく、例えば、Al、SiO、LaAlO、LaYO、ZnO、HfO、MgO、Yなどを用いることができる。リッジ部11rの上面上のバッファ層13の厚さは0.2~1μm程度であればよい。バッファ層13は誘電率が高い材料からなることがより好ましい。本実施形態において、バッファ層13は、第1及び第2導波路部2a、2bを構成するリッジ部11rの上面付近だけを選択的に覆うようにパターニングされたものであってもよい。
バッファ層13の膜厚は、電極の光吸収を低減するためには厚いほど良く、光導波路に高い電界を印加するためには薄いほど良い。電極の光吸収と電極の印加電圧とは、トレードオフの関係にあるので、目的に応じて適切な膜厚を設定する必要がある。バッファ層13の誘電率は高い程、VπL(電界効率を表す指標)を低減できるので好ましく、バッファ層13の屈折率は低い程、バッファ層13を薄くできるので好ましい。通常、誘電率が高い材料は屈折率も高くなるので、両者のバランスを考慮して、誘電率が高く、かつ、屈折率が比較的低い材料を選定することが重要である。一例として、Alは、比誘電率が約9、屈折率が約1.6であり、好ましい材料である。LaAlOは、比誘電率が約13、屈折率が約1.7であり、またLaYOは、比誘電率が約17、屈折率が約1.7であり、特に好ましい材料である。
RF相互作用部3aのバッファ層13はDC相互作用部3bのバッファ層13と異なる材料で構成されていてもよい。RF相互作用部3aのバッファ層13にはRF相互作用部3aの特性を最適化できるバッファ層材料、DC相互作用部3bのバッファ層13にはDCドリフトを低減できるバッファ層材料を用いることで、各特性を最適化できる。DCドリフトを低減できるバッファ層材料としては、例えば、酸化シリコンとインジウムの酸化物を含む材料を挙げることができる。
図1に示すように、RF相互作用部3aの電極層14は、第1信号電極4a及び第2信号電極4bを含む。第1信号電極4aは、第1導波路部2a内を進行する光を変調するために第1導波路部2aに対応するリッジ部11rに重ねて設けられ、バッファ層13を介して第1導波路部2aと対向している。第2信号電極4bは、第2導波路部2b内を進行する光を変調するために第2導波路部2bに対応するリッジ部11rに重ねて設けられ、バッファ層13を介して第2導波路部2bと対向している。
第1及び第2信号電極4a,4bの幅は、リッジ状に形成されたニオブ酸リチウム膜からなる第1及び第2導波路部2a,2bのリッジ幅W,Wよりも少し広い程度である。第1及び第2信号電極4a,4bからの電界を第1及び第2導波路部2a、2bに集中させるためには、第1及び第2信号電極4a,4bの幅は、第2導波路部2bのリッジ幅Wの1.1~15倍であることが好ましく、1.5~10倍であることがより好ましい。
第1及び第2導波路部2a、2bの進行方向と直交する断面において、電極構造は左右対称である。そのため、第1及び第2信号電極4a,4bから第1及び第2導波路部2a、2bにそれぞれ印加される電界の大きさをできるだけ同じにして波長チャープを低減することができる。なお、本発明において電極構造は特に限定されず、いわゆるシングル駆動型の電極構造であってもよく、グランド電極の有無及びレイアウトも特に限定されない。
導波層11は電気光学材料であれば特に限定されないが、ニオブ酸リチウム(LiNbO)からなることが好ましい。ニオブ酸リチウムは大きな電気光学定数を有し、光変調器等の光学デバイスの構成材料として好適だからである。以下、導波層11をニオブ酸リチウム膜とした場合の本実施形態の構成について詳しく説明する。
基板10としてはニオブ酸リチウム膜より屈折率が低いものであれば特に限定されないが、ニオブ酸リチウム膜をエピタキシャル膜として形成させることができる基板が好ましく、サファイア単結晶基板もしくはシリコン単結晶基板が好ましい。単結晶基板の結晶方位は特に限定されない。ニオブ酸リチウム膜はさまざまな結晶方位の単結晶基板に対して、c軸配向のエピタキシャル膜として形成されやすいという性質を持っている。c軸配向のニオブ酸リチウム膜は3回対称の対称性を有しているので、下地の単結晶基板も同じ対称性を有していることが望ましく、サファイア単結晶基板の場合はc面、シリコン単結晶基板の場合は(111)面の基板が好ましい。
