JP7290102B2 - secondary battery - Google Patents

secondary battery Download PDF

Info

Publication number
JP7290102B2
JP7290102B2 JP2019205713A JP2019205713A JP7290102B2 JP 7290102 B2 JP7290102 B2 JP 7290102B2 JP 2019205713 A JP2019205713 A JP 2019205713A JP 2019205713 A JP2019205713 A JP 2019205713A JP 7290102 B2 JP7290102 B2 JP 7290102B2
Authority
JP
Japan
Prior art keywords
current collector
positive electrode
positive
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019205713A
Other languages
Japanese (ja)
Other versions
JP2021077597A (en
Inventor
慎吾 山根
文彦 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019205713A priority Critical patent/JP7290102B2/en
Publication of JP2021077597A publication Critical patent/JP2021077597A/en
Application granted granted Critical
Publication of JP7290102B2 publication Critical patent/JP7290102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、二次電池に関し、詳しくは、正負極を構成する電極体と対応する正負極いずれかの集電端子とが超音波溶接により接合された二次電池に関する。 TECHNICAL FIELD The present invention relates to a secondary battery, and more particularly to a secondary battery in which an electrode assembly constituting positive and negative electrodes and corresponding collector terminals of either the positive or negative electrodes are joined by ultrasonic welding.

リチウムイオン二次電池、ナトリウムイオン二次電池、ニッケル水素電池等の二次電池
は、近年、パソコンや携帯端末等のいわゆるポータブル電源用途のみならず、車両駆動用電源として好ましく用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、プラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)等の車両の駆動用高出力電源として好ましく、今後も需要が拡大するものと期待されている。
In recent years, secondary batteries such as lithium-ion secondary batteries, sodium-ion secondary batteries, and nickel-hydrogen batteries have been favorably used not only as so-called portable power sources for personal computers and mobile terminals, but also as power sources for driving vehicles. In particular, lithium-ion secondary batteries, which are lightweight and provide high energy density, are preferable as high-output power sources for driving vehicles such as electric vehicles (EV), plug-in hybrid vehicles (PHV), and hybrid vehicles (HV). Demand is expected to grow.

この種の二次電池の一形態としては、シート状の正極(以下、「正極シート」という。)および負極(以下、「負極シート」という。)が、セパレータとして機能する材料(以下、「セパレータ材」という。)を介在させつつ相互に複数重なり合った正負極積層構造を有する電極体(以下、「積層構造電極体」という。)を備えるものが挙げられる。
そして、かかる積層構造電極体では、所定の一の幅方向において、該電極体の本体部分(即ち、正負極において、対応する極の活物質層が積層された部分をいう。)の一方の端部に、正極集電体の正極活物質層非形成部分(即ち、正極集電体露出部分)が積層方向に複数重なり合うようにして正極集電体積層部が構成されており、同様に、該本体部分の上記幅方向における他方の端部に、負極集電体の負極活物質層非形成部分(即ち、負極集電体露出部分)が積層方向に複数重なり合うようにして負極集電体積層部が構成されている。さらに、当該正負極集電体積層部に、それぞれ、対応する極の集電端子の一部を配置し、該集電体積層部と該集電端子とを超音波溶接等の溶接手段により接合することで正負極の集電構造がそれぞれ形成されている。例えば、特許文献1~3には、この種の集電構造を備えた二次電池や蓄電装置、ならびに、それらの製造方法について記載されている。
In one form of this type of secondary battery, a sheet-like positive electrode (hereinafter referred to as "positive electrode sheet") and a negative electrode (hereinafter referred to as "negative electrode sheet") are made of a material that functions as a separator (hereinafter referred to as "separator (hereinafter referred to as "laminated structure electrode body") having a positive electrode and negative electrode laminated structure in which a plurality of positive and negative electrodes are stacked one on top of another while interposing a plurality of positive and negative electrodes (hereinafter referred to as "laminated structure electrode body").
In such a laminated structure electrode body, one end of the body portion of the electrode body (that is, the portion where the active material layers of the corresponding electrodes are laminated in the positive and negative electrodes) in one predetermined width direction In the part, a positive electrode current collector laminated portion is configured such that a plurality of portions of the positive electrode current collector in which the positive electrode active material layer is not formed (that is, portions where the positive electrode current collector is exposed) overlap in the stacking direction. At the other end in the width direction of the body portion, a negative electrode current collector laminated portion is formed so that a plurality of portions of the negative electrode current collector where the negative electrode active material layer is not formed (that is, portions where the negative electrode current collector is exposed) overlap in the stacking direction. is configured. Furthermore, a part of the current collector terminal of the corresponding pole is arranged on each of the positive and negative electrode current collector laminates, and the current collector laminate and the current collector terminal are joined by welding means such as ultrasonic welding. By doing so, current collection structures for the positive and negative electrodes are formed. For example, Patent Literatures 1 to 3 describe secondary batteries and power storage devices having this type of current collecting structure, and manufacturing methods thereof.

特開2014-212012号公報Japanese Patent Application Laid-Open No. 2014-212012 特開2014-203659号公報JP 2014-203659 A 特開2019-139954号公報JP 2019-139954 A

ところで、集電体積層部と集電端子との超音波溶接においては、集電体積層部における集電端子接合予定部位に、対応する極の集電端子を配置し、振動体である複数の凸部を有するホーンとそれに協働するアンビルとを備えた超音波溶接装置を用いて、該接合予定部位が該ホーン側となるように該接合予定部位と当該部位に配置された集電端子とを該ホーンと該アンビルで挟み込み、当該ホーンから当該アンビル方向に押し込み荷重をかけながら溶接を行う。また、かかる溶接に際しては、集電端子の上記幅方向における中心とホーンの該幅方向における中心とを合わせて溶接することが一般的であるとされる。 By the way, in the ultrasonic welding of the current collector laminate and the current collector terminals, the current collector terminals of the corresponding poles are arranged at the current collector terminal bonding planned sites in the current collector laminate, and a plurality of vibrating bodies are attached. Using an ultrasonic welding device equipped with a horn having a convex portion and an anvil cooperating with it, the planned joining portion is placed on the horn side, and the current collector terminal is arranged at the said portion. is sandwiched between the horn and the anvil, and welding is performed while applying a pressing load from the horn in the direction of the anvil. Further, in such welding, it is generally considered that the center of the current collector terminal in the width direction and the center of the horn in the width direction are aligned and welded.

