JP4976174B2 - Sealed secondary battery - Google Patents

Sealed secondary battery Download PDF

Info

Publication number
JP4976174B2
JP4976174B2 JP2007078559A JP2007078559A JP4976174B2 JP 4976174 B2 JP4976174 B2 JP 4976174B2 JP 2007078559 A JP2007078559 A JP 2007078559A JP 2007078559 A JP2007078559 A JP 2007078559A JP 4976174 B2 JP4976174 B2 JP 4976174B2
Authority
JP
Japan
Prior art keywords
lead
pair
electrode
secondary battery
sealed secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007078559A
Other languages
Japanese (ja)
Other versions
JP2008243411A (en
JP2008243411A5 (en
Inventor
幹男 小熊
竹規 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2007078559A priority Critical patent/JP4976174B2/en
Publication of JP2008243411A publication Critical patent/JP2008243411A/en
Publication of JP2008243411A5 publication Critical patent/JP2008243411A5/ja
Application granted granted Critical
Publication of JP4976174B2 publication Critical patent/JP4976174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は密閉型二次電池に係り、特に、ラミネートフィルム製の電池容器内に電極群を密閉した密閉型二次電池に関する。   The present invention relates to a sealed secondary battery, and more particularly to a sealed secondary battery in which an electrode group is sealed in a battery container made of a laminate film.

従来、電気自動車などの電源として用いられる大電流充放電用途の二次電池には、いわゆる円筒密閉形のセルを多数個(例えば、40〜100個)直列に接続した電池モジュールが用いられていた。この円筒形容器は、コスト低減のため、鉄系材料を用いるのが一般的であるが、鉄は比重が大きいため、電池の重量効率を上げる上で大きな制約となっていた。   Conventionally, a secondary battery used as a power source for an electric vehicle or the like has a battery module in which a large number of so-called cylindrical sealed cells (for example, 40 to 100) are connected in series. . This cylindrical container generally uses an iron-based material for cost reduction, but iron has a large specific gravity, which has been a major limitation in increasing the weight efficiency of the battery.

この問題を解決するため、古くからアルミニウム箔などをガスバリア層として内層に組込んだ、ラミネートフィルムを電池容器として用いた密閉型二次電池(ラミネートセル)が提案されている(例えば、特許文献1参照)。このようなラミネートセルでは、短冊状に切断した正極と負極のうち、いずれか一方を袋状に加工したセパレータに封入した後、交互に積層して電極群としたものが多い。   In order to solve this problem, a sealed secondary battery (laminate cell) in which an aluminum foil or the like is incorporated in the inner layer as a gas barrier layer and a laminate film as a battery container has been proposed (for example, Patent Document 1). reference). In many such laminate cells, one of a positive electrode and a negative electrode cut into strips is enclosed in a separator processed into a bag shape, and then stacked alternately to form an electrode group.

特開昭60−230354号公報JP-A-60-230354

しかしながら、例えば、電気自動車用などの大容量のラミネートセルを積層構造で製造すると、電極の積層枚数が多くなるため、積層作業に時間を要し、生産性の向上が阻害される。一方、円筒密閉形電池に一般的に用いられる捲回式の電極群とすれば生産性は向上するが、電極群から外部へ大電流を取出す導出部の構造設計が困難なため、これまで大容量のラミネートセルに採用された例は見当たらない。また、二次電池を多数個接続した電池モジュールの場合には、個々の二次電池に入出力特性に優れた(内部抵抗の小さい)電池が要求される。   However, for example, when a large-capacity laminate cell for an electric vehicle or the like is manufactured in a laminated structure, the number of laminated electrodes increases, so that the lamination operation takes time, and improvement in productivity is hindered. On the other hand, the productivity of a wound electrode group generally used for cylindrical sealed batteries is improved, but the structural design of the lead-out part that extracts a large current from the electrode group to the outside is difficult, so that No examples have been found for capacity laminate cells. Further, in the case of a battery module in which a large number of secondary batteries are connected, a battery having excellent input / output characteristics (low internal resistance) is required for each secondary battery.

本発明は上記事案に鑑み、生産性および入出力特性に優れた密閉型二次電池を提供することを課題とする。   An object of the present invention is to provide a sealed secondary battery that is excellent in productivity and input / output characteristics.

