JP2020118481A - Deterioration detection method for water-cooled cable - Google Patents

Deterioration detection method for water-cooled cable Download PDF

Info

Publication number
JP2020118481A
JP2020118481A JP2019007666A JP2019007666A JP2020118481A JP 2020118481 A JP2020118481 A JP 2020118481A JP 2019007666 A JP2019007666 A JP 2019007666A JP 2019007666 A JP2019007666 A JP 2019007666A JP 2020118481 A JP2020118481 A JP 2020118481A
Authority
JP
Japan
Prior art keywords
water
cable
cooled
water cooling
cables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019007666A
Other languages
Japanese (ja)
Other versions
JP7261386B2 (en
Inventor
卓也 一條
Takuya Ichijo
卓也 一條
雄紀 齋藤
Takenori Saito
雄紀 齋藤
友裕 千賀
Tomohiro Chiga
友裕 千賀
木村 祐太
Yuta Kimura
祐太 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2019007666A priority Critical patent/JP7261386B2/en
Publication of JP2020118481A publication Critical patent/JP2020118481A/en
Application granted granted Critical
Publication of JP7261386B2 publication Critical patent/JP7261386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

To provide a deterioration detection method for a water-cooled cable that is able to detect a deteriorated condition even during an operation, without disconnecting the cable from a device.SOLUTION: A deterioration detection method is for a water-cooled cable for supplying power to a furnace body. A single or a plurality of first water-cooled cables from a power source to the furnace body and a single or a plurality of second water-cooled cables from the furnace body to the power supply are formed into a pair to compose a power supply circuit. During an operation of the furnace body, the difference between the absolute values of the intensities of magnetic fields respectively generated on the outer peripheries of the first water-cooled cable and the second water-cooled cables is continuously measured by a transformer.SELECTED DRAWING: Figure 3

Description

本発明は、高電圧且つ大電流を用いる装置と電源との間を電気的に接続する水冷ケーブルの劣化を検出する方法に関し、特に、装置から接続を外すことなく操業時にあっても劣化状態を検出可能な水冷ケーブルの劣化検出方法に関する。 The present invention relates to a method for detecting deterioration of a water-cooled cable for electrically connecting a device using a high voltage and a large current and a power supply, and particularly to a deterioration state even during operation without disconnecting from the device. The present invention relates to a detectable deterioration method of a water-cooled cable.

大型電気炉や誘導溶解炉のように、高電圧且つ大電流を操業に必要とされる装置においては、通常の電源ケーブルでは径を太くする必要があるためケーブルの重量もかさみ、大きなケーブル収容スペースや、高い強度の支持材も必要となる。そこで、ケーブル内部に冷却機構を設けた冷却ケーブルが用いられる。典型的には、絶縁被覆を有する導線の内部に長手軸に沿って通水孔を設けつつ可撓性を保持した内部水冷ケーブルが使用される。また、内部水冷ケーブルを複数本並列に接続して大きな電流を分割して供給することで冷却効率を上げることも行われている。 In equipment that requires high voltage and large current for operation, such as large electric furnaces and induction melting furnaces, it is necessary to increase the diameter of ordinary power cables, which increases the weight of the cables and results in a large cable storage space. Also, a high-strength support material is required. Therefore, a cooling cable having a cooling mechanism inside the cable is used. Typically, an internal water-cooled cable is used which has flexibility while providing water passage holes along the longitudinal axis inside a conductor having an insulating coating. Further, it is also attempted to improve cooling efficiency by connecting a plurality of internal water cooling cables in parallel and dividing and supplying a large current.

このような水冷ケーブルの劣化は装置の操業上で大きな問題を生じさせ得る。そのため、結線を取り外して検査が行われる。一方、検査の手間を考慮すると、結線状態のままで、劣化状態を検査又は一定程度の劣化の検出を行うことが望まれる。 Such deterioration of the water cooling cable can cause a serious problem in the operation of the device. Therefore, the connection is removed and the inspection is performed. On the other hand, considering the labor of the inspection, it is desired to inspect the deterioration state or detect the deterioration to a certain degree while the connection state is maintained.