しかしながら、例えば、二次電池の大容量化を想定して所定の体積の電池ケース内部空間に収容される電極体の本体部分の容積を目一杯増大させる場合、言い換えれば、集電箔積層部の遊びの部分が相対的に非常に小さくなる場合には、集電端子の上記幅方向の中心とホーンの該幅方向の中心とを合わせて溶接を行うと、該幅方向において該集電端子の電極体側の端部が障壁となることで積層された集電体のうち最外部にある集電体が不足し得るため、該ホーンの凸部の先端が該集電体を踏み外し、所望の溶接強度が得られなくなる虞があり、好ましくない。 However, for example, in the case of increasing the volume of the main body of the electrode body accommodated in the internal space of the battery case having a predetermined volume, assuming that the capacity of the secondary battery is increased, in other words, the current collector foil laminated portion When the play portion is relatively very small, if welding is performed by aligning the center of the current collector terminal in the width direction with the center of the horn in the width direction, the current collector terminal can be welded in the width direction. Since the end on the electrode body side becomes a barrier, the outermost current collector may be insufficient among the stacked current collectors, so the tip of the convex part of the horn misses the current collector, resulting in the desired welding. It is not preferable because there is a possibility that strength cannot be obtained.

本発明は、かかる事情に鑑みてなされたものであり、その目的は、所定の体積の電池ケース内部空間において電極体の本体部分を大きくすることで相対的に遊びの部分が小さくなった集電体積層部においても、超音波溶接により集電端子との接合が安定的に実現された二次電池を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a current collector in which play is relatively reduced by enlarging the main body of the electrode body in the internal space of the battery case of a predetermined volume. It is an object of the present invention to provide a secondary battery in which a stable connection with a current collector terminal is realized by ultrasonic welding even in a body lamination portion.

上記目的を実現するべく、本発明は、正極シートと負極シートとがセパレータ材を介在させつつ相互に複数重なり合った積層構造を有する電極体と、該電極体に接合された正負極それぞれに対応する集電端子とを備える二次電池を提供する。ここで開示される二次電池においては、上記電極体における所定の一の幅方向の両端部のうちの一方の端部が、上記正極活物質層の形成されていない正極集電体露出部分が負極からはみ出た状態で積層された正極集電体積層部から構成されており、且つ、該両端部のうちの他方の端部は、上記負極活物質層の形成されていない負極集電体露出部分が正極からはみ出た状態で積層された負極集電体積層部から構成されており、上記正負極それぞれの集電体積層部のうち少なくとも一方の極の集電体積層部は、超音波溶接により対応する極側の集電端子と接合されており、上記超音波溶接により形成された溶接痕は、上記幅方向において、該集電端子の中心から上記電極体側にずれた位置に形成され、上記幅方向の長さをL1とし、該幅方向における該集電端子の上記電極体側の端部から上記溶接痕までの長さをL2としたとき、L2/L1<0.16の範囲を満たすことを特徴とする。 In order to achieve the above object, the present invention provides an electrode body having a laminated structure in which a plurality of positive electrode sheets and negative electrode sheets are mutually stacked with a separator material interposed therebetween, and positive and negative electrodes joined to the electrode body. and a current collecting terminal. In the secondary battery disclosed herein, one of the predetermined widthwise end portions of the electrode body is the positive electrode current collector exposed portion where the positive electrode active material layer is not formed. It is composed of a positive electrode current collector laminated portion laminated in a state protruding from the negative electrode, and the other end portion of the both end portions is exposed to the negative electrode current collector where the negative electrode active material layer is not formed. At least one of the current collector laminates of each of the positive and negative electrode current collector laminates is formed by ultrasonic welding. is joined to the current collector terminal on the corresponding pole side by, and the weld mark formed by the ultrasonic welding is formed at a position shifted from the center of the current collector terminal toward the electrode body in the width direction, When the length in the width direction is L1 and the length from the end of the current collector terminal on the electrode body side in the width direction to the welding mark is L2, the range of L2/L1 < 0.16 is satisfied. It is characterized by

かかる構成の二次電池においては、集電体積層部における溶接痕が上記L2/L1<0.16の範囲に形成されるように、即ち、該溶接痕の上記幅方向における中心が集電端子の該幅方向における中心から電極体側にずれた位置に形成されるように、超音波溶接が施される。これにより、集電体積層部の遊びの部分が小さい場合においても、ホーンの凸部の先端が積層された集電体のうち最外部にある集電体を踏み外す可能性が低減され得るため、所望の溶接強度を得ることが可能になる。したがって、かかる二次電池においては、集電体積層部と集電端子との接合強度が十分に確保され得る。 In the secondary battery having such a configuration, the weld trace in the current collector laminated portion is formed in the range of L2/L1<0.16, that is, the center of the weld trace in the width direction is the current collector terminal. Ultrasonic welding is performed so that the electrode body is formed at a position shifted from the center in the width direction of the . As a result, even when the free play of the current collector lamination portion is small, the possibility that the tip of the convex portion of the horn misses the outermost current collector among the stacked current collectors can be reduced. It becomes possible to obtain the desired welding strength. Therefore, in such a secondary battery, sufficient bonding strength between the current collector laminate and the current collector terminal can be ensured.

