JP7261386B2 - Water cooling cable deterioration detection method - Google Patents

Water cooling cable deterioration detection method Download PDF

Info

Publication number
JP7261386B2
JP7261386B2 JP2019007666A JP2019007666A JP7261386B2 JP 7261386 B2 JP7261386 B2 JP 7261386B2 JP 2019007666 A JP2019007666 A JP 2019007666A JP 2019007666 A JP2019007666 A JP 2019007666A JP 7261386 B2 JP7261386 B2 JP 7261386B2
Authority
JP
Japan
Prior art keywords
water
cooled
cable
cables
cooled cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019007666A
Other languages
Japanese (ja)
Other versions
JP2020118481A (en
Inventor
卓也 一條
雄紀 齋藤
友裕 千賀
祐太 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2019007666A priority Critical patent/JP7261386B2/en
Publication of JP2020118481A publication Critical patent/JP2020118481A/en
Application granted granted Critical
Publication of JP7261386B2 publication Critical patent/JP7261386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、高電圧且つ大電流を用いる装置と電源との間を電気的に接続する水冷ケーブルの劣化を検出する方法に関し、特に、装置から接続を外すことなく操業時にあっても劣化状態を検出可能な水冷ケーブルの劣化検出方法に関する。 TECHNICAL FIELD The present invention relates to a method for detecting deterioration of a water cooling cable that electrically connects a device using high voltage and high current to a power source, and more particularly to a method for detecting deterioration even during operation without disconnecting the device from the device. The present invention relates to a detectable degradation detection method for water-cooled cables.

大型電気炉や誘導溶解炉のように、高電圧且つ大電流を操業に必要とされる装置においては、通常の電源ケーブルでは径を太くする必要があるためケーブルの重量もかさみ、大きなケーブル収容スペースや、高い強度の支持材も必要となる。そこで、ケーブル内部に冷却機構を設けた冷却ケーブルが用いられる。典型的には、絶縁被覆を有する導線の内部に長手軸に沿って通水孔を設けつつ可撓性を保持した内部水冷ケーブルが使用される。また、内部水冷ケーブルを複数本並列に接続して大きな電流を分割して供給することで冷却効率を上げることも行われている。 In equipment that requires high voltage and large current to operate, such as large electric furnaces and induction melting furnaces, normal power cables need to be thicker in diameter, which increases the weight of the cables and requires a large cable storage space. Also, a strong support material is required. Therefore, a cooling cable having a cooling mechanism inside the cable is used. Typically, an internal water-cooled cable is used that maintains flexibility while providing water passage holes along the longitudinal axis inside conductors having an insulating coating. Also, cooling efficiency is increased by connecting a plurality of internal water-cooled cables in parallel to divide and supply a large current.

このような水冷ケーブルの劣化は装置の操業上で大きな問題を生じさせ得る。そのため、結線を取り外して検査が行われる。一方、検査の手間を考慮すると、結線状態のままで、劣化状態を検査又は一定程度の劣化の検出を行うことが望まれる。 Such deterioration of the water-cooled cable can cause serious problems in the operation of the equipment. Therefore, the wire connection is removed and the inspection is performed. On the other hand, considering the time and effort required for the inspection, it is desired to inspect the deterioration state or detect a certain degree of deterioration in the connected state.

例えば、特許文献1では、複数本ずつが並列に接続された水冷ケーブルにダミーの交流電流を供給し抵抗値を測定することで、装置に接続したまま水冷ケーブルの劣化を検出する方法を開示している。詳細には、水冷ケーブルを1次配線とするカレントトランスの2次巻線に交流電源を接続し、水冷ケーブルに流れる交流電流及びその両端間の交流電圧を個別に測定する。これから算出されるインピーダンスについて、交流電源の周波数を変化させることで得られるリアクタンスを除去して、水冷ケーブルの抵抗値を算出し、一定程度の劣化を検出するのである。 For example, Patent Document 1 discloses a method of detecting deterioration of a water-cooled cable while it is connected to a device by supplying a dummy alternating current to each water-cooled cable connected in parallel and measuring the resistance value. ing. Specifically, an AC power supply is connected to the secondary winding of a current transformer having a water-cooled cable as the primary wiring, and the AC current flowing through the water-cooled cable and the AC voltage across the cable are individually measured. For the impedance calculated from this, the reactance obtained by changing the frequency of the AC power supply is removed, the resistance value of the water-cooled cable is calculated, and a certain degree of deterioration is detected.

