JP7293868B2 - 波長合分波素子、光送信装置及び光受信装置 - Google Patents

波長合分波素子、光送信装置及び光受信装置 Download PDF

Info

Publication number
JP7293868B2
JP7293868B2 JP2019099669A JP2019099669A JP7293868B2 JP 7293868 B2 JP7293868 B2 JP 7293868B2 JP 2019099669 A JP2019099669 A JP 2019099669A JP 2019099669 A JP2019099669 A JP 2019099669A JP 7293868 B2 JP7293868 B2 JP 7293868B2
Authority
JP
Japan
Prior art keywords
delay
optical
arm waveguide
radians
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019099669A
Other languages
English (en)
Other versions
JP2020194092A (ja
Inventor
錫煥 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2019099669A priority Critical patent/JP7293868B2/ja
Publication of JP2020194092A publication Critical patent/JP2020194092A/ja
Application granted granted Critical
Publication of JP7293868B2 publication Critical patent/JP7293868B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Description

本開示は、波長合分波素子、光送信装置及び光受信装置に関する。
近年、大容量インターコネクトに向けた有望な技術として、シリコン(Si)フォトニクスプラットフォームに、波長多重(wavelength division multiplexing:WDM)技術を導入して、光配線1本当りの伝送容量を大幅に向上させることが注目されている。Siチップ内にてWDM光信号を送受信するために、WDM光信号を必要に応じて合波(MUX)・分波(DeMUX)させるSi細線導波路型波長合分波素子が設けられる。
波長合分波素子に求められる条件としては、低損失性、低クロストークに加えて、動作波長帯域の拡大が重要となる。つまり、光源の波長精度緩和のためには、WDM信号における波長間隔(チャネル間隔)Δνの拡大が強く求められる。その結果、波長合分波素子として動作する波長帯域の拡大が求められる。有効波長帯域の拡大は、WDM波長数に相当する帯域幅の拡大のみならず、短波長側、長波長側への更なる帯域幅の確保を含む。有効波長帯域の拡大により、作製トレランスの更なる拡大が可能になる。
これまで、シリコン導波路型波長合分波素子として、リング共振器(microring resonator:MRR)、遅延マッハ・ツェンダ干渉計(delay Mach-Zehnder interferometer:DMZI)、アレイ導波路格子(arrayed waveguide grating:AWG)に基づくデバイスが報告されている。
しかしながら、従来の波長合分波素子では、近年の更なる有効波長帯域の拡大に十分に応えることが困難である。
特開2016-212173号公報
D.W.Kim,A.Barkai,R.Jones,N.Elek,H.Nguyen,and A.Liu,"Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers,"Optics Letters 33(5),530-532 (2008) J.Van Campenhout,W.M.J.Green,S.Assefa,and Y.A.Vlasov,"Low-power,2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,"Optics Express 17,24020-24029 (2009) F.Horst,W.M.J.Green,S.Assefa,S.M.Shank,Y.A.Vlasov and Bert Jan Offrein,"Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (De-)Multiplexing,"Optics Express 21,11652-11658 (2013) S.-H.Jeong,S.Tanaka,T.Akiyama,S.Sekiguchi,Y.Tanaka,and K.Morito,"Flat-topped and low loss silicon-nanowire-type optical MUX/DeMUX employing multi-stage microring resonator assisted delayed Mach-Zehnder interferometers,"Optics Express 20,26000-26011 (2012)
本開示の目的は、有効波長帯域を更に拡大することができる波長合分波素子、光送信装置及び光受信装置を提供することにある。
本開示の一形態によれば、N段で(2-1)個(Nは2以上の自然数)の遅延干渉計を有し、k段目(k<N)の2k-1個の前記遅延干渉計に、(k+1)段目の2個の前記遅延干渉計が縦接続され、前記遅延干渉計は、入出力ポートを備えた1対の光カプラと、前記1対の光カプラの間に接続され、光路長が互いに異なる第1のアーム導波路及び第2のアーム導波路と、前記第1のアーム導波路及び前記第2のアーム導波路の一方に設けられた位相補正領域と、を有し、前記光カプラは、1対の方向性結合器と、前記1対の方向性結合器の間に接続された第3のアーム導波路及び第4のアーム導波路と、前記第3のアーム導波路及び前記第4のアーム導波路の一方に設けられた位相シフタと、を有し、(k+1)段目の前記遅延干渉計における前記第1のアーム導波路の光路長と前記第2のアーム導波路の光路長との相違は、k段目の前記遅延干渉計における前記第1のアーム導波路の光路長と前記第2のアーム導波路の光路長との相違の1/2であり、各段の前記遅延干渉計の位相補正領域の位相変化量は、各段の前記光カプラによる位相変動を相殺する値であり、前記遅延干渉計の個数は3個であり、前記位相シフタの位相シフト量をδφ Coup としたとき、1段目の前記遅延干渉計の前記位相補正領域の位相変化量は「+δφ PT 」ラジアンであり、2段目の2個の前記遅延干渉計のうちの一方の遅延干渉計の位相補正領域の位相変化量は「+δφ PT 」ラジアンであり、他方の遅延干渉計の位相補正領域の位相変化量は「+δφ PT +0.5π」ラジアン又は「+δφ PT -0.5π」ラジアンであり、δφ PT は「(-δφ Coup ×2)-{(0.5π-δφ Coup )×2}」である波長合分波素子が提供される。
本開示によれば、有効波長帯域を更に拡大することができる。
第1の参考例の波長合分波素子の構成を示す図である。 第1の参考例の波長合分波素子のスペクトル特性を示す図である。 第1の参考例において出力チャネルCh-1から出射される光波長成分のスペクトル特性を示す図である。 第1の参考例において出力チャネルCh-2から出射される光波長成分のスペクトル特性を示す図である。 第1の参考例において出力チャネルCh-3から出射される光波長成分のスペクトル特性を示す図である。 第1の参考例において出力チャネルCh-4から出射される光波長成分のスペクトル特性を示す図である。 第1の実施形態に係る波長合分波素子の構成を示す図である。 第2の実施形態に係る波長合分波素子の構成を示す図である。 第2の実施形態に係る波長合分波素子を構成する光導波路の構造を示す断面図(その1)である。 第2の実施形態に係る波長合分波素子を構成する光導波路の構造を示す断面図(その2)である。 第2の実施形態に係る波長合分波素子を構成する光導波路の構造を示す断面図(その3)である。 光導波路の構造の変形例を示す断面図である。 第2の実施形態に係る波長合分波素子のスペクトル特性を示す図である。 第2の実施形態において出力チャネルCh-1から出射される光波長成分のスペクトル特性を示す図である。 第2の実施形態において出力チャネルCh-2から出射される光波長成分のスペクトル特性を示す図である。 第2の実施形態において出力チャネルCh-3から出射される光波長成分のスペクトル特性を示す図である。 第2の実施形態において出力チャネルCh-4から出射される光波長成分のスペクトル特性を示す図である。 第3の実施形態に係る波長合分波素子の構成を示す図である。 第4の実施形態に係る波長合分波素子の構成を示す図である。 第5の実施形態に係る波長合分波素子の構成を示す図である。 第5の実施形態における遅延干渉計のスペクトル特性とリング共振器のスペクトル特性との関係を示す図である。 第2の参考例の波長合分波素子の構成を示す図である。 帯域R1~R3の関係を示す図である。 第2の参考例の帯域R1のスペクトル特性を示す図である。 第2の参考例の帯域R2のスペクトル特性を示す図である。 第2の参考例の帯域R3のスペクトル特性を示す図である。 第3の参考例の帯域R1のスペクトル特性を示す図である。 第3の参考例の帯域R2のスペクトル特性を示す図である。 第3の参考例の帯域R3のスペクトル特性を示す図である。 第5の実施形態の帯域R1のスペクトル特性を示す図である。 第5の実施形態の帯域R2のスペクトル特性を示す図である。 第5の実施形態の帯域R3のスペクトル特性を示す図である。 第2の参考例の波長合分波素子の連続的な波長スペクトル特性を示す図である。 第5の実施形態に係る波長合分波素子の連続的な波長スペクトル特性を示す図である。 第6の実施形態に係る光送信装置の構成を示す図である。 第6の実施形態の変形例に係る光送信装置の構成を示す図である。 第7の実施形態に係る光受信装置の構成を示す図である。 第7の実施形態の変形例に係る光受信装置の構成を示す図である。
