JP7261080B2 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
JP7261080B2
JP7261080B2 JP2019085928A JP2019085928A JP7261080B2 JP 7261080 B2 JP7261080 B2 JP 7261080B2 JP 2019085928 A JP2019085928 A JP 2019085928A JP 2019085928 A JP2019085928 A JP 2019085928A JP 7261080 B2 JP7261080 B2 JP 7261080B2
Authority
JP
Japan
Prior art keywords
microcomputer
charging
pilot signal
control
sleep state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019085928A
Other languages
Japanese (ja)
Other versions
JP2020181508A (en
Inventor
鉄兵 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2019085928A priority Critical patent/JP7261080B2/en
Priority to DE102019134496.4A priority patent/DE102019134496A1/en
Publication of JP2020181508A publication Critical patent/JP2020181508A/en
Application granted granted Critical
Publication of JP7261080B2 publication Critical patent/JP7261080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3243Power saving in microcontroller unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Power Sources (AREA)

Description

本発明は、制御装置および制御方法に関する。 The present invention relates to a control device and control method.

従来、例えば、電気自動車などの車両に搭載されるバッテリに対して充電機器などの外部機器が接続され、外部機器が接続されたバッテリの充電を制御する技術が種々提案されている(例えば特許文献1参照)。 Conventionally, for example, various technologies have been proposed in which an external device such as a charging device is connected to a battery mounted in a vehicle such as an electric vehicle, and the charging of the battery to which the external device is connected is controlled (for example, patent documents 1).

特開2012-222931号公報JP 2012-222931 A

上記したバッテリの充電制御は、車両に搭載されるマイクロコンピュータやマイクロコントローラ(以下、「マイコン」と記載する)によって行われる。例えば、マイコンは、外部機器から出力されるパイロット信号が入力されることで、外部機器とバッテリとが電気的に接続されていることを検出し、充電制御を行う。 The charging control of the battery described above is performed by a microcomputer or microcontroller (hereinafter referred to as "microcomputer") mounted on the vehicle. For example, the microcomputer receives a pilot signal output from an external device, detects electrical connection between the external device and the battery, and performs charging control.

ところで、例えばタイマ充電などでは、マイコンは、外部機器とバッテリとが接続された状態で充電の開始時間まで待機することとなる。かかる待機中においてマイコンは、消費電力が比較的少ないスリープ状態へ移行することが好ましい。 By the way, in timer charging, for example, the microcomputer waits until charging starts while the external device and the battery are connected. During such standby, the microcomputer preferably transitions to a sleep state in which power consumption is relatively low.

しかしながら、例えば充電の開始時間になる前に、外部機器とバッテリとの接続が解除された場合、マイコンは、タイマ充電の終了処理などを行う必要がある。そのため、マイコンは、待機中でもパイロット信号の入力の監視処理を行うこととなり、スリープ状態への移行が難しかった。したがって、マイコンをスリープ状態へ移行させて消費電力の低下を図りつつ、パイロット信号を検出する技術が望まれていた。 However, if the connection between the external device and the battery is disconnected before the charging start time, for example, the microcomputer needs to perform timer charging end processing. Therefore, the microcomputer has to monitor the input of the pilot signal even during standby, making it difficult to shift to the sleep state. Therefore, there is a demand for a technique for detecting a pilot signal while reducing power consumption by shifting a microcomputer to a sleep state.

本発明は、上記に鑑みてなされたものであって、マイコンをスリープ状態へ移行させて消費電力の低下を図りつつ、外部装置からのパイロット信号を検出することができる制御装置および制御方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above, and provides a control device and control method capable of detecting a pilot signal from an external device while reducing power consumption by shifting a microcomputer to a sleep state. intended to

上記課題を解決し、目的を達成するために、本発明は、制御装置において、検出部と、起動制御部とを備える。検出部は、外部機器から出力されるパイロット信号を検出する。起動制御部は、前記検出部によるパイロット信号の検出結果に基づいて、スリープ状態のマイコンに対する起動を制御する。また、前記起動制御部は、前記検出部によってパイロット信号が検出されない場合、スリープ状態の前記マイコンを起動させる制御を実行する。 In order to solve the above problems and achieve the object, the present invention provides a control device comprising a detection section and an activation control section. The detector detects a pilot signal output from an external device. The activation control unit controls activation of the microcomputer in a sleep state based on the detection result of the pilot signal by the detection unit. Further, the activation control unit performs control to activate the microcomputer in a sleep state when the pilot signal is not detected by the detection unit.

本発明によれば、マイコンをスリープ状態へ移行させて消費電力の低下を図りつつ、外部装置からのパイロット信号を検出することができる。 According to the present invention, a pilot signal from an external device can be detected while reducing power consumption by shifting the microcomputer to the sleep state.