例えば、特許文献1では、複数本ずつが並列に接続された水冷ケーブルにダミーの交流電流を供給し抵抗値を測定することで、装置に接続したまま水冷ケーブルの劣化を検出する方法を開示している。詳細には、水冷ケーブルを1次配線とするカレントトランスの2次巻線に交流電源を接続し、水冷ケーブルに流れる交流電流及びその両端間の交流電圧を個別に測定する。これから算出されるインピーダンスについて、交流電源の周波数を変化させることで得られるリアクタンスを除去して、水冷ケーブルの抵抗値を算出し、一定程度の劣化を検出するのである。 For example, Patent Document 1 discloses a method of detecting deterioration of a water-cooled cable while connected to a device by supplying a dummy alternating current to a water-cooled cable in which a plurality of cables are connected in parallel and measuring a resistance value. ing. Specifically, an AC power source is connected to the secondary winding of a current transformer having a water-cooled cable as a primary wiring, and the AC current flowing through the water-cooled cable and the AC voltage across the terminals are individually measured. With respect to the impedance calculated from this, the reactance obtained by changing the frequency of the AC power supply is removed, the resistance value of the water-cooled cable is calculated, and a certain degree of deterioration is detected.

特許文献1に述べられているように、水冷ケーブルは複数本ずつが並列に接続されているため、1本の水冷ケーブルが劣化、断線しても装置への給電は停止しないが、他の水冷ケーブルに負担が生じる。そこで、水冷ケーブルの劣化を早期に検出すべく、操業中にあっても異常を検出する方法が要望される。かかる場合、検出のためのダミーの電流を水冷ケーブルに供給したりすることはできない。 As described in Patent Document 1, since a plurality of water cooling cables are connected in parallel, power supply to the device does not stop even if one water cooling cable deteriorates or breaks, but other water cooling cables. The cable is strained. Therefore, in order to detect the deterioration of the water-cooled cable at an early stage, there is a demand for a method of detecting an abnormality even during operation. In such a case, a dummy current for detection cannot be supplied to the water cooling cable.

特許文献2では、水冷ケーブルではないが、操業時の電線の周囲に生じる磁界の変化から断線を検出する方法を開示している。詳細には、磁界測定手段の磁界測定面を電線の断面中心側に向けて配置し、操業中に電線が断線した場合、電線周囲の磁界に変化が生じるから、これを磁界測定手段によって測定するとしている。 Patent Document 2 discloses a method of detecting a disconnection from a change in a magnetic field generated around an electric wire during operation, though not a water-cooled cable. In detail, the magnetic field measuring surface of the magnetic field measuring means is arranged toward the center side of the cross section of the electric wire, and when the electric wire is broken during operation, the magnetic field around the electric wire changes, so this is measured by the magnetic field measuring means. I am trying.

特開2015−59751号公報JP, 2005-97551, A 特開2002−228700号公報JP-A-2002-228700

水冷ケーブルにおいても操業時の電線の周囲に生じる磁界の変化を測定することができる。一方で、大型電気炉や誘導溶解炉のような装置では、操業時にあっては制御のため電流値を変化させることから、水冷ケーブルの断線については磁界の変化で検出できるものの、劣化状態までを検出することはできなかった。 Even with a water-cooled cable, it is possible to measure changes in the magnetic field generated around the electric wire during operation. On the other hand, in devices such as large electric furnaces and induction melting furnaces, the current value is changed for control during operation, so disconnection of the water-cooling cable can be detected by changes in the magnetic field, but the deterioration state can be detected. It could not be detected.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、装置から接続を外すことなく操業時にあっても劣化状態を検出可能な水冷ケーブルの劣化検出方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is a method for detecting deterioration of a water-cooled cable capable of detecting a deterioration state even during operation without disconnecting from a device. To provide.

本発明による方法は、炉体に電源を供給するための水冷ケーブルの劣化検出方法であって、前記電源から前記炉体へ向かう単数又は複数本の第1水冷ケーブルと、前記炉体から前記電源へ向かう単数又は複数本の第2水冷ケーブルと、を対にして電源回路が構成されており、前記炉体の操業時において、前記第1水冷ケーブル及び前記第2水冷ケーブルの外周にそれぞれ生じる磁界の強さの絶対値の差分を変成器にて連続的に測定することを特徴とする。 A method according to the present invention is a method for detecting deterioration of a water-cooled cable for supplying power to a furnace body, comprising one or more first water-cooled cables from the power source to the furnace body, and the furnace body to the power source. A single or a plurality of second water cooling cables heading to each other, and a power supply circuit is configured as a pair, and a magnetic field generated on the outer periphery of each of the first water cooling cable and the second water cooling cable during operation of the furnace body. It is characterized by continuously measuring the difference in absolute value of the strength of the transformer.