ここで、エピタキシャル膜とは、下地の基板もしくは下地膜の結晶方位に対して、揃って配向している膜のことである。膜面内をX-Y面とし、膜厚方向をZ軸としたとき、結晶がX軸、Y軸及びZ軸方向にともに揃って配向しているものである。例えば、第1に2θ-θX線回折による配向位置でのピーク強度の確認と、第2に極点の確認を行うことで、エピタキシャル膜を証明できる。
具体的には、第1に2θ-θX線回折による測定を行ったとき、目的とする面以外の全てのピーク強度が目的とする面の最大ピーク強度の10%以下、好ましくは5%以下である必要がある。例えば、ニオブ酸リチウムのc軸配向エピタキシャル膜では、(00L)面以外のピーク強度が、(00L)面の最大ピーク強度の10%以下、好ましくは5%以下である。(00L)は、(001)や(002)などの等価な面を総称する表示である。
第2に、極点測定において、極点が見えることが必要である。前述の第1の配向位置でのピーク強度の確認の条件においては、一方向における配向性を示しているのみであり、前述の第1の条件を得たとしても、面内において結晶配向が揃っていない場合には、特定角度位置でX線の強度が高まることはなく、極点は見られない。LiNbOは三方晶系の結晶構造であるため、単結晶におけるLiNbO(014)の極点は3つとなる。
ニオブ酸リチウム膜の場合、c軸を中心に180°回転させた結晶が対称的に結合した、いわゆる双晶の状態にてエピタキシャル成長することが知られている。この場合、3つの極点が対称的に2つ結合した状態になるため、極点は6つとなる。また、(100)面のシリコン単結晶基板上にニオブ酸リチウム膜を形成した場合は、基板が4回対称となっているため、4×3=12個の極点が観測される。なお、本発明では、双晶の状態にてエピタキシャル成長したニオブ酸リチウム膜もエピタキシャル膜に含める。
ニオブ酸リチウム膜の組成はLixNbAyOzである。Aは、Li、Nb、O以外の元素を表している。xは0.5~1.2であり、好ましくは、0.9~1.05である。yは、0~0.5である。zは1.5~4であり、好ましくは2.5~3.5である。Aの元素としては、K、Na、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Cr、Mo、W、Fe、Co、Ni、Zn、Sc、Ceなどがあり、2種類以上の組み合わせでも良い。
ニオブ酸リチウム膜の膜厚は2μm以下であることが望ましい。膜厚が2μmよりも厚くなると、高品質な膜を形成することが困難になるからである。一方、ニオブ酸リチウム膜の膜厚が薄すぎる場合は、ニオブ酸リチウム膜における光の閉じ込めが弱くなり、基板10やバッファ層13に光が漏れることになる。ニオブ酸リチウム膜に電界を印加しても、光導波路(2a、2b)の実効屈折率の変化が小さくなるおそれがある。そのため、ニオブ酸リチウム膜は、使用する光の波長の1/10程度以上の膜厚が望ましい。
ニオブ酸リチウム膜の形成方法としては、スパッタ法、CVD法、ゾルゲル法などの膜形成方法を利用することが望ましい。ニオブ酸リチウムのc軸が基板10の主面に垂直に配向されており、c軸に平行に電界を印加することで、電界に比例して光学屈折率が変化する。単結晶基板としてサファイアを用いる場合は、サファイア単結晶基板上に直接、ニオブ酸リチウム膜をエピタキシャル成長させることができる。単結晶基板としてシリコンを用いる場合は、クラッド層(図示せず)を介して、ニオブ酸リチウム膜をエピタキシャル成長により形成する。クラッド層(図示せず)としては、ニオブ酸リチウム膜より屈折率が低く、エピタキシャル成長に適したものを用いる。例えば、クラッド層(図示せず)としてYを用いると、高品質のニオブ酸リチウム膜を形成できる。
なお、ニオブ酸リチウム膜の形成方法として、ニオブ酸リチウム単結晶基板を薄く研磨したりスライスしたりする方法も知られている。この方法は、単結晶と同じ特性が得られるという利点があり、本発明に適用することが可能である。
