JP7257562B2 - LAMINATED FUNCTION AS TRANSPARENT CONDUCTIVE FILM, METHOD FOR MANUFACTURING SAME, AND OXIDE SPUTTERING TARGET FOR MANUFACTURING SAME LAMINATED PRODUCT - Google Patents

LAMINATED FUNCTION AS TRANSPARENT CONDUCTIVE FILM, METHOD FOR MANUFACTURING SAME, AND OXIDE SPUTTERING TARGET FOR MANUFACTURING SAME LAMINATED PRODUCT Download PDF

Info

Publication number
JP7257562B2
JP7257562B2 JP2022014394A JP2022014394A JP7257562B2 JP 7257562 B2 JP7257562 B2 JP 7257562B2 JP 2022014394 A JP2022014394 A JP 2022014394A JP 2022014394 A JP2022014394 A JP 2022014394A JP 7257562 B2 JP7257562 B2 JP 7257562B2
Authority
JP
Japan
Prior art keywords
film
mol
oxide film
laminate
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022014394A
Other languages
Japanese (ja)
Other versions
JP2022169430A (en
Inventor
淳史 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to EP22795667.9A priority Critical patent/EP4332995A1/en
Priority to CN202280031068.9A priority patent/CN117280428A/en
Priority to PCT/JP2022/018417 priority patent/WO2022230754A1/en
Priority to KR1020237040238A priority patent/KR20240001183A/en
Priority to TW111115859A priority patent/TW202332581A/en
Priority to JP2022109298A priority patent/JP7428753B2/en
Publication of JP2022169430A publication Critical patent/JP2022169430A/en
Application granted granted Critical
Publication of JP7257562B2 publication Critical patent/JP7257562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、透明導電膜としての機能を有する積層体及び当該積層体の製造方法並びに当該積層体製造用の酸化物スパッタリングターゲットに関する。 TECHNICAL FIELD The present invention relates to a laminate functioning as a transparent conductive film, a method for producing the laminate, and an oxide sputtering target for producing the laminate.

ITO(Indium-Tin-Oxide)膜は、低抵抗率、高透過率、微細加工容易性等の特徴を有し、これらの特徴が他の透明導電膜より優れていることから、フラットパネルディスプレイ用の表示電極を始めとして、広範囲の分野に亘って使用されている。現在、産業利用上のITO膜の多くは、大面積均一性に優れ、生産性良く作製できることから、ITO焼結体をスパッタリングターゲットとして使用して成膜する、いわゆるスパッタ成膜法で作製されている。 ITO (Indium-Tin-Oxide) films have characteristics such as low resistivity, high transmittance, and ease of fine processing. are used in a wide range of fields, including display electrodes of At present, most ITO films for industrial use are produced by a so-called sputtering film formation method, in which a film is formed using an ITO sintered compact as a sputtering target, because it is excellent in large-area uniformity and can be produced with high productivity. there is

ITO膜は、結晶化させることで、低抵抗かつ透明な膜となるため、成膜後、220~250℃程度でアニールすることが行われている。一方、さらに、低抵抗率かつ高透過率の膜が望まれており、300℃以上の温度でアニールすることも試されている。しかし、アニールを行うと、透過率が向上する一方、抵抗率が上昇してしまい、現状は、さらなる低抵抗率と高透過率を共に備えた膜が得られていない。なお、出願人は、以前、低温で、低抵抗なITO膜を形成することができる技術を提案した(例えば、特許文献1)。 An ITO film is annealed at about 220 to 250.degree. On the other hand, a film with a low resistivity and a high transmittance is desired, and annealing at a temperature of 300° C. or higher is being tried. However, while the annealing improves the transmittance, the resistivity also increases. At present, a film having both a lower resistivity and a higher transmittance cannot be obtained. The applicant previously proposed a technique capable of forming a low-resistance ITO film at a low temperature (for example, Patent Document 1).

特開2020-164930号公報Japanese Patent Application Laid-Open No. 2020-164930

本発明は、ITO膜より低い抵抗率(表面抵抗)かつ高透過率の積層体を提供することを課題とする。 An object of the present invention is to provide a laminate having a resistivity (surface resistance) lower than that of an ITO film and a high transmittance.

上記の課題を解決するために、本発明者は鋭意研究を行った結果、ITO膜上に特定の酸化膜を積層した積層体とすることで、アニールによる抵抗率(表面抵抗)の上昇を防ぎつつ、高透過率を維持できるとの知見が得られた。このような知見に鑑み、本開示は以下の態様を提供するものである。 In order to solve the above problems, the present inventors conducted extensive research and found that by forming a laminate in which a specific oxide film is laminated on an ITO film, an increase in resistivity (surface resistance) due to annealing can be prevented. It was found that the high transmittance can be maintained while maintaining the high transmittance. In view of such findings, the present disclosure provides the following aspects.

本発明の一態様は、ITO膜に酸化膜が積層された積層体であり、表面抵抗が40Ωcm/sq.以下、かつ、可視光平均透過率が90%以上であり、前記酸化膜の膜厚が90nm未満であり、ITO膜の膜厚と前記酸化膜との膜厚との比(ITO膜の膜厚/酸化膜の膜厚)が15未満であることを特徴とする積層体である。 One aspect of the present invention is a laminate in which an oxide film is laminated on an ITO film, and has a surface resistance of 40 Ωcm/sq. below, and the average visible light transmittance is 90% or more, the thickness of the oxide film is less than 90 nm, and the ratio of the thickness of the ITO film to the thickness of the oxide film (the thickness of the ITO film /thickness of oxide film) is less than 15.

本発明の別の態様は、ITO膜と酸化膜が積層した積層体であって、220℃で大気アニールを実施した場合の当該積層体の表面抵抗をR1とし、550℃で大気アニールを実施した場合の当該積層体の表面抵抗をR2としたとき、R2/R1≦1.0であることを特徴とする積層体である。 Another aspect of the present invention is a laminate in which an ITO film and an oxide film are laminated, wherein the surface resistance of the laminate is R1 when air annealing is performed at 220 ° C., and air annealing is performed at 550 ° C. The laminated body is characterized in that R2/R1≤1.0, where R2 is the surface resistance of the laminated body in the case.

また、本発明の別の態様は、ITO膜と酸化膜が積層した積層体であって、前記酸化膜は、ZnをZnO換算で0mol%以上69mol%未満含有し、GaをGa換算
で9mol%以上100mol%以下含有し、SiをSiO換算で0mol%以上60mol%未満含有し、前記酸化膜の膜厚が90nm未満であり、ITO膜の膜厚と前記酸化膜との膜厚との比(ITO膜の膜厚/酸化膜の膜厚)が15未満であることを特徴とする積層体である。
Another aspect of the present invention is a laminate in which an ITO film and an oxide film are laminated, wherein the oxide film contains 0 mol % or more and less than 69 mol % of Zn in terms of ZnO, and Ga in terms of Ga 2 O 3 contains 9 mol% or more and 100 mol% or less, Si contains 0 mol% or more and less than 60 mol% in terms of SiO2 , the thickness of the oxide film is less than 90 nm, and the thickness of the ITO film and the thickness of the oxide film (thickness of ITO film/thickness of oxide film) is less than 15.

さらに、本発明の別の態様は、ZnをZnO換算で10mol%を超え60mol%未満含有し、GaをGa換算で10mol%以上60mol%以下含有し、SiをSiO換算で25mol%以上50mol%未満含有する酸化物スパッタリングターゲットである。 Furthermore, another aspect of the present invention contains more than 10 mol% and less than 60 mol% of Zn in terms of ZnO, contains 10 mol% to 60 mol% of Ga in terms of Ga2O3 , and contains 25 mol% of Si in terms of SiO2 . An oxide sputtering target containing not less than 50 mol %.