図1は、実施形態に係る制御装置の制御方法の概要を示す図である。FIG. 1 is a diagram showing an outline of a control method of a control device according to an embodiment. 図2は、充電システムの構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a charging system. 図3は、制御装置が実行する処理手順を示すフローチャートである。FIG. 3 is a flow chart showing a processing procedure executed by the control device.

以下、添付図面を参照して、本願の開示する制御装置および制御方法の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a control device and a control method disclosed in the present application will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.

<1.制御装置による制御方法の概要>
以下では先ず、実施形態に係る制御装置による制御方法の概要について図1を参照して説明する。図1は、実施形態に係る制御装置の制御方法の概要を示す図である。
<1. Overview of control method by control device>
First, an overview of the control method by the control device according to the embodiment will be described below with reference to FIG. FIG. 1 is a diagram showing an outline of a control method of a control device according to an embodiment.

図1に示すように、充電システム1は、制御装置10と、マイコン50とを備える。なお、充電システム1は、図示しない車両に搭載される。 As shown in FIG. 1 , charging system 1 includes control device 10 and microcomputer 50 . Note that the charging system 1 is mounted on a vehicle (not shown).

また、充電システム1には、外部機器である充電機器100が着脱可能に接続される。充電機器100は、例えばAC電源に接続された充電プラグ(図示せず)を備え、かかる充電プラグが充電システム1に電気的に接続されることで、バッテリ(図2参照)への充電が行われる。 A charging device 100 as an external device is detachably connected to the charging system 1 . The charging device 100 includes, for example, a charging plug (not shown) connected to an AC power source, and the charging plug is electrically connected to the charging system 1 to charge the battery (see FIG. 2). will be

また、充電機器100は、充電機器100から充電システム1への電力の供給と供給の遮断とを切り替える制御装置であるCCID(Charging Circuit Interrupt Device)を備え、パイロット信号(例えばパルス信号)を充電システム1へ出力することができる。 In addition, the charging equipment 100 includes a CCID (Charging Circuit Interrupt Device), which is a control device for switching between supply and interruption of power supply from the charging equipment 100 to the charging system 1, and outputs a pilot signal (for example, a pulse signal) to the charging system. 1 can be output.

上記した充電機器100から出力されるパイロット信号は、例えば、充電機器100とバッテリ(図2参照)との間で通信されるパルス幅変調された充電制御信号である。詳しくは、パイロット信号は、充電機器100とバッテリの充電を制御する充電制御装置(後述)との間で通信される充電制御信号である。かかる充電制御信号には、例えば、パルス幅変調(PWM(Pulse Width Modulation))制御により、バッテリの充電電流量を示す情報などバッテリの充電に関する情報を示す信号が含まれるが、これに限定されるものではない。なお、充電制御信号であるパイロット信号は、制御装置10や充電制御装置に入力されてバッテリの充電等が制御される。 The pilot signal output from the charging device 100 described above is, for example, a pulse width modulated charge control signal communicated between the charging device 100 and the battery (see FIG. 2). Specifically, the pilot signal is a charge control signal that is communicated between charging equipment 100 and a charge control device (described later) that controls charging of the battery. Such charging control signals include, but are not limited to, signals indicating information about battery charging, such as information indicating battery charging current amount, for example, by pulse width modulation (PWM) control. not a thing A pilot signal, which is a charging control signal, is input to the control device 10 and the charging control device to control battery charging and the like.

制御装置10は、充電機器100とマイコン50とにそれぞれ接続される。言い換えると、制御装置10は、充電機器100とマイコン50との間に介挿するようにして、充電機器100とマイコン50とに接続される。 Control device 10 is connected to charging equipment 100 and microcomputer 50 respectively. In other words, control device 10 is connected to charging equipment 100 and microcomputer 50 by being inserted between charging equipment 100 and microcomputer 50 .

なお、制御装置10は、消費電力がマイコン50の消費電力に比べて低くなるように設定される。例えば、制御装置10は、消費電力がマイコン50の消費電力より低いウォッチドッグタイマなどを備えるように構成されるが、これについては後述する。 The power consumption of the control device 10 is set to be lower than that of the microcomputer 50 . For example, the control device 10 is configured to include a watchdog timer whose power consumption is lower than the power consumption of the microcomputer 50, etc., which will be described later.

