JP7251915B2 - Powder for negative electrode material and method for producing negative electrode material - Google Patents

Powder for negative electrode material and method for producing negative electrode material Download PDF

Info

Publication number
JP7251915B2
JP7251915B2 JP2017192525A JP2017192525A JP7251915B2 JP 7251915 B2 JP7251915 B2 JP 7251915B2 JP 2017192525 A JP2017192525 A JP 2017192525A JP 2017192525 A JP2017192525 A JP 2017192525A JP 7251915 B2 JP7251915 B2 JP 7251915B2
Authority
JP
Japan
Prior art keywords
negative electrode
powder
electrode material
particle size
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017192525A
Other languages
Japanese (ja)
Other versions
JP2019067644A (en
Inventor
悠介 柏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2017192525A priority Critical patent/JP7251915B2/en
Publication of JP2019067644A publication Critical patent/JP2019067644A/en
Application granted granted Critical
Publication of JP7251915B2 publication Critical patent/JP7251915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、Liイオン二次電池の負極形成に使用される酸化珪素系の負極材用粉末及びその粉末の製造に用いる負極材料製造方法に関する。 TECHNICAL FIELD The present invention relates to a silicon oxide-based negative electrode material powder used to form a negative electrode of a Li-ion secondary battery, and a method for producing the negative electrode material used to produce the powder.

酸化珪素(SiOx)は電気容量が大きく、寿命特性に優れたリチウムイオン二次電池用負極材であることが知られている。この酸化珪素系負極材は、酸化珪素粉末、導電助剤及びバインダーを混合してスラリー化したものを、銅箔等からなる集電体上に塗工して薄膜状の負極とされる。 Silicon oxide (SiOx) is known to be a negative electrode material for lithium ion secondary batteries that has a large electric capacity and excellent life characteristics. This silicon oxide-based negative electrode material is prepared by mixing silicon oxide powder, a conductive agent and a binder to form a slurry, and coating the slurry on a current collector made of copper foil or the like to form a thin film negative electrode.

ここにおける酸化珪素粉末は、例えば二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させた後、細かく破砕することにより得られる(特許文献1)。このような析出法で製造される酸化珪素粉末は、析出時の冷却温度が低いと非晶質化し、熱膨張係数が小さくなって、電池性能、特に寿命特性の向上に寄与することが知られている(特許文献2)。 The silicon oxide powder here is obtained, for example, by heating a mixture of silicon dioxide and silicon to generate silicon monoxide gas, cooling it, precipitating it, and then finely pulverizing it (Patent Document 1). It is known that the silicon oxide powder produced by such a precipitation method becomes amorphous when the cooling temperature at the time of precipitation is low, and the coefficient of thermal expansion becomes small, which contributes to the improvement of battery performance, especially life characteristics. (Patent Document 2).

酸化珪素粉末の非晶質化とは別に、酸化珪素粉末にLiイオンを添加するLiドープが、電池性能の向上策として知られている。Liドープによると、充放電に寄与しない不可逆容量となるLi化合物が事前に生成され、初回充放電時に不可逆容量となるLi化合物が生成されるのが抑制されることにより、電池性能、特に初期効率の向上が図られる。 Li-doping, in which Li ions are added to silicon oxide powder, is known as a measure for improving battery performance, apart from amorphization of silicon oxide powder. According to Li doping, a Li compound that has an irreversible capacity that does not contribute to charge and discharge is generated in advance, and the generation of a Li compound that has an irreversible capacity during the initial charge and discharge is suppressed, resulting in battery performance, especially initial efficiency. will be improved.

また、Liドープとは別に、酸化珪素系負極材の粒子表面に導電性材料を被覆することも、電池性能の向上策として知られている。導電性材料の被覆により、表面抵抗が下がり、電池性能が向上する。導電性材料としては、グラファイトが代表的であり、例えば炭化水素ガスを用いた熱CVD反応により、粒子表面へ炭素を被覆することができることから、この処理は一般にCコートと呼ばれている。 In addition to Li doping, it is also known to coat the particle surfaces of the silicon oxide negative electrode material with a conductive material as a measure for improving battery performance. Coating with a conductive material reduces surface resistance and improves battery performance. Graphite is representative of the conductive material, and the surface of the particles can be coated with carbon by, for example, a thermal CVD reaction using a hydrocarbon gas, so this treatment is generally called C coating.