本発明に係る積層体は、ITO膜に比べて、低い抵抗率(表面抵抗)かつ高透過率という優れた特性を備える。また、ITO膜に特定の酸化膜を積層することで、簡便に、良好な特性を備えた透明導電膜(積層体)を提供することができる。 The laminate according to the present invention has excellent properties such as low resistivity (surface resistance) and high transmittance compared to ITO films. Further, by laminating a specific oxide film on an ITO film, it is possible to easily provide a transparent conductive film (laminate) having good properties.

本実施形態の積層体における酸化膜(Zn-Ga-Si-O)に相当する組成と発明の効果との関係を示す組図である。FIG. 2 is a set diagram showing the relationship between the composition corresponding to the oxide film (Zn--Ga--Si--O) in the laminate of the present embodiment and the effect of the invention.

インジウム(In)、スズ(Sn)、及び酸素(O)を主成分とするITO膜は、低抵抗率、高透過率、微細加工容易性等の特徴を有し、これらの特徴が、他の透明導電膜よりも優れていることから、フラットパネルディスプレイなど幅広い用途で使用されている。一方、ITO膜の更なる低抵抗率化、高透過率化が求められており、他の元素を添加する等して特性を改善させる試みが継続的に実施されている。 ITO films mainly composed of indium (In), tin (Sn), and oxygen (O) have characteristics such as low resistivity, high transmittance, and ease of microfabrication. Because it is superior to transparent conductive films, it is used in a wide range of applications such as flat panel displays. On the other hand, there is a demand for further reduction in resistivity and increase in transmittance of the ITO film, and attempts to improve the characteristics by adding other elements are continuously being made.

ITO膜は、結晶化させることで低抵抗かつ透明な膜となるため、成膜後に、大気中、220~250℃程度でアニールして結晶化させることが行われる。このとき、より高い温度(300℃以上)でアニールすることで透過率を向上させることができるが、抵抗率が上昇してしまう。これは、高温アニール時にITO膜のキャリア濃度が低下するためと考えられる。したがって、高温アニールによるキャリア濃度の低下を抑えるためにITO膜に酸化膜を積層することで、抵抗率の上昇を防ぐことができるのではないかと考えた。 Since the ITO film becomes a low-resistance and transparent film when crystallized, it is crystallized by annealing at about 220 to 250° C. in the atmosphere after the film is formed. At this time, the transmittance can be improved by annealing at a higher temperature (300° C. or higher), but the resistivity increases. It is considered that this is because the carrier concentration of the ITO film decreases during high temperature annealing. Therefore, it was considered that an increase in resistivity could be prevented by stacking an oxide film on the ITO film in order to suppress the decrease in carrier concentration due to high-temperature annealing.

本発明者は、鋭意研究を重ねた結果、ITO膜に特定の酸化膜を形成することにより、アニールによるキャリア濃度の低下を抑えて抵抗率の上昇を防ぎつつ、かつ、高い透過率を維持できることを見出した。以下、本発明の実施形態について、詳述する。 As a result of intensive research, the present inventors have found that by forming a specific oxide film on an ITO film, it is possible to suppress the decrease in carrier concentration due to annealing and prevent an increase in resistivity while maintaining a high transmittance. I found Embodiments of the present invention will be described in detail below.

本明細書中、ITO膜は、In、Snを含む酸化物からなり、その組成範囲に特に制限はないが、例えば、SnをSnO換算で50wt%(約65mol%)以下含有し、残部にIn及び不可避的不純物からなるITOを用いることができる。 In this specification, the ITO film is made of an oxide containing In and Sn, and there is no particular limitation on the composition range thereof. ITO consisting of In and unavoidable impurities can be used.

第一の実施形態は、ITO膜に酸化膜を積層した積層体であり、表面抵抗が40Ω/sq.以下であり、かつ、可視光平均透過率が90%以上である積層体である。本実施形態の積層体は、ITO膜(単膜)に比べて、低抵抗率かつ高透過率を達成することができるという優れた効果を有する。表面抵抗は、好ましくは30Ω/sq.以下、より好ましくは20Ω/sq.以下である。また、可視光平均透過率は、好ましくは93%以上である。なお、表面抵抗及び透過率はアニール温度によって変化するため、積層体をアニールした温度は問わず、上記表面抵抗かつ透過率を達成していれば、本実施形態の積層体に含まれるものである。 The first embodiment is a laminate obtained by laminating an oxide film on an ITO film, and has a surface resistance of 40Ω/sq. below and the average visible light transmittance is 90% or more. The laminate of the present embodiment has an excellent effect of being able to achieve low resistivity and high transmittance compared to an ITO film (single film). The surface resistance is preferably 30Ω/sq. Below, more preferably 20Ω/sq. It is below. Also, the average visible light transmittance is preferably 93% or more. Since the surface resistance and transmittance change depending on the annealing temperature, the laminate is included in the laminate of the present embodiment as long as the above surface resistance and transmittance are achieved regardless of the temperature at which the laminate is annealed. .

第一の実施形態において、ITOに積層する酸化膜の膜厚は90nm未満である。好ましくは70nm以下、さらに好ましくは50nm以下である。膜厚が厚過ぎると、積層体の抵抗率が上昇することがある。一方、膜厚が薄過ぎると、ITO膜のキャリア濃度の低下を十分に抑制できないことがあるため、10nm以上であることが好ましい。キャリア濃度低下の抑制効果や透過率は、酸化膜の組成の影響を受けるため、膜厚は、酸化膜の組成を考慮して調整することができる。 In the first embodiment, the thickness of the oxide film laminated on the ITO is less than 90 nm. It is preferably 70 nm or less, more preferably 50 nm or less. If the film thickness is too thick, the resistivity of the laminate may increase. On the other hand, if the film thickness is too thin, the decrease in the carrier concentration of the ITO film may not be sufficiently suppressed, so the film thickness is preferably 10 nm or more. Since the effect of suppressing the decrease in carrier concentration and the transmittance are affected by the composition of the oxide film, the film thickness can be adjusted in consideration of the composition of the oxide film.

第一の実施形態において、ITO膜厚とITOに積層する酸化膜の膜厚との比(ITO膜厚/酸化物膜厚)は15未満である。好ましくはITO膜厚/酸化物膜厚が10以下である。ITO膜は、結晶化により表面粗さが大きくなるが、膜厚が厚くなるほど表面粗さが大きくなる。ITO膜の表面粗さに対して、酸化膜の膜厚が薄すぎると、ITO膜のキャリア濃度の低下を十分に抑制することができないことがあるためである。 In the first embodiment, the ratio of the ITO film thickness to the thickness of the oxide film laminated on the ITO (ITO film thickness/oxide film thickness) is less than 15. Preferably, the ITO film thickness/oxide film thickness is 10 or less. The surface roughness of the ITO film increases due to crystallization, and the surface roughness increases as the film thickness increases. This is because if the thickness of the oxide film is too thin with respect to the surface roughness of the ITO film, it may not be possible to sufficiently suppress the decrease in the carrier concentration of the ITO film.