(第1の参考例)
先ず、第1の参考例について説明する。図1は、第1の参考例の波長合分波素子の構成を示す図である。参考例の波長合分波素子は、1×4Chの遅延マッハ・ツェンダ干渉計(delayed Mach-Zehnder interferometer:DMZI)型の波長合分波素子である。
図1に示すように、参考例の波長合分波素子900は、2段で3個の遅延干渉計910を有し、4個の出力チャネルCh-1~Ch-4を有する。1段目の1個の遅延干渉計910(910A)に、2段目の2個の遅延干渉計910(910B、910C)が縦接続されている。
遅延干渉計910は、入出力ポートを備えた1対の波長無依存光カプラ(wavelength insensitive coupler:WINC)930、940と、1対のWINC930、940の間に接続された遅延線920とを有する。遅延線920は、光路長が互いに異なる第1のアーム導波路921及び第2のアーム導波路922を有し、第2のアーム導波路922に位相補正領域923が設けられている。
WINC930は、1対の方向性結合器(directional coupler:DC)931、935と、1対のDC931、935の間に接続された2本のアーム導波路932、933とを有する。WINC940は、1対のDC941、945と、1対のDC941、945の間に接続された2本のアーム導波路942、943とを有する。アーム導波路933に位相シフタ934が設けられ、アーム導波路943に位相シフタ944が設けられている。位相シフタ934、944の位相シフト量は、+0.45π[rad]~+0.50π[rad]である。
なお、2段目の遅延干渉計910(910A、910B)については、符号の記入を省略する。
2段目の遅延干渉計910における第1のアーム導波路921の光路長と第2のアーム導波路922の光路長との相違(遅延長)ΔLは、1段目の遅延干渉計910における第1のアーム導波路921の光路長と第2のアーム導波路922の光路長との相違(遅延長)ΔLの1/2である。遅延長ΔL及びΔLは、いずれも位相補正領域923による位相変化量に相当する遅延量を含まない。
そして、1段目の遅延干渉計910Aの位相補正領域923の位相変化量(δφz1)は+1.0π[rad]である。2段目の2個の遅延干渉計910のうち、出力チャネルCh-1~Ch-2に繋がる遅延干渉計910Bの位相補正領域923の位相変化量(δφz2)は0[rad]である。2段目の2個の遅延干渉計910のうち、出力チャネルCh-3~Ch-4に繋がる遅延干渉計910Bの位相補正領域923の位相変化量(δφz3)は+0.5π[rad]である。以下、位相変化量(δφ)に相当する遅延長をδL(δφ)と表す。
位相補正領域923を含めた、遅延干渉計910Aの遅延線920における遅延長L、遅延干渉計910Bの遅延線920における遅延長L、遅延干渉計910Cの遅延線920における遅延長Lは、下記の数式(1)~(5)で表される。
=ΔL+δL(δφz1)=ΔL+δL(+1.0π)・・・(1)
=ΔL+δL(δφz2)=ΔL+δL(0) ・・・(2)
=ΔL+δL(δφz3)=ΔL+δL(+0.5π) ・・・(3)
ΔL=ΔL/2 ・・・(4)
ΔL=(λDMZI×m)/Neq ・・・(5)
ここで、λDMZI、m及びNeqは、それぞれ遅延干渉部の中心波長、回折次数及びSi細線導波路の実効屈折率である。また、波長間隔(チャネル間隔)Δνは以下の数式(6)のように定まる。
Δν=λDMZI /(2×NGr×ΔL) ・・・(6)
ここで、NGrは伝搬する光の群速度により定義される群屈折率である。
800GHzの周波数に相当する波長間隔Δν(1.5μm帯域で約6.4nm)のWDM信号を想定したときの第1の参考例の波長合分波素子900のスペクトル特性を図2に示す。図2の横軸は中心波長からのずれを示している。図2に示すように、概ね100nmに及ぶ波長範囲において、ピーク透過損失を1dB以下に抑え、波長クロストークを-15dB以下に抑えることができる。ピーク透過損失が1dB以下、かつ波長クロストークが-15dB以下の波長帯域の幅を有効波長帯域幅と定義すると、第1の参考例の有効波長帯域幅Wは約100nmである。つまり、第1の参考例によれば、概ね100nmに及ぶ波長範囲において、過剰損を抑制しながら全ての出力チャネルの透過特性をほぼ一定に保つことできる。
しかしながら、100nmという有効波長帯域幅では、近年の更なる有効波長帯域幅の拡大に十分に応えることができない。そこで、本願発明者は、第1の参考例の構造では有効波長帯域幅が100nmに制限される理由を解明すべく、鋭意検討を行った。
第1の参考例の波長合分波素子900では、図2に示すように、光波長成分に対して、短波長側から長波長側に向かってλ、λ、λ、λと定義した場合、4つの出力チャネルCh-1~Ch-4からλ、λ、λ、λの順に出射する。これら出力チャネルCh-1~Ch-4のそれぞれから出射される光波長成分のスペクトル特性を分析したところ、これらスペクトル特性に大きな歪みが存在することが明らかになった。図3Aは、出力チャネルCh-1から出射される光波長成分のスペクトル特性を示す図である。図3Bは、出力チャネルCh-2から出射される光波長成分のスペクトル特性を示す図である。図3Cは、出力チャネルCh-3から出射される光波長成分のスペクトル特性を示す図である。図3Dは、出力チャネルCh-4から出射される光波長成分のスペクトル特性を示す図である。図3A~図3Dに示すように、中心波長から±50nmを超えると、スペクトル特性に大きな歪みが含まれている。本願発明者は、このようなスペクトル特性の歪を解消すべく、更に鋭意検討を行い、下記の実施形態に想到した。
以下、実施形態について添付の図面を参照しながら具体的に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省くことがある。
(第1の実施形態)
第1の実施形態について説明する。図4は、第1の実施形態に係る波長合分波素子の構成を示す図である。第1の実施形態に係る波長合分波素子は、1×4Chの波長合分波素子である。
図4に示すように、第1の実施形態に係る波長合分波素子100は、N段で(2-1)個(Nは2以上の自然数)の遅延干渉計110を有する。k段目(k<N)の2k-1個の遅延干渉計110に、(k+1)段目の2個の遅延干渉計110が縦接続されている。ここでは、3個の遅延干渉計110を用いて2段構成の1×4Chの波長合分波素子100が構成されている。
遅延干渉計110は、入出力ポートを備えた1対の光カプラ130、140と、1対の光カプラ130、140の間に接続された遅延線120とを有する。遅延線120は、光路長が互いに異なる第1のアーム導波路121及び第2のアーム導波路122を有し、第1のアーム導波路121及び第2のアーム導波路122の一方に、ここでは第2のアーム導波路122に、位相補正領域123が設けられている。
光カプラ130は、1対のDC131、135と、1対のDC131、135の間に接続された2本のアーム導波路132、133とを有する。光カプラは、1対のDC141、145と、1対のDC141、145の間に接続された2本のアーム導波路142、143とを有する。2本のアーム導波路132、133の一方に、ここではアーム導波路133に、位相シフタ134が設けられ、2本のアーム導波路142、143の一方に、ここではアーム導波路143に、位相シフタ144が設けられている。位相シフタ134、144の位相シフト量(δφCoup)は、例えば+0.45π[rad]~+0.50π[rad]である。
なお、2段目の遅延干渉計110については、符号の記入を省略する。
(k+1)段目の、ここでは2段目の、遅延干渉計110における第1のアーム導波路121の光路長と第2のアーム導波路122の光路長との相違ΔLk+1は、k段目の遅延干渉計110における第1のアーム導波路121の光路長と第2のアーム導波路122の光路長との相違ΔLの1/2である。遅延長ΔL及びΔLk+1は、いずれも位相補正領域223による位相変化量に相当する遅延量を含まない。
そして、各段の遅延干渉計110の位相補正領域123の位相変化量は、各段の光カプラ130、140による位相変動を相殺する値に設定されている。
第1の実施形態に係る波長合分波素子100は、例えば、シリコンフォトニクス技術を応用して、SOI(silicon on insulator)基板を用いて、埋め込み酸化層(BOX層)上に設けた単結晶シリコン層を加工して形成することが典型的な形態である。
波長合分波素子100を波長合波素子とし、2個の半導体レーザ及び2個の光変調器と組み合わせると光送信装置を構成することができる。