特許文献1に述べられているように、水冷ケーブルは複数本ずつが並列に接続されているため、1本の水冷ケーブルが劣化、断線しても装置への給電は停止しないが、他の水冷ケーブルに負担が生じる。そこで、水冷ケーブルの劣化を早期に検出すべく、操業中にあっても異常を検出する方法が要望される。かかる場合、検出のためのダミーの電流を水冷ケーブルに供給したりすることはできない。 As described in Patent Document 1, since a plurality of water-cooled cables are connected in parallel, even if one water-cooled cable is degraded or disconnected, the power supply to the device does not stop, but other water-cooled cables It puts strain on the cable. Therefore, in order to detect the deterioration of the water-cooled cable at an early stage, there is a demand for a method of detecting an abnormality even during operation. In such a case, a dummy current for detection cannot be supplied to the water-cooled cable.

特許文献2では、水冷ケーブルではないが、操業時の電線の周囲に生じる磁界の変化から断線を検出する方法を開示している。詳細には、磁界測定手段の磁界測定面を電線の断面中心側に向けて配置し、操業中に電線が断線した場合、電線周囲の磁界に変化が生じるから、これを磁界測定手段によって測定するとしている。 Patent Literature 2 discloses a method for detecting disconnection from a change in magnetic field generated around an electric wire during operation, although it is not a water-cooled cable. Specifically, the magnetic field measuring surface of the magnetic field measuring means is arranged to face the cross-sectional center of the electric wire, and if the electric wire is disconnected during operation, the magnetic field around the electric wire changes, so this is measured by the magnetic field measuring means. and

特開2015-59751号公報JP 2015-59751 A 特開2002-228700号公報Japanese Patent Application Laid-Open No. 2002-228700

水冷ケーブルにおいても操業時の電線の周囲に生じる磁界の変化を測定することができる。一方で、大型電気炉や誘導溶解炉のような装置では、操業時にあっては制御のため電流値を変化させることから、水冷ケーブルの断線については磁界の変化で検出できるものの、劣化状態までを検出することはできなかった。 Even in water-cooled cables, changes in the magnetic field generated around the wires during operation can be measured. On the other hand, in equipment such as large electric furnaces and induction melting furnaces, the current value is changed for control during operation. could not be detected.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、装置から接続を外すことなく操業時にあっても劣化状態を検出可能な水冷ケーブルの劣化検出方法を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the circumstances described above, and an object of the present invention is to provide a deterioration detection method for a water-cooled cable capable of detecting the deterioration state even during operation without disconnecting the cable from the apparatus. is to provide

本発明による方法は、炉体に電源を供給するための水冷ケーブルの劣化検出方法であって、前記電源から前記炉体へ向かう単数又は複数本の第1水冷ケーブルと、前記炉体から前記電源へ向かう単数又は複数本の第2水冷ケーブルと、を対にして電源回路が構成されており、前記炉体の操業時において、前記第1水冷ケーブル及び前記第2水冷ケーブルの外周にそれぞれ生じる磁界の強さの絶対値の差分を変成器にて連続的に測定することを特徴とする。 A method according to the present invention is a method for detecting deterioration of a water-cooled cable for supplying power to a furnace body, comprising a single or multiple first water-cooled cable extending from the power supply to the furnace body, and A power supply circuit is configured by pairing a single or multiple second water-cooled cables directed to a magnetic field generated on the outer circumference of the first water-cooled cable and the second water-cooled cable during operation of the furnace body. is characterized by continuously measuring the difference in the absolute value of the strength of the transformer.

かかる発明によれば、電源から炉体への電流値の変動に関係なく、操業時にあっても水冷ケーブルの劣化を検出できるから、より早期に且つ確実に該劣化の状態を検出可能となるのである。 According to this invention, deterioration of the water cooling cable can be detected even during operation regardless of fluctuations in the current value from the power source to the furnace body. be.