第二の実施形態に係る積層体は、ITO膜と酸化膜が積層した積層体であって、220℃で大気アニールを実施した場合の当該積層体の表面抵抗をR1とし、550℃で大気アニールを実施した場合の当該積層体の表面抵抗をR2としたとき、R2/R1≦1.0を満たすものである。本実施形態の積層体は、ITO膜(単膜)に比べて、低抵抗率かつ高透過率を達成することができるという優れた効果を有する。好ましくは、R2/R1≦0.5を満たすことである。ITO単膜(膜厚100nm)の場合、R2/R1は1.53程度であり、本実施形態の積層体は、アニール温度を高くしても、抵抗率の上昇を抑制できるという優れた効果を有する。 The laminate according to the second embodiment is a laminate in which an ITO film and an oxide film are laminated, and the surface resistance of the laminate when air annealing is performed at 220 ° C. R2/R1≦1.0 is satisfied when the surface resistance of the laminate is R2. The laminate of the present embodiment has an excellent effect of being able to achieve low resistivity and high transmittance compared to an ITO film (single film). Preferably, R2/R1≦0.5 is satisfied. In the case of an ITO single film (thickness: 100 nm), R2/R1 is about 1.53, and the laminate of this embodiment has an excellent effect of being able to suppress an increase in resistivity even if the annealing temperature is increased. have.

本実施形態に係る積層体は、透明導電膜として使用することができ、その場合は高透過率であることが求められる。本実施形態に係る積層体は、大気中、220℃でアニールを実施した場合の可視光平均透過率が85%以上であることが好ましく、大気中、550℃でアニールを実施した場合の可視光平均透過率を90%以上であることが好ましい。 The laminate according to this embodiment can be used as a transparent conductive film, and in that case, high transmittance is required. The laminate according to the present embodiment preferably has an average visible light transmittance of 85% or more when annealed at 220 ° C. in the air, and visible light when annealed at 550 ° C. in the air. It is preferable that the average transmittance is 90% or more.

本実施形態に係る積層体は、ITO膜の屈折率をn1とし、酸化膜の屈折率をn2としたとき、n1>n2を満たすことが好ましい。ITO膜上に、ITO膜より屈折率の低い酸化膜を積層することで、反射率を減らして、透過率を向上させることができる。これにより、透明導電膜としての使用に適した積層体とすることができる。 The laminate according to the present embodiment preferably satisfies n1>n2, where n1 is the refractive index of the ITO film and n2 is the refractive index of the oxide film. By laminating an oxide film having a lower refractive index than the ITO film on the ITO film, the reflectance can be reduced and the transmittance can be improved. Thereby, a laminate suitable for use as a transparent conductive film can be obtained.

本実施形態に係る積層体において、ITO膜に積層する酸化膜は、ITO膜のキャリア濃度の低下を妨げる膜であれば、特に制限されないが、好ましくは、Zn、Ga、Siのいずれか1種以上を含有するものである。なお、ITO膜自体も酸化膜といえるが、本願明細書中の酸化膜には、下地と同組成のITO膜は含まない。 In the laminate according to the present embodiment, the oxide film laminated on the ITO film is not particularly limited as long as it is a film that prevents a decrease in the carrier concentration of the ITO film, but preferably any one of Zn, Ga, and Si. It contains the above. Although the ITO film itself can be said to be an oxide film, the oxide film in the specification of the present application does not include an ITO film having the same composition as that of the underlying layer.

第三の実施形態に係る積層体は、ITO膜と酸化膜が積層した積層体であって、前記酸化膜が、ZnをZnO換算で0mol%以上69mol%未満含有し、GaをGa換算で9mol%以上100mol%以下含有し、SiをSiO換算で0mol%以上60mol%未満含有するものである。本実施形態の積層体は、ITO膜(単膜)に比べて、低抵抗率かつ高透過率を達成することができるという優れた効果を有する。
好ましくは、ZnをZnO換算で10mol%を超え60mol%未満含有し、GaをGa換算で10mol%以上60mol%以下含有し、SiをSiO換算で25mol%以上50mol%未満含有するものである。
A laminate according to the third embodiment is a laminate in which an ITO film and an oxide film are laminated, and the oxide film contains 0 mol % or more and less than 69 mol % of Zn in terms of ZnO, and Ga is Ga 2 O 3 . It contains 9 mol % or more and 100 mol % or less in terms of conversion, and contains 0 mol % or more and less than 60 mol % of Si in terms of SiO 2 . The laminate of the present embodiment has an excellent effect of being able to achieve low resistivity and high transmittance compared to an ITO film (single film).
Preferably, it contains more than 10 mol% and less than 60 mol% of Zn in terms of ZnO, contains 10 mol % to 60 mol% of Ga in terms of Ga2O3 , and contains 25 mol% to less than 50 mol% of Si in terms of SiO2 . is.

本実施形態に係る積層体において、酸化膜がアモルファス状態であることが好ましい。本実施形態の積層体をアニールすると、ITO膜は結晶化するが、積層された酸化膜はアモルファスの状態を維持し、このアモルファスの状態を維持できることが抵抗率の上昇の抑制に大きく寄与しているものと考えられる。 In the laminate according to this embodiment, the oxide film is preferably amorphous. When the laminated body of this embodiment is annealed, the ITO film is crystallized, but the laminated oxide film maintains an amorphous state, and the ability to maintain this amorphous state greatly contributes to suppressing an increase in resistivity. It is considered that there is

本発明の実施形態に係る積層体の製造方法について、以下に具体的に説明する。以下は例示であって、この製造方法に限定する意図はなく、積層体自体の製造方法にあっては、他の方法を採用することができる。なお、開示する製造方法が不必要に不明瞭となることを避けすために、周知の製造工程や処理動作の詳細な説明は省略する。 A method for manufacturing a laminate according to an embodiment of the present invention will be specifically described below. The following is an example and is not intended to be limited to this manufacturing method, and other methods can be adopted for the manufacturing method of the laminate itself. In other instances, detailed descriptions of well-known manufacturing steps and processing operations are omitted so as not to unnecessarily obscure the disclosed manufacturing methods.

In、Snを含む酸化物からなるITOスパッタリングターゲット、Zn、Ga、Siを含む酸化物からなるZn-Ga-Si-Oスパッタリングターゲットを準備する。まず、ITOスパッタリングターゲットをスパッタ装置の真空チャンバー内に装着し、スパッタリングターゲットに対向する基板に成膜を行う。その後、Zn-Ga-Si-Oスパッタリングターゲットを用いて、基板に成膜されたITO膜に酸化膜を形成する。ITO膜や酸化膜の膜厚は、スパッタパワーやスパッタ時間によって調整することができる。 An ITO sputtering target made of an oxide containing In and Sn and a Zn--Ga--Si--O sputtering target made of an oxide containing Zn, Ga, and Si are prepared. First, an ITO sputtering target is mounted in a vacuum chamber of a sputtering apparatus, and a film is formed on a substrate facing the sputtering target. After that, using a Zn--Ga--Si--O sputtering target, an oxide film is formed on the ITO film formed on the substrate. The film thickness of the ITO film and oxide film can be adjusted by the sputtering power and sputtering time.

スパッタリング法は、真空中で成膜するため、成膜過程でスパッタリングターゲットを構成する金属成分が消失したり、他の金属成分が混入したり、することがなく、通常、スパッタリングターゲットの組成が膜の組成に反映されることになる。後述する、実施例、比較例においては、便宜上、スパッタリングターゲットの組成を表記している。 Since the sputtering method forms a film in a vacuum, the metal components that make up the sputtering target do not disappear during the film formation process, and other metal components do not mix. will be reflected in the composition of In Examples and Comparative Examples described later, the composition of the sputtering target is indicated for convenience.