マイコン50は、例えばタイマ充電などを含むバッテリ(図2参照)の充電制御を行うことができる。例えば、マイコン50は、ユーザなどの要求に応じてタイマ充電が開始されると、消費電力が比較的少ないスリープ状態に移行し(ステップS1)、充電の開始時間まで待機する処理を実行する。このように、本実施形態にあっては、例えばバッテリの充電などが直ちに実行されない場合に、マイコン50をスリープ状態へ移行させて消費電力の低下を図ることができる。 The microcomputer 50 can perform charging control of the battery (see FIG. 2) including timer charging, for example. For example, when timer charging is started in response to a request from a user or the like, the microcomputer 50 shifts to a sleep state in which power consumption is relatively low (step S1), and executes processing to wait until charging start time. As described above, in the present embodiment, the power consumption can be reduced by shifting the microcomputer 50 to the sleep state, for example, when the battery is not charged immediately.

マイコン50がスリープ状態に移行した後、制御装置10は、充電機器100から出力されるパイロット信号を検出する(ステップS2)。 After microcomputer 50 transitions to the sleep state, control device 10 detects a pilot signal output from charging equipment 100 (step S2).

そして、制御装置10は、パイロット信号の検出結果に基づいて、スリープ状態のマイコン50に対する起動を制御する(ステップS3)。例えば、制御装置10は、充電機器100から出力されるパイロット信号が検出される場合、充電機器100とバッテリ(図2参照)とは接続された状態であることから、マイコン50に対して起動信号等を出力せず、マイコン50のスリープ状態を継続させる。 Based on the detection result of the pilot signal, the control device 10 controls activation of the microcomputer 50 in the sleep state (step S3). For example, when a pilot signal output from charging equipment 100 is detected, control device 10 outputs a start signal to microcomputer 50 because charging equipment 100 and the battery (see FIG. 2) are in a connected state. etc. is not output, and the sleep state of the microcomputer 50 is continued.

他方、例えば、制御装置10は、充電機器100から出力されるパイロット信号が検出されない場合、充電機器100とバッテリ(図2参照)との接続が解除された状態であることから、スリープ状態のマイコン50を起動させる制御を実行する。すなわち、制御装置10は、充電機器100とバッテリとの接続が何らかの理由で解除されてパイロット信号が検出されない場合、マイコン50にタイマ充電の終了処理などを行わせるべく、スリープ状態のマイコン50を起動させる起動信号をマイコン50へ出力する。 On the other hand, for example, when the pilot signal output from charging equipment 100 is not detected, control device 10 determines that the connection between charging equipment 100 and the battery (see FIG. 2) is released, so that the microcomputer in the sleep state 50 is activated. That is, when the connection between the charging device 100 and the battery is disconnected for some reason and the pilot signal is not detected, the control device 10 activates the microcomputer 50 in the sleep state so as to cause the microcomputer 50 to perform timer charging end processing. It outputs to the microcomputer 50 an activation signal to start the operation.

かかる起動信号によりマイコン50は起動し(ステップS4)、スリープ状態が解除されて例えばタイマ充電の終了処理などを行う。 The activation signal activates the microcomputer 50 (step S4), cancels the sleep state, and performs, for example, timer charging end processing.

このように、本実施形態に係る制御装置10にあっては、マイコン50をスリープ状態へ移行させて消費電力の低下を図りつつ、充電機器100からのパイロット信号を検出することができる。また、制御装置10は、パイロット信号が検出されない場合、スリープ状態のマイコン50を起動させる制御を実行することで、例えば、マイコン50にタイマ充電の終了処理などを実行させることが可能になる。 As described above, the control device 10 according to the present embodiment can detect the pilot signal from the charging device 100 while reducing the power consumption by shifting the microcomputer 50 to the sleep state. Further, when the pilot signal is not detected, the control device 10 executes control to activate the microcomputer 50 in the sleep state, thereby making it possible to cause the microcomputer 50 to execute timer charging end processing, for example.

<2.充電システムの構成>
次に、実施形態に係る充電システム1の構成について、図2を用いて説明する。図2は、充電システム1の構成例を示すブロック図である。なお、図2などのブロック図では、本実施形態の特徴を説明するために必要な構成要素のみを機能ブロックで表しており、一般的な構成要素についての記載を省略している。
<2. Configuration of Charging System>
Next, the configuration of the charging system 1 according to the embodiment will be described using FIG. 2 . FIG. 2 is a block diagram showing a configuration example of the charging system 1. As shown in FIG. Note that in block diagrams such as FIG. 2 , only constituent elements necessary for explaining the features of the present embodiment are represented by functional blocks, and general constituent elements are omitted.

換言すれば、図2などのブロック図に図示される各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。例えば、各機能ブロックの分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することが可能である。 In other words, each component illustrated in block diagrams such as FIG. 2 is functionally conceptual and does not necessarily need to be physically configured as illustrated. For example, the specific forms of distribution and integration of each functional block are not limited to those shown in the figure, and all or part of them can be functionally or physically distributed in arbitrary units according to various loads and usage conditions.・It is possible to integrate and configure.