次に、本実施形態による光変調器の製造方法について説明する。本実施形態による光変調器は、集合基板としてのウェーハ上に複数の光変調器を作製した後、個々の光変調器をダイシングにより分割することにより製造される。
図3は、ウェーハ上に形成される複数の光変調器のレイアウトを示す略平面図である。
図3に示すように、ウェーハ30上には単一の光変調器1の形成領域であるデバイス形成領域31がマトリックス状に設けられている。デバイス形成領域31はY方向(第1方向)に細長い矩形領域であり、マッハツェンダー光導波路の長手方向はY方向を向いている。すなわち、第1及び第2導波路部2a,2bはデバイス形成領域31内においてY方向に延設されている。ウェーハ30上の複数のデバイス形成領域31は、Y方向及びX方向(第2方向)に複数設けられている。本実施形態では、左側に5列、中央に7列、右側に5列のデバイス形成領域31が設けられている。ただし、このデバイス形成領域31のレイアウトは一例であって、ウェーハサイズ及び光変調器の大きさに基づいて適宜決定することができる。
ウェーハ30上の各デバイス形成領域31にマッハツェンダー光導波路を含む導波路パターンを形成する場合、ウェーハ30の外周寄りに形成される導波路パターンに非対称性が生じることがある。具体的には、ウェーハ中央部30Aのデバイス形成領域31A,31Bに形成される導波路パターンは、第1及び第2導波路部2a,2bが同一の線幅(W=W)を有するように形成されるが、ウェーハ外周部30Bのデバイス形成領域31C,31Dに形成される導波路パターンは、ウェーハの外周寄りに配置された第2導波路部2bの線幅Wがウェーハの中央寄りに配置された第1導波路部2aの線幅Wよりも広くなる(W>W)。
そこで、本実施形態においては、ウェーハ中央部30Aに位置するデバイス形成領域31A,31Bには、第1及び第2導波路部2a,2bのリッジ高さTra,Trbが等しい導波路パターンを形成し、ウェーハ外周部30Bのデバイス形成領域31C,31Dには、第1及び第2導波路部2a,2bのリッジ高さTra,Trbが互いに異なる導波路パターンを形成する。具体的には、リッジ幅が相対的に広い第2導波路部2bのリッジ高さTrbを第1導波路部2aのリッジ高さTraよりも低くする。このように形成することで、互いに平行な一対の光導波路のリッジ幅のばらつきに起因する消光比の悪化を防止することができる。
以上はウェーハ中央のデバイス形成領域31Aよりも上方(ウェーハのX方向の一方の外周寄り)に形成される導波路パターンに対する条件である。デバイス形成領域31Aよりも下方(ウェーハのX方向の他方の外周寄り)に形成される導波路パターンの場合、第1導波路部2aと第2導波路部2bとの関係が逆になる。すなわち、ウェーハの外周寄りに配置された第1導波路部2aの線幅Wがウェーハの中央寄りに配置された第2導波路部2bの線幅Wよりも広くなるので(W>W)、第1導波路部2aのリッジ高さTraを低くする必要がある。
このように、本実施形態においては、マッハツェンダー光導波路2の第2導波路部2bのリッジ幅Wが第1導波路部2aのリッジ幅Wよりも広く、且つ、第2導波路部2bのリッジ高さTrbが第1導波路部2aのリッジ高さTraよりも低いので、ウェーハ外周部30Bにおいて線幅が非対称な導波路パターンが形成されることによる消光比の悪化を改善することができる。
図4は、本発明の第2実施の形態による光変調器の構成を示す略平面図である。また図5は、図4のX-X線に沿った光導波路パターンの略断面図である。
図4に示すように、この光変調器1の特徴は、マッハツェンダー光導波路2が直線部と湾曲部との組み合わせにより構成されている点にある。より具体的には、マッハツェンダー光導波路2は、互いに並行に配置された第1乃至第3直線部2e,2e,2eと、第1直線部2eと第2直線部2eとを繋ぐ第1湾曲部2fと、第2直線部2eと第3直線部2eとを繋ぐ第2湾曲部2fとを有している。第1及び第2湾曲部2f,2fは、光導波路の進行方向を180度転換するため、同心半円状に形成されている。すなわち、本実施形態によるマッハツェンダー光導波路2は2回の折り返し構造を有している。