スパッタリング条件は、例えば以下の通りとすることができる。スパッタリング条件は、所望する膜厚や組成などによって、適宜、変更することができる。
(スパッタリングの条件)
スパッタ装置:ANELVA製C-7500L
スパッタパワー:DC500~1000W
(DCスパッタ不可なターゲットはRF500~1000W)
ガス圧:0.5Pa
基板加熱:室温
酸素濃度:0%、1%、2%
Sputtering conditions can be, for example, as follows. Sputtering conditions can be changed as appropriate depending on the desired film thickness, composition, and the like.
(Sputtering conditions)
Sputtering device: C-7500L manufactured by ANELVA
Sputter power: DC500-1000W
(Targets that cannot be DC-sputtered are RF500-1000W)
Gas pressure: 0.5 Pa
Substrate heating: Room temperature Oxygen concentration: 0%, 1%, 2%

その後、ITO膜に所定の酸化膜が形成された積層体をスパッタ装置から取り出した後、大気中、200~600℃でアニールを行ってITO膜を結晶化させる。アニール温度は、所望の抵抗率や透過率、基材の耐熱温度などを考慮して、適宜、決定することができる。アニール雰囲気については、大気に限らず、真空や窒素雰囲気でも良い。以上によって、本実施形態に係る積層体を製造することができる。 After that, after taking out the laminate in which the predetermined oxide film is formed on the ITO film from the sputtering apparatus, annealing is performed in the atmosphere at 200 to 600° C. to crystallize the ITO film. The annealing temperature can be appropriately determined in consideration of the desired resistivity, transmittance, heat resistance temperature of the substrate, and the like. The annealing atmosphere is not limited to air, and may be a vacuum or nitrogen atmosphere. As described above, the laminate according to the present embodiment can be manufactured.

酸化膜の形成に用いるスパッタリングターゲットとして、酸化膜と同組成のスパッタリングターゲットを使用することができるが、2種以上のスパッタリングターゲットを使用してコスパッタにより成膜することもできる。上記では、Zn-Ga-Si-Oスパッタリングターゲットを例示したが、Zn-Ga-Oスパッタリングターゲット、Zn-Si-O-スパッタリングターゲット、Ga-Si-Oスパッタリングターゲット、ZnOスパッタリングターゲット、Gaスパッタリングターゲット、SiOスパッタリングターゲット等を使用することができる。また、スパッタリングは、酸化膜の成膜に適した方法であるが、他の化学的或いは物理的な蒸着方法を用いてもよい。 As a sputtering target used for forming the oxide film, a sputtering target having the same composition as that of the oxide film can be used, but two or more kinds of sputtering targets can be used to form the film by co-sputtering. Although the Zn--Ga--Si--O sputtering target was exemplified above, Zn--Ga--O sputtering target, Zn--Si--O-- sputtering target, Ga--Si--O sputtering target, ZnO sputtering target, Ga 2 O 3 Sputtering targets, SiO2 sputtering targets, etc. can be used. Also, although sputtering is a suitable method for depositing oxide films, other chemical or physical vapor deposition methods may be used.

また、酸化膜の形成に用いるスパッタリングターゲットには、焼結助剤として、B、P、V、Sb、TeO、Tl、PbO、Bi、MoOが含まれていてもよい。これらの焼結助剤は低融点の酸化物であり、焼結温度を低くしても緻密な焼結体(スパッタリングターゲット)を作製することができる。焼結助剤の添加量は特に制限はないが、酸化膜用ターゲットの基本組成に対して、0.5wt%以上、3.0wt%以下とすることが好ましい。0.5wt%未満であると、焼結助剤として添加の効果が薄く、3.0wt%超とすると、酸化膜の特性に影響を及ぼす可能性があ
るためである。0.5wt%以上、3.0wt%以下であれば、酸化膜の良好な特性を維持したまま低温焼結が可能となる。
Moreover, the sputtering target used for forming the oxide film contains B 2 O 3 , P 2 O 5 , V 2 O 5 , Sb 2 O 3 , TeO 2 , Tl 2 O 3 , PbO, Bi as a sintering aid. 2 O 3 , MoO 3 may be included. These sintering aids are oxides with a low melting point, and can produce a dense sintered body (sputtering target) even at a low sintering temperature. Although the amount of the sintering aid added is not particularly limited, it is preferably 0.5 wt % or more and 3.0 wt % or less with respect to the basic composition of the oxide film target. If the amount is less than 0.5 wt%, the effect of addition as a sintering aid is small, and if the amount exceeds 3.0 wt%, the properties of the oxide film may be affected. If the content is 0.5 wt % or more and 3.0 wt % or less, low-temperature sintering becomes possible while maintaining good properties of the oxide film.

本明細書中、積層体は、以下の方法によって、その特性を評価した。
(膜の表面抵抗について)
ITO膜に酸化膜を積層した積層体において、酸化膜側から表面抵抗を測定した。
方式:定電流印加方式
装置:NPS社製 抵抗率測定器 Σ-5+
方法:直流4探針法
高抵抗(100kΩ/sq.以上)の場合
方式:定電圧印加方式
装置:三菱化学アナリテック社製 高抵抗率計 ハイレスタ-UX
方法:MCC-A法(JIS K 6911)
リング電極プローブ:URS
測定電圧:1~1000V
In this specification, the laminates were evaluated for their properties by the following methods.
(Regarding surface resistance of film)
The surface resistance was measured from the side of the oxide film in a laminate obtained by laminating an oxide film on an ITO film.
Method: Constant current application method Equipment: Resistivity measuring instrument Σ-5+ manufactured by NPS
Method: DC 4-probe method for high resistance (100 kΩ/sq. or more) Method: Constant voltage application method Equipment: High resistivity meter Hiresta-UX manufactured by Mitsubishi Chemical Analytech
Method: MCC-A method (JIS K 6911)
Ring electrode probe: URS
Measurement voltage: 1 to 1000V

(膜の透過率について)
ITO膜に酸化膜を積層した積層体において、酸化膜側から透過率を測定した。
可視光平均透過率
装置:SHIMADZU社製 分光光度計 UV-2450、UV-2600
リファレンス:未成膜ガラス基板(EagleXG)
測定波長:380~780nm
ステップ:5nm
(Regarding membrane transmittance)
Transmittance was measured from the oxide film side in a laminate obtained by laminating an oxide film on an ITO film.
Average visible light transmittance Apparatus: Spectrophotometer UV-2450, UV-2600 manufactured by SHIMADZU
Reference: Uncoated glass substrate (EagleXG)
Measurement wavelength: 380-780nm
step: 5 nm

(膜厚について)
装置:BRUKER製 触針式薄膜段差計 Dektak XT
(About film thickness)
Device: Dektak XT stylus-type thin-film step gauge made by BRUKER

(膜の屈折率について)
装置:SHIMADZU社製 分光光度計 UV-2450
方法:透過率、表裏面反射率から算出
(Regarding the refractive index of the film)
Apparatus: Spectrophotometer UV-2450 manufactured by SHIMADZU
Method: Calculated from transmittance and front/back reflectance

(膜のキャリア濃度、キャリア移動度について)
ITO膜に酸化膜を積層した積層体において、酸化膜側からキャリア濃度及びキャリア移動度を測定した。
原理:ホール測定
装置:Lake Shore 8400型
(Regarding film carrier concentration and carrier mobility)
The carrier concentration and the carrier mobility were measured from the oxide film side in the laminated body in which the oxide film was laminated on the ITO film.
Principle: Hall measurement Equipment: Lake Shore 8400 type

(膜の結晶質、アモルファス性について)
X線回折スペクトルにおいて、膜材料に起因する明瞭な回折ピークが確認された場合に結晶質膜と判断し、明瞭な回折ピークが見られず、ハローパターンのみの場合には、アモルファス膜と判断した。
原理:X線回折法
装置:リガク社製UltimaIV
管球:Cu-Kα線
管電圧:40kV
管電流:30mA
測定方法:2θ-θ反射法
測定範囲:20~90°
スキャン速度:8°/min
サンプリング間隔:0.02°
測定サンプル:膜厚300nm以上の単膜の膜面を測定した。
(Crystallinity and amorphousness of film)
In the X-ray diffraction spectrum, when a clear diffraction peak due to the film material was confirmed, it was judged to be a crystalline film, and when no clear diffraction peak was seen and only a halo pattern was seen, it was judged to be an amorphous film. .
Principle: X-ray diffraction method Apparatus: Ultima IV manufactured by Rigaku
Tube: Cu-Kα ray Tube voltage: 40 kV
Tube current: 30mA
Measurement method: 2θ-θ reflection method Measurement range: 20-90°
Scanning speed: 8°/min
Sampling interval: 0.02°
Measurement sample: A film surface of a single film having a thickness of 300 nm or more was measured.