上記課題を解決するために、本発明は、ラミネートフィルム製の電池容器内に電極群を密閉した密閉型二次電池において、前記電極群は少なくとも一方の電極の端部に一定幅の無地部が設けられ対極とともに扁平状に巻き取られたものであり、前記無地部の2つの半周部の内平面に、薄板状の第1および第2の導出体からなる一対の導出体が接合されており、前記一対の導出体のうち少なくとも一方の端部を前記ラミネートフィルムの溶着部から外部へ取り出して電池端子としたことを特徴とする。 In order to solve the above-described problems, the present invention provides a sealed secondary battery in which an electrode group is sealed in a battery container made of a laminate film, and the electrode group has a plain portion having a certain width at an end of at least one electrode. together provided the counter electrode has been wound into a flat shape, on the inner plane of the two half portions of the non-coating portion, a pair of lead body comprising a thin plate first and second derivation of the is joined The battery terminal is characterized in that at least one end portion of the pair of lead-out members is taken out from the welded portion of the laminate film to the outside.

本発明の密閉型二次電池では、電極群が、少なくとも一方の電極の端部に一定幅の無地部が設けられ対極とともに扁平状に巻き取られている。これにより、無地部も扁平状に巻き取られ、無地部は2つの半周部に対応して2つの内平面が形成される。無地部の2つの半周部の内平面には、薄板状の第1および第2の導出体からなる一対の導出体が接合されており、これら一対の導出体のうち少なくとも一方の端部がラミネートフィルムの溶着部から外部へ取り出されて電池端子とされる。一対の導出体には、電極の集電体と同材質のものを用いてもよい。また、例えば、正極側の一対の導出体としてアルミニウム合金を用い、負極の導出体として銅、ニッケルおよびニッケル/銅/ニッケルの3層からなるクラッド材のいずれかを用いるようにしてもよい。 In the sealed secondary battery of the present invention, the electrode group is provided with a plain portion having a constant width at the end of at least one of the electrodes, and is wound in a flat shape together with the counter electrode. As a result, the plain portion is also wound up in a flat shape, and the plain portion is formed with two inner planes corresponding to the two half-circumferential portions. A pair of lead-out bodies composed of a thin plate-like first and second lead-out bodies are joined to the inner plane of the two half-circumferential portions of the plain part, and at least one end portion of the pair of lead-out bodies is laminated. The film is taken out from the welded portion of the film and used as a battery terminal. The pair of lead members may be made of the same material as the current collector of the electrode. Further, for example, an aluminum alloy may be used as the pair of lead-out members on the positive electrode side, and any one of three layers of copper, nickel, and nickel / copper / nickel may be used as the lead-out member of the negative electrode.

このような構成とすることにより、多数の短冊形電極を積層した電池に比べて生産性が向上するとともに、電極に設けた無地部のほぼ全周に近い広い範囲から導出体で電気を取出すことができるので、内部抵抗が小さくなり、入出力特性(大電流充放電性能)にも優れた電池構造とすることができる。   With such a configuration, productivity is improved as compared with a battery in which a large number of strip electrodes are stacked, and electricity is taken out from a wide range near the entire circumference of the plain portion provided on the electrode. Therefore, the internal resistance is reduced, and a battery structure excellent in input / output characteristics (large current charge / discharge performance) can be obtained.

本発明によれば、無地部の2つの半周部の内平面に、薄板状の第1および第2の導出体からなる一対の導出体が接合されており、一対の導出体のうち少なくとも一方の端部をラミネートフィルムの溶着部から外部へ取り出して電池端子としたので、多数の短冊形電極を積層した電池に比べて生産性が向上するとともに、電極に設けた無地部のほぼ全周に近い広い範囲から導出体で電気を取出すことができるため、内部抵抗が小さくなり、入出力特性に優れた密閉型二次電池を得ることができる、という効果を得ることができる。   According to the present invention, the pair of lead-out bodies composed of the thin plate-like first and second lead-out bodies are joined to the inner plane of the two half-circumferential parts of the plain part, and at least one of the pair of lead-out bodies is joined. Since the end is taken out from the welded part of the laminate film to form a battery terminal, productivity is improved compared to a battery in which a large number of strip-shaped electrodes are laminated, and almost the entire circumference of the plain part provided on the electrode Since electricity can be taken out by a lead-out body from a wide range, the internal resistance is reduced, and an effect that a sealed secondary battery excellent in input / output characteristics can be obtained can be obtained.