また、波長合分波素子100を波長分波素子とし、2個の受光素子と組わせると光受信素子を構成することができる。この場合、波長分割多重(wavelength division multiplexing:WDM)信号光の偏波状態の影響を受けないようするためには、偏光ビームスプリタでTE光とTM光とに分け、TM光を偏光ローテータでTE光に変換してから受光すればよく、その場合には、例えば2×2個の受光素子が用いられる。
本開示によれば、光結合率の波長依存性を低減し、低損失性を確保し、例えば160nm以上の広波長帯域にて動作する波長合分波素子を実現することができる。
(第2の実施形態)
第2の実施形態について説明する。図5は、第2の実施形態に係る波長合分波素子の構成を示す図である。第2の実施形態に係る波長合分波素子は、1×4ChのDMZI型の波長合分波素子である。
図5に示すように、第2の実施形態に係る波長合分波素子200は、2段で3個の遅延干渉計210を有し、4個の出力チャネルCh-1~Ch-4を有する。1段目の1個の遅延干渉計210(210A)に、2段目の2個の遅延干渉計210(210B、210C)が縦接続されている。
遅延干渉計210は、入出力ポートを備えた1対のWINC230、240と、1対のWINC230、240の間に接続された遅延線220とを有する。遅延線220は、光路長が互いに異なる第1のアーム導波路221及び第2のアーム導波路222を有し、第1のアーム導波路221及び第2のアーム導波路222の一方、ここでは第2のアーム導波路222、に位相補正領域223が設けられている。
WINC230は、1対のDC231、235と、1対のDC231、235の間に接続された2本のアーム導波路232、233とを有する。WINC240は、1対のDC241、245と、1対のDC241、245の間に接続された2本のアーム導波路242、243とを有する。2本のアーム導波路232、233の一方に、ここではアーム導波路233に、位相シフタ234が設けられ、2本のアーム導波路242、243の一方に、ここではアーム導波路243に、位相シフタ244が設けられている。位相シフタ234、244の位相シフト量(δφCoup)は、例えば+0.45π[rad]~+0.50π[rad]である。
なお、2段目の遅延干渉計210(210A、210B)については、符号の記入を省略する。
2段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLは、1段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLの1/2である。遅延長ΔL及びΔLは、いずれも位相補正領域223による位相変化量に相当する遅延長を含まない。
そして、各段の遅延干渉計210の位相補正領域223の位相変化量は、各段のWINC230、240による位相変動を相殺する値である。例えば、1段目の遅延干渉計210Aの位相補正領域223の位相変化量(δφa1)は+δφPT[rad]である。2段目の2個の遅延干渉計210のうち、出力チャネルCh-1~Ch-2に繋がる遅延干渉計210Bの位相補正領域223の位相変化量(δφa2)は+δφPT[rad]である。2段目の2個の遅延干渉計210のうち、出力チャネルCh-3~Ch-4に繋がる遅延干渉計210Cの位相補正領域123の位相変化量(δφa3)は+0.5π+δφPT[rad]である。
位相補正領域223を含めた、遅延干渉計210Aの遅延線220における遅延長L、遅延干渉計210Bの遅延線120における遅延長L、遅延干渉計210Cの遅延線120における遅延長Lは、下記の数式(7)~(9)で表される。
=ΔL+δL(δφa1)=ΔL+δL(+δφPT) ・・・(7)
=ΔL+δL(δφa2)=ΔL+δL(+δφPT) ・・・(8)
=ΔL+δL(δφa3)=ΔL+δL(+δφPT+0.5π) ・・・(9)
なお、δφPTは、遅延干渉計210の前後に位置するWINC230、240の内部での位相変動を抑制するための補正値であり、本願発明者によるシミュレーション等の結果、δφPTは、下記の数式(10)で表すことができる。
δφPT=(-δφCoup×2)-{(0.5π-δφCoup)×2}
=-1.0π[rad] ・・・(10)
次に、第2の実施形態に係る波長合分波素子200を構成する光導波路の構造について説明する。ここでは、光導波路の構造を、波長合分波素子200の製造方法と共に説明する。図6A~図6Cは、第2の実施形態に係る波長合分波素子200を構成する光導波路の構造を示す断面図である。この方法では、Siフォトニクス技術を用いてSOI基板上に波長合分波素子200を形成するが、ここでは、一つの導波路部の断面構造を参照しながら説明する。
まず、図6Aに示すように、シリコン基板51上に下部クラッド層となるSiO膜52を介して厚さが220nmの単結晶シリコン層53を設けたSOI基板を準備する。
次いで、図6Bに示すように、露光プロセスによって幅が450nmの導波路ストライプ構造のレジストパターン54を形成し、ドライエッチングを行ってコア層55を形成してチャネル導波路構とする。
次いで、図6Cに示すように、レジストパターン54を除去したのち、全面にSiO膜56を堆積することによって上部クラッド層とする。
なお、図7に示すように、コア層55を形成する際に、50nmの高さのスラブ部57を残すことによりリブ導波路構造としてもよい。このように、コア層55の両脇にスラブ部57を形成しておくと、電流注入により導波路の屈折率を変えることができる。
このように構成された波長合分波素子200によれば、2つのWINC230、240にて生じる位相変動が補正され、スペクトル特性の歪を抑制し、広い有効波長帯域幅を得ることができる。
ここで、第1の参考例と比較しながら、遅延干渉計210、910の遅延線220、920における遅延長の関係について説明する。下記の表1に、位相補正領域223、923を含めた遅延線120、920における遅延長をまとめて示す。
Figure 0007293868000001
800GHzの周波数に相当する波長間隔Δν(1.5μm帯域で約6.4nm)のWDM信号を想定すると、数式(4)~(6)から、ΔLは約44μm、ΔLは約22μmとなる。また、+1.0π[rad]に相当する遅延長は約0.33μmであり、+0.5π[rad]に相当する遅延長は約0.16μmである。また、位相シフタ234、244の位相シフト量(δφCoup)が、例えば+0.46π[rad]であるとすると、第1の実施形態における補正値(+δφPT)は+1.0π[rad]となり、これに相当する遅延長は約0.33μmである。
従って、第1の参考例では、遅延長L、L、Lは、それぞれ約44.33μm、約22μm、約22.16μmとなる。また、第1の実施形態では、遅延長L、L、Lは、それぞれ約44.33μm、約22.33μm、約22.49μmとなる。
800GHzの周波数に相当する波長間隔Δν(1.5μm帯域で約6.4nm)のWDM信号を想定したときの波長合分波素子100のスペクトル特性を図8に示す。図8の横軸は中心波長からのずれを示している。また、図9A~図9Dに、出力チャネルCh-1~Ch-4から出射される光波長成分のスペクトル特性を示す。図9Aは、出力チャネルCh-1から出射される光波長成分のスペクトル特性を示す図である。図9Bは、出力チャネルCh-2から出射される光波長成分のスペクトル特性を示す図である。図9Cは、出力チャネルCh-3から出射される光波長成分のスペクトル特性を示す図である。図9Dは、出力チャネルCh-4から出射される光波長成分のスペクトル特性を示す図である。図9A~図9Dに示すように、少なくとも、中心波長から±80nm以内の範囲において、スペクトル特性の歪みが小さくなっている。そして、図8に示すように、概ね160nmに及ぶ波長範囲において、ピーク透過損失を1dB以下に抑え、波長クロストークを-15dB以下に抑えることができる。つまり、第2の実施形態によれば、概ね160nmに及ぶ波長範囲において、過剰損を抑制しながら全ての出力チャネルの透過特性をほぼ一定に保つことできる。
このように、第2の実施形態によれば、有効波長帯域幅Wを拡大することができる。
(第3の実施形態)
第3の実施形態について説明する。第3の実施形態は、遅延干渉計210を3段構成にして8波のWDM信号を合波する以外の基本的構成は上記の第2の実施形態と同様である。図10は、第3の実施形態に係る波長合分波素子の構成を示す図である。第3の実施形態に係る波長合分波素子は、1×8ChのDMZI型の波長合分波素子である。
図10に示すように、第3の実施形態に係る波長合分波素子300は、3段で7個の遅延干渉計210を有し、8個の出力チャネルCh-1~Ch-8を有する。3段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLは、2段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLの1/2である。2段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLは、1段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLの1/2である。遅延長ΔL、ΔL及びΔLは、いずれも位相補正領域223による位相変化量に相当する遅延長を含まない。