第1及び第2信号電極4a,4bは、マッハツェンダー光導波路2の第1直線部2e、第1湾曲部2f、第2直線部2e、第2湾曲部2f、及び第3直線部2eに沿って連続的に構成されている。信号電極を直線部のみならず湾曲部に沿ってできるだけ長く形成することで駆動電圧を低くすることができる。また、変調器では本体の長辺が長いことが実用上の大きな課題となっているが、図示のように光導波路を折り返すことでその長辺を大幅に短くでき、低駆動電圧化と小型化の両立が可能である。特に、ニオブ酸リチウム膜により形成された光導波路は、湾曲部の曲率半径を50μm程度まで小さくしても損失が小さいという特徴があり、本発明に適している。
第1乃至第3直線部2e,2e,2eはY方向に延設されており、X方向に所定の間隔を隔てて配列されている。第1乃至第3直線部2e,2e,2eを構成する第1及び第2導波路部2a,2bは、基板10のX方向の一端(第1直線部2e側)から他端(第3直線部2e側)に向かって、第1直線部2eの第1導波路部2a(第1直線導波路L)、第1直線部2eの第2導波路部2b(第2直線導波路L)、第2直線部2eの第2導波路部2b(第3直線導波路L)、第2直線部2eの第1導波路部2a(第4直線導波路L)、第3直線部2eの第1導波路部2a(第5直線導波路L)、第3直線部2eの第2導波路部2b(第6直線導波路L)の順に配列されている。
第1直線部2eの第1導波路部2a(第1直線導波路L)は、第1湾曲部2fの第1導波路部(第1湾曲導波路)を介して、第2直線部2eの第1導波路部2a(第4直線導波路L)の一端に接続されている。第1直線部2eの第2導波路部2b(第2直線導波路L)は、第1湾曲部2fの第2導波路部(第2湾曲導波路)を介して、第2直線部2eの第2導波路部2b(第3直線導波路L)の一端に接続されている。第2直線部2eの第2導波路部2b(第3直線導波路L)の他端は、第2湾曲部2fの第2導波路部(第3湾曲導波路)を介して、第3直線部2eの第2導波路部2b(第6直線導波路L)に接続されている。第2直線部2eの第1導波路部2a(第4直線導波路L)の他端は、第2湾曲部2fの第1導波路部(第4湾曲導波路)を介して、第3直線部2eの第1導波路部2a(第5直線導波路L)に接続されている。
図5に示すように、第1乃至第3直線部2e,2e,2eを構成する第1及び第2導波路部2a,2bの線幅は、基板10のX方向の他端側に近い導波路ほど広くなっている。詳細には、第1直線部2eの第1導波路部(第1直線導波路L)の線幅W1a、第1直線部2eの第2導波路部(第2直線導波路L)の線幅W1b、第2直線部2eの第2導波路部(第3直線導波路L)の線幅W2b、第2直線部2eの第1導波路部(第4直線導波路L)の線幅W2a、第3直線部2eの第1導波路部(第5直線導波路L)の線幅W3a、第3直線部2eの第2導波路部(第6直線導波路L)の線幅W3bとするとき、第1乃至第3直線部2e,2e,2eの第1及び第2導波路部2a,2bの線幅は、W3b>W3a>W2a>W2b>W1b>W1aの関係を有している。このような線幅の違いは、導波路パターンの加工時にX方向の他端(ウェーハの外周エッジ)に近い導波路パターンほど加工が不十分になることによって生じるものである。
このような線幅の違いが消光比に与える影響を緩和するため、本実施形態においては、マッハツェンダー光導波路2の第1乃至第3直線部2e,2e,2eを構成する第1及び第2導波路部2a,2bのリッジ高さを図示のように設定する。すなわち、第1直線部2eでは、第2導波路部2bが第1導波路部2aよりもウェーハ外周側に位置し、第2導波路部2bのリッジ幅W1bが第1導波路部2aのリッジ幅W1aよりも広いので、第2導波路部2bのリッジ高さTrbを第1導波路部2aのリッジ高さTraよりも低くする。また、第2直線部2eでは、第1導波路部2aが第2導波路部2bよりもウェーハ外周側に位置し、第1導波路部2aのリッジ幅W2aが第2導波路部2bのリッジ幅W2bよりも広いので、第1導波路部2aのリッジ高さTraを第2導波路部2bのリッジ高さTrbよりも低くする。さらに、第3直線部2eでは、第2導波路部2bが第1導波路部2aよりもウェーハ外周側に位置し、第2導波路部2bのリッジ幅W3bが第1導波路部2aのリッジ幅W3aよりも広いので、第2導波路部2bのリッジ高さTrbを第1導波路部2aのリッジ高さTraよりも低くする。
