JP7299239B2 - 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム - Google Patents

摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム Download PDF

Info

Publication number
JP7299239B2
JP7299239B2 JP2020557562A JP2020557562A JP7299239B2 JP 7299239 B2 JP7299239 B2 JP 7299239B2 JP 2020557562 A JP2020557562 A JP 2020557562A JP 2020557562 A JP2020557562 A JP 2020557562A JP 7299239 B2 JP7299239 B2 JP 7299239B2
Authority
JP
Japan
Prior art keywords
aircraft
wear amount
tire
wear
amount prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020557562A
Other languages
English (en)
Other versions
JPWO2020105641A1 (ja
Inventor
優和 坂本
昇司 老田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPWO2020105641A1 publication Critical patent/JPWO2020105641A1/ja
Application granted granted Critical
Publication of JP7299239B2 publication Critical patent/JP7299239B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • B60C11/246Tread wear monitoring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0479Communicating with external units being not part of the vehicle, e.g. tools for diagnostic, mobile phones, electronic keys or service stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0488Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0489Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors for detecting the actual angular position of the monitoring device while the wheel is turning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/20Information sensed or collected by the things relating to the thing itself
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/20Analytics; Diagnosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/02Tyres specially adapted for particular applications for aircrafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computing Systems (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Physics & Mathematics (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Tires In General (AREA)