一実施形態に係る二次電池の外形を模式的に示す斜視図である。1 is a perspective view schematically showing the outer shape of a secondary battery according to one embodiment; FIG. 図1におけるII-II線断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG. 1; 捲回電極体の構成を模式的に示す斜視図である。1 is a perspective view schematically showing the configuration of a wound electrode body; FIG. 本発明との比較例に相当する超音波溶接の態様を示す模式図である。FIG. 4 is a schematic diagram showing a mode of ultrasonic welding corresponding to a comparative example with the present invention; 図4に示す超音波溶接により形成される溶接痕を模式的に示す平面図である。FIG. 5 is a plan view schematically showing weld marks formed by the ultrasonic welding shown in FIG. 4; 一実施形態に係る超音波溶接の態様を示す模式図である。It is a mimetic diagram showing a mode of ultrasonic welding concerning one embodiment. 図6に示す超音波溶接により形成される溶接痕を模式的に示す平面図である。FIG. 7 is a plan view schematically showing weld marks formed by the ultrasonic welding shown in FIG. 6;

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。また、本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Preferred embodiments of the present invention are described below. Matters other than those specifically mentioned in this specification, which are necessary for carrying out the present invention, can be grasped as design matters by those skilled in the art based on the prior art in the relevant field. In addition, the present invention can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field.

本発明に係る二次電池は、正極シート、負極シートおよびセパレータ材から構成される電極体と、該電極体(典型的には、後述する集電体積層部)に接合される集電端子とを備える構成の二次電池に好適に適応され得る。このような二次電池としては、リチウムイオン二次電池、ニッケル水素電池等の蓄電池や、電気二重層キャパシタ等の蓄電池素子を包含する電池が挙げられる。 A secondary battery according to the present invention includes an electrode body composed of a positive electrode sheet, a negative electrode sheet, and a separator material, and a current collector terminal joined to the electrode body (typically, a current collector laminate portion described later). can be preferably applied to a secondary battery having a configuration including Examples of such secondary batteries include storage batteries such as lithium ion secondary batteries and nickel-hydrogen batteries, and batteries including storage battery elements such as electric double layer capacitors.

また、以下の実施形態においては、二次電池として捲回電極体を備えるリチウムイオン二次電池を例にして詳細に説明するが、本発明をかかる実施形態に限定することを意図したものではない。例えば、正極シートと負極シートとがセパレータ材を介在させつつ相互に複数重なり合った積層構造を有する積層構造電極体も好ましく適用される。また、正負極の電極活物質、電解質、電池ケース等の構成は特に限定されない。例えば、電池ケースは直方体状、扁平形状等の形状であり得、電解質の構成材料は、用途(典型的には車載等)により適切に変更することができる。
なお、以下の図面において、同じ作用を奏する部材または部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
In addition, in the following embodiments, a lithium ion secondary battery including a wound electrode body will be described in detail as an example of a secondary battery, but the present invention is not intended to be limited to such embodiments. . For example, a laminated structure electrode body having a laminated structure in which a plurality of positive electrode sheets and negative electrode sheets are mutually overlapped with a separator material interposed therebetween is also preferably applied. In addition, the configurations of the positive and negative electrode active materials, the electrolyte, the battery case, and the like are not particularly limited. For example, the battery case may have a rectangular parallelepiped shape, a flat shape, or the like, and the constituent material of the electrolyte can be appropriately changed depending on the application (typically, vehicle installation, etc.).
In the drawings below, members or portions having the same function are denoted by the same reference numerals, and redundant description may be omitted or simplified. Also, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relationships.

図1は、本実施形態に係る角型形状のリチウムイオン二次電池の外形を模式的に示す斜視図であり、図2は、図1中のII-II線断面図である。また、図3は、本実施形態に係る捲回電極体の構成を模式的に示す斜視図である。なお、これ以降に記載の「幅方向」とは、特に断りのない限り、捲回電極体の捲回軸方向Rを示すものとする。
図1および図2に示されるように、本実施形態に係るリチウムイオン二次電池100は、直方体形状の角型の電池ケース10と、該ケース10の開口部12を塞ぐ蓋体14とを備える。また、電池ケース10の内部には、上記開口部12より収容された扁平形状の捲回電極体20および電解質が配置されている。そして、上記蓋体14には、外部接続用の外部正極端子38と外部負極端子48とが設けられており、外部端子38、48の一部はケース内部で正極集電端子37または負極集電端子47にそれぞれ接続されている。
FIG. 1 is a perspective view schematically showing the outer shape of a prismatic lithium ion secondary battery according to the present embodiment, and FIG. 2 is a sectional view taken along the line II-II in FIG. FIG. 3 is a perspective view schematically showing the configuration of the wound electrode assembly according to this embodiment. It should be noted that the "width direction" described hereinafter indicates the winding axial direction R of the wound electrode assembly unless otherwise specified.
As shown in FIGS. 1 and 2, a lithium-ion secondary battery 100 according to the present embodiment includes a square battery case 10 in the shape of a rectangular parallelepiped, and a lid 14 that closes an opening 12 of the case 10. . Further, in the battery case 10, a flat-shaped wound electrode body 20 and an electrolyte, which are housed from the opening 12, are arranged. The lid 14 is provided with an external positive electrode terminal 38 and an external negative electrode terminal 48 for external connection. Some of the external terminals 38 and 48 are connected to a positive collector terminal 37 or a negative collector terminal inside the case. They are connected to terminals 47 respectively.