かかる発明によれば、電源から炉体への電流値の変動に関係なく、操業時にあっても水冷ケーブルの劣化を検出できるから、より早期に且つ確実に該劣化の状態を検出可能となるのである。 According to such an invention, the deterioration of the water-cooled cable can be detected even during operation regardless of the change in the current value from the power source to the furnace body, so that the deterioration state can be detected earlier and more reliably. is there.

上記した発明において、可撓性を有するロゴスキーコイルからなる単一のセンサワイヤを前記第1水冷ケーブル及び前記第2水冷ケーブルのそれぞれの外周に巻回して前記差分を計測することを特徴としてもよい。かかる発明によれば、水冷ケーブルの収納されている空間が狭くとも、より早期に且つ確実にその劣化の状態を検出可能となるのである。 In the invention described above, a single sensor wire made of a flexible Rogowski coil may be wound around the outer circumference of each of the first water cooling cable and the second water cooling cable to measure the difference. Good. According to this invention, even if the space in which the water-cooled cable is housed is small, the state of deterioration can be detected more quickly and reliably.

上記した発明において、前記センサワイヤは、互いに逆向きの電流を流れるように略平行に並置された前記第1水冷ケーブル及び前記第2水冷ケーブルのそれぞれの外周に同数回ずつ巻回され、且つ、全て同一方向に巻回されていることを特徴としてもよい。かかる発明によれば、水冷ケーブルの収納されている空間が狭くとも、より早期に且つ確実にその劣化の状態を検出可能となるのである。 In the above-mentioned invention, the sensor wire is wound around the respective outer peripheries of the first water-cooling cable and the second water-cooling cable, which are arranged substantially parallel to each other so that currents flow in opposite directions, respectively, and, It may be characterized in that they are all wound in the same direction. According to this invention, even if the space for accommodating the water-cooled cable is narrow, it is possible to detect the deterioration state earlier and more reliably.

上記した発明において、前記センサワイヤは、互いに逆向きの電流を流れるように略平行に並置されそれぞれ複数からなる前記第1水冷ケーブル及び前記第2水冷ケーブルのそれぞれの外周に同数回ずつ巻回され、且つ、前記第1水冷ケーブル及び前記第2水冷ケーブルについて左回り及び右回りに同数ずつ巻回されていることを特徴としてもよい。かかる発明によれば、第1及び第2水冷ケーブルがそれぞれ複数であっても少ないセンサワイヤで確実にその劣化の状態を検出することが可能となるのである。 In the above-mentioned invention, the sensor wires are arranged substantially parallel to each other so that currents in opposite directions may flow side by side, and the sensor wires are wound around the outer circumference of each of the plurality of first water-cooling cables and the second water-cooling cable the same number of times. Further, the first water-cooled cable and the second water-cooled cable may be wound counterclockwise and clockwise by the same number. According to this invention, even if there are a plurality of first and second water cooling cables, it is possible to reliably detect the state of deterioration with a small number of sensor wires.

前記センサワイヤは、前記第1水冷ケーブル及び前記第2水冷ケーブルの間を蛇行させて配置されることを特徴としてもよい。かかる発明によれば、水冷ケーブルをより狭い空間に収納しつつ、確実にその劣化の状態を検出可能とし得る。 The sensor wire may be arranged to meander between the first water cooling cable and the second water cooling cable. According to this invention, it is possible to reliably detect the state of deterioration while housing the water-cooled cable in a narrower space.

水冷ケーブルの劣化検出方法の実施例に用いる装置のブロック図である。It is a block diagram of the apparatus used for the Example of the deterioration detection method of a water cooling cable. 水冷ケーブルにセンサワイヤを巻回させた1例を示す図である。It is a figure which shows an example which wound the sensor wire around the water cooling cable. 水冷ケーブルにセンサワイヤを巻回させた他の例を示す図である。It is a figure which shows the other example which wound the sensor wire around the water cooling cable.