Description

本発明は、摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラムに関する。
従来より、航空機用タイヤの摩耗量を予測する技術が知られている(特許文献1)。特許文献1に係る方法は、使用条件に応じて区分けされた複数の走行状態(例えば、タッチダウン走行状態、タッチダウン後減速走行状態、タキシー走行状態など)に対応する複数の摩耗エネルギーを取得し、取得した摩耗エネルギーに基づいて航空機用タイヤの摩耗量を予測する。
特許第5778560号
通常、航空機には、複数の航空機用タイヤが装着される。タッチダウン走行状態において、それぞれの航空機用タイヤの摩耗量は異なる。例えば、タッチダウン走行状態において、それぞれの航空機用タイヤの状態(せん断力、スリップ率など)は、航空機用タイヤにかかる荷重が異なるため、一様ではない。しかしながら、特許文献1に係る方法は、タッチダウン走行状態におけるそれぞれの航空機用タイヤの状態を考慮していないため、タッチダウン走行状態におけるそれぞれの航空機用タイヤの摩耗量を精度よく予測することは難しい。
そこで、本発明は、このような状況に鑑みてなされたものであり、タッチダウン走行状態におけるそれぞれの航空機用タイヤの摩耗量を精度よく予測することができる摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラムの提供を目的とする。
本発明に係る摩耗量予測方法は、航空機用タイヤ(航空機用タイヤ31)の各リブ(リブ50~53)の平均接地圧に基づいて、各リブのせん断力を算出し、せん断力に基づいて航空機用タイヤの摩耗エネルギーを算出し、摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、航空機用タイヤの摩耗量を予測する。航空機に関する情報は、航空機用タイヤの内圧を含む。各リブの平均接地圧は、内圧と、航空機用タイヤにかかる輪重とに基づいて算出される。
本発明によれば、タッチダウン走行状態におけるそれぞれの航空機用タイヤの摩耗量を精度よく予測することができる。
図1Aは、摩耗量予測装置とネットワークと航空会社との関係を示す概略図である。 図1Bは、本発明の実施形態に係る摩耗量予測装置の概略構成図である。 図2は、本発明の実施形態に係る摩耗量予測装置の一動作例を説明するフローチャートである。 図3は、本発明の実施形態に係る摩耗量予測装置の一動作例を説明するフローチャートである。 図4は、ピッチ角と高度との関係を示すグラフである。 図5は、評価時間と降下速度との関係を示すグラフである。 図6は、航空機用タイヤに形成される周方向溝とリブについて説明する背面図である。 図7は、スリップ率の算出方法の一例を説明するグラフである。
以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
(1)摩耗量予測システムの構成例
図1Aを参照して、摩耗量予測システム1の構成の一例について説明する。図1Aに示すように、摩耗量予測システム1は、摩耗量予測装置10と、ネットワーク20と、航空会社30とを含む。
摩耗量予測装置10は、ネットワーク20を介して航空会社30と双方向通信を行う。具体的には、摩耗量予測装置10は、ネットワーク20を介して、航空会社30から情報を取得し、航空機に装着された複数の航空機用タイヤ31の摩耗量を個別に予測する。航空機用タイヤ31が使用されるシーンには複数の走行状態が含まれるところ、本実施形態に係る摩耗量予測装置10は、タッチダウン走行状態における航空機用タイヤ31の摩耗量を予測する。タッチダウン走行状態の詳細は後述する。また、摩耗量予測装置10が航空会社30から取得する情報についても、後述する。なお、以下では、航空機を単に機体とよぶ場合がある。ネットワーク20は、各種情報を送受信可能な通信網である。例えば、ネットワーク20は、電気通信事業者により設置された専用線、公衆交換電話網、衛星通信回線、移動体通信回線等の各種通信回線で構成される。