次に、図2および図3を参照しながら、本実施形態に係る捲回電極体20について説明する。図2に示されるように、捲回電極体20は、長尺状の正極集電体32の表面に正極活物質層34を有する正極シート30、長尺シート状のセパレータ材50、長尺状の負極集電体42の表面に負極活物質層44を有する負極シート40から構成される。そして、図3に示されるように、捲回軸方向Rの方向での断面視において、正極シート30及び負極シート40は2枚のセパレータ材50を介して積層されており、正極シート30、セパレータ材50、負極シート40、セパレータ材50の順に積層されている。かかる積層物は、軸芯(図示しない)の周囲に筒状に捲回され、得られた捲回電極体20を側面方向から押しつぶして拉げさせることによって扁平形状に成形されている。 Next, the wound electrode assembly 20 according to this embodiment will be described with reference to FIGS. 2 and 3. FIG. As shown in FIG. 2, the wound electrode assembly 20 includes a positive electrode sheet 30 having a positive electrode active material layer 34 on the surface of a long positive current collector 32, a long sheet separator material 50, a long A negative electrode sheet 40 having a negative electrode active material layer 44 on the surface of a negative electrode current collector 42 . As shown in FIG. 3 , in a cross-sectional view in the winding axial direction R, the positive electrode sheet 30 and the negative electrode sheet 40 are laminated with two separator materials 50 interposed therebetween. The material 50, the negative electrode sheet 40, and the separator material 50 are laminated in this order. Such a laminate is cylindrically wound around an axis (not shown), and the obtained wound electrode body 20 is flattened by being flattened by being flattened from the lateral direction.

図3に示されるように、本実施形態に係る捲回電極体20は、その捲回軸方向Rの中心部に、正極集電体32の表面上に形成された正極活物質層34と、負極集電体42の表面上に形成された負極活物質層44とが重なり合って密に積層された部分を有する。また、上記捲回軸方向Rの一方の端部においては、正極活物質層34が形成されずに正極集電体32が露出した部分(正極活物質層非形成部36)がセパレータ材50および負極シート40(あるいは、正極活物質層34と負極活物質44との密な積層部分)からはみ出た状態で積層されている。即ち、上記電極体20の端部には、正極活物質層非形成部36が積層することで形成される正極集電体積層部35が存在する。また、電極体20の他方の端部も同様に、負極活物質層非形成部46が積層することで形成される負極集電体積層部45が存在する。なお、ここで開示される技術が好適に適用され得る対象となる電極体としては、厚みが9~12mm、集電体露出部分を集める(束ねる)際に生じる電極体側の屈曲点から集電体の最端部までの幅方向の長さが10~12mmであるものが好ましい。
なお、本実施形態におけるセパレータ材50は、正極活物質層34および負極活物質層44の積層部分の幅よりも大きく、且つ、電極体20の幅よりも小さい幅を備えることを特徴としている。また、上記セパレータ材50は、正極集電体32と負極集電体42とが互いに接触して内部短絡が生じることがないように、正極活物質層34および負極活物質層44の積層部分に挟まれて配置されている。ただし、セパレータ材50の幅は特に限定されるものではなく、該電極体20と同じもしくはそれよりも大きくても良い。また、正極活物質層非形成部36および負極活物質層非形成部46からはみ出た状態でセパレータ材50が配置された構成でもよい。
As shown in FIG. 3, the wound electrode body 20 according to the present embodiment includes a positive electrode active material layer 34 formed on the surface of a positive electrode current collector 32 at the center in the winding axial direction R, It has a portion where the negative electrode active material layer 44 formed on the surface of the negative electrode current collector 42 overlaps and is densely laminated. At one end in the winding axial direction R, the portion where the positive electrode current collector 32 is exposed without the positive electrode active material layer 34 being formed (positive electrode active material layer non-formed portion 36) is the separator material 50 and It is laminated so as to protrude from the negative electrode sheet 40 (or the densely laminated portion of the positive electrode active material layer 34 and the negative electrode active material 44). That is, at the end of the electrode body 20, there is a cathode current collector laminated portion 35 formed by laminating the cathode active material layer non-formed portion 36 thereon. Similarly, at the other end of the electrode body 20 , there is a negative electrode current collector laminated portion 45 formed by laminating the negative electrode active material layer non-formed portion 46 . The electrode body to which the technology disclosed herein can be preferably applied has a thickness of 9 to 12 mm, and the current collector It is preferable that the length in the width direction to the extreme end of is 10 to 12 mm.
The separator material 50 according to the present embodiment is characterized by having a width that is larger than the width of the laminated portion of the positive electrode active material layer 34 and the negative electrode active material layer 44 and smaller than the width of the electrode assembly 20 . In addition, the separator material 50 is added to the laminated portion of the positive electrode active material layer 34 and the negative electrode active material layer 44 so that the positive electrode current collector 32 and the negative electrode current collector 42 do not contact each other and cause an internal short circuit. are placed in between. However, the width of the separator material 50 is not particularly limited, and may be the same as or larger than the electrode body 20 . Alternatively, the separator material 50 may be arranged so as to protrude from the positive electrode active material layer non-formed portion 36 and the negative electrode active material layer non-formed portion 46 .

かかる捲回電極体20を構成する材料及び部材自体は、従来のリチウムイオン二次電池に備えられる電極体と同様でよく、特に制限はない。
例えば、正極集電体32としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。具体的には、アルミニウム(Al)、アルミニウムを主成分とする合金、ニッケル(Ni)、チタン(Ti)等の金属からなる箔材(好ましくは、アルミニウム箔)が挙げられる。そして、本実施形態では、アルミニウム箔が用いられている。
また、正極活物質としては、従来のリチウムイオン二次電池に用いられる物質の一種又は二種以上を特に限定なく用いることができる。例えば、層状構造の酸化物系正極活物質や、スピネル構造の酸化物系正極活物質等が好ましく用いられる。具体的には、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物等のリチウム遷移金属複合酸化物が挙げられる。なお、一般式がLiMPO(MはCo、Ni、MnおよびFeのうちの少なくとも一種以上の元素;例えばLiFePO、LiMnPO)で表記されるオリビン型のリチウム含有リン酸化合物でもよい。
Materials and members themselves constituting the wound electrode body 20 may be the same as those of electrode bodies provided in conventional lithium-ion secondary batteries, and are not particularly limited.
For example, as the positive electrode current collector 32, a conductive member made of a highly conductive metal is preferably used. Specifically, foil materials (preferably aluminum foil) made of metals such as aluminum (Al), alloys containing aluminum as a main component, nickel (Ni), and titanium (Ti) can be used. And in this embodiment, an aluminum foil is used.
In addition, as the positive electrode active material, one or more materials used in conventional lithium ion secondary batteries can be used without particular limitation. For example, an oxide-based positive electrode active material having a layered structure, an oxide-based positive electrode active material having a spinel structure, or the like is preferably used. Specific examples include lithium transition metal composite oxides such as lithium nickel composite oxides, lithium cobalt composite oxides, and lithium manganese composite oxides. An olivine-type lithium-containing phosphate compound represented by a general formula of LiMPO 4 (M is at least one element selected from Co, Ni, Mn and Fe; for example, LiFePO 4 and LiMnPO 4 ) may also be used.