上記した発明において、可撓性を有するロゴスキーコイルからなる単一のセンサワイヤを前記第1水冷ケーブル及び前記第2水冷ケーブルのそれぞれの外周に巻回して前記差分を計測することを特徴としてもよい。かかる発明によれば、水冷ケーブルの収納されている空間が狭くとも、より早期に且つ確実にその劣化の状態を検出可能となるのである。 In the above-described invention, a single sensor wire made of a flexible Rogowski coil is wound around the outer circumferences of the first water-cooled cable and the second water-cooled cable to measure the difference. good. According to this invention, even if the space in which the water-cooled cable is housed is narrow, the state of deterioration can be detected more quickly and reliably.

上記した発明において、前記センサワイヤは、互いに逆向きの電流を流れるように略平行に並置された前記第1水冷ケーブル及び前記第2水冷ケーブルのそれぞれの外周に同数回ずつ巻回され、且つ、全て同一方向に巻回されていることを特徴としてもよい。かかる発明によれば、水冷ケーブルの収納されている空間が狭くとも、より早期に且つ確実にその劣化の状態を検出可能となるのである。 In the above-described invention, the sensor wire is wound the same number of times around the outer circumference of each of the first water-cooled cable and the second water-cooled cable, which are arranged substantially parallel so that currents flow in opposite directions, and It may be characterized in that they are all wound in the same direction. According to this invention, even if the space in which the water-cooled cable is housed is narrow, the state of deterioration can be detected more quickly and reliably.

上記した発明において、前記センサワイヤは、互いに逆向きの電流を流れるように略平行に並置されそれぞれ複数からなる前記第1水冷ケーブル及び前記第2水冷ケーブルのそれぞれの外周に同数回ずつ巻回され、且つ、前記第1水冷ケーブル及び前記第2水冷ケーブルについて左回り及び右回りに同数ずつ巻回されていることを特徴としてもよい。かかる発明によれば、第1及び第2水冷ケーブルがそれぞれ複数であっても少ないセンサワイヤで確実にその劣化の状態を検出することが可能となるのである。 In the above-described invention, the sensor wires are arranged substantially parallel to each other so that currents flow in opposite directions, and are wound around the outer periphery of each of the first water-cooled cables and the second water-cooled cables by the same number of turns. And, the first water-cooled cable and the second water-cooled cable may be wound counterclockwise and clockwise by the same number of turns. According to this invention, even if there are a plurality of first and second water cooling cables, it is possible to reliably detect the state of deterioration with a small number of sensor wires.

前記センサワイヤは、前記第1水冷ケーブル及び前記第2水冷ケーブルの間を蛇行させて配置されることを特徴としてもよい。かかる発明によれば、水冷ケーブルをより狭い空間に収納しつつ、確実にその劣化の状態を検出可能とし得る。 The sensor wire may be arranged to meander between the first water cooling cable and the second water cooling cable. According to this invention, it is possible to reliably detect the deterioration state of the water-cooled cable while housing the cable in a narrower space.

水冷ケーブルの劣化検出方法の実施例に用いる装置のブロック図である。1 is a block diagram of a device used in an embodiment of a water-cooled cable deterioration detection method; FIG. 水冷ケーブルにセンサワイヤを巻回させた1例を示す図である。It is a figure which shows one example which wound the sensor wire around the water-cooling cable. 水冷ケーブルにセンサワイヤを巻回させた他の例を示す図である。FIG. 10 is a diagram showing another example in which a sensor wire is wound around a water-cooled cable;

本発明による1つの実施例としての水冷ケーブルの劣化検出方法について、図1及び図2を用いて説明する。 A deterioration detection method for a water-cooled cable as one embodiment according to the present invention will be described with reference to FIGS. 1 and 2. FIG.