摩耗量予測装置10は、例えば、汎用のコンピュータであり、CPU、ROM(Read Only Memory)及びRAM(Random Access Memory)を備える。CPU(コントローラ)は、ROMなどに記憶されたプログラムを、RAMに読み出して実行する。なお、摩耗量予測装置10は、設置型の端末装置でもよく、持ち運びが容易な携帯型の端末装置(例えば、スマートフォン)でもよい。また、摩耗量予測装置10は、サーバでもよい。摩耗量予測装置10は、図1Bに示すように、通信部11と、算出部12と、予測部13を、を備える。通信部11は、ネットワーク20に接続して航空会社30との間でデータを送受信するインタフェースである。算出部12は、航空機に装着されたそれぞれの航空機用タイヤ31の摩耗エネルギーを算出する。予測部13は、算出部12によって算出された摩耗エネルギーに基づいて航空機用タイヤ31の摩耗量を予測する。通信部11、算出部12、及び予測部13は、1または複数の処理回路により実装され得る。処理回路は、電気回路を含む処理装置等のプログラムされた処理装置を含む。処理回路は、記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や回路部品等の装置を含む。
本実施形態において、複数の航空機用タイヤには、メインギアに装着された航空機用タイヤ、ノーズギアに装着された航空機用タイヤが含まれる。さらに、メインギアには、複数(例えば6本)の航空機用タイヤが装着される。また、ノーズギアにも複数(例えば2本)の航空機用タイヤが装着される。ただし、機体の大きさによっては、ノーズギアに1本の航空機用タイヤが装着される場合がある。なお、メインギアは、メインランディングギアと呼ばれる場合もある。ノーズギアは、ノーズランディングギアと呼ばれる場合もある。また、メインギア及びノーズギアは、いわゆる着陸装置であり、航空機用タイヤの他に着陸時の衝撃荷重を吸収する緩衝装置、脚柱などを含む。以下では、特に断らない限り、航空機用タイヤは、機体に装着されたそれぞれのタイヤを意味する。また、以下では、航空機用タイヤを単にタイヤと称する。また、以下では、特に断らない限り、ギヤはメインランディングギア及びノーズランディングギアを含む。
(2)摩耗量予測方法
次に、図2~図7を参照して、摩耗量の予測方法の一例について説明する。図2は、摩耗量予測装置10の一動作例を説明するフローチャートである。
図2に示すステップS101において、摩耗量予測装置10は、航空会社30から、機体に関する情報を取得する。具体的には、摩耗量予測装置10は、機体の速度(降下速度も含む)、機体の加速度、機体の現在の位置、機体の高度、機体の機首の方向、機体の総重量、機体に装着されたタイヤの内圧、タイヤのリブの位置、タイヤの回転速度、機体のピッチ角(ピッチレートを含む)、機体のロール角(ロールレートを含む)、機体のギア構造などを取得する。また、摩耗量予測装置10は、これらの情報を取得した際の時刻も取得する。なお、タイヤの回転速度などは、タイヤの内面に取り付けられたRFIDタグから取得されてもよい。つまり、摩耗量の予測に使用される情報の全てが航空会社30から取得されるものでなくてもよい。本実施形態において、航空会社30から取得するタイヤの内圧は実測値として説明するが、これに限定されない。タイヤの内圧は予測値でもよい。
処理は、ステップS103に進み、摩耗量予測装置10は、タイヤのタッチダウン時刻を推定する。タッチダウン時刻とは、タイヤが接地した(着陸した)瞬間の時刻をいう。メインギアに装着されたタイヤと、ノーズギアに装着されたタイヤとでは、タッチダウン時刻が異なる場合がある。また、同じメインギアに装着されたタイヤでも、装着された軸位置に応じてタッチダウン時刻が異なる場合がある。
タッチダウン時刻の推定方法について、図3及び図4を参照して説明する。まず図3に示すステップS201において、摩耗量予測装置10は、機体の高度が第1閾値以下か否かを判定する。第1閾値は、特に限定されないが、例えば10mである。機体の高度が第1閾値以下の場合、つまり、機体が地面に近づいた場合に処理はステップS203に進む。高度と第1閾値とを比較する理由は、タッチダウンの誤判定を回避するためである。