そして、各段の遅延干渉計210の位相補正領域223の位相変化量は、各段のWINC230、240による位相変動を相殺する値である。例えば、1段目の遅延干渉計210Aに含まれる位相補正領域223の位相シフト量はδφb1である。2段目の2個の遅延干渉計210のうち、出力チャネルCh-1~Ch-4に繋がる遅延干渉計210Bに含まれる位相補正領域223の位相変化量はδφb2である。2段目の2個の遅延干渉計210のうち、出力チャネルCh-5~Ch-8に繋がる遅延干渉計210Cに含まれる位相補正領域223の位相変化量はδφb3である。3段目の4個の遅延干渉計210のうち、出力チャネルCh-1~Ch-2に繋がる遅延干渉計210Dに含まれる位相補正領域223の位相変化量はδφb4である。3段目の4個の遅延干渉計210のうち、出力チャネルCh-3~Ch-4に繋がる遅延干渉計210Eに含まれる位相補正領域223の位相変化量はδφb5である。3段目の4個の遅延干渉計210のうち、出力チャネルCh-5~Ch-6に繋がる遅延干渉計210Fに含まれる位相補正領域223の位相変化量はδφb6である。3段目の4個の遅延干渉計210のうち、出力チャネルC-7~Ch-8に繋がる遅延干渉計210Gに含まれる位相補正領域223の位相変化量はδφb7である。下記の表2に、各位相補正領域223における位相変化量δφb1~δφb7の一例を示す。
Figure 0007293868000002
また、下記の表3に、それぞれ位相変化量が表2に示すδφb1~δφb7の位相補正領域223を含めた、遅延線220における遅延長L~Lを示す。
Figure 0007293868000003
このように構成された波長合分波素子300によれば、波長合分波素子200と同様に、2つのWINC230、240にて生じる位相変動が補正され、スペクトル特性の歪を抑制し、広い有効波長帯域幅を得ることができる。
(第4の実施形態)
第4の実施形態について説明する。第4の実施形態は、遅延干渉計210を4段構成にして16波のWDM信号を合波する以外の基本的構成は上記の第1の実施形態と同様である。図11は、第4の実施形態に係る波長合分波素子の構成を示す図である。第4の実施形態に係る波長合分波素子は、1×16ChのDMZI型の波長合分波素子である。
図11に示すように、第4の実施形態に係る波長合分波素子400は、4段で15個の遅延干渉計210を有し、16個の出力チャネルCh-1~Ch-16を有する。4段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLは、3段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLの1/2である。3段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLは、2段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLの1/2である。2段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLは、1段目の遅延干渉計210における第1のアーム導波路221の光路長と第2のアーム導波路222の光路長との相違(遅延長)ΔLの1/2である。遅延長ΔL、ΔL、ΔL及びΔLは、いずれも位相補正領域223による位相変化量に相当する遅延長を含まない。
そして、各段の遅延干渉計210の位相補正領域223の位相変化量は、各段のWINC230、240による位相変動を相殺する値である。例えば、1段目の遅延干渉計210Aに含まれる位相補正領域223の位相シフト量はδφc1である。2段目の2個の遅延干渉計210のうち、出力チャネルCh-1~Ch-8に繋がる遅延干渉計210Bに含まれる位相補正領域223の位相シフト量はδφc2である。2段目の2個の遅延干渉計210のうち、出力チャネルCh-9~Ch-16に繋がる遅延干渉計210Cに含まれる位相補正領域223の位相シフト量はδφc3である。3段目の4個の遅延干渉計210のうち、出力チャネルCh-1~Ch-4に繋がる遅延干渉計210Dに含まれる位相補正領域223の位相シフト量はδφc4である。3段目の4個の遅延干渉計210のうち、出力チャネルCh-5~Ch-8に繋がる遅延干渉計210Eに含まれる位相補正領域223の位相シフト量はδφc5である。3段目の4個の遅延干渉計210のうち、出力チャネルCh-9~Ch-12に繋がる遅延干渉計210Fに含まれる位相補正領域223の位相シフト量はδφc6である。3段目の4個の遅延干渉計210のうち、出力チャネルCh-13~Ch-16に繋がる遅延干渉計210Gに含まれる位相補正領域223の位相シフト量はδφc7である。
4段目の8個の遅延干渉計210のうち、出力チャネルCh-1~Ch-2に繋がる遅延干渉計210Hに含まれる位相補正領域223の位相シフト量はδφc8である。4段目の8個の遅延干渉計210のうち、出力チャネルCh-3~Ch-4に繋がる遅延干渉計210Iに含まれる位相補正領域223の位相シフト量はδφc9である。4段目の8個の遅延干渉計210のうち、出力チャネルCh-5~Ch-6に繋がる遅延干渉計210Jに含まれる位相補正領域223の位相シフト量はδφc10である。4段目の8個の遅延干渉計210のうち、出力チャネルCh-7~Ch-8に繋がる遅延干渉計210Kに含まれる位相補正領域223の位相シフト量はδφc11である。4段目の8個の遅延干渉計210のうち、出力チャネルCh-9~Ch-10に繋がる遅延干渉計210Lに含まれる位相補正領域223の位相シフト量はδφc12である。4段目の8個の遅延干渉計210のうち、出力チャネルCh-11~Ch-12に繋がる遅延干渉計210Mに含まれる位相補正領域223の位相シフト量はδφc13である。4段目の8個の遅延干渉計210のうち、出力チャネルCh-13~Ch-14に繋がる遅延干渉計210Nに含まれる位相補正領域223の位相シフト量はδφc14である。4段目の8個の遅延干渉計210のうち、出力チャネルCh-15~Ch-16に繋がる遅延干渉計210Oに含まれる位相補正領域223の位相シフト量はδφc15である。下記の表4に、各位相補正領域223における位相シフト量δφc1~δφc15の一例を示す。
Figure 0007293868000004
また、下記の表5に、それぞれ位相シフト量が表4に示すδφc1~δφc15の位相補正領域223を含めた、遅延線220における遅延長L~L15を示す。
Figure 0007293868000005
このように構成された波長合分波素子400によれば、波長合分波素子200と同様に、2つのWINC230、240にて生じる位相変動が補正され、スペクトル特性の歪を抑制し、広い有効波長帯域幅を得ることができる。
(第5の実施形態)
第5の実施形態について説明する。第5の実施形態は、リング共振器を含む点で第1の実施形態と相違する。適切なリング共振器を含むことで、スペクトル特性を平坦化することができる。図12は、第5の実施形態に係る波長合分波素子の構成を示す図である。第5の実施形態に係る波長合分波素子は、1×4ChのDMZI型の波長合分波素子である。
図12に示すように、第5の実施形態に係る波長合分波素子500では、遅延干渉計210が、第1のアーム導波路221及び第2のアーム導波路222のうちで短い方の第1のアーム導波路221に近接するループ導波路224を有する。ループ導波路224は、第1のアーム導波路221と共にリング共振器225を構成する。1段目の遅延干渉計210Aには、ループ導波路224Aが設けられ、リング共振器225Aが構成されている。2段目の遅延干渉計210Bには、ループ導波路224Bが設けられ、リング共振器225Bが構成されている。2段目の遅延干渉計210Cには、ループ導波路224Cが設けられ、リング共振器225Cが構成されている。
各遅延干渉計210において、ループ導波路224の周回長は、第1のアーム導波路211と第2のアーム導波路との間の光路長の相違(遅延長)の約2倍である。例えば、ループ導波路224の周回長を調整することで、第1のアーム導波路211と第2のアーム導波路との間の光路長の相違(遅延長)の約2倍とすることができる。
また、各遅延干渉計210において、第1のアーム導波路221の光路長と、第2のアーム導波路222の光路長と、ループ導波路224の周回長とが、WINC130、140に入出力される複数の光信号の波長及びチャネル間隔に応じて、当該遅延干渉計210の透過スペクトル特性に対して、リング共振器225の透過スペクトル特性が非共振条件を満たす。
例えば、遅延干渉計210Aでは、リング共振器225Aの中心波長λMRRAが、遅延干渉計210Aのチャネル間隔(チャネルグリッド)から+1.0π[rad]又は-1.0π[rad]だけずれている。遅延干渉計210Bでは、リング共振器225Bの中心波長λMRRBが、遅延干渉計210Bのチャネル間隔(チャネルグリッド)から+1.0π[rad]又は-1.0π[rad]だけずれている。遅延干渉計210Cでは、リング共振器225Cの中心波長λMRRCが、遅延干渉計210Cのチャネル間隔(チャネルグリッド)から+1.0π[rad]又は-1.0π[rad]だけずれている。遅延長ΔLが遅延長ΔLの1/2であるため、遅延干渉計210B及び210Cでは、スペクトルの繰り返し周波数(free spectral range:FSR)が遅延干渉計210AにおけるスペクトルのFSRの2倍になっている。図13に、これらの関係の概要を示す。図13中のCGはチャネルグリッドを示し、遅延干渉計210Aにおけるスペクトルのうち実線は遅延干渉計210Bに繋がる導波路に出力される光のスペクトルを示し、破線は遅延干渉計210Cに繋がる導波路に出力される光のスペクトルを示す。