負極集電体42としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。具体的には、銅(Cu)等の金属からなる箔材(好ましくは、銅箔)が挙げられる。そして、本実施形態では、銅箔が用いられている。
また、負極活物質としては、従来のリチウムイオン二次電池に用いられる物質の一種又は二種以上を特に限定なく用いることができる。例えば、カーボン粒子が好ましく用いられる。さらに、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)、いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好ましく用いられ得る。
As the negative electrode current collector 42, a conductive member made of a highly conductive metal is preferably used. Specifically, a foil material (preferably copper foil) made of a metal such as copper (Cu) can be used. And copper foil is used in this embodiment.
As the negative electrode active material, one or more materials used in conventional lithium ion secondary batteries can be used without particular limitation. For example, carbon particles are preferably used. Furthermore, particulate carbon materials (carbon particles) at least partially containing a graphite structure (layered structure), so-called graphite materials (graphite), non-graphitizable carbon materials (hard carbon), and easily graphitizable carbon materials (soft carbon) or a carbon material having a structure in which these are combined can be preferably used.

正極シート30および負極シート40間に使用される長尺シート状のセパレータ材50としては、ポリプロピレン、ポリエチレン、ポリスチレン等の多孔質ポリオレフィン系樹脂を好ましく用いられる。なお、電解質として固体電解質もしくはゲル状電解質を使用する場合には、一般的に用いられている上記樹脂製のセパレータが不要な場合(即ち、この場合には電解質自体がセパレータとして働く)があり得る。 As the long sheet-shaped separator material 50 used between the positive electrode sheet 30 and the negative electrode sheet 40, a porous polyolefin resin such as polypropylene, polyethylene, polystyrene, etc. is preferably used. When a solid electrolyte or gel electrolyte is used as the electrolyte, the commonly used resin separator may not be necessary (that is, in this case, the electrolyte itself acts as a separator). .

正極集電端子37および負極集電端子47の材質は従来の電池で使用されるものと同じであればよく、接合対象となる集電体32、42の材質と同じものを適宜使用することができる。例えば、正極集電体32および正極集電端子37の材質としてアルミニウムが、また、負極集電体42および負極集電端子47の材質として銅が、それぞれ好ましく用いられる。 The material of the positive electrode current collector terminal 37 and the negative electrode current collector terminal 47 may be the same as those used in conventional batteries, and the same material as the current collectors 32 and 42 to be joined may be appropriately used. can. For example, aluminum is preferably used as the material for the positive electrode current collector 32 and the positive electrode current collector terminal 37, and copper is preferably used as the material for the negative electrode current collector 42 and the negative electrode current collector terminal 47, respectively.

次に、図2を参照しながら、本実施形態および本発明の比較例に相当する実施形態に係る捲回電極体20における正極シート30の端部の構成について説明する。図2に示されるように、上記捲回電極体20の正極シート30の端部は、正極集電体32における正極活物層質層非形成部36が積層することで形成された正極集電体積層部35が露出した状態を構成している。そして、該正極集電体積層部35の一部に正極集電端子37が超音波溶接により接合されており、捲回電極体20の正極シート30と電気的に接続されている。超音波溶接の方法については後述するが、超音波溶接は、超音波溶接装置の振動体であるホーンとそれに協働するアンビルとで接合する部材を挟み込み、該ホーンおよび該アンビルに設けられた凸部を高加圧で接合部材に押し当てながら該ホーンの振動を与えることにより接合し得る溶接方法である。 Next, with reference to FIG. 2, the configuration of the end portion of the positive electrode sheet 30 in the wound electrode assembly 20 according to the embodiment corresponding to the comparative example of the present embodiment and the present invention will be described. As shown in FIG. 2, the end portion of the positive electrode sheet 30 of the wound electrode body 20 is a positive electrode current collector formed by laminating the positive electrode active material layer non-formed portion 36 of the positive electrode current collector 32 . A state in which the body laminated portion 35 is exposed is configured. A positive current collector terminal 37 is joined to a part of the positive current collector laminated portion 35 by ultrasonic welding, and is electrically connected to the positive electrode sheet 30 of the wound electrode body 20 . The method of ultrasonic welding will be described later, but in ultrasonic welding, a member to be joined is sandwiched between a horn, which is a vibrating body of an ultrasonic welding device, and an anvil that cooperates with it, and a convex formed on the horn and the anvil. It is a welding method that can join by vibrating the horn while pressing the parts against the joining member with high pressure.