以下、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. It should be noted that this embodiment is merely an example, and the present invention is not limited by this example. That is, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

(参考例)
In:90wt%(83mol%)、SnO:10wt%(17mol%)から構成されるITO焼結体スパッタリングターゲットをスパッタ装置に取り付け、上記条件でスパッタリングを実施し、基板上に膜厚が100nmのITO膜を形成した。その後、220℃と550℃の異なる温度で、大気中、30分間アニールを実施した。以上により得られたITO膜について、表面抵抗及び可視光の平均透過率を測定した。その結果を表1に示す。なお、表中「as-depo」とあるのは、成膜後アニールを実施していない膜を意味する。
(Reference example)
An ITO sintered sputtering target composed of In 2 O 3 : 90 wt% (83 mol%) and SnO 2 : 10 wt% (17 mol%) was attached to a sputtering device, and sputtering was performed under the above conditions to form a film thickness on the substrate. formed an ITO film of 100 nm. After that, annealing was performed at different temperatures of 220° C. and 550° C. for 30 minutes in air. The surface resistance and the average visible light transmittance of the ITO film thus obtained were measured. Table 1 shows the results. Note that "as-depo" in the table means a film that has not been annealed after film formation.

表1から、ITO膜は、220℃でアニールすると、結晶化して表面抵抗が急激に低下したが、550℃でアニールすると、表面抵抗が上昇した。ITO膜では、R2/R1が1.0を超えており、低温アニール(220℃)と比較して、高温アニール(550℃)の場合、表面抵抗が上昇することが分かる。一方、アニールの温度を550℃とすると、透過率は90%以上まで向上した。 From Table 1, when the ITO film was annealed at 220°C, it crystallized and the surface resistance dropped sharply, but when annealed at 550°C, the surface resistance increased. In the ITO film, R2/R1 exceeds 1.0, and it can be seen that the surface resistance increases in the case of high temperature annealing (550° C.) compared to the low temperature annealing (220° C.). On the other hand, when the annealing temperature was 550° C., the transmittance was improved to 90% or more.

(実施例1)
Zn-Ga-Si-O焼結体からなるスパッタリングターゲットをスパッタ装置に取り付けて、上記条件にてスパッタリングを実施し、参考例と同様の条件で作製したITO膜(膜厚100nm)上に膜厚が20nmの酸化膜(Zn-Ga-Si-O)を積層した。スパッタリングターゲットの組成(酸化物換算)はZnO:Ga、SiO=40:20:40(mol%)とした。その後、220℃と550℃の異なる温度で、大気中、30分間アニールを実施した。以上により得られた積層体について、表面抵抗及び可視光の平均透過率を測定した。その結果を表1に示す。
(Example 1)
A sputtering target made of a Zn--Ga--Si--O sintered body was attached to the sputtering apparatus, and sputtering was performed under the above conditions. An oxide film (Zn--Ga--Si--O) with a thickness of 20 nm was laminated. The composition of the sputtering target (in terms of oxide) was ZnO:Ga 2 O 3 , SiO 2 =40:20:40 (mol %). After that, annealing was performed at different temperatures of 220° C. and 550° C. for 30 minutes in air. Surface resistance and average transmittance of visible light were measured for the laminate obtained as described above. Table 1 shows the results.

表1の通り、積層体について、220℃でアニールすると、ITO膜が結晶化して抵抗率が急激に低下した。一方、ITO膜(単膜)とは異なり、550℃でアニールすると、抵抗率が低下した。R2/R1は1.0を大きく下回り、高温アニール(550℃)によって、表面抵抗が大幅に低下することが分かる。また、アニールの温度を550℃とすると、透過率は90%以上まで向上した。このようにITO膜と酸化膜を積層した積層体とすることにより、既存のITO膜では得られなかった低抵抗率かつ高透過率の実現を可能とした。 As shown in Table 1, when the laminate was annealed at 220° C., the ITO film was crystallized and the resistivity dropped sharply. On the other hand, unlike the ITO film (single film), the resistivity decreased when annealed at 550°C. R2/R1 is much lower than 1.0, indicating that high temperature annealing (550° C.) significantly reduces the surface resistance. Further, when the annealing temperature was 550° C., the transmittance was improved to 90% or more. By forming a laminate in which an ITO film and an oxide film are laminated in this way, it is possible to achieve low resistivity and high transmittance that could not be obtained with the existing ITO film.

(実施例2~23)
実施例1と同様に、ITO膜(膜厚100nm)上に膜厚が20nmの酸化膜(Zn-Ga-Si-O)を積層した。各実施例では、表1の通り、スパッタリングターゲットの組成(酸化物換算)及び成膜時の酸素濃度を調整した。また、実施例22、23においてスパッタリングターゲットに焼結助剤としてBを1.0wt%添加した。その後、220℃と550℃の異なる温度で、大気中、30分間アニールを実施した。以上により得られた積層体について、表面抵抗及び可視光の平均透過率を測定した。その結果を表1に示す。
(Examples 2 to 23)
As in Example 1, an oxide film (Zn--Ga--Si--O) with a thickness of 20 nm was stacked on an ITO film (thickness: 100 nm). In each example, as shown in Table 1, the composition of the sputtering target (in terms of oxide) and the oxygen concentration during film formation were adjusted. In Examples 22 and 23, 1.0 wt % of B 2 O 3 was added as a sintering aid to the sputtering target. After that, annealing was performed at different temperatures of 220° C. and 550° C. for 30 minutes in air. Surface resistance and average transmittance of visible light were measured for the laminate obtained as described above. Table 1 shows the results.

表1の通り、積層体について、一定温度以上でアニールすると、ITO膜が結晶化して
表面抵抗が急激に低下した。一方、ITO膜(単膜)とは異なり、550℃でアニールすると表面抵抗が低下した。R2/R1は1.0を大きく下回り、高温アニール(550℃)によって、表面抵抗が大幅に低下することが分かる。また、アニールの温度を550℃とすると、透過率は90%以上まで向上した。また、いずれの積層体においても、酸化膜はアモルファスを維持していた。このようにITO膜と酸化膜を積層した積層体とすることにより、ITO膜(単膜)では得られなかった低抵抗率かつ高透過率の実現を可能とした。
As shown in Table 1, when the laminated body was annealed at a certain temperature or higher, the ITO film crystallized and the surface resistance decreased sharply. On the other hand, unlike the ITO film (single film), annealing at 550° C. lowered the surface resistance. R2/R1 is much lower than 1.0, indicating that high temperature annealing (550° C.) significantly reduces the surface resistance. Further, when the annealing temperature was 550° C., the transmittance was improved to 90% or more. In addition, the oxide film was maintained amorphous in any of the laminates. By forming a laminate in which an ITO film and an oxide film are laminated in this way, it is possible to achieve low resistivity and high transmittance that could not be obtained with an ITO film (single film).