本発明による1つの実施例としての水冷ケーブルの劣化検出方法について、図1及び図2を用いて説明する。 A method for detecting deterioration of a water-cooled cable according to one embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1に示すように、本実施例による方法によって劣化を検出される水冷ケーブル1は、炉体2を加熱させる図示しないコイルに電源3から高電圧で大電流の交流を供給するものである。炉体2は、例えば誘導加熱炉の本体である。水冷ケーブル1は、大電流を内部の導体に通電させることによってかかる導体を発熱させるが、かかる発熱を抑制させるために内部に水冷機構を有する。水冷ケーブル1のその他の詳細な構造については公知であるので説明を省略する。 As shown in FIG. 1, the water-cooled cable 1 whose deterioration is detected by the method according to this embodiment supplies a high-voltage, large-current alternating current from a power supply 3 to a coil (not shown) that heats a furnace body 2. The furnace body 2 is, for example, a main body of an induction heating furnace. The water-cooled cable 1 heats the conductor by supplying a large current to the conductor, but has a water-cooling mechanism inside to suppress the heat generation. The other detailed structure of the water-cooled cable 1 is known and will not be described.

水冷ケーブル1は、出湯作業に伴う炉体2の傾動などの動作に追従できるよう可撓性を有し、たるむように配置されている。そのため、炉体2の動作に伴って水冷ケーブル2は変形を繰り返し、部分的な破損などの劣化を生じることがある。本実施例における劣化検出方法は、このような劣化を迅速に発見しようとするものである。 The water-cooling cable 1 has flexibility and is arranged so as to be slack so as to be able to follow an operation such as tilting of the furnace body 2 associated with tapping work. Therefore, the water cooling cable 2 is repeatedly deformed with the operation of the furnace body 2 and may be partially damaged or deteriorated. The deterioration detection method in this embodiment is intended to promptly find such deterioration.

水冷ケーブル1は、電源3から炉体2へ向かう「行き」と炉体2から電源3へ向かう「帰り」とで対となって電源回路を構成しており、この対が複数配置される。交流を供給するため、「行き」と「帰り」とは、事実上の区別はないが、ある時刻での電流の向きを基準にするなどして、適宜、定められる。そして、行きと帰りとを略平行に並置することで互いに逆向きの電流が流れるようにされる。これらの水冷ケーブル1には、交流によって変化する電流に伴ってその周囲に発生させる磁界の強さを測定できるよう、変成器(変流器)4に接続されたセンサワイヤ5が配置される。 The water cooling cable 1 constitutes a power supply circuit by a pair of “go” from the power source 3 to the furnace body 2 and “return” from the furnace body 2 to the power source 3, and a plurality of pairs are arranged. Since an alternating current is supplied, there is virtually no distinction between "going" and "returning", but it is appropriately determined based on the direction of the current at a certain time. Then, by arranging the outgoing and the returning in parallel, the currents flowing in directions opposite to each other are made to flow. A sensor wire 5 connected to a transformer (current transformer) 4 is arranged in each of these water-cooled cables 1 so that the strength of a magnetic field generated around the water-cooled cable 1 accompanying an electric current changed by an alternating current can be measured.

センサワイヤ5は、典型的にはロゴスキーコイルであって、水冷ケーブル5の外周に巻回されることで、水冷ケーブル5に流れる電流に伴って形成される磁界を外側から検出し、その強さを測定できる。変成器4は、所定のサンプリング間隔で、連続的にかかる測定を継続させることができる。 The sensor wire 5 is typically a Rogowski coil, and is wound around the outer circumference of the water-cooling cable 5 to detect a magnetic field formed with the current flowing through the water-cooling cable 5 from the outside and to increase its strength. You can measure The transformer 4 can continue such measurement continuously at a predetermined sampling interval.

図2に示すように、センサワイヤ5は、「行き」の水冷ケーブル1aと、「帰り」の水冷ケーブル1bとの両者を1本ずつ2本まとめた外周に1周(1回)巻回されている。そして、両者の外周に生じる磁界の強さの絶対値の差分を単一のセンサワイヤ5及び変成器4で測定できるようになされている。ここでは、行きと帰りとでは、電流の向きが逆(矢印参照)なので、巻回する方向を同じにして、逆向きの電流に伴う逆向きの磁界による起電力を互いに打ち消し合うように単一のセンサワイヤ5を巻回し、上記した差分を得ている。 As shown in FIG. 2, the sensor wire 5 is wound once (once) around the outer circumference in which two of the “going” water cooling cable 1a and the “returning” water cooling cable 1b are put together one by one. ing. The single sensor wire 5 and the transformer 4 can measure the difference between the absolute values of the magnetic field strengths generated on the outer circumferences of the two. Here, the directions of the currents are the same in the forward and backward directions (see arrows), so the winding directions should be the same, and the electromotive forces due to the reverse magnetic fields associated with the reverse currents should be cancelled. The sensor wire 5 is wound and the above-mentioned difference is obtained.