図2に示すように、充電システム1は、上記した制御装置10と、充電制御装置40と、充電回路70と、バッテリ80とを備える。 As shown in FIG. 2 , the charging system 1 includes the control device 10 described above, the charging control device 40 , the charging circuit 70 and the battery 80 .

制御装置10は、ウォッチドッグタイマ20と、ダイオード31と、分圧用抵抗32とを備える。 The control device 10 includes a watchdog timer 20 , a diode 31 and a voltage dividing resistor 32 .

ダイオード31は、充電機器100から供給されるパイロット信号の負成分を除去する。分圧用抵抗32は、ダイオード31とウォッチドッグタイマ20との間に介挿され、充電機器100から供給される電圧を充電制御装置40等へ入力できる値に低下させる。 Diode 31 removes the negative component of the pilot signal supplied from charging equipment 100 . The voltage dividing resistor 32 is interposed between the diode 31 and the watchdog timer 20, and reduces the voltage supplied from the charging device 100 to a value that can be input to the charging control device 40 and the like.

ウォッチドッグタイマ20は、検出部21と、起動制御部22とを備え、充電機器100から出力されるパイロット信号を監視する。なお、ウォッチドッグタイマ20は、上記したように、消費電力がマイコン50の消費電力より低くなるように設定される。 Watchdog timer 20 includes detection unit 21 and activation control unit 22 and monitors a pilot signal output from charging device 100 . The power consumption of the watchdog timer 20 is set to be lower than that of the microcomputer 50, as described above.

検出部21は、充電機器100から出力されるパイロット信号を検出する。検出部21は、パイロット信号の検出結果を示す信号を起動制御部22へ出力する。 Detector 21 detects a pilot signal output from charging equipment 100 . The detection unit 21 outputs a signal indicating the detection result of the pilot signal to the activation control unit 22 .

起動制御部22は、検出部21によるパイロット信号の検出結果に基づいて、スリープ状態のマイコン50に対する起動を制御する。例えば、起動制御部22は、検出部21によってパイロット信号が検出されない場合、スリープ状態のマイコン50を起動させる制御を実行する、すなわち起動信号をマイコン50へ出力する。 The activation control unit 22 controls activation of the microcomputer 50 in the sleep state based on the detection result of the pilot signal by the detection unit 21 . For example, when the pilot signal is not detected by the detection unit 21 , the activation control unit 22 executes control to activate the microcomputer 50 in the sleep state, that is, outputs an activation signal to the microcomputer 50 .

上記したように、充電機器100とバッテリ80とが接続された状態のときに充電機器100からパイロット信号が入力されることから、起動制御部22は、パイロット信号の検出結果に基づいて充電機器100とバッテリ80との接続状態を判定しているといえる。 As described above, the pilot signal is input from charging device 100 when charging device 100 and battery 80 are connected. It can be said that the state of connection with the battery 80 is determined.

そして、起動制御部22は、パイロット信号が検出されない場合、充電機器100とバッテリ80との接続が解除されたと判定し、スリープ状態のマイコン50を起動させる制御を実行する。これにより、マイコン50を起動させ、例えばタイマ充電の終了処理などを行わせることが可能になる。 When the pilot signal is not detected, activation control unit 22 determines that the connection between charging device 100 and battery 80 has been released, and performs control to activate microcomputer 50 in the sleep state. As a result, the microcomputer 50 can be activated to perform, for example, timer charging end processing.

また、例えば、起動制御部22は、検出部21によってパイロット信号が検出される場合、充電機器100とバッテリ80とは電気的に接続された状態であり、マイコン50にタイマ充電の終了処理などを行わせる必要はないため、スリープ状態のマイコン50を起動させる制御を実行しない、言い換えると、スリープ状態のマイコン50を起動させる制御の実行を禁止する。これにより、マイコン50のスリープ状態を継続させることが可能になる。 Further, for example, when the pilot signal is detected by the detection unit 21, the activation control unit 22 indicates that the charging device 100 and the battery 80 are electrically connected, and instructs the microcomputer 50 to terminate timer charging. Since there is no need to activate the microcomputer 50 in the sleep state, the control to activate the microcomputer 50 in the sleep state is not executed. In other words, the execution of the control to activate the microcomputer 50 in the sleep state is prohibited. As a result, the sleep state of the microcomputer 50 can be continued.

充電制御装置40は、マイコン(制御部)50と、記憶部60とを備える。マイコン50は、タイマ部51と、充電制御部52とを備え、CPU(Central Processing Unit)などを有する。 The charging control device 40 includes a microcomputer (control section) 50 and a storage section 60 . The microcomputer 50 includes a timer section 51, a charging control section 52, and a CPU (Central Processing Unit).