通常、機体が着陸するとき、機体のピッチ角は、高度が下がるにつれて、徐々に大きくなる。ピッチ角の正負について本実施形態では、機首が上向く方向を正と定義する。通常、機体が着陸した瞬間、ピッチ角は最大となり、その後ピッチ角は減少する(図4参照)。よって、ステップS203において、摩耗量予測装置10は、ピッチ角が最大となった場合に、タイヤが接地したと判定する。ただし、通常、全てのタイヤは同時には接地しない。通常、メインギアに装着されたタイヤが先に接地し、その後、ノーズギアに装着されたタイヤが接地する。また、同じメインギアに装着されたタイヤでも、接地タイミングが異なる場合がある。例えば、メインギアが1~3軸で構成される場合、3軸に装着されたタイヤが先に接地し、その後、1~2軸に装着されたタイヤが接地する場合がある(図4参照)。ただし、図4に示すように、メインギア間(例えば、1~2軸と3軸)における接地時間差は非常に小さく、通常は無視してもよい。したがって、摩耗量予測装置10は、ピッチ角が最大のときに、メインギアに装着されたタイヤが接地したと判定してもよい。なお、図4に示すように、タイヤが接地したとき、その衝撃によって機体の上下方向に大きな加速度が発生する。よって、摩耗量予測装置10は、ピッチ角が最大であり、かつ、機体の上下方向に大きな加速度が発生したときにメインギアに装着されたタイヤが接地したと判定してもよい。
処理はステップS205に進み、摩耗量予測装置10は、ピッチ角が第2閾値以下の場合に、ノーズギアに装着されたタイヤが接地したと判定する。第2閾値は、特に限定されないが、例えば0度である。図4に示す例において、ピッチ角が0度の位置とノーズギアに装着されたタイヤの接地時刻(タッチダウン時刻)が少しずれているが、これは機体の上下方向の加速度が考慮されたからである。摩耗量予測装置10は、ピッチ角が0度のときにノーズギアに装着されたタイヤが接地したと判定してもよい。
タッチダウン時刻を推定した後、処理は図2に示すステップS105に進み、摩耗量予測装置10は、評価時間を算出する。評価時間とは、摩耗量を予測する時間であり、具体的には、タイヤが接地してから、タイヤが回転して進む距離と、機体が進む距離が等しくなるまでの時間をいう。評価時間は、上述したタッチダウン走行状態が継続する時間である。つまり、本実施形態におけるタッチダウン走行状態とは、タイヤが接地してから、タイヤが回転する距離と、機体が進む距離がほぼ等しくなるまでの状態をいう。ただし、後述するようにタッチダウン時において、機体は様々な力を受ける。上述した定義で評価時間を正確に算出することが困難な場合もある。
そこで、本実施形態に係る摩耗量予測装置10は、機体の降下速度に基づいて、評価時間Tgを算出する。評価時間Tgの算出方法の一例について図5を参照して説明する。図5は、評価時間Tgと降下速度との関係を示すグラフである。タッチダウン走行状態において、路面との接地により白煙を伴う猛烈なせん断力が発生し、せん断力がトルクとなって回転が始まる。図5に示すように、タッチダウン走行状態の継続時間は、1秒以下であり、長くても1秒程度である。タイヤの回転は、降下速度の影響を受ける。図5に示すように、機体がゆっくり降下すればタイヤの回転速度がゆっくりと上昇するため、評価時間Tgは長くなる。一方、降下速度が早ければ、タイヤの回転速度も早く上昇するため、評価時間Tgは短くなる。このように摩耗量予測装置10は、降下速度に基づいて評価時間Tgを算出する。
また、降下速度は、タッチダウン走行状態において一定ではない。図4に示すように、メインギアに装着されたタイヤが接地したときの降下速度と、ノーズギアに装着されたタイヤが接地したときの降下速度は、異なる。したがって、メインギアに装着されたタイヤと、ノーズギアに装着されたタイヤでは、評価時間Tgは異なる。それぞれのタイヤにおいて、タイヤが接地してから、接地時の降下速度に基づく評価時間Tgが経過するまでの間、摩耗量予測装置10は、それぞれのタイヤの摩耗量を予測する。
なお、評価時間Tgは、タイヤが接地してから、機体がタキシー走行状態に移行するまでの時間と定義されてもよい。タキシー走行状態とは、機体が、機体の動力を用いて滑走路を走行する状態をいう。
処理はステップS107に進み、摩耗量予測装置10は、タイヤにかかる荷重を算出する。例えば、タッチダウンの瞬間、路面に接地しているタイヤが1本の場合、その1本のタイヤが機体の全荷重を負担することになる。荷重は、機体の総重量から揚力を減算することによって求められる。なお、揚力は周知の方法によって求められる。
処理はステップS109に進み、摩耗量予測装置10は、タイヤにかかる輪重を算出する。本実施形態において輪重とは、タイヤが負担する重さであることは上述した荷重と同じであるが、上述した荷重に対し機体の特性、挙動などを考慮したパラメータが輪重である。