図1に示すように、本実施例による方法によって劣化を検出される水冷ケーブル1は、炉体2を加熱させる図示しないコイルに電源3から高電圧で大電流の交流を供給するものである。炉体2は、例えば誘導加熱炉の本体である。水冷ケーブル1は、大電流を内部の導体に通電させることによってかかる導体を発熱させるが、かかる発熱を抑制させるために内部に水冷機構を有する。水冷ケーブル1のその他の詳細な構造については公知であるので説明を省略する。 As shown in FIG. 1, the water-cooled cable 1 whose deterioration is detected by the method according to this embodiment supplies a high-voltage, high-current alternating current from a power supply 3 to a coil (not shown) that heats the furnace body 2 . The furnace body 2 is, for example, the main body of an induction heating furnace. The water-cooled cable 1 causes the conductor inside to generate heat by passing a large current through the conductor, and has a water-cooling mechanism inside to suppress the heat generation. Other details of the structure of the water-cooled cable 1 are well known, so description thereof will be omitted.

水冷ケーブル1は、出湯作業に伴う炉体2の傾動などの動作に追従できるよう可撓性を有し、たるむように配置されている。そのため、炉体2の動作に伴って水冷ケーブル2は変形を繰り返し、部分的な破損などの劣化を生じることがある。本実施例における劣化検出方法は、このような劣化を迅速に発見しようとするものである。 The water-cooling cable 1 is flexible and arranged so as to be slack so that it can follow movements such as tilting of the furnace body 2 accompanying the hot water pouring operation. Therefore, the water-cooled cable 2 is repeatedly deformed with the operation of the furnace body 2, and deterioration such as partial breakage may occur. The deterioration detection method in this embodiment is intended to find such deterioration quickly.

水冷ケーブル1は、電源3から炉体2へ向かう「行き」と炉体2から電源3へ向かう「帰り」とで対となって電源回路を構成しており、この対が複数配置される。交流を供給するため、「行き」と「帰り」とは、事実上の区別はないが、ある時刻での電流の向きを基準にするなどして、適宜、定められる。そして、行きと帰りとを略平行に並置することで互いに逆向きの電流が流れるようにされる。これらの水冷ケーブル1には、交流によって変化する電流に伴ってその周囲に発生させる磁界の強さを測定できるよう、変成器(変流器)4に接続されたセンサワイヤ5が配置される。 The water-cooled cable 1 forms a power supply circuit by making a pair of "going" from the power source 3 to the furnace body 2 and "returning" from the furnace body 2 to the power source 3, and a plurality of such pairs are arranged. Since alternating current is supplied, "going" and "returning" are practically indistinguishable, but are appropriately determined based on the direction of the current at a certain point in time. By arranging the forward and return lines substantially in parallel, currents in opposite directions are caused to flow. These water-cooled cables 1 are arranged with sensor wires 5 connected to a transformer (current transformer) 4 so as to be able to measure the strength of the magnetic field generated around them due to the alternating current.

センサワイヤ5は、典型的にはロゴスキーコイルであって、水冷ケーブル5の外周に巻回されることで、水冷ケーブル5に流れる電流に伴って形成される磁界を外側から検出し、その強さを測定できる。変成器4は、所定のサンプリング間隔で、連続的にかかる測定を継続させることができる。 The sensor wire 5 is typically a Rogowski coil, and is wound around the outer periphery of the water-cooled cable 5 to detect from the outside the magnetic field formed by the current flowing through the water-cooled cable 5 and measure its strength. can be measured. The transformer 4 can continue such measurements continuously at predetermined sampling intervals.

図2に示すように、センサワイヤ5は、「行き」の水冷ケーブル1aと、「帰り」の水冷ケーブル1bとの両者を1本ずつ2本まとめた外周に1周(1回)巻回されている。そして、両者の外周に生じる磁界の強さの絶対値の差分を単一のセンサワイヤ5及び変成器4で測定できるようになされている。ここでは、行きと帰りとでは、電流の向きが逆(矢印参照)なので、巻回する方向を同じにして、逆向きの電流に伴う逆向きの磁界による起電力を互いに打ち消し合うように単一のセンサワイヤ5を巻回し、上記した差分を得ている。 As shown in FIG. 2, the sensor wire 5 is wound once (once) around an outer circumference of two "forward" water-cooled cables 1a and two "return" water-cooled cables 1b. ing. A single sensor wire 5 and a single transformer 4 can measure the difference between the absolute values of the strengths of the magnetic fields generated on the outer peripheries of both. Here, since the direction of the current is opposite between going and returning (see the arrow), the winding direction is the same, and a single coil is used so that the electromotive forces due to the opposite magnetic fields accompanying the opposite currents cancel each other out. sensor wire 5 is wound to obtain the difference described above.