しかしながら、このような様々な電池性能の向上策にもかかわらず、依然として電池性能、特に負極材の寿命特性が市場要求に達せず、負極材の更なる寿命特性の向上が強く望まれている昨今である。 However, despite these various measures to improve battery performance, the battery performance, especially the life characteristics of the negative electrode material, still does not meet the market demand, and there is a strong demand for further improvement in the life characteristics of the negative electrode material these days. is.

特許第4518278号公報Japanese Patent No. 4518278 特許第5600354号公報Japanese Patent No. 5600354

本発明の目的は、電池性能、特に寿命特性の向上に有効な酸化珪素系の負極材粉末及びその粉末の製造に用いる負極材料製造方法を提供することにある。 An object of the present invention is to provide a silicon oxide-based negative electrode material powder which is effective for improving battery performance, particularly life characteristics, and a method for producing the negative electrode material used for producing the powder.

上記目的を達成するために、本発明者は酸化珪素系の負極材粉末の非晶質化に着目し、その非晶質化を進めるべく、析出時の冷却温度を段階的に下げてきた。その結果、冷却温度が900℃より下では、Siの結晶ピークが消失することにより、非晶質構造が得られることが判明している。しかし、更に冷却温度を下げても非晶質構造が変化しないことから、現状が究極の非晶質構造と考えてきた。 In order to achieve the above object, the present inventors focused on the amorphization of the silicon oxide-based negative electrode material powder, and in order to promote the amorphization, the cooling temperature during deposition has been lowered in stages. As a result, it has been found that when the cooling temperature is below 900° C., an amorphous structure is obtained due to the disappearance of the crystal peak of Si. However, since the amorphous structure does not change even if the cooling temperature is further lowered, the current state has been considered to be the ultimate amorphous structure.

すなわち、その負極材粉末に対してXRD測定を行ったとき、冷却温度が900℃より下だと、図3に示すように、回折角2θ=25°をピークとし半値幅が10°に達する非晶質に由来の第1のブロードな結晶ピークと、回折角2θ=52°をピークとし半値幅が10°に達する非晶質に由来の第2のブロードな結晶ピークとが検出され、この2ピークの傾向は冷却温度を100℃まで下げても実質的に変化がなく、電池性能への影響度にも大きな変化はなかったのである。 That is, when XRD measurement is performed on the negative electrode material powder, if the cooling temperature is lower than 900 ° C., as shown in FIG. A first broad crystalline peak derived from the crystalline and a second broad crystalline peak derived from the amorphous having a diffraction angle 2θ of 52° and a half width reaching 10° were detected. The tendency of the peak did not substantially change even when the cooling temperature was lowered to 100° C., and there was no significant change in the degree of influence on the battery performance.

このため、この2つのブロードな結晶ピークをもつ非晶質構造が、究極の組織と考えられてきたわけである。ちなみに、一酸化珪素ガスを発生させるための試料加熱温度は減圧下でも1000℃以上と高温である。 For this reason, the amorphous structure with these two broad crystal peaks has been considered the ultimate structure. Incidentally, the sample heating temperature for generating silicon monoxide gas is as high as 1000° C. or higher even under reduced pressure.

このような状況下で、本発明者は一つの試みとして、一酸化珪素ガスを析出させるための冷却温度を100℃より更に低い80℃以下まで下げた。その結果、負極材粉末のXRD測定において、これまでとは全く異なる新しい非晶質構造が現れ、しかも、この新しい非晶質構造が電池性能、特に寿命特性を大きく向上させることを見出した。 Under such circumstances, the present inventor has attempted to lower the cooling temperature for depositing silicon monoxide gas to 80°C or lower, which is lower than 100°C. As a result, it was found that a completely new amorphous structure appeared in the XRD measurement of the negative electrode material powder, and that this new amorphous structure significantly improved battery performance, especially life characteristics.

具体的に説明すると、一酸化珪素ガスを析出させるための冷却温度が80℃以下になると、図2に示すように、負極材粉末のXRD測定において、回折角2θ=52°をピークとするブロードな結晶ピークが消失し、回折角2θ=25°をピークとするブロードな結晶ピークのみとなり、この構造が寿命特性の向上に非常に効果的となるのである。 Specifically, when the cooling temperature for precipitating silicon monoxide gas becomes 80° C. or lower, as shown in FIG. The sharp crystal peak disappears, leaving only a broad crystal peak peaking at the diffraction angle 2θ=25°, and this structure is very effective in improving the life characteristics.