例えば、ループ導波路224Aの周回長L224Aは、ΔL×2+δL(+1.0π)である。ループ導波路224Bの周回長L224Bは、ΔL×2+δL(+1.0π)である。ループ導波路224Cの周回長L224Cは、ΔL×2+δL(-0.5π)である。
ループ導波路224と第1のアーム導波路221との間の光結合率は80%以上であることが好ましい。この光結合器は90%以下でもよい。ループ導波路224と第1のアーム導波路221との間の光結合率は、例えば、ループ導波路224と第1のアーム導波路221との間の距離や近接する部分の長さを調整することで、容易に80%以上90%以下とすることができる。
ここで、第2の参考例及び第3の参考例と比較しながら、第5の実施形態の効果について説明する。図14は、第2の参考例の波長合分波素子の構成を示す図である。
図14に示すように、第2の参考例の波長合分波素子800では、第1の参考例の波長合分波素子900のWINC930、940に代えてDC830、840が設けられている。DC830、840の光結合率は50%程度である。第1のアーム導波路921に近接し、第1のアーム導波路921と共にリング共振器825を構成するループ導波路824が設けられている。リング共振器825におけるFSRは遅延干渉計910のチャネル間隔に一致している。また、リング共振器825の中心波長は遅延干渉計910のチャネル間隔からπ/2ラジアンほどずれている。位相補正領域923は設けられていない。
第3の参考例の波長合分波素子では、第2の参考例の波長合分波素子800のDC830、840に代えてWINC930、940が設けられ、波長合分波素子800に、第1の参考例の位相補正領域923が加えられた構造を有する。
400GHzの周波数に相当する波長間隔Δν(1.55μm帯域で約3.2nm)のWDM信号を想定したときの、第5の実施形態、第2の参考例、第3の参考例のスペクトル特性は次のようになる。ここでは、図15に示す、中心波長λから±100nm以内の波長帯域内の3つの帯域R1、R2、R3のスペクトル特性を示す。帯域R1は、中心波長λからのずれが-10nm~+10nmの帯域である。帯域R2は、ずれが+30nm~+50nmの帯域である。帯域R3は、ずれが+70nm~+90nmの帯域である。-50nm~-30nmの帯域では、帯域R2と対称のスペクトル特性が得られ、-90nm~-70nmの帯域では、帯域R3と対称のスペクトル特性が得られる。
図16Aは、第2の参考例の帯域R1のスペクトル特性を示す図である。図16Bは、第2の参考例の帯域R2のスペクトル特性を示す図である。図16Cは、第2の参考例の帯域R3のスペクトル特性を示す図である。図16A~図16Cに示すように、第2の参考例では、帯域R2において波長クロストークが大幅に劣化する。このため、第2の参考例では、スペクトル特性の対称性を考慮しても、有効波長帯域幅は40nm程度にとどまる。
図17Aは、第3の参考例の帯域R1のスペクトル特性を示す図である。図17Bは、第3の参考例の帯域R2のスペクトル特性を示す図である。図17Cは、第3の参考例の帯域R3のスペクトル特性を示す図である。図17A~図17Cに示すように、第3の参考例でも、帯域R2で波長クロストークが劣化する。また、第3の参考例では、帯域R2で、ピーク透過損失が増大し、スペクトル特性の形状がいびつに劣化する。
図18Aは、第5の実施形態の帯域R1のスペクトル特性を示す図である。図18Bは、第5の実施形態の帯域R2のスペクトル特性を示す図である。図18Cは、第5の実施形態の帯域R3のスペクトル特性を示す図である。図18A~図18Cに示すように、帯域R2においても、ピーク透過損失及び波長クロストークが抑制されている。帯域R3において、波長クロストークが若干生じているが、スペクトルの平坦性は維持されている。
図19に、第2の参考例の連続的な波長スペクトル特性を示し、図20に、第5の実施形態の連続的な波長スペクトル特性を示す。図19に示すように、第2の参考例の有効波長帯域幅は40nm程度である。一方、第5の実施形態によれば、良好な平坦性を備えたスペクトル特性を得ながら、少なくとも120nmの有効波長帯域幅を得ることができる。つまり、第5の実施形態によれば、良好な平坦性を備えたスペクトル特性を得ながら、第2の参考例の3倍程度の有効波長帯域幅を得ることができる。
なお、第3、第4の実施形態に含まれる遅延干渉計210が、第5の実施形態と同様に、リング共振器225を含んでいてもよい。
(第6の実施形態)
第6の実施形態について説明する。第6の実施形態は、第1の実施形態の波長合分波素子100を備えた光送信装置に関する。図21は、第6の実施形態に係る光送信装置の構成を示す図である。
図21に示すように、第6の実施形態に係る光送信装置600は、発振波長が互いに異なる4つの半導体レーザ(laser diode:LD)81~84と、変調器(modulator:MOD)91~94と、DMZI型波長合波素子601とを有する。LD81~84が並べて配置され、MOD91~94は、それぞれLD81~84が発したレーザ光を変調する。DMZI型波長合波素子601は、第1の実施形態に係る波長合分波素子100であり、MOD91~94による変調後の光を合波する。
光送信装置600においては、DMZI型波長合波素子601として波長合分波素子100が用いられる。従って、光源における波長ズレや温度変動に優れた耐性を持つよう、Δνを広げても、或いは、波長数(チャネル数)を増大しても、波長合波素子としての特性劣化を最低限に抑えることができ、波長多重信号の光送信を安定かつ安価で行うことができる。なお、波長合分波素子100に代えて、第2~第4の実施形態に係る波長合分波素子200、300、400が用いられてもよい。WDM光信号が8チャネル等の場合にはチャネルの数に応じてDMZI型波長合波素子601のチャネル数を代えればよい。
(第6の実施形態の変形例)
第6の実施形態の変形例について説明する。図22は、第6の実施形態の変形例に係る光送信装置の構成を示す図である。
図22に示すように、第6の実施形態の変形例に係る光送信装置610は、DMZI型波長合波素子601に代えてDMZI型波長合波素子611を有する。DMZI型波長合波素子611は、第5の実施形態に係る波長合分波素子500であり、MOD91~94による変調後の光を合波する。
光送信装置610においては、DMZI型波長合波素子611として波長合分波素子500が用いられる。このため、スペクトル特性を平坦化することができ、光源に対する波長精度や環境温度変動による特性劣化の耐性を向上でき、波長多重信号の光送信を安定かつ安価で行うことができる。
(第7の実施形態)
第7の実施形態について説明する。第7の実施形態は、第1の実施形態の波長合分波素子100を備えた光受信装置に関する。図23は、第7の実施形態に係る光受信装置の構成を示す図である。
図23に示すように、第7の実施形態に係る光受信装置700は、光インタフェース(optical interface:OI)61と、偏光ビームスプリッタ(polarization beam splitter:PBS)62と、偏光ローテータ(polarization rotator:PR)63とを有する。光受信装置700は、更に、第1の光導波路64と、第2の光導波路65と、DMZI型波長分波素子701Aと、DMZI型波長分波素子701Bと、4つの受光器(photo detector:PD)71A~74Aと、4つのPD71B~74Bとを有する。
OI61は、WDM光信号をシリコン導波路へ結合させる。OI61としては、例えばスポットサイズ変換部やグレーティングカプラ等を用いることができる。PBS62は、TE・TMモードの偏波成分へ分離する。
PBS62により分離されたTEモードの光信号は第1の光導波路64を介してDMZI型波長分波素子701Aに入力される。PBS62により分離されたTMモードの光信号は第2の光導波路65を介してPR63に入力され、PR63がTEモードへ変換し、変換後の光信号がDMZI型波長分波素子701Bに入力される。
DMZI型波長分波素子701A、701Bは、いずれも第1の実施形態に係る波長合分波素子100であり、波長信号毎に分波する。そして、DMZI型波長分波素子701Aにより分波された4チャネルの光信号がPD71A~74Aにより検波され、DMZI型波長分波素子701Bにより分波された4チャネルの光信号がPD71B~74Bにより検波される。なお、本実施形態では、各波長成分を8個のPD71A~74A及び71B~74Bで検波しているが、同じ波長成分の信号光は、対向する2面を受光面とする各1個のPDで検波するようにしても良い。
光受信装置700においては、DMZI型波長分波素子701A、701Bとして波長合分波素子100が用いられる。従って、光源における波長ズレや温度変動に優れた耐性を持つよう、Δνを広げても、或いは、波長数(チャネル数)を増大しても、波長合分波素子としての特性劣化を最低限に抑えることができる。その結果、受光器によりWDM光信号を検波する際に、光リンクにおけるパワーペナルティを最低限に抑えることができる。なお、波長合分波素子100に代えて、第2~第4の実施形態に係る波長合分波素子200、300、400が用いられてもよい。WDM光信号が8チャネル等の場合にはチャネルの数に応じてDMZI型波長分波素子701A、701Bのチャネル数を代えればよい。なお、ここでは、光の偏波状態の影響を受けないように偏光ローテータを用いてTE光のみを検波しているが、波長合分波素子の動作を偏光無依存性化すれば、WDM光信号をそのまま波長合分波素子に入射してもよい。その場合には、波長合分波素子は1個でよい。