機体の特性とは、例えば、ギア配置、ギア構造などである。ギア配置は、メインギア及びノーズギアが機体に取り付けられる位置に関する。ギア構造は、タイヤが取り付けられる軸位置に関する。各ギアの位置、または各軸においてタイヤが負担する荷重は変化する。変化後の荷重が、輪重と定義される。
機体の挙動とは、揚力、ロール角、ロールレート、ピッチ角、ピッチレートなどである。また、機体の挙動には、ギア構造が回転したり、機体及びタイヤがバウンドしたりすることによって発生する衝撃荷重も含まれる。このような機体の挙動によってタイヤが負担する荷重は変化する。変化後の荷重が、輪重と定義される。なお、摩耗量予測装置10が取得する機体の挙動は、タッチダウン走行状態におけるものである。
タッチダウン走行状態において、機体は様々な力を受ける。そしてこのような力は機体の特性、挙動によって変化する。例えば、機体の上下に働く力によってギアに変形が生じる。これにより、ギアのどの位置に装着されるかによって、タイヤの輪重は計算される。ギアのどの位置に装着されるかによって定まる係数をfsと定義した場合、輪重は、式1で表される。
[数1]
輪重=fs×(総重量-揚力)・・・(1)
なお、静的には揚力はゼロである。
機体には様々な種類(大きさ、形状)が存在し、機体ごとに上述した特性は異なる。どの機体に装着されるかによって定まる係数をfdと定義した場合、輪重は、式2で表される。
[数2]
輪重=fs×fd×(総重量-揚力)・・・(2)
統計的に左右のロール変化は中央値がゼロであると仮定される。このような機体の挙動(機体の左右のロール変化)によって定まる係数をfrと定義した場合、輪重は、式3で表される。
[数3]
輪重=fs×fd×fr×(総重量-揚力)・・・(3)
本実施形態において、摩耗量予測装置10は、上記の式3を用いて輪重を算出する。
処理はステップS111に進み、摩耗量予測装置10は、タイヤのせん断力を算出する。図6に示すように、タイヤ31には、トレッド踏面において、タイヤ周方向に延びる複数の周方向溝60(図6では、3つ)が形成され、周方向溝60によって区画される複数のリブ50~53(図6では、4つ)が形成される。リブ50~53は、リブ50、51、52、53の順番で、機体の中心側から外側に向かって形成される。せん断力は、リブの位置に応じて異なる。上述した従来技術では、各リブが一様圧力で接地していると仮定しているが、実際には接地圧分布が生じている。したがって、本実施形態では、摩耗量予測装置10は、各リブの平均接地圧に動摩擦係数μを乗算することによって各リブのせん断力を算出する。これにより、摩耗量予測装置10は、各リブのせん断力を精度よく算出できる。なお、各リブの平均接地圧は、各リブの各輪重及び各内圧に基づいて算出される。各リブの各輪重及び各内圧は、一例として、タイヤの輪重及び内圧をリブ数で除算して算出される。本実施形態において、各リブの平均接地圧は予め算出されているものとする。なお、各リブの平均接地圧は、タイヤのFEMモデル(Finite Element Method)に基づいて算出されてもよい。各空港の路面状態は、各空港によって異なる。各空港の路面の動摩擦係数μは、予め取得されているものとする。
処理はステップS113に進み、摩耗量予測装置10は、タイヤの回転方向のスリップ率を算出する。具体的には、摩耗量予測装置10は、タイヤの回転速度を用いてスリップ率を算出する。タイヤの回転速度について、摩耗量予測装置10は、航空会社30から取得すればよい。タイヤの回転速度は、タイヤ(または機体)に取り付けたセンサによって計測される。なお、タイヤの回転速度が取得できない場合も考えられる。タイヤの回転速度が取得できない場合は、摩耗量予測装置10は、室内試験結果に基づいてスリップ率を算出すればよい。室内試験とは例えば機体の着陸時と同等程度の条件をタイヤに付与する試験である。室内試験によって、回転速度情報と、輪重情報が取得される。図7は、室内試験結果の一例である。図7に示すように、室内試験によって取得された輪重及び回転速度を、タイヤが接地した瞬間(T=0)から評価時間Tgまでの区間にて正規化し、正規化した関数によってスリップ率が算出されてもよい。なお、単調増加関数により輪重及び回転速度の変化を模擬し、接地した瞬間(T=0)から評価時間Tgまでの区間にて正規化した関数によってスリップ率が算出されてもよい。
なお、図7に示す例は、時刻Tgにおいて輪重が100%に達すると限定するものではない。同様に、時刻Tgにおいてスリップ率が0%まで低下すると限定するものではない。