このようにすることで、行きと帰りとで閉じた回路を形成しているときは、同じ電流が逆向きに流れるので、磁界の強さの絶対値の差分はゼロになる。ところが、水冷ケーブル1の一部に劣化が生じると、行きと帰りとで電流に差が生じ、磁界の強さの絶対値の差分がゼロではなくなり、水冷ケーブル1の劣化を検出できる。 By doing so, when a closed circuit is formed by going and returning, the same current flows in the opposite direction, so that the difference in absolute value of the magnetic field strength becomes zero. However, when a part of the water-cooled cable 1 is deteriorated, a current difference occurs between going and returning, and the difference in absolute value of the magnetic field strength is not zero, so that the deterioration of the water-cooling cable 1 can be detected.

このように、行きと帰りとの電流に差異が生じたことで水冷ケーブル1の劣化を検出するから、水冷ケーブル1への通電中に、例えば炉体1を含む炉の操業中であっても、装置から水冷ケーブル1の接続を外すことなく、劣化の検出ができる。また、2つのケーブルのそれぞれにセンサを設ける必要がなく、1組のセンサワイヤ5及び変成器4での検出を可能とする。なお、センサワイヤ5は、水冷ケーブル1a及び1bにそれぞれ1周ずつ巻回したが、同数であれば複数回の巻回であってもよい。 In this way, since the deterioration of the water-cooled cable 1 is detected due to the difference in the current between the going and returning, even when the water-cooling cable 1 is energized, for example, while the furnace including the furnace body 1 is in operation. The deterioration can be detected without disconnecting the water cooling cable 1 from the device. Further, it is not necessary to provide a sensor on each of the two cables, and detection can be performed by the pair of sensor wires 5 and the transformer 4. The sensor wire 5 is wound around the water-cooled cables 1a and 1b once, but may be wound a plurality of times as long as the number is the same.

次に、他の実施例としての水冷ケーブルの劣化検出方法について、図3を用いて説明する。 Next, a method for detecting deterioration of a water-cooled cable as another embodiment will be described with reference to FIG.

図3に示すように、「行き」の水冷ケーブル1aと、「帰り」の水冷ケーブル1bは、互いに電流の向きを逆にするように、それぞれ2本ずつ合計4本が並置される。そして、上記した実施例と同様に、水冷ケーブル1aと水冷ケーブル1bとで同一方向にセンサワイヤ5が巻回される。このとき、4本の水冷ケーブル1のうち、行きと帰りとの対について同一方向にセンサワイヤ5を巻回させればよく、行き同士、帰り同士についてはセンサワイヤ5の向きは同一でも逆でもよい。 As shown in FIG. 3, the “outgoing” water cooling cable 1a and the “returning” water cooling cable 1b are arranged side by side with a total of four so that the directions of the currents are opposite to each other. Then, similarly to the above-described embodiment, the sensor wire 5 is wound in the same direction by the water cooling cable 1a and the water cooling cable 1b. At this time, of the four water-cooled cables 1, the sensor wire 5 may be wound in the same direction for the pair of going and returning, and the direction of the sensor wire 5 may be the same or opposite for going and returning. Good.

本実施例では、水冷ケーブル1a同士は、センサワイヤ5を逆向きに巻回させる。つまり、2本の水冷ケーブル1aのうち一方を右回りに、他方を左回りにする。同様に、水冷ケーブル1bについても右回りと左回りとを1本ずつにする。また、水冷ケーブル1aの2本を隣り合わせて、水冷ケーブル1bの2本を隣り合わせて、4本を直線上に配置する。その結果、図示するように、水冷ケーブル1a及び水冷ケーブル1bの間を蛇行し、交互に前後に移動するように単一のセンサワイヤ5が巻回されるようにできる。 In the present embodiment, the water-cooled cables 1a have the sensor wires 5 wound in opposite directions. That is, one of the two water cooling cables 1a is rotated clockwise and the other is rotated counterclockwise. Similarly, for the water cooling cable 1b, one clockwise and one counterclockwise is provided. In addition, two water cooling cables 1a are arranged next to each other, two water cooling cables 1b are arranged next to each other, and four cables are arranged on a straight line. As a result, as shown in the drawing, the single sensor wire 5 can be wound so as to meander between the water cooling cable 1a and the water cooling cable 1b and alternately move back and forth.