以下、図面を参照して、本発明に係る密閉型二次電池(以下、ラミネートセルという。)の実施の形態について説明する。   Hereinafter, embodiments of a sealed secondary battery (hereinafter referred to as a laminate cell) according to the present invention will be described with reference to the drawings.

1.正極の作製
正極活物質として、リチウム遷移金属複酸化物と、導電材として炭素粉末と、結着剤としてポリフッ化ビニリデンとを、溶媒のN−メチル−2−ピロリドンに分散させて混合してスラリを作製した。このスラリを芯材となる厚みが20μmのアルミニウム合金箔(正極集電体)の両面に塗工、乾燥後、プレスして一体化した。その後、塗工部を幅86mm、無地部を幅17mmに切断してフープ状の正極を作製した。
1. Production of Positive Electrode As a positive electrode active material, lithium transition metal double oxide, carbon powder as a conductive material, and polyvinylidene fluoride as a binder are dispersed in a solvent N-methyl-2-pyrrolidone and mixed to form a slurry. Was made. The slurry was coated on both sides of an aluminum alloy foil (positive electrode current collector) having a thickness of 20 μm as a core material, dried, and then pressed to be integrated. Thereafter, the coated part was cut to a width of 86 mm, and the plain part was cut to a width of 17 mm to produce a hoop-shaped positive electrode.

2.負極の作製
負極活物質として炭素粒子と、結着剤としてポリフッ化ビニリデンとを溶媒のN−メチル−2−ピロリドンに投入し混合してスラリを作製した。このスラリを芯材となる厚みが10μmの銅箔(負極集電体)の両面に塗工、乾燥後、プレスして一体化した。その後、塗工部を幅88mm、無地部を幅15mmに切断してフープ状の負極を作製した。
2. Production of Negative Electrode Carbon particles as a negative electrode active material and polyvinylidene fluoride as a binder were added to a solvent N-methyl-2-pyrrolidone and mixed to produce a slurry. This slurry was coated on both sides of a copper foil (negative electrode current collector) having a thickness of 10 μm as a core material, dried, and then pressed to be integrated. Thereafter, the coated portion was cut to a width of 88 mm, and the plain portion was cut to a width of 15 mm to produce a hoop-shaped negative electrode.

3.ラミネートセルの作製
図1に示すように、厚さが25μm、幅が91mmのポリエチレン多孔膜からなるフープ状セパレータ2a、2bと上述した正極1および負極3とを、正極・セパレータ・負極・セパレータの順に重ね、正極無地部1aと負極無地部3aは互いに逆方向となるように扁平状に巻き取り、捲回式電極群4を作製した。正極の長さは2100mm、負極の長さは2400mmとした。
3. Production of Laminate Cell As shown in FIG. 1, hoop-like separators 2 a and 2 b made of a polyethylene porous film having a thickness of 25 μm and a width of 91 mm and the above-described positive electrode 1 and negative electrode 3 are combined into a positive electrode, a separator, a negative electrode, and a separator. The positive electrode uncoated region 1a and the negative electrode uncoated region 3a were wound up in a flat shape so as to be in opposite directions, and a wound electrode group 4 was produced. The length of the positive electrode was 2100 mm, and the length of the negative electrode was 2400 mm.

電極群4を作製することにより、正極無地部1a、負極無地部3aも扁平状に巻き取られ、正極無地部1a、負極無地部3aは2つの半周部に対応して上下方向に2つの内平面が形成される。2つの内平面に、薄板状の第1および第2の導出体(導出部材)からなる一対の導出体を接合し、導出体の端部をラミネートフィルムの溶着部から外部へ取り出して電池端子とした。一対の導出体の双方の端部をラミネートフィルムの溶着部から外部へ取り出したものを実施例1、一対の導出体の一方の端部をラミネートフィルムの溶着部から外部へ取り出したものを実施例2のラミネートセルとし、以下、それぞれのラミネートセルについて詳述する。   By producing the electrode group 4, the positive electrode uncoated portion 1 a and the negative electrode uncoated portion 3 a are also wound up in a flat shape, and the positive electrode uncoated portion 1 a and the negative electrode uncoated portion 3 a A plane is formed. A pair of lead-out bodies composed of a thin plate-like first and second lead-out bodies (lead-out members) are joined to the two inner planes, and the ends of the lead-out bodies are taken out from the welded portion of the laminate film to the battery terminals. did. Example 1 in which both ends of a pair of lead-out bodies are taken out from the welded part of the laminate film, Example 1 in which one end part of the pair of lead-out bodies is taken out from the welded part of the laminate film in Example Hereinafter, each laminate cell will be described in detail.