なお、捲回電極体20の負極側の接続構造は特に限定するものではないが、本実施形態および本発明の比較例に相当する実施形態に係る負極集電体42および負極集電端子47は、構成材料として銅が用いられているため、負極集電体積層部45と負極集電端子47との接合に際しては抵抗溶接が行われる。負極側に使用される銅は、アルミニウムの熱伝導率に比べて大きいため、抵抗溶接で接合することにより良好な接合状態が形成される。上記内容を踏まえ、これ以降に記載の本実施形態および本発明の比較例に相当する実施形態の説明においては、正極集電積層部と正極集電端子とを接合する場合について説明する。 Although the connection structure on the negative electrode side of the wound electrode body 20 is not particularly limited, the negative electrode current collector 42 and the negative electrode current collector terminal 47 according to the embodiment corresponding to the comparative example of the present embodiment and the present invention are Since copper is used as a constituent material, resistance welding is performed when joining the negative electrode current collector laminated portion 45 and the negative electrode current collector terminal 47 . Copper used on the negative electrode side has a higher thermal conductivity than aluminum, so a good joint state is formed by joining by resistance welding. Based on the above, in the description of the present embodiment and the embodiment corresponding to the comparative example of the present invention described below, the case where the positive electrode current collector laminated portion and the positive electrode current collector terminal are joined will be described.

続いて、本発明の比較例に相当する超音波溶接の様態について、図4および図5を参照しながら説明する。なお、ここでは、前述したとおり、正極集電積層部と正極集電端子とを接合する場合について説明する。
図4は、超音波溶接に際して正極集電体積層部64と正極集電端子62とを挟み込ませるようにして配置されるホーン60およびアンビル63を示す模式図である。図4に示されるように、超音波溶接により正極集電体積層部64と正極集電端子62とを接合する際には、正極集電体積層部64の接合予定部位に正極集電端子62を配置し、該接合予定部位が該ホーン60側になるように該接合予定部位および当該部位に配置された集電端子部分とを該ホーン60と該アンビル63とで挟み込むことにより、溶接を行う。なお、超音波溶接においては一般的に、図4に示されるように、集電端子62の幅方向における中心とホーン60の該幅方向における中心とを合わせた状態で溶接が行われる。そして、図5は、図4に示される超音波溶接に際して形成される正極集電体積層部64における溶接痕の位置を示す平面図である。正極集電端子72の幅方向の中心とホーン60の該幅方向の中心とを合わせた状態で溶接を行うため、幅方向において溶接痕70の中心Mと正極集電端子72の中心とが一致している。また、正極集電端子72の幅方向の長さをL1、該幅方向における該集電端子72の電極体側の端部から該溶接痕70までの長さをL2とすると、L2/L1=0.162(>0.16)となる。この場合、対応する図4に示されるように、積層された集電体のうち最外部にある集電体の幅方向の長さが、ホーンの凸部61のうち電極体側から最も離れた凸部の先端に対して大きく不足する。
Next, a mode of ultrasonic welding corresponding to a comparative example of the present invention will be described with reference to FIGS. 4 and 5. FIG. Here, as described above, the case of joining the positive current collector laminated portion and the positive current collector terminal will be described.
FIG. 4 is a schematic diagram showing the horn 60 and the anvil 63 which are arranged so as to sandwich the positive current collector laminated portion 64 and the positive current collector terminal 62 during ultrasonic welding. As shown in FIG. 4 , when the positive electrode current collector laminate portion 64 and the positive electrode current collector terminal 62 are joined by ultrasonic welding, the positive electrode current collector terminal 62 is attached to the joint planned portion of the positive electrode current collector laminate portion 64 . Welding is performed by sandwiching between the horn 60 and the anvil 63 the planned joint portion and the current collector terminal portion arranged at the joint portion so that the joint planned portion is on the horn 60 side. . In general, in ultrasonic welding, as shown in FIG. 4, welding is performed with the center of the current collector terminal 62 in the width direction and the center of the horn 60 in the width direction aligned. FIG. 5 is a plan view showing the positions of weld marks in the positive electrode current collector laminated portion 64 formed during the ultrasonic welding shown in FIG. Since welding is performed in a state in which the widthwise center of the positive current collector terminal 72 and the widthwise center of the horn 60 are aligned, the center M of the weld mark 70 and the center of the positive current collector terminal 72 are aligned in the widthwise direction. I am doing it. Further, if the length in the width direction of the positive electrode current collector terminal 72 is L1, and the length from the end of the current collector terminal 72 on the electrode body side in the width direction to the weld mark 70 is L2, then L2/L1=0. .162 (>0.16). In this case, as shown in corresponding FIG. 4, the length in the width direction of the outermost current collector among the stacked current collectors is equal to the length of the convex portion 61 of the horn that is farthest from the electrode body side. It is greatly insufficient for the tip of the part.