(第7の実施形態の変形例)
第7の実施形態の変形例について説明する。図24は、第7の実施形態の変形例に係る光受信装置の構成を示す図である。
図24に示すように、第7の実施形態の変形例に係る光受信装置710は、DMZI型波長分波素子701A、701Bに代えてDMZI型波長分波素子711A、711Bを有する。DMZI型波長分波素子711A、711Bは、第5の実施形態に係る波長合分波素子500であり、波長信号毎に分波する。
光受信装置710においては、DMZI型波長分波素子711A、711Bとして波長合分波素子500が用いられる。このため、スペクトル特性を平坦化することができ、光源に対する波長精度や環境温度変動による特性劣化の耐性を向上でき、波長多重信号の光送信を安定かつ安価で行うことができる。
以上、好ましい実施の形態等について詳説したが、上述した実施の形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態等に種々の変形及び置換を加えることができる。
以下、本開示の諸態様を付記としてまとめて記載する。
(付記1)
N段で(2-1)個(Nは2以上の自然数)の遅延干渉計を有し、
k段目(k<N)の2k-1個の前記遅延干渉計に、(k+1)段目の2個の前記遅延干渉計が縦接続され、
前記遅延干渉計は、
入出力ポートを備えた1対の光カプラと、
前記1対の光カプラの間に接続され、光路長が互いに異なる第1のアーム導波路及び第2のアーム導波路と、
前記第1のアーム導波路及び前記第2のアーム導波路の一方に設けられた位相補正領域と、
を有し、
前記光カプラは、
1対の方向性結合器と、
前記1対の方向性結合器の間に接続された第3のアーム導波路及び第4のアーム導波路と、
前記第3のアーム導波路及び前記第4のアーム導波路の一方に設けられた位相シフタと、
を有し、
(k+1)段目の前記遅延干渉計における前記第1のアーム導波路の光路長と前記第2のアーム導波路の光路長との相違は、k段目の前記遅延干渉計における前記第1のアーム導波路の光路長と前記第2のアーム導波路の光路長との相違の1/2であり、
各段の前記遅延干渉計の位相補正領域の位相変化量は、各段の前記光カプラによる位相変動を相殺する値であることを特徴とする波長合分波素子。
(付記2)
前記遅延干渉計の個数は3個であり、
前記位相シフタの位相シフト量をδφCoupとしたとき、
1段目の前記遅延干渉計の前記位相補正領域の位相変化量は「+δφPT」ラジアンであり、
2段目の2個の前記遅延干渉計のうちの一方の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他方の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアン又は「+δφPT-0.5π」ラジアンであり、
δφPTは「(-δφCoup×2)-{(0.5π-δφCoup)×2}」であることを特徴とする付記1に記載の波長合分波素子。
(付記3)
前記遅延干渉計の個数は7個であり、
前記位相シフタの位相シフト量をδφCoupとしたとき、
1段目の前記遅延干渉計の前記位相補正領域の位相変化量は「+δφPT」ラジアンであり、
2段目の2個の前記遅延干渉計のうちの一方の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他方の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアン又は「+δφPT-0.5π」ラジアンであり、
3段目の4個の前記遅延干渉計のうちの1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT-0.25π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.25π」ラジアンであり、
δφPTは「(-δφCoup×2)-{(0.5π-δφCoup)×2}」であることを特徴とする付記1に記載の波長合分波素子。
(付記4)
前記遅延干渉計の個数は8個であり、
前記位相シフタの位相シフト量をδφCoupとしたとき、
1段目の前記遅延干渉計の前記位相補正領域の位相変化量は「+δφPT」ラジアンであり、
2段目の2個の前記遅延干渉計のうちの一方の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他方の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアン又は「+δφPT-0.5π」ラジアンであり、
3段目の4個の前記遅延干渉計のうちの1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT-0.25π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.25π」ラジアンであり、
4段目の8個の前記遅延干渉計のうちの1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT-0.25π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.25π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.125π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.625π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT-0.125π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.375π」ラジアンであり、
δφPTは「(-δφCoup×2)-{(0.5π-δφCoup)×2}」であることを特徴とする付記1に記載の波長合分波素子。
(付記5)
前記第1のアーム導波路の光路長は前記第2のアーム導波路の光路長よりも短く、
前記遅延干渉計は、前記第1のアーム導波路と共にリング共振器を構成するループ導波路を有し、
前記遅延干渉計の各々において、前記第1のアーム導波路の光路長と、前記第2のアーム導波路の光路長と、前記ループ導波路の周回長とが、前記光カプラに入出力される複数の光信号の波長及びチャネル間隔に応じて、当該遅延干渉計の透過スペクトル特性に対して、前記リング共振器の透過スペクトル特性が非共振条件を満たすことを特徴とする付記1乃至4のいずれか1項に記載の波長合分波素子。
(付記6)
前記第1のアーム導波路と前記ループ導波路との間の光結合率が80%以上であることを特徴とする付記5に記載の波長合分波素子。
(付記7)
付記1乃至6のいずれか1項に記載の1個の波長合分波素子と、
互いに異なる波長で発振する2個の半導体レーザ素子と、
個の前記半導体レーザ素子からの各波長の光を変調する2個の光変調器と、
を有し、
個の前記光変調器は、前記波長合分波素子のN段目の遅延干渉計の光カプラの開放端側の2個の入出力ポートに接続されることを特徴とする光送信装置。
(付記8)
互いに異なる波長を有する複数の光信号を含む波長多重光信号を伝搬する入力光導波路と、
前記入力光導波路に一方の端部に接続されて偏光ビームスプリッタと、
前記偏光ビームスプリッタの他端に接続されてTEモード光が入力される第1の光導波路及びTMモード光が入力される第2の光導波路と、
前記第2の光導波路の途中に挿入された偏光ローテータと、
付記1乃至6のいずれか1項に記載の2個の波長合分波素子と、
前記2個の波長合分波素子のうちの一方の波長合分波素子のN段目の遅延干渉計の光カプラの開放端側の2個の入出力ポートに接続された2個の受光器と、
2個の前記波長合分波素子のうちの他方の波長合分波素子のN段目の遅延干渉計の光カプラの開放端側の2個の入出力ポートに接続された2個の受光器と、
を有し、
前記波長合分波素子のうちの一方の波長合分波素子の1段目の遅延干渉計の光カプラの開放端側の一つの入出力ポートに前記第1の光導波路が接続されるとともに、
前記波長合分波素子のうちの他方の波長合分波素子の1段目の遅延干渉計の光カプラの開放端側の一つの入出力ポートに前記第2の光導波路が接続されることを特徴とする光受信装置。
100、200、300、400、500、601、611、701A、701B、711A、711B:波長合分波素子
61:光インタフェース
62:偏光ビームスプリッタ
63:偏光ローテータ
71A、71B、72A、72B、73A、73B、74A、74B:受光器
81、82、83、84:半導体レーザ
91、92、93、94:変調器
110、210:遅延干渉計
120、220:遅延線
121、221:第1のアーム導波路
122、222:第2のアーム導波路
123、223:位相補正領域
130、140:光カプラ
131、135、141、145:方向性結合器
132、133、142、143、232、233、242、243:アーム導波路
134、144、234、244:位相シフタ
224:ループ導波路
225:リング共振器
230、240:波長無依存光カプラ
600、610:光送信装置
700、710:光受信装置