この場合においても、同一方向にセンサワイヤ5を巻回させた水冷ケーブル1a及び1bの外周に生じる磁界の強さの絶対値の差分を単一のセンサワイヤ5及び変成器4で測定できる。すなわち、隣り合う水冷ケーブル1同士はセンサワイヤ5が逆向きに巻回されるので、センサワイヤ5の巻回される方向は1つおきに同一になる。つまり、1つおきに水冷ケーブル1a及び1bを配置して行きと帰りとの対として、前述の実施例と同様に水冷ケーブル1の対の2本において磁界の強さの絶対値の差分を測定できる。そして、水冷ケーブル1に劣化がなければ、かかる対における磁界の強さの絶対値の差分はゼロになる。この対をさらに増やしても、水冷ケーブル1に劣化がなければ、磁界の強さの絶対値の差分の合計はゼロになる。よって、水冷ケーブル1の一部に破損による劣化が生じると、行きと帰りとの対の一部で電流に差が生じ、磁界の強さの絶対値の差分がゼロではなくなり、劣化を検出できる。つまり、水冷ケーブル1の劣化を検出できる。 Also in this case, the difference between the absolute values of the magnetic field strengths generated on the outer circumferences of the water-cooled cables 1a and 1b in which the sensor wire 5 is wound in the same direction can be measured by the single sensor wire 5 and the transformer 4. That is, since the sensor wires 5 are wound in the opposite directions in the adjacent water-cooled cables 1, the sensor wires 5 are wound in the same direction every other wire. That is, the water cooling cables 1a and 1b are arranged every other pair, and the difference between the absolute values of the magnetic field strengths is measured between two pairs of the water cooling cables 1 as the pairs of going and returning, as in the above-described embodiment. it can. If the water-cooled cable 1 is not deteriorated, the difference between the absolute values of the magnetic field strengths of the pair is zero. Even if this pair is further increased, if the water-cooled cable 1 is not deteriorated, the sum of the absolute differences of the magnetic field strength becomes zero. Therefore, when a part of the water-cooled cable 1 is deteriorated due to breakage, a current difference is generated in a part of the pair of going and returning, and the difference between the absolute values of the magnetic field strength is not zero, and the deterioration can be detected. .. That is, the deterioration of the water cooling cable 1 can be detected.

本実施例では、水冷ケーブル1の行きと帰りとの対の2つに単一のセンサワイヤ5を巻回させた場合を説明したが、行きと帰りとの対を増やしても同様である。つまり、この対においてセンサワイヤ5を同一方向に同数ずつ巻回させれば、かかる対を増やすことができる。このように、単一のセンサワイヤ5を巻回させることができる限りにおいては、変成器4を複数必要としないから、水冷ケーブル1の数が多くてもコストを上昇させずに水冷ケーブル1の劣化を検出できる。 In this embodiment, the case where the single sensor wire 5 is wound around the two pairs of the going and returning of the water-cooled cable 1 has been described, but the same applies when the number of going and returning pairs is increased. That is, by winding the same number of sensor wires 5 in the same direction in this pair, the number of such pairs can be increased. As described above, as long as the single sensor wire 5 can be wound, a plurality of transformers 4 are not required. Therefore, even if the number of the water cooling cables 1 is large, the cost of the water cooling cable 1 does not increase even if the number of the water cooling cables 1 is large. Deterioration can be detected.

以上、本発明の代表的な実施例及びこれに基づく改変例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。 The representative embodiments of the present invention and the modifications based on the same have been described above. However, the present invention is not necessarily limited to these, and those skilled in the art can understand the gist of the present invention or the appended claims. Various alternatives and modifications may be found without departing from the scope.