このようにすることで、行きと帰りとで閉じた回路を形成しているときは、同じ電流が逆向きに流れるので、磁界の強さの絶対値の差分はゼロになる。ところが、水冷ケーブル1の一部に劣化が生じると、行きと帰りとで電流に差が生じ、磁界の強さの絶対値の差分がゼロではなくなり、水冷ケーブル1の劣化を検出できる。 By doing so, when a closed circuit is formed between forward and return, the same current flows in the opposite direction, so the difference between the absolute values of the magnetic field strengths becomes zero. However, if deterioration occurs in a part of the water-cooled cable 1, a difference occurs in the forward and return currents, and the difference in the absolute value of the magnetic field intensity is no longer zero, so the deterioration of the water-cooled cable 1 can be detected.

このように、行きと帰りとの電流に差異が生じたことで水冷ケーブル1の劣化を検出するから、水冷ケーブル1への通電中に、例えば炉体1を含む炉の操業中であっても、装置から水冷ケーブル1の接続を外すことなく、劣化の検出ができる。また、2つのケーブルのそれぞれにセンサを設ける必要がなく、1組のセンサワイヤ5及び変成器4での検出を可能とする。なお、センサワイヤ5は、水冷ケーブル1a及び1bにそれぞれ1周ずつ巻回したが、同数であれば複数回の巻回であってもよい。 In this way, deterioration of the water-cooled cable 1 is detected due to the difference in the forward and return currents. , deterioration can be detected without disconnecting the water cooling cable 1 from the device. Also, there is no need to provide a sensor for each of the two cables, allowing detection with a single set of sensor wires 5 and transformer 4 . Although the sensor wire 5 is wound around each of the water-cooled cables 1a and 1b once, it may be wound a plurality of times as long as the number of turns is the same.

次に、他の実施例としての水冷ケーブルの劣化検出方法について、図3を用いて説明する。 Next, a method for detecting deterioration of a water-cooled cable as another embodiment will be described with reference to FIG.

図3に示すように、「行き」の水冷ケーブル1aと、「帰り」の水冷ケーブル1bは、互いに電流の向きを逆にするように、それぞれ2本ずつ合計4本が並置される。そして、上記した実施例と同様に、水冷ケーブル1aと水冷ケーブル1bとで同一方向にセンサワイヤ5が巻回される。このとき、4本の水冷ケーブル1のうち、行きと帰りとの対について同一方向にセンサワイヤ5を巻回させればよく、行き同士、帰り同士についてはセンサワイヤ5の向きは同一でも逆でもよい。 As shown in FIG. 3, two each of the "outgoing" water-cooled cable 1a and the "return" water-cooled cable 1b are arranged in parallel so that the directions of the currents are opposite to each other, for a total of four. Then, the sensor wire 5 is wound in the same direction on the water-cooled cable 1a and the water-cooled cable 1b in the same manner as in the above-described embodiment. At this time, it suffices to wind the sensor wire 5 in the same direction for the pair of forward and return out of the four water-cooled cables 1, and the direction of the sensor wire 5 may be the same or opposite for the forward pair and the return pair. good.

本実施例では、水冷ケーブル1a同士は、センサワイヤ5を逆向きに巻回させる。つまり、2本の水冷ケーブル1aのうち一方を右回りに、他方を左回りにする。同様に、水冷ケーブル1bについても右回りと左回りとを1本ずつにする。また、水冷ケーブル1aの2本を隣り合わせて、水冷ケーブル1bの2本を隣り合わせて、4本を直線上に配置する。その結果、図示するように、水冷ケーブル1a及び水冷ケーブル1bの間を蛇行し、交互に前後に移動するように単一のセンサワイヤ5が巻回されるようにできる。 In this embodiment, the sensor wires 5 are wound in opposite directions between the water-cooled cables 1a. That is, one of the two water-cooled cables 1a is rotated clockwise and the other counterclockwise. Similarly, the water-cooling cable 1b has one clockwise and one counterclockwise. Also, two water-cooled cables 1a are arranged side by side, two water-cooled cables 1b are arranged side by side, and four cables are arranged on a straight line. As a result, a single sensor wire 5 can be wound to meander between the water cooling cable 1a and the water cooling cable 1b, moving alternately back and forth, as shown.