次に、本実施形態に係る超音波溶接の様態について、図6および図7を参照しながら説明する。なお、ここでは、前述したとおり、正極集電積層部と正極集電端子とを接合する場合について説明する。
図6は、超音波溶接に際して正極集電体積層部84と正極集電端子82とを挟み込ませるようにして配置されるホーン80およびアンビル83を示す模式図である。図6に示されるように、超音波溶接により正極集電体積層部84と正極集電端子82とを接合する際には、正極集電体積層部84の接合予定部位に正極集電端子82を配置し、該接合予定部位が該ホーン80側になるように該接合予定部位および当該部位に配置された集電端子部分とを該ホーン80と該アンビル83とで挟み込むことにより、溶接を行う。なお、本実施形態においては、図6に示されるように、幅方向においてホーン80の中心を集電端子82の中心から電極体側にずらした位置に合わせた状態で溶接が行われる。ここで、ホーン80の中心の位置を上記のとおりに調整する方法としては、集電端子82の幅方向の長さを小さくする、あるいは、集電端子82を幅方向において電極体側とは反対の方向に移動させる等が思料される。また、図7は、図6に示される超音波溶接に際して形成される正極集電体積層部84における溶接痕の位置を示す平面図である。この場合、幅方向においてホーンの中心を集電端子の中心から電極体側にずらした位置に合わせた状態で溶接を行うため、溶接痕90の中心Mが幅方向において電極体側にずれた位置に存在する。また、正極集電端子92の幅方向の長さをL1、該幅方向における該集電端子92の電極体側の端部から該溶接痕90までの長さをL2とすると、L2/L1=0.092(<0.16)となる。この場合、対応する図6に示されるように積層された集電体のうち最外部にある集電体の幅方向の長さは、ホーンの凸部81のうち電極体側から最も離れた凸部の先端に対してほぼ一致する。即ち、本実施形態においては、図4に示される従来の超音波溶接と比較して、ホーンの凸部の先端に対する積層された集電体のうち最外部にある集電体の幅方向の長さの不足具合が大幅に緩和される。
Next, a mode of ultrasonic welding according to this embodiment will be described with reference to FIGS. 6 and 7. FIG. Here, as described above, the case of joining the positive current collector laminated portion and the positive current collector terminal will be described.
FIG. 6 is a schematic diagram showing the horn 80 and the anvil 83 which are arranged so as to sandwich the positive current collector laminated portion 84 and the positive current collector terminal 82 during ultrasonic welding. As shown in FIG. 6 , when the positive electrode current collector laminate portion 84 and the positive electrode current collector terminal 82 are joined by ultrasonic welding, the positive electrode current collector terminal 82 is attached to the joint planned portion of the positive electrode current collector laminate portion 84 . Welding is performed by sandwiching between the horn 80 and the anvil 83 the planned joining portion and the current collector terminal portion arranged at the corresponding portion so that the planned joining portion is on the horn 80 side. . In the present embodiment, as shown in FIG. 6, welding is performed with the center of the horn 80 shifted from the center of the collector terminal 82 toward the electrode body in the width direction. Here, as a method for adjusting the position of the center of the horn 80 as described above, the length of the current collector terminal 82 in the width direction may be reduced, or the current collector terminal 82 may be moved in the direction opposite to the electrode body side in the width direction. It is conceivable to move in the direction. FIG. 7 is a plan view showing the positions of weld marks in the positive electrode current collector laminated portion 84 formed during the ultrasonic welding shown in FIG. In this case, since welding is performed with the center of the horn shifted from the center of the current collector terminal toward the electrode body in the width direction, the center M of the weld mark 90 exists at a position shifted toward the electrode body in the width direction. do. Further, if the length of the positive electrode current collector terminal 92 in the width direction is L1, and the length from the end of the current collector terminal 92 on the electrode body side in the width direction to the weld mark 90 is L2, then L2/L1=0. 0.092 (<0.16). In this case, as shown in corresponding FIG. almost coincides with the tip of That is, in this embodiment, compared with the conventional ultrasonic welding shown in FIG. The lack of strength is greatly alleviated.

したがって、上記内容を踏まえると、L2/L1の値を調整する(本発明では、L2/L1<0.16の範囲を満たすように調整する)ことにより、ホーンの凸部の先端に対する積層された集電体のうち最外部にある集電体の幅方向の長さの不足具合を緩和し得る。これにより、正極集電体積層部の遊びの部分が小さい場合においても、ホーン凸部の先端が集電体を踏み外すことで所望の溶接強度が得られなくなる可能性が低減され得るため、集電体積層部と集電端子との接合強度が十分に確保された二次電池を安定的に得ることができる。 Therefore, based on the above content, by adjusting the value of L2/L1 (in the present invention, adjusting so as to satisfy the range of L2/L1 < 0.16), the laminated It is possible to alleviate the shortage of the widthwise length of the outermost current collector among the current collectors. As a result, even when the play of the positive electrode current collector laminated portion is small, the possibility that the tip of the horn projection misses the current collector and the desired welding strength cannot be obtained can be reduced. Thus, it is possible to stably obtain a secondary battery in which sufficient bonding strength is ensured between the body laminate portion and the current collector terminal.

なお、ここで開示される二次電池においては、所定の体積の電池ケース内部空間において電極体の本体部分を大きくすることで集電体積層部の大きさが相対的に小さくなる場合においても、超音波溶接により該種電体積層部と集電端子との接合が安定的に実現され得る。したがって、車両の駆動用高出力電源として使用される高容量な二次電池を好適に得ることができる。 In the secondary battery disclosed herein, even when the size of the current collector laminate is relatively reduced by increasing the body portion of the electrode body in the internal space of the battery case with a predetermined volume, By ultrasonic welding, the seed current laminate and the collector terminal can be stably joined. Therefore, it is possible to suitably obtain a high-capacity secondary battery that is used as a high-output power source for driving a vehicle.

10 電池ケース
12 開口部
14 蓋体
20 捲回電極体
30 正極シート
32 正極集電体
34 正極活物質層
35, 64, 84 正極集電体積層部
36 正極活物質層非形成部
37, 62, 72, 82, 92 正極集電端子
38 外部正極集電端子
40 負極シート
42 負極集電体
44 負極活物質層
45 負極集電体積層部
46 負極活物質層非形成部
47 負極集電端子
48 外部負極集電端子
50 セパレータ材
60, 80 ホーン
61, 81 ホーンの凸部
63, 83 アンビル
70, 90 溶接痕
100 リチウムイオン二次電池
R 捲回軸方向
10 Battery case 12 Opening 14 Lid 20 Wound electrode body 30 Positive electrode sheet 32 Positive electrode current collector 34 Positive electrode active material layer 35, 64, 84 Positive electrode current collector laminated portion 36 Positive electrode active material layer non-forming portion 37, 62, 72, 82, 92 positive current collector terminal 38 external positive current collector terminal 40 negative electrode sheet 42 negative current collector 44 negative electrode active material layer 45 negative current collector laminated portion 46 negative electrode active material layer non-formed portion 47 negative electrode current collector terminal 48 outside Negative collector terminal 50 Separator materials 60, 80 Horns 61, 81 Horn protrusions 63, 83 Anvils 70, 90 Weld marks 100 Lithium ion secondary battery R Winding axial direction

Claims (1)