このように、第1乃至第3直線部2e,2e,2eの各々において、第1及び第2導波路部2a,2bのうち相対的に線幅が広い一方のリッジ導波路のリッジ高さを他方のリッジ導波路よりも低くすることにより、リッジ幅の違いに起因する消光比の悪化を防止することができる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記実施形態においては、一対の光導波路を有するマッハツェンダー光導波路に対して一対の信号電極を設けたデュアル駆動型の光変調器を例に挙げたが、本発明はこのような光変調器に限定されるものではなく、シングル駆動型を含む種々の光変調器を対象とすることができる。
また、上記実施形態においては、基板10上にエピタキシャル成長させたニオブ酸リチウム膜によって形成された一対の光導波路を有する光変調器を挙げたが、本発明はそのような構造に限定にされず、チタン酸バリウム、チタン酸ジルコン酸鉛などの電気光学材料により光導波路を形成したものであってもよい。ただし、ニオブ酸リチウム膜によって形成された光導波路であれば光導波路の幅を狭く形成して低駆動電圧化でき、また曲率半径の小さな曲がり導波路を形成しても低損失の導波路を形成することができ、本発明の効果が大きい。また、導波層11として、電気光学効果を有する半導体材料、高分子材料などを用いてもよい。
ニオブ酸リチウム膜からなるリッジ導波路のリッジ幅Wridgeを1.0μmから1.4μmまで変化させたときのリッジ導波路の実効屈折率を求めた。リッジ高さは1.4μmとした。その結果、図6のグラフに示すように、リッジ幅Wridgeが1.0μmのときのリッジ導波路の実効屈折率n=2.271であり、リッジ幅Wridgeが1.4μmのときのリッジ導波路の実効屈折率n=2.237であり、リッジ幅Wridgeの増加に伴って実効屈折率nは徐々に低下した。
また、ニオブ酸リチウム膜からなるリッジ導波路のリッジ高さTLNを1.1μmから1.5μmまで変化させたときのリッジ導波路の実効屈折率を求めた。リッジ幅は1.2μmとした。その結果、図7のグラフに示すように、リッジ高さTLNが1.1μmのときのリッジ導波路の実効屈折率n=2.279であり、リッジ高さTLNが1.5μmのときのリッジ導波路の実効屈折率n=2.251であり、リッジ高さの増加に伴って実効屈折率nは徐々に低下した。
次に、マッハツェンダー光導波路2の第2導波路部2bのリッジ幅W=1.2μmとし、第1導波路部2aのリッジ幅W=1.0μmとし、第1導波路部2aのリッジ高さTra=1.5μmとするとき、第2導波路部2bの光学距離nと第1導波路部2aの光学距離nが等しくなる条件を求めた。W=1.2μm、W=1.0μmのとき、リッジ幅差異によるΔnをΔn=0,02となる。第1導波路部2aの光学距離nと第2導波路部2bの光学距離nを等しくする(n=n)ためには、TraとTrbをリッジ高さ差異によるΔnをΔn=0.02となるようにすればよく、図7から例えばTrb=1.14μm、Tra=1.4μmとなる。
1 光変調器
2 マッハツェンダー光導波路
2a 第1導波路部
2b 第2導波路部
2c 分波部
2d 合波部
2e 第1直線部
2e 第2直線部
2e 第3直線部
2f 第1湾曲部
2f 第2湾曲部
2i 入力導波路部
2o 出力導波路部
3a RF相互作用部
3b DC相互作用部
4a 第1信号電極
4a 第1信号電極の一端
4a 第1信号電極の他端
4b 第2信号電極
4b 第2信号電極の一端
4b 第2信号電極の他端
5a 第1バイアス電極
5b 第1バイアス電極の一端
5b 第2バイアス電極
5b 第2バイアス電極の一端
9a ドライバ回路
9b 終端抵抗
9c バイアス回路
10 基板
11 導波層
11r リッジ部
11s スラブ部
13 バッファ層
14 電極層
30 ウェーハ
30A ウェーハ中央部
30B ウェーハ外周部
31,31A~31D デバイス形成領域