タイマ部51は、例えばバッテリ80の充電を予め設定された開始時間になったときに開始する、いわゆるタイマ充電に関する処理を実行する。例えば、タイマ部51は、ユーザなどからタイマ充電の要求を受け付ける。かかるタイマ充電の要求には、例えば、充電の開始時間を示す情報などが含まれるものとする。そして、タイマ部51は、受け付けた要求に応じて設定された開始時間になったときに、バッテリ80の充電を開始させる信号を充電制御部52へ出力する。 The timer unit 51 executes processing related to so-called timer charging, for example, starting charging of the battery 80 at a preset start time. For example, the timer unit 51 receives a request for timer charging from a user or the like. The request for timer charging includes, for example, information indicating the charging start time. Then, timer unit 51 outputs a signal for starting charging of battery 80 to charge control unit 52 when the start time set according to the received request has come.

なお、タイマ部51は、例えばタイマ充電の要求を受け付けたときにマイコン50をスリープ状態へ移行させる処理を実行してもよい。また、タイマ部51は、ウォッチドッグタイマ20から起動信号が入力されたとき、例えばマイコン50をスリープ状態から通常の起動状態へ移行させるとともに、タイマ充電の終了処理などを行うことができる。 Note that the timer unit 51 may execute processing for shifting the microcomputer 50 to a sleep state, for example, when a request for timer charging is received. Further, when a start signal is input from the watchdog timer 20, the timer unit 51 can shift the microcomputer 50 from a sleep state to a normal start state, for example, and perform timer charging end processing.

充電制御部52は、充電回路70を制御し、バッテリ80の充電を制御する。例えば、充電制御部52は、バッテリ80の残量などを示す情報を図示しないセンサから取得し、バッテリ80の残量等に基づいて充電回路70を制御し、バッテリ80の充電を制御する。また、例えば、充電制御部52には、充電機器100からパイロット信号(例えばパルス幅変調された充電制御信号)が入力され、充電制御部52は、入力されたパイロット信号(充電制御信号)に基づいて充電回路70を制御し、バッテリ80の充電を制御してもよい。 The charging control unit 52 controls the charging circuit 70 to control charging of the battery 80 . For example, the charging control unit 52 acquires information indicating the remaining amount of the battery 80 from a sensor (not shown), controls the charging circuit 70 based on the remaining amount of the battery 80 , and controls charging of the battery 80 . Further, for example, the charge control unit 52 receives a pilot signal (for example, a pulse width modulated charge control signal) from the charging device 100, and the charge control unit 52 operates based on the input pilot signal (charge control signal). may control charging circuit 70 to control charging of battery 80 .

また、充電制御部52は、上記したタイマ部51から充電を開始させる信号が入力されるとき、バッテリ80の充電を開始することができる。 Further, the charging control unit 52 can start charging the battery 80 when a signal for starting charging is input from the timer unit 51 described above.

記憶部60は、不揮発性メモリやハードディスクドライブといった記憶デバイスで構成される記憶部である。かかる記憶部60には、各種プログラムや設定データなどが記憶される。 The storage unit 60 is a storage unit configured with a storage device such as a nonvolatile memory or a hard disk drive. Various programs, setting data, and the like are stored in the storage unit 60 .

充電回路70は、充電機器100とバッテリ80との間に介挿される回路であり、図示しないリレーなどバッテリ80の充電に必要な各種の電子部品を備える。バッテリ80は、電気自動車などの車両のモータなどの駆動源や補機類に対して電力を供給する。 The charging circuit 70 is a circuit interposed between the charging device 100 and the battery 80 , and includes various electronic components necessary for charging the battery 80 such as relays (not shown). The battery 80 supplies electric power to a drive source such as a motor of a vehicle such as an electric vehicle, and accessories.

<3.制御装置の制御処理>
次に、制御装置10における具体的な処理手順について図3を用いて説明する。図3は、制御装置10が実行する処理手順を示すフローチャートである。
<3. Control processing of control device>
Next, a specific processing procedure in the control device 10 will be described with reference to FIG. FIG. 3 is a flowchart showing a processing procedure executed by the control device 10. As shown in FIG.

図3に示すように、制御装置10は、マイコン50がスリープ状態であるか否かを判定する(ステップS10)。制御装置10は、マイコン50がスリープ状態ではないと判定された場合(ステップS10,No)、以降の処理をスキップする。 As shown in FIG. 3, the control device 10 determines whether or not the microcomputer 50 is in a sleep state (step S10). When it is determined that the microcomputer 50 is not in the sleep state (step S10, No), the control device 10 skips subsequent processing.