Claims (6)

  1. N段で(2 -1)個(Nは2以上の自然数)の遅延干渉計を有し、
    k段目(k<N)の2 k-1 個の前記遅延干渉計に、(k+1)段目の2 個の前記遅延干渉計が縦接続され、
    前記遅延干渉計は、
    入出力ポートを備えた1対の光カプラと、
    前記1対の光カプラの間に接続され、光路長が互いに異なる第1のアーム導波路及び第2のアーム導波路と、
    前記第1のアーム導波路及び前記第2のアーム導波路の一方に設けられた位相補正領域と、
    を有し、
    前記光カプラは、
    1対の方向性結合器と、
    前記1対の方向性結合器の間に接続された第3のアーム導波路及び第4のアーム導波路と、
    前記第3のアーム導波路及び前記第4のアーム導波路の一方に設けられた位相シフタと、
    を有し、
    (k+1)段目の前記遅延干渉計における前記第1のアーム導波路の光路長と前記第2のアーム導波路の光路長との相違は、k段目の前記遅延干渉計における前記第1のアーム導波路の光路長と前記第2のアーム導波路の光路長との相違の1/2であり、
    各段の前記遅延干渉計の位相補正領域の位相変化量は、各段の前記光カプラによる位相変動を相殺する値であり、
    前記遅延干渉計の個数は3個であり、
    前記位相シフタの位相シフト量をδφCoupとしたとき、
    1段目の前記遅延干渉計の前記位相補正領域の位相変化量は「+δφPT」ラジアンであり、
    2段目の2個の前記遅延干渉計のうちの一方の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他方の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアン又は「+δφPT-0.5π」ラジアンであり、
    δφPTは「(-δφCoup×2)-{(0.5π-δφCoup)×2}」である
    ことを特徴とする波長合分波素子。
  2. N段で(2 -1)個(Nは2以上の自然数)の遅延干渉計を有し、
    k段目(k<N)の2 k-1 個の前記遅延干渉計に、(k+1)段目の2 個の前記遅延干渉計が縦接続され、
    前記遅延干渉計は、
    入出力ポートを備えた1対の光カプラと、
    前記1対の光カプラの間に接続され、光路長が互いに異なる第1のアーム導波路及び第2のアーム導波路と、
    前記第1のアーム導波路及び前記第2のアーム導波路の一方に設けられた位相補正領域と、
    を有し、
    前記光カプラは、
    1対の方向性結合器と、
    前記1対の方向性結合器の間に接続された第3のアーム導波路及び第4のアーム導波路と、
    前記第3のアーム導波路及び前記第4のアーム導波路の一方に設けられた位相シフタと、
    を有し、
    (k+1)段目の前記遅延干渉計における前記第1のアーム導波路の光路長と前記第2のアーム導波路の光路長との相違は、k段目の前記遅延干渉計における前記第1のアーム導波路の光路長と前記第2のアーム導波路の光路長との相違の1/2であり、
    各段の前記遅延干渉計の位相補正領域の位相変化量は、各段の前記光カプラによる位相変動を相殺する値であり、
    前記遅延干渉計の個数は7個であり、
    前記位相シフタの位相シフト量をδφCoupとしたとき、
    1段目の前記遅延干渉計の前記位相補正領域の位相変化量は「+δφPT」ラジアンであり、
    2段目の2個の前記遅延干渉計のうちの一方の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他方の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアン又は「+δφPT-0.5π」ラジアンであり、
    3段目の4個の前記遅延干渉計のうちの1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT-0.25π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.25π」ラジアンであり、
    δφPTは「(-δφCoup×2)-{(0.5π-δφCoup)×2}」である
    ことを特徴とする波長合分波素子。
  3. N段で(2 -1)個(Nは2以上の自然数)の遅延干渉計を有し、
    k段目(k<N)の2 k-1 個の前記遅延干渉計に、(k+1)段目の2 個の前記遅延干渉計が縦接続され、
    前記遅延干渉計は、
    入出力ポートを備えた1対の光カプラと、
    前記1対の光カプラの間に接続され、光路長が互いに異なる第1のアーム導波路及び第2のアーム導波路と、
    前記第1のアーム導波路及び前記第2のアーム導波路の一方に設けられた位相補正領域と、
    を有し、
    前記光カプラは、
    1対の方向性結合器と、
    前記1対の方向性結合器の間に接続された第3のアーム導波路及び第4のアーム導波路と、
    前記第3のアーム導波路及び前記第4のアーム導波路の一方に設けられた位相シフタと、
    を有し、
    (k+1)段目の前記遅延干渉計における前記第1のアーム導波路の光路長と前記第2のアーム導波路の光路長との相違は、k段目の前記遅延干渉計における前記第1のアーム導波路の光路長と前記第2のアーム導波路の光路長との相違の1/2であり、
    各段の前記遅延干渉計の位相補正領域の位相変化量は、各段の前記光カプラによる位相変動を相殺する値であり、
    前記遅延干渉計の個数は15個であり、
    前記位相シフタの位相シフト量をδφCoupとしたとき、
    1段目の前記遅延干渉計の前記位相補正領域の位相変化量は「+δφPT」ラジアンであり、
    2段目の2個の前記遅延干渉計のうちの一方の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他方の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアン又は「+δφPT-0.5π」ラジアンであり、
    3段目の4個の前記遅延干渉計のうちの1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT-0.25π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.25π」ラジアンであり、
    3段目の4個の前記遅延干渉計のうちの1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT-0.25π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.25π」ラジアンであり、
    4段目の8個の前記遅延干渉計のうちの1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.5π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT-0.25π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.25π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.125π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.625π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT-0.125π」ラジアンであり、他の1個の遅延干渉計の位相補正領域の位相変化量は「+δφPT+0.375π」ラジアンであり、
    δφPTは「(-δφCoup×2)-{(0.5π-δφCoup)×2}」である
    ことを特徴とする波長合分波素子。
  4. 前記第1のアーム導波路の光路長は前記第2のアーム導波路の光路長よりも短く、
    前記遅延干渉計は、前記第1のアーム導波路と共にリング共振器を構成するループ導波路を有し、
    前記遅延干渉計の各々において、前記第1のアーム導波路の光路長と、前記第2のアーム導波路の光路長と、前記ループ導波路の周回長とが、前記光カプラに入出力される複数の光信号の波長及びチャネル間隔に応じて、当該遅延干渉計の透過スペクトル特性に対して、前記リング共振器の透過スペクトル特性が非共振条件を満たすことを特徴とする請求項1乃至のいずれか1項に記載の波長合分波素子。
  5. 請求項1乃至のいずれか1項に記載の1個の波長合分波素子と、
    互いに異なる波長で発振する2個の半導体レーザ素子と、
    個の前記半導体レーザ素子からの各波長の光を変調する2個の光変調器と、
    を有し、
    個の前記光変調器は、前記波長合分波素子のN段目の遅延干渉計の光カプラの開放端側の2個の入出力ポートに接続されることを特徴とする光送信装置。
  6. 互いに異なる波長を有する複数の光信号を含む波長多重光信号を伝搬する入力光導波路と、
    前記入力光導波路に一方の端部に接続されて偏光ビームスプリッタと、
    前記偏光ビームスプリッタの他端に接続されてTEモード光が入力される第1の光導波路及びTMモード光が入力される第2の光導波路と、
    前記第2の光導波路の途中に挿入された偏光ローテータと、
    請求項1乃至のいずれか1項に記載の2個の波長合分波素子と、
    前記2個の波長合分波素子のうちの一方の波長合分波素子のN段目の遅延干渉計の光カプラの開放端側の2個の入出力ポートに接続された2個の受光器と、
    2個の前記波長合分波素子のうちの他方の波長合分波素子のN段目の遅延干渉計の光カプラの開放端側の2個の入出力ポートに接続された2個の受光器と、
    を有し、
    前記波長合分波素子のうちの一方の波長合分波素子の1段目の遅延干渉計の光カプラの開放端側の一つの入出力ポートに前記第1の光導波路が接続されるとともに、
    前記波長合分波素子のうちの他方の波長合分波素子の1段目の遅延干渉計の光カプラの開放端側の一つの入出力ポートに前記第2の光導波路が接続されることを特徴とする光受信装置。
JP2019099669A 2019-05-28 2019-05-28 波長合分波素子、光送信装置及び光受信装置 Active JP7293868B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019099669A JP7293868B2 (ja) 2019-05-28 2019-05-28 波長合分波素子、光送信装置及び光受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019099669A JP7293868B2 (ja) 2019-05-28 2019-05-28 波長合分波素子、光送信装置及び光受信装置