(実施例1)
実施例1のラミネートセルでは、電極群4の正極無地部1aの半周部の下側内平面に、図2の左半分に示すように、厚さ0.3mmのアルミニウム合金薄板からなる第1の導出体5aを超音波により接合し、次いで上側内平面に同じく厚さ0.3mmのアルミニウム合金薄板からなる第1の導出体5aと同一寸法の第2の導出体5bを超音波により接合した。
Example 1
In the laminated cell of Example 1, as shown in the left half of FIG. 2, on the lower inner plane of the semicircular portion of the positive electrode uncoated portion 1a of the electrode group 4, a first aluminum alloy thin plate having a thickness of 0.3 mm is used. The lead-out body 5a was joined by ultrasonic waves, and then the second lead-out body 5b having the same dimensions as the first lead-out body 5a made of an aluminum alloy thin plate having a thickness of 0.3 mm was joined to the upper inner plane by ultrasonic waves.

一方、負極側の導出体に銅の薄板を用いれば単電池として用いる用途では何ら問題ないが、電気自動車などの用途においては多数個の電池を直列に接続して用いるので、接続の際に抵抗溶接が容易なニッケルが望ましい。しかし、ニッケルは比抵抗が銅の約4倍と大きく、電池の直流内部抵抗を増大させるので、本実施例ではニッケル/銅/ニッケルの3層からなる総厚0.3mmの薄板(クラッド材)を用いた。正極と同様に、一対の導出体を負極無地部3aの2つの半周部の内平面に接合し、負極集電部を形成した。   On the other hand, if a copper thin plate is used for the lead-out body on the negative electrode side, there is no problem in the use as a single battery. However, in applications such as electric vehicles, a large number of batteries are connected in series, so that resistance when connecting Nickel, which is easy to weld, is desirable. However, since nickel has a specific resistance approximately four times that of copper and increases the DC internal resistance of the battery, in this embodiment, a thin plate (cladding material) having a total thickness of 0.3 mm consisting of three layers of nickel / copper / nickel. Was used. Similarly to the positive electrode, the pair of lead-out bodies were joined to the inner plane of the two half-circumferential portions of the negative electrode uncoated portion 3a to form a negative electrode current collector.

このようにして作製した電極群4を図3の左半分に示すように、一対のラミネートフィルム9a、9bからなる電池容器に収容し、一部を残して外周を熱溶着した。正負それぞれ一対の導出体をラミネートフィルムの溶着部から外部に取出して電池端子とした。ラミネートセルの密閉状態を確保するために、溶着部にはシール材7を介在させた。最後に熱溶着せずに残してあった部分から注射器を用いて電解液を注入し、この部分を15kPaの真空中で熱溶着して密封した。実施例1のラミネートセルの厚さはおよそ5.4mm、容量は約3.2Ahである。   As shown in the left half of FIG. 3, the electrode group 4 thus produced was accommodated in a battery container composed of a pair of laminate films 9a and 9b, and the outer periphery was thermally welded, leaving a part. A pair of positive and negative lead-out members were taken out from the welded portion of the laminate film and used as battery terminals. In order to ensure the sealing state of the laminate cell, the sealing material 7 was interposed in the welded portion. Finally, an electrolytic solution was injected from a portion left without being thermally welded using a syringe, and this portion was thermally welded and sealed in a vacuum of 15 kPa. The thickness of the laminate cell of Example 1 is about 5.4 mm, and the capacity is about 3.2 Ah.