(比較例1~4)
実施例1と同様に、ITO膜(膜厚100nm)上に膜厚が20nmの酸化膜(Zn-Ga-Si-O)を積層した。各比較例では、表1の通りにスパッタリングターゲットの組成(酸化物換算)及び成膜時の酸素濃度を調整した。その後、220℃と550℃の異なる温度で、大気中、30分間アニールを実施した。以上により得られた積層体について、表面抵抗及び可視光の平均透過率を測定した。その結果を表1に示す。
(Comparative Examples 1 to 4)
As in Example 1, an oxide film (Zn--Ga--Si--O) with a thickness of 20 nm was stacked on an ITO film (thickness: 100 nm). In each comparative example, the composition of the sputtering target (in terms of oxide) and the oxygen concentration during film formation were adjusted as shown in Table 1. After that, annealing was performed at different temperatures of 220° C. and 550° C. for 30 minutes in air. Surface resistance and average transmittance of visible light were measured for the laminate obtained as described above. Table 1 shows the results.

表1の通り、積層体について、220℃でアニールすると、ITO膜が結晶化して表面抵抗が急激に低下した。一方、550℃でアニールすると、表面抵抗が上昇した。比較例では、いずれもR2/R1が1.0を超えており、低温アニール(220℃)と比較して、高温アニール(550℃)の場合、表面抵抗が上昇することが分かる。一方、550℃でアニールすると、透過率は90%以上まで向上した。 As shown in Table 1, when the laminated body was annealed at 220° C., the ITO film crystallized and the surface resistance dropped sharply. On the other hand, annealing at 550° C. increased the surface resistance. In the comparative examples, R2/R1 exceeded 1.0, and it can be seen that high temperature annealing (550° C.) increases the surface resistance compared to low temperature annealing (220° C.). On the other hand, annealing at 550° C. improved the transmittance to 90% or more.

実施例1~21、比較例1~4におけるスパッタリングターゲットの組成(酸化膜の組成に相当)と本発明の効果(低抵抗かつ高透過率)との関係を示す組成図を図1に示す。 FIG. 1 shows a composition diagram showing the relationship between the composition of the sputtering targets (corresponding to the composition of the oxide film) in Examples 1 to 21 and Comparative Examples 1 to 4 and the effects of the present invention (low resistance and high transmittance).

Figure 0007257562000001
Figure 0007257562000001

(実施例24~25)
表2の各種酸化物焼結体からなるスパッタリングターゲットをスパッタ装置に取り付けて、上記条件にてスパッタリングを実施し、参考例と同様の条件で作製したITO膜(膜厚100nm)上に膜厚が20nmの酸化膜を積層した。このとき、表2に示すように、スパッタリングターゲットの組成(酸化物換算)を変化させた。その後、温度を変えて大気中にて30分間アニールを実施した。以上により得られた積層体について、表面抵抗及
び可視光の平均透過率を測定した。その結果を表2に示す。なお、表中「as-depo」とあるのは、成膜後、アニールを実施していない膜を意味する。
(Examples 24-25)
A sputtering target composed of various oxide sintered bodies shown in Table 2 was attached to a sputtering apparatus, and sputtering was performed under the conditions described above. An oxide film of 20 nm was laminated. At this time, as shown in Table 2, the composition (converted to oxide) of the sputtering target was changed. After that, the temperature was changed and annealing was performed in the air for 30 minutes. Surface resistance and average transmittance of visible light were measured for the laminate obtained as described above. Table 2 shows the results. Note that "as-depo" in the table means a film that has not been annealed after film formation.

表2の通り、積層体について、220℃でアニールすると、ITO膜が結晶化して抵抗率が急激に低下した。一方、ITO膜(単膜)とは異なり、550℃でアニールすると、表面抵抗が低下した。R2/R1は1.0を大きく下回り、高温アニール(550℃)によって、表面抵抗が大幅に低下することが分かる。また、アニールの温度を550℃とすると、透過率は90%以上まで向上した。また、いずれの積層体においても、酸化膜はアモルファスを維持していた。このようにITO膜と酸化膜を積層した積層体とすることにより、ITO膜(単膜)では得られなかった低抵抗かつ高透過率の実現を可能とした。 As shown in Table 2, when the laminate was annealed at 220° C., the ITO film crystallized and the resistivity dropped sharply. On the other hand, unlike the ITO film (single film), annealing at 550° C. lowered the surface resistance. R2/R1 is much lower than 1.0, indicating that high temperature annealing (550° C.) significantly reduces the surface resistance. Further, when the annealing temperature was 550° C., the transmittance was improved to 90% or more. In addition, the oxide film was maintained amorphous in any of the laminates. By forming a laminate in which an ITO film and an oxide film are laminated in this way, it is possible to achieve low resistance and high transmittance that could not be obtained with an ITO film (single film).

(比較例5~10)
各種の酸化物焼結体からなるスパッタリングターゲットをスパッタ装置に取り付けて、上記条件にてスパッタリングを実施し、参考例と同様の条件で作製したITO膜(膜厚100nm)上に膜厚が20nmの酸化膜を積層した。このとき、表2に示すように、スパッタリングターゲットの組成(酸化物換算)を変化させた。その後、温度を変えて大気中にて30分間アニールを実施した。以上により得られた積層体について、表面抵抗及び可視光の平均透過率を測定した。その結果を表2に示す。
(Comparative Examples 5-10)
A sputtering target made of various oxide sintered bodies was attached to a sputtering apparatus, and sputtering was performed under the above conditions. An oxide film was deposited. At this time, as shown in Table 2, the composition (converted to oxide) of the sputtering target was changed. After that, the temperature was changed and annealing was performed in the air for 30 minutes. Surface resistance and average transmittance of visible light were measured for the laminate obtained as described above. Table 2 shows the results.

表2の通り、積層体について、220℃でアニールすると、ITO膜が結晶化して表面抵抗が急激に低下した。一方、550℃でアニールすると、表面抵抗が上昇した。比較例では、いずれもR2/R1が1.0を超えており、低温アニール(220℃)と比較して、高温アニール(550℃)の場合、表面抵抗が上昇することが分かる。一方、アニールの温度を550℃とすると、透過率は90%以上まで向上した。 As shown in Table 2, when the laminated body was annealed at 220° C., the ITO film crystallized and the surface resistance decreased sharply. On the other hand, annealing at 550° C. increased the surface resistance. In the comparative examples, R2/R1 exceeded 1.0, and it can be seen that high temperature annealing (550° C.) increases the surface resistance compared to low temperature annealing (220° C.). On the other hand, when the annealing temperature was 550° C., the transmittance was improved to 90% or more.

Figure 0007257562000002
Figure 0007257562000002

(実施例26~34)
Zn-Ga-Si焼結体からなるスパッタリングターゲットをスパッタ装置に取り付けて、上記条件にてスパッタリングを実施し、参考例と同様の条件で作製したITO膜上に酸化膜を積層した。このとき、各実施例において、ITO膜の膜厚と酸化膜の膜厚を変化させた。スパッタリングターゲットの組成(酸化物換算)はZnO:Ga、SiO=40:20:40(mol%)とした。
その後、温度を変えて大気中にて30分間アニールを実施した。以上により得られた積層体について、表面抵抗及び可視光の平均透過率を測定した。その結果を表3に示す。なお、表中「as-depo」とあるのは、成膜後、アニールを実施していない膜を意味する。
(Examples 26-34)
A sputtering target made of a Zn--Ga--Si sintered body was attached to a sputtering apparatus, and sputtering was carried out under the above conditions to laminate an oxide film on the ITO film produced under the same conditions as in the reference example. At this time, the film thickness of the ITO film and the film thickness of the oxide film were changed in each example. The composition of the sputtering target (in terms of oxide) was ZnO:Ga 2 O 3 , SiO 2 =40:20:40 (mol %).
After that, the temperature was changed and annealing was performed in the air for 30 minutes. Surface resistance and average transmittance of visible light were measured for the laminate obtained as described above. Table 3 shows the results. Note that "as-depo" in the table means a film that has not been annealed after film formation.