処理はステップS115に進み、摩耗量予測装置10は、スリップ率にせん断力を乗算して、微小時間における瞬間摩耗エネルギーを算出する。そして、摩耗量予測装置10は、評価時間Tgで瞬間摩耗エネルギーを積分して、摩耗エネルギーを算出する。そして、摩耗量予測装置10は、摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、摩耗量を予測する。摩耗抵抗は、例えば、平均的なフライト(空港~空港間)の機体の挙動から算出される1フライトあたりの摩耗エネルギーと、1フライトあたり摩耗量とを用いて算出される。なお、上述した摩耗抵抗は、通常、タキシー走行状態において用いられる。タッチダウン走行状態においては衝撃が大きいため、上述した摩耗抵抗より小さい摩耗抵抗が用いられてもよい。換言すれば、タッチダウン走行状態においては、タキシー走行状態において用いられる摩耗抵抗より小さい摩耗抵抗が用いられてもよい。
(3)作用効果
以上説明したように、本実施形態に係る摩耗量予測装置10は、航空会社30から機体に関する情報を取得し、タッチダウン走行状態におけるタイヤの摩耗量を予測する。具体的には、摩耗量予測装置10は、それぞれのタイヤの各リブの平均接地圧に動摩擦係数μを乗算することによって各リブのせん断力を算出する。機体に関する情報は、タイヤの内圧を含む。各リブの平均接地圧は、内圧と、タイヤにかかる輪重とに基づいて算出される。摩耗量予測装置10は、せん断力に基づいてタイヤの摩耗エネルギーを算出する。そして摩耗量予測装置10は、摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいてタイヤの摩耗量を予測する。これにより、摩耗量予測装置10は、タッチダウン走行状態におけるそれぞれのタイヤの摩耗量を精度よく予測することができる。
また、機体に関する情報は、機体の着陸装置の構造、機体の総重量、及びタッチダウン走行状態における機体の挙動に関する情報を含む。摩耗量予測装置10は、上記の式3を用いて輪重を算出する。これにより、摩耗量予測装置10は、機体の特性、挙動などを考慮して輪重を算出することができる。このようにして算出された輪重は精度が高いため、摩耗量予測装置10は、タッチダウン走行状態におけるそれぞれのタイヤの摩耗量を精度よく予測することができる。
また、摩耗量予測装置10は、タイヤの回転速度に基づいてタイヤの回転方向におけるスリップ率を算出する。摩耗量予測装置10は、実際の回転速度を用いることによって、精度よくスリップ率を算出することができる。
また、摩耗量予測装置10は、降下速度に基づいてタッチダウン走行状態が継続する時間を推定する。上述したように、機体がゆっくり降下すればタイヤの回転速度がゆっくりと上昇するため、評価時間Tgは長くなる。一方、降下速度が早ければ、タイヤの回転速度も早く上昇するため、評価時間Tgは短くなる。摩耗量予測装置10は、降下速度を用いることによって、タッチダウン走行状態が継続する時間を精度よく推定することができる。
また、摩耗量予測装置10は、ピッチ角に基づいてタッチダウンが発生した時刻を推定する。上述した一例のように、摩耗量予測装置10は、高度が第1閾値以下であり、ピッチ角が最大となった場合にメインギアに装着されたタイヤが接地したと判定する。また、摩耗量予測装置10は、高度が第1閾値以下であり、ピッチ角が0度となった場合にノーズギアに装着されたタイヤが接地したと判定する。これにより、摩耗量予測装置10は、タッチダウンが発生した時刻をタイヤごとに精度よく推定することができる。また、摩耗量予測装置10は、タッチダウンが発生した時刻からタッチダウン走行状態が継続する間において摩耗量を予測する。これにより、タッチダウン走行状態が他の走行状態(例えば、タキシー走行状態)と精度よく区分けされるため、摩耗量予測装置10は、タッチダウン走行状態におけるそれぞれのタイヤの摩耗量を精度よく予測することができる。
上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
日本国特許出願第2018-216320号(出願日:2018年11月19日)の全内容は、ここに援用される。
1 摩耗量予測システム
10 摩耗量予測装置
11 通信部
12 算出部
13 予測部
20 ネットワーク
30 航空会社
31 航空機用タイヤ
50~53 リブ
60 周方向溝