(実施例2)
実施例2のラミネートセルでは、図2の右半分に示すように、第1の導出体6aの寸法を、第2の導出体6bより短くし、それぞれ電極端部の無地部に超音波により接合した後、一対の導出体6a、6bを密着させて、第1の導出体6aの端部を第2の導出体6bの対向部に抵抗溶接によって接合し、電気的に一体の正極集電部を形成した。
(Example 2)
In the laminate cell of Example 2, as shown in the right half of FIG. 2, the dimension of the first lead-out body 6a is made shorter than that of the second lead-out body 6b, and each of the electrode ends is joined to the plain portion by ultrasonic waves. After that, the pair of lead-out bodies 6a and 6b are brought into close contact with each other, and the end portion of the first lead-out body 6a is joined to the opposing portion of the second lead-out body 6b by resistance welding, so Formed.

このようにして作製した電極群4を図3の右半分に示すように、一対のラミネートフィルム9a、9bからなる電池容器に収容し、一部を残して外周を熱溶着した。正負それぞれ一対の導出体のうち、寸法の長い第2の導出体6bのみをラミネートフィルムの溶着部から外部に取出して電池端子とした。以後は実施例1と同様に、熱溶着せずに残してあった部分から注射器を用いて電解液を注入し、この部分を15kPaの真空中で熱溶着して密封した。ラミネートセルの厚さと容量は実施例1と同一である。   As shown in the right half of FIG. 3, the electrode group 4 thus produced was accommodated in a battery container composed of a pair of laminate films 9a and 9b, and the outer periphery was thermally welded, leaving a part. Of the pair of positive and negative lead bodies, only the second lead body 6b having a long dimension was taken out from the welded portion of the laminate film to form a battery terminal. Thereafter, in the same manner as in Example 1, the electrolytic solution was injected from the portion left without being thermally welded using a syringe, and this portion was thermally welded in a vacuum of 15 kPa and sealed. The thickness and capacity of the laminate cell are the same as in Example 1.

(比較例)
比較のため、短冊状の電極を積層して電極群とする従来構造の積層電池を作製した。正極は幅100mm、負極は幅109mmとし、袋状に加工したセパレータに封入した正極21枚と、負極22枚を積層して、同じく容量約3.2Ahの電池とした。正極の導出体は0.3mmのアルミニウム合金薄板を1枚、負極の導出体はニッケル/銅/ニッケルの3層からなる総厚0.3mmの薄板を1枚用い、超音波溶接により集電体(電極端部の無地部)と接合した。
(Comparative example)
For comparison, a laminated battery having a conventional structure was formed by laminating strip-shaped electrodes to form an electrode group. The positive electrode had a width of 100 mm, the negative electrode had a width of 109 mm, and 21 positive electrodes sealed in a bag-shaped separator and 22 negative electrodes were laminated to form a battery having a capacity of about 3.2 Ah. The lead-out body of the positive electrode is one 0.3 mm aluminum alloy thin plate, and the lead-out body of the negative electrode is a thin plate with a total thickness of 0.3 mm consisting of three layers of nickel / copper / nickel, and a current collector by ultrasonic welding. It joined to (the plain part of an electrode edge part).

(評価)
上記3種類のラミネートセルについて比較すると下表1の通りであった。
(Evaluation)
A comparison of the three types of laminate cells is shown in Table 1 below.

Figure 0004976174
Figure 0004976174

表1に示すように、電極群4作製に要する時間は、実施例の構造ではいずれも従来例のおよそ1/2の時間であり、生産性が大幅に向上した。また、導出体を正・負極それぞれ一対ずつ使用したことにより、実施例のラミネートセルの直流内部抵抗は、従来の積層構造の電池より小さな値を示し、電気自動車などの大電流充放電に適した構造であることも確認された。   As shown in Table 1, the time required for the production of the electrode group 4 was about ½ of that of the conventional example in the structure of the example, and the productivity was greatly improved. In addition, by using a pair of lead-out bodies for each of positive and negative electrodes, the direct current internal resistance of the laminate cell of the example shows a smaller value than the battery of the conventional laminated structure, and is suitable for large current charge / discharge of an electric vehicle or the like. The structure was also confirmed.