この場合においても、同一方向にセンサワイヤ5を巻回させた水冷ケーブル1a及び1bの外周に生じる磁界の強さの絶対値の差分を単一のセンサワイヤ5及び変成器4で測定できる。すなわち、隣り合う水冷ケーブル1同士はセンサワイヤ5が逆向きに巻回されるので、センサワイヤ5の巻回される方向は1つおきに同一になる。つまり、1つおきに水冷ケーブル1a及び1bを配置して行きと帰りとの対として、前述の実施例と同様に水冷ケーブル1の対の2本において磁界の強さの絶対値の差分を測定できる。そして、水冷ケーブル1に劣化がなければ、かかる対における磁界の強さの絶対値の差分はゼロになる。この対をさらに増やしても、水冷ケーブル1に劣化がなければ、磁界の強さの絶対値の差分の合計はゼロになる。よって、水冷ケーブル1の一部に破損による劣化が生じると、行きと帰りとの対の一部で電流に差が生じ、磁界の強さの絶対値の差分がゼロではなくなり、劣化を検出できる。つまり、水冷ケーブル1の劣化を検出できる。 Even in this case, the difference in the absolute value of the strength of the magnetic field generated around the outer peripheries of the water-cooled cables 1a and 1b with the sensor wire 5 wound in the same direction can be measured with a single sensor wire 5 and transformer 4. FIG. That is, since the sensor wires 5 are wound in opposite directions in the adjacent water-cooled cables 1, the direction in which the sensor wires 5 are wound is the same for every other cable. That is, the water-cooled cables 1a and 1b are arranged alternately, and the difference in the absolute value of the magnetic field strength is measured between the two pairs of water-cooled cables 1 in the same manner as in the above-described embodiment. can. Then, if the water-cooled cable 1 is not degraded, the difference in the absolute value of the magnetic field strength in such a pair will be zero. If the water-cooled cable 1 is not degraded even if the number of pairs is further increased, the sum of the differences in the absolute values of the magnetic field intensities will be zero. Therefore, if deterioration occurs due to breakage in a part of the water-cooled cable 1, there will be a difference in the current in a part of the forward and return pair, and the difference in the absolute value of the magnetic field intensity will not be zero, and the deterioration can be detected. . That is, deterioration of the water-cooled cable 1 can be detected.

本実施例では、水冷ケーブル1の行きと帰りとの対の2つに単一のセンサワイヤ5を巻回させた場合を説明したが、行きと帰りとの対を増やしても同様である。つまり、この対においてセンサワイヤ5を同一方向に同数ずつ巻回させれば、かかる対を増やすことができる。このように、単一のセンサワイヤ5を巻回させることができる限りにおいては、変成器4を複数必要としないから、水冷ケーブル1の数が多くてもコストを上昇させずに水冷ケーブル1の劣化を検出できる。 In the present embodiment, the case where the single sensor wire 5 is wound around two of the forward and return pairs of the water cooling cable 1 has been described, but the same is true even if the number of forward and return pairs is increased. In other words, the number of such pairs can be increased by winding the same number of sensor wires 5 in the same direction. Thus, as long as a single sensor wire 5 can be wound, a plurality of transformers 4 are not required. Degradation can be detected.

以上、本発明の代表的な実施例及びこれに基づく改変例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。 Although representative embodiments of the present invention and modified examples based thereon have been described above, the present invention is not necessarily limited to these. Various alternatives and modifications could be found without departing from the scope.

