JP7252691B2 - 変形可能で伝導性の擬固体電極を有する形状適合性アルカリ金属-硫黄電池 - Google Patents

変形可能で伝導性の擬固体電極を有する形状適合性アルカリ金属-硫黄電池 Download PDF

Info

Publication number
JP7252691B2
JP7252691B2 JP2019572147A JP2019572147A JP7252691B2 JP 7252691 B2 JP7252691 B2 JP 7252691B2 JP 2019572147 A JP2019572147 A JP 2019572147A JP 2019572147 A JP2019572147 A JP 2019572147A JP 7252691 B2 JP7252691 B2 JP 7252691B2
Authority
JP
Japan
Prior art keywords
sulfur
carbon
graphene
active material
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019572147A
Other languages
English (en)
Japanese (ja)
Other versions
JP2020525984A (ja
Inventor
ツァーム,アルナ
ゼット. チャン,ボア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanotek Instruments Inc
Original Assignee
Nanotek Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/638,811 external-priority patent/US10651512B2/en
Priority claimed from US15/638,854 external-priority patent/US10454141B2/en
Application filed by Nanotek Instruments Inc filed Critical Nanotek Instruments Inc
Publication of JP2020525984A publication Critical patent/JP2020525984A/ja
Application granted granted Critical
Publication of JP7252691B2 publication Critical patent/JP7252691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
JP2019572147A 2017-06-30 2018-05-08 変形可能で伝導性の擬固体電極を有する形状適合性アルカリ金属-硫黄電池 Active JP7252691B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15/638,811 US10651512B2 (en) 2017-06-30 2017-06-30 Shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
US15/638,854 2017-06-30
US15/638,811 2017-06-30
US15/638,854 US10454141B2 (en) 2017-06-30 2017-06-30 Method of producing shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
PCT/US2018/031528 WO2019005299A1 (en) 2017-06-30 2018-05-08 ADAPTABLE ALKALINE-SULFUR METAL BATTERY WITH CONDUCTIVE AND DEFORMABLE QUASI-SOLID POLYMER ELECTRODE

Publications (2)

Publication Number Publication Date
JP2020525984A JP2020525984A (ja) 2020-08-27
JP7252691B2 true JP7252691B2 (ja) 2023-04-05

Family

ID=64742194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019572147A Active JP7252691B2 (ja) 2017-06-30 2018-05-08 変形可能で伝導性の擬固体電極を有する形状適合性アルカリ金属-硫黄電池

Country Status (4)

Country Link
JP (1) JP7252691B2 (zh)
KR (1) KR20200023365A (zh)
CN (1) CN110800127B (zh)
WO (1) WO2019005299A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device
US9362583B2 (en) 2012-12-13 2016-06-07 24M Technologies, Inc. Semi-solid electrodes having high rate capability
KR20230006856A (ko) * 2020-05-01 2023-01-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전극, 음극 활물질, 이차 전지, 차량, 및 전자 기기, 그리고 음극 활물질의 제작 방법
US20220093929A1 (en) * 2020-09-24 2022-03-24 24M Technologies, Inc. Semi-solid electrodes with carbon additives, and methods of making the same
CN112441835A (zh) * 2020-12-04 2021-03-05 拓米(成都)应用技术研究院有限公司 一种高强高密炭素材料及其制备方法和应用
CN114725334B (zh) * 2022-03-10 2024-02-06 湖南金钺新材料有限责任公司 一种花状硒化锌-锰/炭复合材料及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194099B1 (en) * 1997-12-19 2001-02-27 Moltech Corporation Electrochemical cells with carbon nanofibers and electroactive sulfur compounds
US9564629B2 (en) * 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
CN101997145B (zh) * 2009-08-25 2013-06-05 苏州宝时得电动工具有限公司 锂硫电池
US8993159B2 (en) * 2012-12-13 2015-03-31 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US9601803B2 (en) * 2013-07-22 2017-03-21 Nanotek Instruments, Inc. Non-flammable quasi-solid electrolyte-separator layer product for lithium battery applications
KR101725650B1 (ko) * 2014-10-29 2017-04-12 주식회사 엘지화학 리튬 황 전지
US9780349B2 (en) * 2015-05-21 2017-10-03 Nanotek Instruments, Inc. Carbon matrix- and carbon matrix composite-based dendrite-intercepting layer for alkali metal secondary battery

Also Published As

Publication number Publication date
JP2020525984A (ja) 2020-08-27
CN110800127A (zh) 2020-02-14
WO2019005299A1 (en) 2019-01-03
KR20200023365A (ko) 2020-03-04
CN110800127B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
JP7353983B2 (ja) 導電性の変形可能な準固体ポリマー電極を有する形状適合性のアルカリ金属電池
US20200343593A1 (en) Production process for alkali metal-sulfur batteries having high volumetric and gravimetric energy densities
US10950897B2 (en) Method of producing shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
JP7154129B2 (ja) 高体積および重量エネルギー密度を有するアルカリ金属-硫黄電池
US11152639B2 (en) Alkali metal-sulfur batteries having high volumetric and gravimetric energy densities
US9960451B1 (en) Method of producing deformable quasi-solid electrode material for alkali metal batteries
US10170789B2 (en) Method of producing a shape-conformable alkali metal battery having a conductive and deformable quasi-solid polymer electrode
US11394058B2 (en) Method of producing shape-conformable alkali metal-sulfur battery
US10535892B2 (en) Shape-conformable alkali metal battery having a conductive and deformable quasi-solid polymer electrode
US11258059B2 (en) Pre-sulfurized cathode for alkali metal-sulfur secondary battery and production process
JP7175284B2 (ja) 変形可能な準固体電極材料を備えたアルカリ金属電池
US11335946B2 (en) Shape-conformable alkali metal-sulfur battery
JP7252691B2 (ja) 変形可能で伝導性の擬固体電極を有する形状適合性アルカリ金属-硫黄電池
US10651512B2 (en) Shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
US20180342737A1 (en) Alkali Metal Battery Having a Deformable Quasi-Solid Electrode Material
CN110679008B (zh) 形状适形的碱金属-硫电池
US11870051B2 (en) Method of improving fast-chargeability of a lithium-ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230322

R150 Certificate of patent or registration of utility model

Ref document number: 7252691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150