1、1a、1b 水冷ケーブル
2 炉体
3 電源
4 変成器
5 センサワイヤ

1, 1a, 1b Water cooling cable 2 Furnace body 3 Power supply 4 Transformer 5 Sensor wire

Claims (5)

炉体に電源を供給するための水冷ケーブルの劣化検出方法であって、
前記電源から前記炉体へ向かう単数又は複数本の第1水冷ケーブルと、前記炉体から前記電源へ向かう単数又は複数本の第2水冷ケーブルと、を対にして電源回路が構成されており、
前記炉体の操業時において、前記第1水冷ケーブル及び前記第2水冷ケーブルの外周にそれぞれ生じる磁界の強さの絶対値の差分を変成器にて連続的に測定することを特徴とする水冷ケーブルの劣化検出方法。
A method for detecting deterioration of a water cooling cable for supplying power to a furnace body,
A single or a plurality of first water cooling cables from the power source to the furnace body, and a single or a plurality of second water cooling cables from the furnace body to the power source, a power circuit is configured in pairs,
During operation of the furnace body, the difference between the absolute values of the magnetic fields generated around the outer circumferences of the first water cooling cable and the second water cooling cable is continuously measured by a transformer. Degradation detection method.
可撓性を有するロゴスキーコイルからなる単一のセンサワイヤを前記第1水冷ケーブル及び前記第2水冷ケーブルのそれぞれの外周に巻回して前記差分を計測することを特徴とする請求項1記載の水冷ケーブルの劣化検出方法。 The single sensor wire made of a flexible Rogowski coil is wound around the respective outer peripheries of the first water cooling cable and the second water cooling cable to measure the difference. Deterioration detection method for water-cooled cables. 前記センサワイヤは、互いに逆向きの電流を流れるように略平行に並置された前記第1水冷ケーブル及び前記第2水冷ケーブルのそれぞれの外周に同数回ずつ巻回され、且つ、全て同一方向に巻回されていることを特徴とする請求項2記載の水冷ケーブルの劣化検出方法。 The sensor wires are wound around the respective outer peripheries of the first water-cooling cable and the second water-cooling cable, which are arranged substantially parallel to each other so that currents flow in opposite directions, and are wound in the same direction. The method for detecting deterioration of a water-cooled cable according to claim 2, characterized in that it is rotated. 前記センサワイヤは、互いに逆向きの電流を流れるように略平行に並置されそれぞれ複数からなる前記第1水冷ケーブル及び前記第2水冷ケーブルのそれぞれの外周に同数回ずつ巻回され、且つ、前記第1水冷ケーブル及び前記第2水冷ケーブルについて左回り及び右回りに同数ずつ巻回されていることを特徴とする請求項2記載の水冷ケーブルの劣化検出方法。 The sensor wires are juxtaposed substantially parallel to each other so that currents flow in opposite directions, and the sensor wires are wound around the respective outer peripheries of the plurality of first water cooling cables and the second water cooling cables by the same number of times, and The method of detecting deterioration of a water-cooled cable according to claim 2, wherein the same number of turns is wound in the counterclockwise and clockwise directions with respect to the one water-cooled cable and the second water-cooled cable. 前記センサワイヤは、前記第1水冷ケーブル及び前記第2水冷ケーブルの間を蛇行させて配置されることを特徴とする請求項4記載の水冷ケーブルの劣化検出方法。

The method for detecting deterioration of a water-cooled cable according to claim 4, wherein the sensor wire is arranged so as to meander between the first water-cooled cable and the second water-cooled cable.

JP2019007666A 2019-01-21 2019-01-21 Water cooling cable deterioration detection method Active JP7261386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019007666A JP7261386B2 (en) 2019-01-21 2019-01-21 Water cooling cable deterioration detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007666A JP7261386B2 (en) 2019-01-21 2019-01-21 Water cooling cable deterioration detection method

Publications (2)

Publication Number Publication Date
JP2020118481A true JP2020118481A (en) 2020-08-06
JP7261386B2 JP7261386B2 (en) 2023-04-20

Family

ID=71890541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007666A Active JP7261386B2 (en) 2019-01-21 2019-01-21 Water cooling cable deterioration detection method

Country Status (1)