Claims (4)

  1. 入力導波路部と、前記入力導波路部を伝搬する光を分波する分波部と、前記分波部から延びて互いに平行に設けられた第1及び第2導波路部と、前記第1及び第2導波路部を伝搬する光を合波する合波部と、前記合波部から出力される光を伝搬する出力導波路部とを有するマッハツェンダー光導波路と、
    前記マッハツェンダー光導波路を伝搬する光の位相を制御する信号電極とを備え、
    前記第2導波路部の線幅は前記第1導波路部の線幅よりも広く、
    前記第2導波路部の高さは前記第1導波路部の高さよりも低いことを特徴とする光変調器。
  2. 前記第1及び第2導波路部は、互いに平行に設けられた第1及び第2直線部と、前記第1直線部と前記第2直線部とを繋ぐ第1湾曲部とを有し、
    前記第2直線部の前記第2導波路部は、前記第1直線部の前記第2導波路部と前記第2直線部の前記第1導波路部との間に位置し、
    前記第1直線部の前記第1導波路部は、前記第1湾曲部の前記第1導波路部を介して前記第2直線部の前記第1導波路部に接続され、
    前記第1直線部の前記第2導波路部は、前記第1湾曲部の前記第2導波路部を介して前記第2直線部の前記第2導波路部に接続され、
    前記第1直線部において、前記第2導波路部の線幅は前記第1導波路部の線幅よりも広く、且つ、前記第2導波路部の高さは前記第1導波路部の高さよりも低く、
    前記第2直線部において、前記第1導波路部の線幅は前記第2導波路部の線幅よりも広く、且つ、前記第1導波路部の高さは前記第2導波路部の高さよりも低い、請求項1に記載の光変調器。
  3. 前記第1及び第2導波路部は、前記第1及び第2直線部と平行に設けられ、前記第2直線部から見て前記第1直線部と反対側に位置する第3直線部と、前記第2直線部と前記第3直線部とを繋ぐ第2湾曲部とをさらに有し、
    前記第3直線部の前記第1導波路部は、前記第2直線部の前記第1導波路部と前記第3直線部の前記第2導波路部との間に位置し、
    前記第2直線部の前記第1導波路部は、前記第2湾曲部の前記第1導波路部を介して前記第3直線部の前記第1導波路部に接続され、
    前記第2直線部の前記第2導波路部は、前記第2湾曲部の前記第2導波路部を介して前記第3直線部の前記第2導波路部に接続され、
    前記第3直線部において、前記第2導波路部の線幅は前記第1導波路部の線幅よりも広く、且つ、前記第2導波路部の高さは前記第1導波路部の高さよりも低い、請求項2に記載の光変調器。
  4. 前記マッハツェンダー光導波路は、基板上のニオブ酸リチウム膜がリッジ状に形成されたリッジ導波路である、請求項1乃至3のいずれか一項に記載の光変調器。
JP2020057545A 2020-03-27 2020-03-27 光変調器 Active JP7302516B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020057545A JP7302516B2 (ja) 2020-03-27 2020-03-27 光変調器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020057545A JP7302516B2 (ja) 2020-03-27 2020-03-27 光変調器