表3の通り、積層体について、220℃でアニールすると、ITO膜が結晶化して表面抵抗が急激に低下した。一方、ITO膜(単膜)とは異なり、550℃でアニールすると表面抵抗が低下した。R2/R1は1.0を大きく下回り、高温アニール(550℃)によって、抵抗率が大幅に低下することが分かる。また、アニールの温度を550℃とすると、透過率は90%以上まで向上した。また、いずれの積層体においても、酸化膜はアモルファスを維持していた。このようにITO膜と酸化膜を積層した積層体とすることによ
り、ITO膜(単膜)では得られなかった低抵抗かつ高透過率の実現を可能とした。
As shown in Table 3, when the laminate was annealed at 220° C., the ITO film was crystallized and the surface resistance dropped sharply. On the other hand, unlike the ITO film (single film), annealing at 550° C. lowered the surface resistance. R2/R1 is much lower than 1.0, indicating that high temperature annealing (550° C.) significantly reduces the resistivity. Further, when the annealing temperature was 550° C., the transmittance was improved to 90% or more. In addition, the oxide film was maintained amorphous in any of the laminates. By forming a laminate in which an ITO film and an oxide film are laminated in this way, it is possible to achieve low resistance and high transmittance that could not be obtained with an ITO film (single film).

(比較例11~12)
Zn-Ga-Si焼結体からなるスパッタリングターゲットをスパッタ装置に取り付けて、上記条件にてスパッタリングを実施し、参考例と同様の条件で作製したITO膜上に酸化膜を積層した。このとき、各比較例において、ITO膜の膜厚と酸化膜の膜厚を変化させた。なお、スパッタリングターゲットの組成(酸化物換算)はZnO:Ga、SiO=40:20:40(mol%)とした。
その後、温度を変えて大気中にて30分間アニールを実施した。以上により得られた積層体について、表面抵抗及び可視光の平均透過率を測定した。その結果を表3に示す。
(Comparative Examples 11-12)
A sputtering target made of a Zn--Ga--Si sintered body was attached to a sputtering apparatus, and sputtering was carried out under the above conditions to laminate an oxide film on the ITO film produced under the same conditions as in the reference example. At this time, the film thickness of the ITO film and the film thickness of the oxide film were changed in each comparative example. The composition of the sputtering target (in terms of oxide) was ZnO:Ga 2 O 3 , SiO 2 =40:20:40 (mol %).
After that, the temperature was changed and annealing was performed in the air for 30 minutes. Surface resistance and average transmittance of visible light were measured for the laminate obtained as described above. Table 3 shows the results.

表3の通り、積層体について、220℃でアニールすると、ITO膜が結晶化して表面抵抗が急激に低下した。一方、550℃でアニールすると、表面抵抗が上昇した。比較例では、いずれもR2/R1が1.0を超えており、低温アニール(220℃)と比較して、高温アニール(550℃)の場合、表面抵抗が上昇することが分かる。一方、アニールの温度を550℃とすると、透過率は90%以上まで向上した。 As shown in Table 3, when the laminate was annealed at 220° C., the ITO film was crystallized and the surface resistance dropped sharply. On the other hand, annealing at 550° C. increased the surface resistance. In the comparative examples, R2/R1 exceeded 1.0, and it can be seen that high temperature annealing (550° C.) increases the surface resistance compared to low temperature annealing (220° C.). On the other hand, when the annealing temperature was 550° C., the transmittance was improved to 90% or more.

Figure 0007257562000003
Figure 0007257562000003

本発明の積層体は、ITO膜(単膜)に比べて、低抵抗でかつ高透過率という優れた特性を得ることができる。また、本発明は、ITO膜に積層することで、簡便に良好な特性を備えた透明導電膜(積層体)を提供することができるという優れた効果を有する。本発明に係る積層体は、特に、高温でのアニールが可能なガラス基板やSi基板を用いるデバイス(フラットパネルディスプレイ、マイクロLED等)における透明導電膜として有用である。 The laminate of the present invention can obtain excellent properties such as low resistance and high transmittance as compared with an ITO film (single film). Moreover, the present invention has an excellent effect that it is possible to easily provide a transparent conductive film (laminate) having good properties by laminating it on an ITO film. The laminate according to the present invention is particularly useful as a transparent conductive film in devices (flat panel displays, micro LEDs, etc.) using glass substrates and Si substrates that can be annealed at high temperatures.

Claims (8)

ITO膜と酸化膜が積層した積層体であって、前記酸化膜は、少なくともZn、Ga、Siを含有し、ZnをZnO換算で0mol%超え69mol%未満含有し、GaをGa換算で9mol%以上100mol%未満含有し、SiをSiO換算で0mol%超え0mol%未満含有し、前記酸化膜の膜厚が90nm未満であり、ITO膜の膜厚と前記酸化膜との膜厚との比(ITO膜の膜厚/酸化膜の膜厚)が15未満である積層体。 A laminate in which an ITO film and an oxide film are laminated, wherein the oxide film contains at least Zn, Ga, and Si, contains more than 0 mol % and less than 69 mol % of Zn in terms of ZnO, and contains Ga in terms of Ga 2 O 3 contains 9 mol% or more and less than 100 mol%, contains more than 0 mol% and less than 0 mol% of Si in terms of SiO2 , the thickness of the oxide film is less than 90 nm, and the thickness of the ITO film and the thickness of the oxide film (thickness of ITO film/thickness of oxide film) is less than 15. 前記酸化膜は、ZnをZnO換算で10mol%を超え60mol%未満含有し、GaをGa換算で10mol%以上60mol%以下含有し、SiをSiO換算で25mol%以上50mol%未満含有する請求項1に記載の積層体。 The oxide film contains more than 10 mol % and less than 60 mol % of Zn in terms of ZnO, contains 10 mol % to 60 mol % of Ga in terms of Ga 2 O 3 , and contains 25 mol % to less than 50 mol % of Si in terms of SiO 2 . The laminate according to claim 1. 前記酸化膜は、アモルファスである請求項1又は2に記載の積層体。 3. The laminate according to claim 1, wherein said oxide film is amorphous. 前記ITO膜の屈折率をn1とし、前記酸化膜の屈折率をn2としたとき、n1>n2である請求項1~3のいずれか一項に記載の積層体。 4. The laminate according to claim 1, wherein n1>n2, where n1 is the refractive index of the ITO film and n2 is the refractive index of the oxide film. 請求項1~4のいずれか一項に記載の積層体の製造方法であって、ITO膜に酸化膜を積層し、得られた積層体を200℃以上でアニールすることを特徴とする積層体の製造方法。 5. The method for producing a laminate according to any one of claims 1 to 4, wherein an oxide film is laminated on an ITO film, and the obtained laminate is annealed at 200° C. or higher. manufacturing method. 請求項1~4のいずれか一項に記載の積層体における酸化膜を形成するための酸化物スパッタリングターゲットであって、少なくともZn、Ga、Siを含有し、ZnをZnO換算で0mol%超え69mol%未満含有し、GaをGa換算で9mol%以上100mol%未満含有し、SiをSiO換算で0mol%超え60mol%未満含有する酸化物スパッタリングターゲット。 An oxide sputtering target for forming an oxide film in the laminate according to any one of claims 1 to 4, containing at least Zn, Ga, and Si, and exceeding 0 mol% and 69 mol of Zn in terms of ZnO. %, contains 9 mol % or more and less than 100 mol % of Ga in terms of Ga 2 O 3 , and contains more than 0 mol % and less than 60 mol % of Si in terms of SiO 2 . ZnをZnO換算で10mol%を超え60mol%未満含有し、GaをGa換算で10mol%以上60mol%以下含有し、SiをSiO換算で25mol%以上
50mol%未満含有する請求項6に記載の酸化物スパッタリングターゲット。
6. Zn is contained in an amount exceeding 10 mol% and less than 60 mol% in terms of ZnO, Ga is contained in an amount of 10 mol% to 60 mol% in terms of Ga2O3 , and Si is contained in an amount of 25 mol% to less than 50 mol% in terms of SiO2 . An oxide sputtering target as described.
さらに、焼結助剤として、B、P、V、Sb、TeO、Tl、PbO、Bi、MoOのいずれか一種以上を含有する請求項6又は7に記載の酸化物スパッタリングターゲット。
Furthermore, as a sintering aid, any one or more of B2O3 , P2O5 , V2O5 , Sb2O3 , TeO2 , Tl2O3 , PbO , Bi2O3 , MoO3 The oxide sputtering target according to claim 6 or 7, containing
JP2022014394A 2021-04-27 2022-02-01 LAMINATED FUNCTION AS TRANSPARENT CONDUCTIVE FILM, METHOD FOR MANUFACTURING SAME, AND OXIDE SPUTTERING TARGET FOR MANUFACTURING SAME LAMINATED PRODUCT Active JP7257562B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22795667.9A EP4332995A1 (en) 2021-04-27 2022-04-21 Layered body having function as transparent electroconductive film and method for producing same, and oxide sputtering target for said layered body production
CN202280031068.9A CN117280428A (en) 2021-04-27 2022-04-21 Laminate having function as transparent conductive film, method for producing same, and oxide sputtering target for producing same
PCT/JP2022/018417 WO2022230754A1 (en) 2021-04-27 2022-04-21 Layered body having function as transparent electroconductive film and method for producing same, and oxide sputtering target for said layered body production
KR1020237040238A KR20240001183A (en) 2021-04-27 2022-04-21 A laminate having a function as a transparent conductive film, a method for manufacturing the same, and an oxide sputtering target for manufacturing the laminate.
TW111115859A TW202332581A (en) 2021-04-27 2022-04-26 Layered body having function as transparent electroconductive film and method for producing the same, and oxide sputtering target for that layered body production
JP2022109298A JP7428753B2 (en) 2021-04-27 2022-07-06 A laminate having a function as a transparent conductive film, a method for producing the same, and an oxide sputtering target for producing the laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021074650 2021-04-27
JP2021074650 2021-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022109298A Division JP7428753B2 (en) 2021-04-27 2022-07-06 A laminate having a function as a transparent conductive film, a method for producing the same, and an oxide sputtering target for producing the laminate