Publications (2)

Publication Number Publication Date
JP2020194092A JP2020194092A (ja) 2020-12-03
JP7293868B2 true JP7293868B2 (ja) 2023-06-20

Family

ID=73546598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019099669A Active JP7293868B2 (ja) 2019-05-28 2019-05-28 波長合分波素子、光送信装置及び光受信装置

Country Status (1)

Country Link
JP (1) JP7293868B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048747A1 (ja) * 2022-08-31 2024-03-07 日本電信電話株式会社 平面光波回路型ラティスフィルタおよびそれを用いた光送信モジュール
WO2024057981A1 (ja) * 2022-09-16 2024-03-21 京セラ株式会社 光集積回路及び光レシーバ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120281234A1 (en) 2011-05-03 2012-11-08 Finisar Corporation Delay line interferometer multiplexer
JP2013186358A (ja) 2012-03-09 2013-09-19 Fujitsu Ltd 波長合分波素子およびそれを用いた光学装置
JP2016212173A (ja) 2015-05-01 2016-12-15 富士通株式会社 波長合分波素子、光受信器及び光送信器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735947A (ja) * 1993-06-25 1995-02-07 Mitsubishi Electric Corp 光波長フィルタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120281234A1 (en) 2011-05-03 2012-11-08 Finisar Corporation Delay line interferometer multiplexer
JP2013186358A (ja) 2012-03-09 2013-09-19 Fujitsu Ltd 波長合分波素子およびそれを用いた光学装置
JP2016212173A (ja) 2015-05-01 2016-12-15 富士通株式会社 波長合分波素子、光受信器及び光送信器

Also Published As

Publication number Publication date
JP2020194092A (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP5059601B2 (ja) Wdm送信ネットワーク用クーラーレス集積回路および浮動波長グリッドフォトニック集積回路(pic)
US9615152B2 (en) Optical element and light receiving device
US9020004B2 (en) External resonator-type semiconductor laser element and optical element
US20170163000A1 (en) Photonic Integrated Circuit Including Compact Lasers With Extended Tunability
JP5910186B2 (ja) 波長合分波素子およびそれを用いた光学装置
WO2002071118A1 (en) Dispersion-compensated optical wavelength router
US6907167B2 (en) Optical interleaving with enhanced spectral response and reduced polarization sensitivity
KR100416102B1 (ko) 어레이도파로 회절격자형 광합분파기
US20170163001A1 (en) Photonic Integrated Circuit Including Compact Lasers With Extended Tunability
JP7293868B2 (ja) 波長合分波素子、光送信装置及び光受信装置
JP2008058562A (ja) アレイ導波路格子型合分波器
US20170207603A1 (en) Laser arrays comprising compact lasers with extended tunability
US20170201070A1 (en) Compact lasers with extended tunability
US9547132B2 (en) Optical element, light transmitting device, and light receiving device
US20020126291A1 (en) Spectrum division multiplexing for high channel count optical networks
JP2014182259A (ja) 波長合分波器及び光集積回路装置
JP2003035830A (ja) 光波長合分波器
JP5713378B2 (ja) 導波路型光フィルター及び半導体レーザー
JP6509626B2 (ja) 波長合分波素子、光受信器及び光送信器
JP5821742B2 (ja) 波長合分波素子、多波長光源及び多波長光送信器
JP5966616B2 (ja) 波長合分波器及び光受信器
JP6134271B2 (ja) 光送受信システム
US11546063B1 (en) Laser light source and optical network system
JP6109002B2 (ja) 光導波素子
JPH10307224A (ja) 光マルチプレキサ

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7293868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150