Claims (7)

  1. 航空機に関する情報に基づいてタッチダウン走行状態における航空機用タイヤの摩耗量を予測する摩耗量予測方法であって、
    前記航空機用タイヤの各リブの平均接地圧に基づいて、前記各リブのせん断力を算出し、
    前記せん断力に基づいて前記航空機用タイヤの摩耗エネルギーを算出し、
    前記摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、前記航空機用タイヤの摩耗量を予測し、
    前記航空機に関する情報は、前記航空機用タイヤの内圧を含み、
    前記各リブの平均接地圧は、前記内圧と、前記航空機用タイヤにかかる輪重とに基づいて算出される
    ことを特徴とする摩耗量予測方法。
  2. 前記航空機に関する情報は、前記航空機の着陸装置の構造、前記航空機の総重量、及び前記タッチダウン走行状態における前記航空機の挙動に関する情報を含み、
    前記航空機用タイヤが、前記着陸装置のどの位置に装着されるかによって定まる係数をfsとし、
    前記航空機用タイヤが装着される航空機によって定まる係数をfdとし、
    前記挙動によって定まる係数をfrとした場合、
    前記輪重は、以下の式1を用いて算出されることを特徴とする請求項1に記載の摩耗量予測方法。
    [数1]
    輪重=fs×fd×fr×(航空機の総重量-揚力)・・・(1)
  3. 前記航空機に関する情報が、前記航空機用タイヤの回転速度を含む場合は、前記回転速度に基づいて前記航空機用タイヤの回転方向におけるスリップ率を算出し、
    前記航空機に関する情報が、前記航空機用タイヤの回転速度を含まない場合は、予め実施された試験結果に基づいて前記スリップ率を算出し、
    前記スリップ率に前記せん断力を乗算して前記摩耗エネルギーを算出する
    ことを特徴とする請求項2に記載の摩耗量予測方法。
  4. 前記航空機に関する情報は、前記航空機の降下速度を含み、
    前記降下速度に基づいて、前記タッチダウン走行状態が継続する時間を推定する
    ことを特徴とする請求項1~3のいずれか1項に記載の摩耗量予測方法。
  5. 前記航空機に関する情報は、前記航空機のピッチ角を含み、
    前記ピッチ角に基づいて、タッチダウンが発生した時刻を推定し、
    前記タッチダウンが発生した時刻から前記タッチダウン走行状態が継続する間において前記摩耗量を予測する
    ことを特徴とする請求項4に記載の摩耗量予測方法。
  6. 航空機に関する情報に基づいてタッチダウン走行状態における航空機用タイヤの摩耗量を予測するコントローラを備える摩耗量予測装置であって、
    前記コントローラは、
    前記航空機用タイヤの各リブの平均接地圧に基づいて、前記各リブのせん断力を算出し、
    前記せん断力に基づいて前記航空機用タイヤの摩耗エネルギーを算出し、
    前記摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、前記航空機用タイヤの摩耗量を予測し、
    前記航空機に関する情報は、前記航空機用タイヤの内圧を含み、
    前記各リブの平均接地圧は、前記内圧と、前記航空機用タイヤにかかる輪重とに基づいて算出される
    ことを特徴とする摩耗量予測装置。
  7. 航空機に関する情報に基づいてタッチダウン走行状態における航空機用タイヤの摩耗量を予測する摩耗量予測プログラムであって、
    端末装置のコンピュータに、
    前記航空機用タイヤの各リブの平均接地圧に基づいて、前記各リブのせん断力を算出するステップと、
    前記せん断力に基づいて前記航空機用タイヤの摩耗エネルギーを算出するステップと、
    前記摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、前記航空機用タイヤの摩耗量を予測するステップと、を実行させ、
    前記航空機に関する情報は、前記航空機用タイヤの内圧を含み、
    前記各リブの平均接地圧は、前記内圧と、前記航空機用タイヤにかかる輪重とに基づいて算出される
    ことを特徴とする摩耗量予測プログラム。
JP2020557562A 2018-11-19 2019-11-19 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム Active JP7299239B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018216320 2018-11-19
JP2018216320 2018-11-19
PCT/JP2019/045295 WO2020105641A1 (ja) 2018-11-19 2019-11-19 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム

Publications (2)

Publication Number Publication Date
JPWO2020105641A1 JPWO2020105641A1 (ja) 2021-09-30
JP7299239B2 true JP7299239B2 (ja) 2023-06-27

Family

ID=70773794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020557562A Active JP7299239B2 (ja) 2018-11-19 2019-11-19 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム

Country Status (5)

Country Link
US (1) US11807047B2 (ja)
EP (1) EP3885166B1 (ja)
JP (1) JP7299239B2 (ja)
CN (1) CN113165449B (ja)
WO (1) WO2020105641A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024099386A (ja) * 2023-01-12 2024-07-25 株式会社ブリヂストン プログラム、ユーザ端末、及び出力方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455232A (zh) 2003-05-15 2003-11-12 同济大学 轮胎接地压力及轮胎作用下路面结构内应力应变测量装置
JP5778560B2 (ja) 2011-11-29 2015-09-16 株式会社ブリヂストン タイヤ摩耗予測方法及びタイヤ摩耗予測装置
CN206664169U (zh) 2017-05-05 2017-11-24 肇庆市广应科通用航空研究院 飞机轮胎监测装置
WO2018115675A1 (fr) 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Procede de determination de l'etat d'usure d'un pneumatique pour avion
JP2019105600A (ja) 2017-12-14 2019-06-27 株式会社ブリヂストン 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3320653B2 (ja) * 1998-05-08 2002-09-03 株式会社ブリヂストン タイヤ摩耗寿命予測方法
WO2005016670A1 (ja) 2003-08-19 2005-02-24 Kabushiki Kaisha Bridgestone センサ内蔵タイヤ及びタイヤ状態推定方法
CN101183402B (zh) * 2006-11-13 2012-07-25 韩国轮胎株式会社 轮胎花纹的实际磨损预测方法
JP5534588B2 (ja) 2010-02-24 2014-07-02 株式会社ブリヂストン タイヤのゴムインデックス算出方法、装置及びプログラム
JP5829861B2 (ja) 2011-08-08 2015-12-09 住友ゴム工業株式会社 タイヤの摩耗エネルギーの予測方法及びタイヤの設計方法
JP6006576B2 (ja) * 2012-07-31 2016-10-12 住友ゴム工業株式会社 タイヤのシミュレーション方法
JP6076818B2 (ja) * 2013-04-23 2017-02-08 株式会社ブリヂストン 航空機用タイヤ
JP6291366B2 (ja) 2014-06-25 2018-03-14 住友ゴム工業株式会社 タイヤのシミュレーション方法及びシミュレーション装置
JP7440295B2 (ja) * 2020-02-28 2024-02-28 株式会社ブリヂストン 摩耗状態予測方法、摩耗状態予測装置、及び摩耗状態予測プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455232A (zh) 2003-05-15 2003-11-12 同济大学 轮胎接地压力及轮胎作用下路面结构内应力应变测量装置
JP5778560B2 (ja) 2011-11-29 2015-09-16 株式会社ブリヂストン タイヤ摩耗予測方法及びタイヤ摩耗予測装置
WO2018115675A1 (fr) 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Procede de determination de l'etat d'usure d'un pneumatique pour avion
CN206664169U (zh) 2017-05-05 2017-11-24 肇庆市广应科通用航空研究院 飞机轮胎监测装置
JP2019105600A (ja) 2017-12-14 2019-06-27 株式会社ブリヂストン 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム

Also Published As

Publication number Publication date
EP3885166A1 (en) 2021-09-29
JPWO2020105641A1 (ja) 2021-09-30
EP3885166A4 (en) 2022-07-27
US20220001701A1 (en) 2022-01-06
CN113165449B (zh) 2023-01-03
EP3885166B1 (en) 2023-11-15
US11807047B2 (en) 2023-11-07
WO2020105641A1 (ja) 2020-05-28
CN113165449A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP6976833B2 (ja) 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム
US9082301B2 (en) Aircraft stopping performance display and warning
US7946165B2 (en) Over-speed, rough loads and hard landing detection system
US9299261B2 (en) Device and process for determining a runway state, aircraft including such a device and piloting assistance system using said runway state
EP2777998B1 (en) Method to monitor components of an aircraft landing system
US11440646B2 (en) Remaining tire tread depth management system
CA2862382C (en) Load estimation system for aerodynamic structures
EP3367076B1 (en) Systems and methods for aircraft mass determination
US8972141B2 (en) Method and system for controlling aircraft braking on a runway
JP7299239B2 (ja) 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム
EP2743534B1 (en) System and method for determining an adaptive aircraft turnaround threshold.
US20150286215A1 (en) Methods and apparatus to predict landing system operating parameters
EP2876012A1 (en) Methods to monitor components of an aircraft landing system
CN116101509B (zh) 一种无人机刹车能量限制下的着陆适应性分析方法
CN113919597A (zh) 用于预测飞行器的着陆载荷的方法和设备
CA3028391A1 (en) Methods and systems for controlling thrust produced by a plurality of engines on an aircraft for assisting with certain flight conditions
US10946979B2 (en) Apparatus for controlling vehicle impact absorption systems and related methods
Drees et al. Using subset simulation to quantify stakeholder contribution to runway overrun
CN113032906A (zh) 一种起落架形变程度的测量方法、装置、设备及介质
CN116485181A (zh) 一种风切变风险预测方法、装置、计算机设备及介质
CN115465468A (zh) 用于预测支柱式起落架动着陆载荷的方法及***

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230615

R150 Certificate of patent or registration of utility model

Ref document number: 7299239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150