シート状の正極集電体の表面に正極活物質層が形成された正極と、シート状の負極集電体の表面に負極活物質層が形成された負極とが、セパレータとして機能する材料を介在させつつ相互に複数重なり合った積層構造を有する電極体と、
該電極体に接合された正負極それぞれに対応する集電端子と
を備える二次電池であって、
前記電極体における所定の一の幅方向の両端部のうちの一方の端部は、前記正極活物質層の形成されていない正極集電体露出部分が負極からはみ出た状態で積層された正極集電体積層部を構成しており、且つ、該両端部のうちの他方の端部は前記負極活物質層の形成されていない負極集電体露出部分が正極からはみ出た状態で積層された負極集電体積層部を構成しており、
前記正負極それぞれの集電体積層部のうち少なくとも一方の極の集電体積層部は、超音波溶接により対応する極側の前記集電端子と接合されており、
前記超音波溶接により形成された溶接痕は、前記幅方向において、該集電端子の中心から前記電極体側にずれた位置に形成され、かつ、
前記溶接痕は、前記一方の極の集電体積層部の、前記幅方向における前記一方の極の活物質層側の端部から他の端部に至るまでの間に存在しており、
前記集電端子の前記幅方向の長さをL1とし、該幅方向における該集電端子の前記電極体側の端部から前記溶接痕までの長さをL2としたとき、L2/L1<0.16の範囲を満たすことを特徴とする二次電池。
A positive electrode in which a positive electrode active material layer is formed on the surface of a sheet-like positive electrode current collector and a negative electrode in which a negative electrode active material layer is formed on the surface of a sheet-like negative electrode current collector are interposed with a material functioning as a separator. an electrode body having a laminated structure in which a plurality of layers overlap each other;
A secondary battery comprising collector terminals respectively corresponding to the positive and negative electrodes joined to the electrode body,
At one end of the widthwise end portions of the electrode body, the positive electrode collector is laminated in such a manner that the exposed portion of the positive electrode current collector where the positive electrode active material layer is not formed protrudes from the negative electrode. A negative electrode that constitutes a current laminate portion, and that the negative electrode current collector exposed portion where the negative electrode active material layer is not formed protrudes from the positive electrode at the other end of the both ends. It constitutes the current collector laminate,
At least one of the current collector laminates of the positive and negative electrodes is joined to the current collector terminal of the corresponding pole by ultrasonic welding,
The weld mark formed by the ultrasonic welding is formed at a position shifted from the center of the current collector terminal toward the electrode body in the width direction , and
The weld marks are present in the width direction of the current collector laminated portion of the one pole from the end on the active material layer side of the one pole to the other end,
When the length of the current collector terminal in the width direction is L1, and the length from the end of the current collector terminal on the electrode body side in the width direction to the weld mark is L2, then L2/L1<0. A secondary battery characterized by satisfying the range of 16.
JP2019205713A 2019-11-13 2019-11-13 secondary battery Active JP7290102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019205713A JP7290102B2 (en) 2019-11-13 2019-11-13 secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019205713A JP7290102B2 (en) 2019-11-13 2019-11-13 secondary battery

Publications (2)

Publication Number Publication Date
JP2021077597A JP2021077597A (en) 2021-05-20
JP7290102B2 true JP7290102B2 (en) 2023-06-13

Family

ID=75898128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019205713A Active JP7290102B2 (en) 2019-11-13 2019-11-13 secondary battery

Country Status (1)

Country Link
JP (1) JP7290102B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071109A (en) 2009-08-27 2011-04-07 Toshiba Corp Battery
JP2012069268A (en) 2010-09-21 2012-04-05 Toshiba Corp Battery and ultrasonic bonding method for battery
JP2012178235A (en) 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Secondary battery
JP2017191705A (en) 2016-04-13 2017-10-19 トヨタ自動車株式会社 Method of manufacturing secondary battery
JP2019139954A (en) 2018-02-09 2019-08-22 トヨタ自動車株式会社 Method for manufacturing power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071109A (en) 2009-08-27 2011-04-07 Toshiba Corp Battery
JP2012069268A (en) 2010-09-21 2012-04-05 Toshiba Corp Battery and ultrasonic bonding method for battery
JP2012178235A (en) 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Secondary battery
JP2017191705A (en) 2016-04-13 2017-10-19 トヨタ自動車株式会社 Method of manufacturing secondary battery
JP2019139954A (en) 2018-02-09 2019-08-22 トヨタ自動車株式会社 Method for manufacturing power storage device

Also Published As

Publication number Publication date
JP2021077597A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
KR101859227B1 (en) Square type sealed secondary battery and method of manufacturing square type sealed secondary battery
JP6582500B2 (en) Electricity storage element
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP5699909B2 (en) Secondary battery electrode body, secondary battery and vehicle
JP2011049065A (en) Nonaqueous electrolyte battery and method of manufacturing the same
WO2011002064A1 (en) Laminated battery
JP6757499B2 (en) Rechargeable battery
JP2008004274A (en) Storage element
JP6975387B2 (en) Manufacturing method of power storage device
US20110076544A1 (en) Stack type battery
JP2010033922A (en) Layered secondary battery
JP4976174B2 (en) Sealed secondary battery
JP7236036B2 (en) secondary battery
KR101487092B1 (en) Pouch for secondary battery and secondary battery using the same
JP6460414B2 (en) battery
CN108140795B (en) Electric storage element and method for manufacturing electric storage element
JP5158435B2 (en) Battery and manufacturing method thereof
JP7290102B2 (en) secondary battery
JP5664068B2 (en) Multilayer battery and method of manufacturing multilayer battery
JP2019160544A (en) Power storage element
JP7194334B2 (en) Laminated secondary battery and assembled battery comprising said secondary battery
CN111293268B (en) Battery with a battery cell
JP6731182B2 (en) Electric storage element and method for manufacturing electric storage element
JP2007207677A (en) Process of manufacturing electrodes for square batteries, and electrodes for square batteries
US20210296686A1 (en) Laminated solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230515

R151 Written notification of patent or utility model registration

Ref document number: 7290102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151