一対の導出体のうち一方の端部を溶着部から外部へ取り出す態様(実施例2)では、導出体とラミネートフィルムの溶着部に貼付けるシール材7を少なくすることができるので、コスト低減が可能となり、比較的小さな電流で放電する純正電気自動車(PEV)用の電池においては十分な性能と経済効果が得られる。一方、大電流充放電が行われるハイブリッド電気自動車(HEV)用の電池においては、入出力特性を考慮し、内部抵抗がより小さい、一対の導出体の双方の端部を溶着部から外部へ取り出す態様(実施例1)を採用することが好ましいと考えられる。   In the aspect (Example 2) which takes out one edge part from a welding part outside among a pair of lead-out body, since the sealing material 7 stuck on the welding part of a lead-out body and a laminate film can be decreased, cost reduction is carried out. In a battery for a genuine electric vehicle (PEV) that discharges with a relatively small current, sufficient performance and economic effect can be obtained. On the other hand, in a battery for a hybrid electric vehicle (HEV) in which large current charging / discharging is performed, in consideration of input / output characteristics, both ends of a pair of lead-out bodies having lower internal resistance are taken out from the welded portion. It is considered preferable to adopt the embodiment (Example 1).

本発明は生産性および入出力特性に優れた密閉型二次電池を提供するものであるため、密閉型二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a sealed secondary battery having excellent productivity and input / output characteristics, it contributes to the manufacture and sale of sealed secondary batteries, and thus has industrial applicability.

本発明が適用可能な実施形態のラミネートセルの電極群の斜視図であり、一定幅の無地部を持つ電極を、セパレータとともに無地部が互いに逆になるように巻取った捲回式の電極群に、負極導出体を1枚接合した状態を示す。FIG. 3 is a perspective view of an electrode group of a laminate cell according to an embodiment to which the present invention is applicable, and is a wound electrode group obtained by winding an electrode having a plain part with a constant width together with a separator so that the plain part is opposite to each other Shows a state in which one negative electrode lead is joined. 左半分は実施例1、右半分は実施例2の密閉型二次電池の、一対の導出体を接合した状態を示す電極群の断面図である。The left half is a cross-sectional view of an electrode group showing a state in which a pair of lead-out bodies of the sealed secondary battery of Example 1 and the right half of Example 2 are joined. 図2に対応して、実施例1および実施例2の密閉型二次電池の電極群を、ラミネートフィルム製の電池容器に収容した状態を示す断面図であり、左半分は実施例1、右半分は実施例2の密閉型二次電池を示す。2 is a cross-sectional view showing a state in which the electrode group of the sealed secondary battery of Example 1 and Example 2 is housed in a battery container made of a laminate film, corresponding to FIG. Half shows the sealed secondary battery of Example 2.

符号の説明Explanation of symbols

1 正極
1a 正極無地部
3 負極
3a 負極無地部
4 電極群
5a、6a 第1の導出体
5b、6b 第2の導出体
9a、9b ラミネートフィルム
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode plain part 3 Negative electrode 3a Negative electrode plain part 4 Electrode group 5a, 6a 1st derivation | leading-out body 5b, 6b 2nd derivation | leading-out body 9a, 9b Laminated film

Claims (3)

ラミネートフィルム製の電池容器内に電極群を密閉した密閉型二次電池において、前記電極群は少なくとも一方の電極の端部に一定幅の無地部が設けられ対極とともに扁平状に巻き取られたものであり、前記無地部の2つの半周部の内平面に、薄板状の第1および第2の導出体からなる一対の導出体が接合されており、前記一対の導出体のうち少なくとも一方の端部を前記ラミネートフィルムの溶着部から外部へ取り出して電池端子としたことを特徴とする密閉型二次電池。   In a sealed secondary battery in which an electrode group is hermetically sealed in a battery container made of a laminate film, the electrode group is provided with a plain portion of a certain width at the end of at least one electrode and wound in a flat shape together with a counter electrode And a pair of lead-out bodies composed of thin plate-like first and second lead-out bodies are joined to the inner plane of the two half-circumferential parts of the plain part, and at least one end of the pair of lead-out bodies A sealed secondary battery characterized in that a battery terminal is taken out from the welded part of the laminate film to the outside. 前記一対の導出体は、電極の集電体と同材質であることを特徴とする請求項1に記載の密閉型二次電池。 The sealed secondary battery according to claim 1, wherein the pair of lead-out bodies are made of the same material as the current collector of the electrode. 正極側の前記一対の導出体としてアルミニウム合金を用い、負極側の前記一対の導出体として銅、ニッケルおよびニッケル/銅/ニッケルの3層からなるクラッド材のいずれかを用いたことを特徴とする請求項1に記載の密閉型二次電池。 The pair of lead-out members on the positive electrode side is made of an aluminum alloy, and the pair of lead-out members on the negative electrode side is made of any one of three layers of copper, nickel, and nickel / copper / nickel. The sealed secondary battery according to claim 1 .
JP2007078559A 2007-03-26 2007-03-26 Sealed secondary battery Active JP4976174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078559A JP4976174B2 (en) 2007-03-26 2007-03-26 Sealed secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078559A JP4976174B2 (en) 2007-03-26 2007-03-26 Sealed secondary battery