1、1a、1b 水冷ケーブル
2 炉体
3 電源
4 変成器
5 センサワイヤ

Reference Signs List 1, 1a, 1b water cooling cable 2 furnace body 3 power supply 4 transformer 5 sensor wire

Claims (3)

炉体に電源を供給するための水冷ケーブルの劣化検出方法であって、
前記電源から前記炉体へ向かう第1水冷ケーブルと、前記炉体から前記電源へ向かう第2水冷ケーブルと、を対にしてこの対を複数設けて電源回路が構成され、前記第1水冷ケーブル及び第2水冷ケーブルからなる前記水冷ケーブルは略平行に並置されて配置されており、
単一のセンサワイヤが、並置された前記水冷ケーブルの一方の端部から順に前記水冷ケーブルの前後に移動するように前記水冷ケーブルの間を蛇行して他方の端部まで延び、更に前記他方の端部にある前記水冷ケーブルを周回して同様に順に前記水冷ケーブルの前後に移動するように前記水冷ケーブルの間を蛇行して前記一方の端部まで延びて、並置された前記水冷ケーブルの1つおきに前記センサワイヤの巻回される方向が同一になるとともに、前記1つおきの位置に前記第1水冷ケーブル及び前記第2水冷ケーブルの対を配置して、
前記炉体の操業時において、前記第1水冷ケーブル及び前記第2水冷ケーブルの外周にそれぞれ生じる磁界の強さの絶対値の差分を前記単一のセンサワイヤの両端に接続された変成器にて連続的に測定することを特徴とする水冷ケーブルの劣化検出方法。
A method for detecting deterioration of a water cooling cable for supplying power to a furnace body, comprising:
A power supply circuit is configured by providing a plurality of pairs of a first water-cooled cable extending from the power supply to the furnace body and a second water-cooled cable extending from the furnace body to the power supply , and The water-cooled cables consisting of a first water-cooled cable and a second water-cooled cable are arranged substantially parallel to each other ,
A single sensor wire extends from one end of the juxtaposed water-cooled cables to the other end in a meandering manner between the water-cooled cables so as to sequentially move forward and backward of the water-cooled cables, and further extends to the other end of the water-cooled cables. One of the juxtaposed water-cooled cables meanders between the water-cooled cables and extends to the one end so as to go around the water-cooled cables at the ends and similarly move forward and backward of the water-cooled cables in order. The direction in which the sensor wire is wound is the same every other time, and the pairs of the first water-cooled cable and the second water-cooled cable are arranged at every other position,
During the operation of the furnace body, the difference in the absolute value of the strength of the magnetic fields generated on the outer circumferences of the first water-cooled cable and the second water-cooled cable is detected by a transformer connected to both ends of the single sensor wire. A method for detecting deterioration of a water-cooled cable, characterized by continuous measurement.
2本の前記第1水冷ケーブル及び2本の前記第2水冷ケーブルがこの順に略平行に並置されていることを特徴とする請求項1記載の水冷ケーブルの劣化検出方法。2. The method for detecting deterioration of a water-cooled cable according to claim 1, wherein two of said first water-cooled cables and two of said second water-cooled cables are arranged in parallel in this order. 前記単一のセンサワイヤは可撓性を有するロゴスキーコイルからなることを特徴とする請求項1又は2に記載の水冷ケーブルの劣化検出方法 3. The method for detecting deterioration of a water-cooled cable according to claim 1, wherein said single sensor wire is composed of a flexible Rogowski coil .
JP2019007666A 2019-01-21 2019-01-21 Water cooling cable deterioration detection method Active JP7261386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019007666A JP7261386B2 (en) 2019-01-21 2019-01-21 Water cooling cable deterioration detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007666A JP7261386B2 (en) 2019-01-21 2019-01-21 Water cooling cable deterioration detection method

Publications (2)

Publication Number Publication Date
JP2020118481A JP2020118481A (en) 2020-08-06
JP7261386B2 true JP7261386B2 (en) 2023-04-20

Family

ID=71890541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007666A Active JP7261386B2 (en) 2019-01-21 2019-01-21 Water cooling cable deterioration detection method

Country Status (1)