一方、制御装置10は、マイコン50がスリープ状態であると判定された場合(ステップS10,Yes)、充電制御装置40からのパイロット信号が検出されたか否かを判定する(ステップS11)。 On the other hand, when it is determined that microcomputer 50 is in the sleep state (step S10, Yes), control device 10 determines whether or not a pilot signal from charging control device 40 is detected (step S11).

制御装置10は、充電制御装置40からのパイロット信号が検出されたと判定された場合(ステップS11,Yes)、以降の処理をスキップする。他方、制御装置10は、充電制御装置40からのパイロット信号が検出されていないと判定された場合(ステップS11,No)、スリープ状態のマイコンに対する起動信号を出力する(ステップS12)。 If it is determined that the pilot signal from charging control device 40 has been detected (step S11, Yes), control device 10 skips the subsequent processes. On the other hand, when it is determined that the pilot signal from charging control device 40 is not detected (step S11, No), control device 10 outputs an activation signal to the microcomputer in the sleep state (step S12).

上述してきたように、実施形態に係る制御装置10は、検出部21と、起動制御部22とを備える。検出部21は、充電機器100から出力されるパイロット信号を検出する。起動制御部22は、検出部21によるパイロット信号の検出結果に基づいて、スリープ状態のマイコン50に対する起動を制御する。また、起動制御部22は、検出部21によってパイロット信号が検出されない場合、スリープ状態のマイコン50を起動させる制御を実行する。これにより、マイコン50をスリープ状態へ移行させて消費電力の低下を図りつつ、充電機器100からのパイロット信号を検出することができる。 As described above, the control device 10 according to the embodiment includes the detector 21 and the activation controller 22 . Detector 21 detects a pilot signal output from charging equipment 100 . The activation control unit 22 controls activation of the microcomputer 50 in the sleep state based on the detection result of the pilot signal by the detection unit 21 . Further, when the pilot signal is not detected by the detection unit 21, the activation control unit 22 executes control to activate the microcomputer 50 in the sleep state. As a result, the pilot signal from the charging device 100 can be detected while the microcomputer 50 is shifted to the sleep state to reduce power consumption.

なお、上記した実施形態では、ウォッチドッグタイマ20が検出部21や起動制御部22を備えるようにしたが、これに限定されるものではなく、例えばマイコン50の消費電力より低くなるように設定されたサブマイコンが検出部21や起動制御部22を備えるようにしてもよい。 In the above-described embodiment, the watchdog timer 20 includes the detection unit 21 and the activation control unit 22. However, the power consumption is set to be lower than the power consumption of the microcomputer 50, for example. Alternatively, the sub-microcomputer may include the detection unit 21 and the activation control unit 22 .

また、上記では、外部機器の一例として充電機器100を挙げたが、これに限定されるものではなく、例えば、車両のドアの開閉状態を示すパイロット信号を出力するドア状態出力機器などであってもよい。かかるドア状態出力機器は、ドアに設けられ、ドアが閉鎖されるときに制御装置10に接続される一方、ドアが開放されるときに制御装置10との接続が解除されるものとする。これにより、制御装置10は、車両のドアの開閉を監視する処理を行うことが可能になる。すなわち、制御装置10は、ドア状態出力機器から出力されるパイロット信号が検出される場合、ドアが閉鎖されていると判定する一方、パイロット信号が検出されない場合、ドアが開放されたと判定し、スリープ状態のマイコン50を起動させる制御を実行する。そして、マイコン50は、ドアの開放に伴う処理(例えばドアの開放を報知する処理など)を実行することが可能になる。このように、外部機器は、パイロット信号を出力機器であれば、その他の種類の機器であってもよい。 In the above description, the charging device 100 is used as an example of the external device, but the present invention is not limited to this, and may be, for example, a door state output device that outputs a pilot signal indicating the open/closed state of the door of the vehicle. good too. Such a door status output device is provided on the door, and is connected to the control device 10 when the door is closed, and disconnected from the control device 10 when the door is opened. This enables the control device 10 to perform a process of monitoring the opening and closing of the vehicle door. That is, when the pilot signal output from the door state output device is detected, the control device 10 determines that the door is closed, and when the pilot signal is not detected, determines that the door is opened, and sleeps. Execute control to activate the microcomputer 50 in the state. Then, the microcomputer 50 can execute processing associated with the opening of the door (for example, processing for notifying the opening of the door). In this way, the external device may be any other type of device as long as it outputs a pilot signal.

さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspects of the invention are not limited to the specific details and representative embodiments so shown and described. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and equivalents thereof.