Publications (3)

Publication Number Publication Date
JP2008243411A JP2008243411A (en) 2008-10-09
JP2008243411A5 JP2008243411A5 (en) 2009-11-26
JP4976174B2 true JP4976174B2 (en) 2012-07-18

Family

ID=39914523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078559A Active JP4976174B2 (en) 2007-03-26 2007-03-26 Sealed secondary battery

Country Status (1)

Country Link
JP (1) JP4976174B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11015648B2 (en) 2016-08-05 2021-05-25 Robert Bosch Gmbh Adjusting sleeve for a bearing device, bearing device having an adjusting sleeve, and method for mounting an adjusting sleeve

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697275B2 (en) 2009-03-04 2014-04-15 Samsung Sdi Co., Ltd. Rechargeable battery having an extendable case region
KR101199205B1 (en) 2010-08-19 2012-11-07 삼성에스디아이 주식회사 Jelly-roll and electrode assembly having the same
KR101252969B1 (en) 2011-06-17 2013-04-15 삼성에스디아이 주식회사 Electrode assembly and secondary battery having the same
GB2493375A (en) 2011-08-03 2013-02-06 Leclancha S A Aqueous slurry for battery electrodes
JP5951404B2 (en) * 2012-08-09 2016-07-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2014099271A (en) * 2012-11-13 2014-05-29 Gs Yuasa Corp Battery
JP6213615B2 (en) * 2016-06-06 2017-10-18 三洋電機株式会社 Method for producing non-aqueous electrolyte secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3572404B2 (en) * 2002-03-04 2004-10-06 日産自動車株式会社 Battery pack
JP4386334B2 (en) * 2003-02-28 2009-12-16 富士重工業株式会社 Film power storage device
JP2007048668A (en) * 2005-08-11 2007-02-22 Nissan Motor Co Ltd Battery and battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11015648B2 (en) 2016-08-05 2021-05-25 Robert Bosch Gmbh Adjusting sleeve for a bearing device, bearing device having an adjusting sleeve, and method for mounting an adjusting sleeve

Also Published As

Publication number Publication date
JP2008243411A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5943243B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP5779828B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
KR101387025B1 (en) Secondary electric cell with enhanced contact resistance
JP4976174B2 (en) Sealed secondary battery
JP6024070B2 (en) Method for manufacturing electrode assembly and method for manufacturing battery cell
JP5541514B2 (en) Multilayer secondary battery
WO2013031891A1 (en) Non-aqueous electrolyte secondary battery
JP5992105B2 (en) Electrode assembly, battery and device including the same
KR20110041870A (en) Rechargeable battery, bipolar electrode, and fabricating method rechargeable battery
CN108123073B (en) Laminated battery for series connection and battery pack
KR20100013279A (en) Laminate secondary battery
KR101387137B1 (en) Electrode assembly and rechargeable battery with the same
JP2009016122A (en) Laminated secondary battery and battery pack
KR101487092B1 (en) Pouch for secondary battery and secondary battery using the same
JP6089832B2 (en) Electricity storage element
JP6155724B2 (en) Power storage device and method for manufacturing power storage device
JP5561798B2 (en) Multilayer secondary battery and battery pack
EP4102604B1 (en) Secondary battery
JP5134781B2 (en) Battery manufacturing method
JP6738565B2 (en) Electric storage element and method for manufacturing electric storage element
JP2006134697A (en) Lithium-ion rechargeable battery
JP2012033277A (en) Laminated type secondary battery
JP2020140831A (en) Power storage element and manufacturing method for power storage element
JP2016066535A (en) Power storage element and manufacturing method of power storage element
JP7193363B2 (en) Storage element, method for manufacturing storage element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120412

R150 Certificate of patent or registration of utility model

Ref document number: 4976174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250