Publications (2)

Publication Number Publication Date
JP2021157065A JP2021157065A (ja) 2021-10-07
JP7302516B2 true JP7302516B2 (ja) 2023-07-04

Family

ID=77918212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020057545A Active JP7302516B2 (ja) 2020-03-27 2020-03-27 光変調器

Country Status (1)

Country Link
JP (1) JP7302516B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322778B2 (ja) * 2020-03-27 2023-08-08 Tdk株式会社 光変調器の製造方法及びこれに用いるフォトマスク
CN116560119B (zh) * 2023-06-25 2023-09-19 华中科技大学 基于行波电极结构的硅基薄膜铌酸锂宽带电光调制器芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232948A (ja) 2001-12-03 2003-08-22 Furukawa Electric Co Ltd:The 光導波路の製造方法およびその製造方法を用いた光導波路デバイスならびに導波路型光合分波器
JP2011164604A (ja) 2010-02-05 2011-08-25 Advantest Corp 基板構造体および製造方法
WO2017183484A1 (ja) 2016-04-21 2017-10-26 Tdk株式会社 光変調器
JP2020020953A (ja) 2018-07-31 2020-02-06 富士通オプティカルコンポーネンツ株式会社 光変調器、光変調器モジュール、及び光送信モジュール

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9746743B1 (en) * 2015-07-31 2017-08-29 Partow Technologies, Llc. Electro-optic optical modulator devices and method of fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232948A (ja) 2001-12-03 2003-08-22 Furukawa Electric Co Ltd:The 光導波路の製造方法およびその製造方法を用いた光導波路デバイスならびに導波路型光合分波器
JP2011164604A (ja) 2010-02-05 2011-08-25 Advantest Corp 基板構造体および製造方法
WO2017183484A1 (ja) 2016-04-21 2017-10-26 Tdk株式会社 光変調器
JP2020020953A (ja) 2018-07-31 2020-02-06 富士通オプティカルコンポーネンツ株式会社 光変調器、光変調器モジュール、及び光送信モジュール

Also Published As

Publication number Publication date
JP2021157065A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7115483B2 (ja) 光変調器
WO2017183484A1 (ja) 光変調器
US10989980B2 (en) Optical modulator
US11003044B2 (en) Electro-optic device
JP2017129834A (ja) 光導波路素子およびこれを用いた光変調器
JP7302516B2 (ja) 光変調器
JP6369147B2 (ja) 光導波路素子およびこれを用いた光変調器
US11460751B2 (en) Optical modulator
JP2022155577A (ja) 電気光学デバイス
JP2020166100A (ja) 電気光学デバイス
US11003043B2 (en) Optical modulator
JP2020134873A (ja) 光変調器
JP2022155578A (ja) 光学デバイス
WO2021117358A1 (ja) 光変調器
JP7322778B2 (ja) 光変調器の製造方法及びこれに用いるフォトマスク
WO2021192550A1 (ja) 光変調器及びその製造方法
US20230057036A1 (en) Optical modulation element
US20230296929A1 (en) Optical modulation element
WO2023181152A1 (ja) 光変調素子
WO2021161747A1 (ja) 光導波路素子及び光変調素子
WO2021161745A1 (ja) 光変調素子
JP2023543286A (ja) 光変調器
CN113467110A (zh) 电光器件

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230605

R150 Certificate of patent or registration of utility model

Ref document number: 7302516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150