10 制御装置
20 ウォッチドッグタイマ
21 検出部
22 起動制御部
50 マイコン
100 充電機器
REFERENCE SIGNS LIST 10 control device 20 watchdog timer 21 detection unit 22 startup control unit 50 microcomputer 100 charging device

Claims (6)

外部機器から出力されるパイロット信号を検出する検出部と、
前記検出部によるパイロット信号の検出結果に基づいて、スリープ状態のマイコンに対する起動を制御する起動制御部と
を備え、
前記外部機器は、
車両に搭載されたバッテリに接続されて前記バッテリの充電を行う充電機器であり、
前記マイコンは、
予め設定された開始時間になったときに前記バッテリの充電を開始するタイマ充電の機能を有し、前記充電機器が前記車両に接続された状態で、前記開始時間になるまではスリープ状態となり、
前記起動制御部は、
前記検出部によってパイロット信号が検出されなくなった場合、スリープ状態の前記マイコンを起動させる制御を実行して前記マイコンに前記タイマ充電の終了処理を実行させること
を特徴とする制御装置。
a detection unit that detects a pilot signal output from an external device;
an activation control unit that controls activation of the microcomputer in a sleep state based on the detection result of the pilot signal by the detection unit;
The external device is
A charging device that is connected to a battery mounted on a vehicle and charges the battery,
The microcomputer
It has a timer charging function that starts charging the battery when a preset start time comes, and enters a sleep state until the start time while the charging device is connected to the vehicle,
The activation control unit
A control device, wherein, when the pilot signal is no longer detected by the detection unit, control is executed to activate the microcomputer in a sleep state to cause the microcomputer to execute the timer charging termination process .
前記検出部および前記起動制御部を含み、前記外部機器から出力されるパイロット信号が検出されない場合、スリープ状態の前記マイコンを起動させる信号を出力するウォッチドッグタイマ
を備えることを特徴とする請求項1に記載の制御装置。
2. A watchdog timer that includes the detection unit and the activation control unit and outputs a signal for activating the microcomputer in a sleep state when a pilot signal output from the external device is not detected. The control device according to .
前記起動制御部は、
前記検出部によるパイロット信号の検出結果に基づいて前記充電機器と前記バッテリとの接続状態を判定するとともに、前記検出部によってパイロット信号が検出されない場合、前記充電機器と前記バッテリとの接続が解除されたと判定し、スリープ状態の前記マイコンを起動させる制御を実行すること
を特徴とする請求項1または2に記載の制御装置。
The activation control unit
The connection state between the charging device and the battery is determined based on the detection result of the pilot signal by the detection unit, and when the pilot signal is not detected by the detection unit, the connection between the charging device and the battery is released. 3. The control device according to claim 1 , wherein the controller determines that the microcomputer is in a sleep state, and executes control for activating the microcomputer in a sleep state.
前記充電機器から出力されるパイロット信号は、
前記充電機器と前記バッテリとの間で通信されるパルス幅変調された充電制御信号であること
を特徴とする請求項1~3のいずれか一つに記載の制御装置。
The pilot signal output from the charging device is
A control device according to any one of claims 1 to 3, characterized in that it is a pulse width modulated charge control signal communicated between the charging device and the battery.
予め設定された開始時間になったときに車両に搭載されたバッテリの充電を開始するタイマ充電の機能を有し、前記車両に接続されるとパイロット信号を出力して前記バッテリの充電を行う外部充電機器が前記車両に接続されると、前記開始時間になるまでスリープ状態となるマイコンと、 It has a timer charging function that starts charging the battery mounted on the vehicle at a preset start time, and outputs a pilot signal when connected to the vehicle to charge the battery. a microcomputer that enters a sleep state until the start time when the charging device is connected to the vehicle;
前記パイロット信号が検出されなくなった場合、スリープ状態の前記マイコンを起動させる制御を実行して前記マイコンに前記タイマ充電の終了処理を実行させる起動制御部と an activation control unit that, when the pilot signal is no longer detected, performs control to activate the microcomputer in a sleep state, and causes the microcomputer to perform termination processing of the timer charging;
を備えることを特徴とする制御装置。 A control device comprising:
制御装置が、外部機器から出力されるパイロット信号を検出する検出工程と、
前記制御装置が、前記検出工程によるパイロット信号の検出結果に基づいて、スリープ状態のマイコンに対する起動を制御する起動制御工程と
を含み、
前記外部機器は、
車両に搭載されたバッテリに接続されて前記バッテリの充電を行う充電機器であり、
前記マイコンは、
予め設定された開始時間になったときに前記バッテリの充電を開始するタイマ充電の機能を有し、前記充電機器が前記車両に接続された状態で、前記開始時間になるまではスリープ状態となり、
前記起動制御工程は、
前記検出工程によってパイロット信号が検出されなくなった場合、スリープ状態の前記マイコンを起動させる制御を実行して前記マイコンに前記タイマ充電の終了処理を実行させること
を特徴とする制御方法。
A detection step in which the control device detects a pilot signal output from an external device;
an activation control step in which the control device controls activation of the microcomputer in a sleep state based on the detection result of the pilot signal in the detection step;
The external device is
A charging device that is connected to a battery mounted on a vehicle and charges the battery,
The microcomputer
It has a timer charging function that starts charging the battery when a preset start time comes, and enters a sleep state until the start time while the charging device is connected to the vehicle,
The start control step includes:
A control method comprising: when a pilot signal is no longer detected in the detection step, executing control to wake up the microcomputer in a sleep state to cause the microcomputer to execute the timer charging termination process .
JP2019085928A 2019-04-26 2019-04-26 Control device and control method Active JP7261080B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019085928A JP7261080B2 (en) 2019-04-26 2019-04-26 Control device and control method
DE102019134496.4A DE102019134496A1 (en) 2019-04-26 2019-12-16 CONTROL DEVICE AND CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085928A JP7261080B2 (en) 2019-04-26 2019-04-26 Control device and control method