Country Link
JP (1) JP7261386B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298483A (en) 2006-05-08 2007-11-15 Daido Steel Co Ltd Disconnection detector of flexible cable for alternating current arc furnace
JP5145784B2 (en) 2007-06-15 2013-02-20 富士ゼロックス株式会社 Information processing system and information processing program
JP5661466B2 (en) 2007-10-26 2015-01-28 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Recovery of acetophenone during phenol production
JP5939774B2 (en) 2011-11-29 2016-06-22 株式会社ユースフルパースン Straight tube LED lighting device
JP6082067B2 (en) 2015-01-06 2017-02-15 タボット株式会社 Sheets, cases, and programs used for mobile terminals
CN108627738A (en) 2017-03-16 2018-10-09 宝钢特钢有限公司 A kind of on-Line Monitor Device and monitoring method for monitoring electroslag furnace water-cooled cable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501322A (en) * 1973-05-12 1975-01-08
JPS5541083B2 (en) * 1974-10-18 1980-10-22
JPS5939774Y2 (en) * 1976-03-22 1984-11-08 昭和電線電纜株式会社 water cooled cable current detector
JPS5661466U (en) * 1979-10-17 1981-05-25
JPS6082067A (en) * 1983-10-07 1985-05-10 Toshiba Corp Protecting system of frequency converter
JP2015059751A (en) * 2013-09-17 2015-03-30 大同特殊鋼株式会社 Deterioration detecting method, and deterioration detecting apparatus, for water-cooled cables

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298483A (en) 2006-05-08 2007-11-15 Daido Steel Co Ltd Disconnection detector of flexible cable for alternating current arc furnace
JP5145784B2 (en) 2007-06-15 2013-02-20 富士ゼロックス株式会社 Information processing system and information processing program
JP5661466B2 (en) 2007-10-26 2015-01-28 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Recovery of acetophenone during phenol production
JP5939774B2 (en) 2011-11-29 2016-06-22 株式会社ユースフルパースン Straight tube LED lighting device
JP6082067B2 (en) 2015-01-06 2017-02-15 タボット株式会社 Sheets, cases, and programs used for mobile terminals
CN108627738A (en) 2017-03-16 2018-10-09 宝钢特钢有限公司 A kind of on-Line Monitor Device and monitoring method for monitoring electroslag furnace water-cooled cable

Also Published As

Publication number Publication date
JP2020118481A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US10859605B2 (en) Current sensor and a method of manufacturing a current sensor
TWI387757B (en) Electric current measuring device, current sensor, electric trip unit and breaking device comprising such a measuring device
US20070188170A1 (en) Fluxgate and fluxgate magnetometers
CA2442308A1 (en) Inductive current sensor for an electricity meter
KR100934448B1 (en) Non-contact measuring method of current flowing in a plurality of superconducting wires connected in parallel
JP2008026218A (en) Method of testing superconductive cable line
WO2016158372A1 (en) Electromagnetic induction type electrical conductivity detector and electromagnetic induction type electrical conductivity meter
KR20200029988A (en) Superheated Steam Generator
KR890003052B1 (en) Diagonal energizing heater
JP7261386B2 (en) Water cooling cable deterioration detection method
WO2006075833A1 (en) Superconducting power cable capable of quench detection and quench detection system using the same
KR101974671B1 (en) Furnace for glass base material
US20150219695A1 (en) Power inductor and method for implementing shunting measurement through inductor winding
EP3447514B1 (en) Magneto-impedance sensor
US11749425B2 (en) Energy recovery device on at least one power conductor and method for manufacturing the recovery device
JP2015059751A (en) Deterioration detecting method, and deterioration detecting apparatus, for water-cooled cables
KR20230074398A (en) junction box for wireless power track of detecting wire disconnection
JP6716371B2 (en) System and method for measuring magnetic properties of induction heating wires
JP2007298483A (en) Disconnection detector of flexible cable for alternating current arc furnace
US7575455B2 (en) Eccentric polygonal main lead flexible connector assembly
JP6358562B2 (en) Degradation position measurement method for superconducting cable lines
KR20200000316A (en) Twist type high-frequency power cable
US2333509A (en) Thermal demand meter
JP7510370B2 (en) Method and system for monitoring operation of stationary electromagnetic devices
SU930753A1 (en) Resistive electronic heater for instrument radio engineering apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R150 Certificate of patent or registration of utility model

Ref document number: 7261386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150