Publications (2)

Publication Number Publication Date
JP2022169430A JP2022169430A (en) 2022-11-09
JP7257562B2 true JP7257562B2 (en) 2023-04-13

Family

ID=83944167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022014394A Active JP7257562B2 (en) 2021-04-27 2022-02-01 LAMINATED FUNCTION AS TRANSPARENT CONDUCTIVE FILM, METHOD FOR MANUFACTURING SAME, AND OXIDE SPUTTERING TARGET FOR MANUFACTURING SAME LAMINATED PRODUCT

Country Status (1)

Country Link
JP (1) JP7257562B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841003A (en) 2010-03-30 2010-09-22 鲁东大学 Double-layer structure deep-ultraviolet transparent conductive film and preparation method thereof
WO2014112209A1 (en) 2013-01-21 2014-07-24 Jx日鉱日石金属株式会社 Sintered compact for fabricating amorphous transparent electroconductive film having low refractive index, and amorphous transparent electroconductive film having low refractive index
JP2016018288A (en) 2014-07-07 2016-02-01 コニカミノルタ株式会社 Transparent conductor and touch panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528925A (en) * 1991-07-19 1993-02-05 Dainippon Printing Co Ltd Plasma display
JP3445891B2 (en) * 1995-12-21 2003-09-08 凸版印刷株式会社 Sputtering target
JP4162425B2 (en) * 2001-05-01 2008-10-08 株式会社ニデック Transparent substrate with conductive anti-reflection coating
JP5023745B2 (en) * 2007-03-12 2012-09-12 住友金属鉱山株式会社 Transparent conductive film, transparent conductive substrate using this transparent conductive film, transparent conductive film, near-infrared shielding filter, and method for producing this transparent conductive film
JP6565666B2 (en) * 2015-02-26 2019-08-28 三菱マテリアル株式会社 Laminated transparent conductive film, laminated wiring film, and laminated wiring film manufacturing method
WO2016136855A1 (en) * 2015-02-27 2016-09-01 Jx金属株式会社 Oxide sintered compact, oxide sputtering target, and oxide thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841003A (en) 2010-03-30 2010-09-22 鲁东大学 Double-layer structure deep-ultraviolet transparent conductive film and preparation method thereof
WO2014112209A1 (en) 2013-01-21 2014-07-24 Jx日鉱日石金属株式会社 Sintered compact for fabricating amorphous transparent electroconductive film having low refractive index, and amorphous transparent electroconductive film having low refractive index
JP2016018288A (en) 2014-07-07 2016-02-01 コニカミノルタ株式会社 Transparent conductor and touch panel

Also Published As

Publication number Publication date
JP2022169430A (en) 2022-11-09

Similar Documents

Publication Publication Date Title
JP5005772B2 (en) Conductive laminate and manufacturing method thereof
TWI513834B (en) Transparent conductive film
Sahu et al. Deposition of Ag-based Al-doped ZnO multilayer coatings for the transparent conductive electrodes by electron beam evaporation
KR20070057075A (en) Transparent conductive film and meethod of fabicating the same, transparent conductive base material, and light-emitting device
JP5146443B2 (en) Transparent conductive film, method for producing the same, and sputtering target used for the production thereof
TWI687547B (en) Oxide transparent conductive film, photoelectric conversion element, and method of manufacturing photoelectric conversion element
JP5770323B2 (en) Sintered body and amorphous film
US20090269588A1 (en) Transparent conductive film and method of producing transparent conductive film
KR101797426B1 (en) Coating Glass and Method for Preparing the Same
JP4168689B2 (en) Thin film laminate
JP6511876B2 (en) Laminated transparent conductive film
JP7257562B2 (en) LAMINATED FUNCTION AS TRANSPARENT CONDUCTIVE FILM, METHOD FOR MANUFACTURING SAME, AND OXIDE SPUTTERING TARGET FOR MANUFACTURING SAME LAMINATED PRODUCT
WO2022230754A1 (en) Layered body having function as transparent electroconductive film and method for producing same, and oxide sputtering target for said layered body production
CN111620687A (en) Sintered body and amorphous film
KR20170078759A (en) Cu ALLOY FILM AND Cu MULTILAYER FILM
TW200807449A (en) Transparent conductive film, process for producing the same, and sputtering target for use in the production
CN117280428A (en) Laminate having function as transparent conductive film, method for producing same, and oxide sputtering target for producing same
JP6850981B2 (en) Oxide sputtering target
WO2023106314A1 (en) Multilayer body having function of transparent conductive film
CN115925414B (en) Molybdenum oxide-based sintered body, thin film using the sintered body, thin film transistor including the thin film, and display device
WO2021095550A1 (en) Laminated structure
JP2001001441A (en) Transparent electrically conductive laminate and manufacture thereof
JP2022039537A (en) Oxide film, laminate structure and sputtering target
Kim Characterization of a crystallized ZnO/CuSn/ZnO multilayer film deposited with low temperature magnetron sputtering
CN115819083A (en) Molybdenum oxide-based sintered body, thin film using the sintered body, thin film transistor including the thin film, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230403

R150 Certificate of patent or registration of utility model

Ref document number: 7257562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150