Publications (2)

Publication Number Publication Date
JP2020181508A JP2020181508A (en) 2020-11-05
JP7261080B2 true JP7261080B2 (en) 2023-04-19

Family

ID=72840222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085928A Active JP7261080B2 (en) 2019-04-26 2019-04-26 Control device and control method

Country Status (2)

Country Link
JP (1) JP7261080B2 (en)
DE (1) DE102019134496A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029479A1 (en) 2010-09-03 2012-03-08 本田技研工業株式会社 Charging control apparatus and charging system
WO2013054387A1 (en) 2011-10-11 2013-04-18 トヨタ自動車株式会社 Charging control device for vehicle, and vehicle equippped with same
JP5241696B2 (en) 2009-12-25 2013-07-17 株式会社エヌ・ティ・ティ・ドコモ Alarm management system and alarm management method
JP2016220397A (en) 2015-05-20 2016-12-22 トヨタ自動車株式会社 Electric vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241696A (en) * 1992-02-28 1993-09-21 Toshiba Corp Personal computer
JP2015089206A (en) * 2013-10-30 2015-05-07 株式会社デンソー On-vehicle charging system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241696B2 (en) 2009-12-25 2013-07-17 株式会社エヌ・ティ・ティ・ドコモ Alarm management system and alarm management method
WO2012029479A1 (en) 2010-09-03 2012-03-08 本田技研工業株式会社 Charging control apparatus and charging system
WO2013054387A1 (en) 2011-10-11 2013-04-18 トヨタ自動車株式会社 Charging control device for vehicle, and vehicle equippped with same
JP2016220397A (en) 2015-05-20 2016-12-22 トヨタ自動車株式会社 Electric vehicle

Also Published As

Publication number Publication date
DE102019134496A1 (en) 2020-10-29
JP2020181508A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
JP4575488B2 (en) Information processing device
US7639963B2 (en) Image forming apparatus and method with charge switching to effect power supply control
JP5589346B2 (en) Charging circuit and charging method thereof
JP2007318849A (en) Electric system of electric automobile
US8527799B2 (en) Information processing apparatus capable of being instructed to power off by a command from external apparatus, method of controlling the same, and storage medium
JP2013533562A (en) Computer system, method and computer program product for programming a real time clock
EP3742257A1 (en) System and method of power mode management for a processor
WO2010042108A1 (en) Power management in a system having a processor and a voltage converter that provides a power voltage to the processor
US9889762B2 (en) Control system for charging vehicle battery in response to an unstable state
JP6408843B2 (en) Vehicle power supply device
JP3594505B2 (en) In-vehicle computer with car battery protection function
JP6323296B2 (en) Control device
JP7261080B2 (en) Control device and control method
CN110733366A (en) Awakening method and device for vehicle-mounted charger
JP3724226B2 (en) Battery charging system
JPH0287936A (en) Charge control circuit
CN108241361B (en) Vehicle power supply control method, controller and vehicle
JP2007124781A (en) Power supply device, uninterruptible power supply device and power output control method
JP6231752B2 (en) Device control apparatus and device control method
JP3711849B2 (en) Microcomputer
JP2010257493A (en) Information processor and power supply method
KR101745634B1 (en) Apparatus and Method for Controlling Relay having Function of Protecting Pre-Charge Relay
KR101876734B1 (en) Controller Mounted On Vehicle and Method For Detecting Ignition Condition Thereof
JP2001333545A (en) Power supply, electronic device and its stopping/restoring method and recording medium
JP7378445B2 (en) Electronic control unit, information processing method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230407

R150 Certificate of patent or registration of utility model

Ref document number: 7261080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150