Country Link
JP (1) JP7261386B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501322A (en) * 1973-05-12 1975-01-08
JPS5145784A (en) * 1974-10-18 1976-04-19 Tobu Seitetsu Kk
JPS5661466U (en) * 1979-10-17 1981-05-25
JPS5939774Y2 (en) * 1976-03-22 1984-11-08 昭和電線電纜株式会社 water cooled cable current detector
JPS6082067A (en) * 1983-10-07 1985-05-10 Toshiba Corp Protecting system of frequency converter
JP2007298483A (en) * 2006-05-08 2007-11-15 Daido Steel Co Ltd Disconnection detector of flexible cable for alternating current arc furnace
JP2015059751A (en) * 2013-09-17 2015-03-30 大同特殊鋼株式会社 Deterioration detecting method, and deterioration detecting apparatus, for water-cooled cables
CN108627738A (en) * 2017-03-16 2018-10-09 宝钢特钢有限公司 A kind of on-Line Monitor Device and monitoring method for monitoring electroslag furnace water-cooled cable

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145784B2 (en) 2007-06-15 2013-02-20 富士ゼロックス株式会社 Information processing system and information processing program
US8530702B2 (en) 2007-10-26 2013-09-10 Shell Oil Company Recovery of acetophenone during the production of phenol
JP5939774B2 (en) 2011-11-29 2016-06-22 株式会社ユースフルパースン Straight tube LED lighting device
JP6082067B2 (en) 2015-01-06 2017-02-15 タボット株式会社 Sheets, cases, and programs used for mobile terminals

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501322A (en) * 1973-05-12 1975-01-08
JPS5145784A (en) * 1974-10-18 1976-04-19 Tobu Seitetsu Kk
JPS5939774Y2 (en) * 1976-03-22 1984-11-08 昭和電線電纜株式会社 water cooled cable current detector
JPS5661466U (en) * 1979-10-17 1981-05-25
JPS6082067A (en) * 1983-10-07 1985-05-10 Toshiba Corp Protecting system of frequency converter
JP2007298483A (en) * 2006-05-08 2007-11-15 Daido Steel Co Ltd Disconnection detector of flexible cable for alternating current arc furnace
JP2015059751A (en) * 2013-09-17 2015-03-30 大同特殊鋼株式会社 Deterioration detecting method, and deterioration detecting apparatus, for water-cooled cables
CN108627738A (en) * 2017-03-16 2018-10-09 宝钢特钢有限公司 A kind of on-Line Monitor Device and monitoring method for monitoring electroslag furnace water-cooled cable

Also Published As

Publication number Publication date
JP7261386B2 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
US10014162B2 (en) Plasma generation apparatus for generating toroidal plasma
KR20090039080A (en) Noncontact measurement method of current on superconductor wires connected in parallel
WO2016158372A1 (en) Electromagnetic induction type electrical conductivity detector and electromagnetic induction type electrical conductivity meter
KR20200029988A (en) Superheated Steam Generator
JP6123316B2 (en) AC loss measuring method and AC loss measuring apparatus for superconducting coil
WO2006075833A1 (en) Superconducting power cable capable of quench detection and quench detection system using the same
CN105358992B (en) Current sensor arrangement with measuring coil
US20150219695A1 (en) Power inductor and method for implementing shunting measurement through inductor winding
EP3447514B1 (en) Magneto-impedance sensor
JP2020118481A (en) Deterioration detection method for water-cooled cable
JP2005031089A (en) Open-loop electric current sensor and power supply circuit equipped with it
JP2020186946A (en) Impedance measuring system and impedance measuring system method
KR101939051B1 (en) Apparatus for sensing current
JP2015059751A (en) Deterioration detecting method, and deterioration detecting apparatus, for water-cooled cables
JP6215345B2 (en) Superconducting magnet
JP2007298483A (en) Disconnection detector of flexible cable for alternating current arc furnace
JP2002181850A (en) Current detector
US3193605A (en) Means for symmetrizing the load in electric three-phase arc furnaces
JP5103117B2 (en) Induction heating device
JP6358562B2 (en) Degradation position measurement method for superconducting cable lines
JP7510370B2 (en) Method and system for monitoring operation of stationary electromagnetic devices
JP2006047111A (en) Shunt for current measurement
US2182324A (en) Device for measuring high-frequency currents
JP7185382B2 (en) Cable inspection method for indirect spot welding equipment
JP2009158394A (en) Induction heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R150 Certificate of patent or registration of utility model

Ref document number: 7261386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150