本発明の酸化珪素系の負極材用粉末は、かかる知見を基礎として開発されたものであり、平均組成がSiO(0.5<x<1.5)で表される酸化珪素粉末であって、CuKα線を用いるXRD測定を行った際に、回折角2θ=10~60°の範囲において、半値幅が2°以上のブロードな結晶ピークが10~40°にのみ一つだけ検出され、そのブロードな結晶ピークの強度をP1とするとき、他の結晶ピークの強度P2がP2/P1<0.1を満足することを構成上の特徴点とする。
The silicon oxide-based negative electrode material powder of the present invention was developed based on such knowledge, and is a silicon oxide powder having an average composition represented by SiO x (0.5<x<1.5). When performing XRD measurement using CuKα rays , only one broad crystal peak with a half-value width of 2° or more is detected at 10 to 40° in the range of diffraction angles 2θ = 10 to 60°, When the intensity of the broad crystal peak is P1, the intensity P2 of another crystal peak satisfies P2/P1<0.1.

また、本発明の負極材料製造方法は、原料を加熱して発生させたSiOガスを冷却して回収する負極材用析出体の製造方法であって、SiOガスを冷却して回収する析出部の温度を-25~+80℃に維持することを構成上の特徴点とする。 Further, the method for producing a negative electrode material of the present invention is a method for producing a deposit for a negative electrode material in which the SiO gas generated by heating the raw material is cooled and recovered, and the precipitate part in which the SiO gas is cooled and recovered A feature of the configuration is that the temperature is maintained between -25 and +80°C.

10~40°に現れる半値幅が2°以上のブロードな結晶ピークは、非晶質構造に由来する。そのブロードな結晶ピークにおいては、回折角2θ=10°における回折強度と、回折角2θ=40°における回折強度とを直線で結んでその直線をベース強度としたとき、回折角2θ=20~30°の範囲で傾きが0となる位置の強度がピーク強度P1となる。 A broad crystalline peak with a half width of 2° or more appearing at 10° to 40° originates from an amorphous structure. In the broad crystal peak, when the diffraction intensity at the diffraction angle 2θ = 10° and the diffraction intensity at the diffraction angle 2θ = 40° are connected by a straight line and the straight line is used as the base intensity, the diffraction angle 2θ = 20 to 30 The intensity at the position where the slope is 0 in the range of ° is the peak intensity P1.

その他の結晶ピークについては、回折角2θ=10~40°の範囲においては、何らかのピークが存在する場合、非晶質構造に由来するブロードなピークの強度をベース強度として、ピーク強度P2を算出する。回折角2θ=40~60°の範囲においては、回折角回折角2θ=40°における回折強度と、回折角2θ=60°における回折強度とを直線で結んでその直線をベース強度としたとき、最も強度が高い部分の強度がピーク強度P2となる。 For other crystal peaks, if there is any peak in the range of diffraction angles 2θ = 10 to 40°, the peak intensity P2 is calculated using the intensity of the broad peak derived from the amorphous structure as the base intensity. . In the range of the diffraction angle 2θ=40 to 60°, when the diffraction intensity at the diffraction angle 2θ=40° and the diffraction intensity at the diffraction angle 2θ=60° are connected by a straight line and the straight line is taken as the base intensity, The intensity of the portion with the highest intensity is the peak intensity P2.

本発明の負極材用粉末においては、P2/P1<0.1が満足されることにより、他の結晶ピークがノイズレベルに留まり、本発明の負極材用粉末に特有の1ピークの非晶質構造が得られる。1ピークの非晶質構造は、他の結晶ピークが存在する非晶質構造と比して、均質化が一段と進んだものと考えられる。その結果、LiがSiOx粒子内に均一拡散しやすくなり、充放電時の膨張収縮による応力集中が緩和されることにより、粒子の割れや抵抗上昇が抑制されることから、寿命特性が向上するものと考えられる。従来の負極材用粉末においては、回折角2θ=40~60°の範囲にも、非晶質構造に由来のブロードなピークが存在し、均質化が十分でないために、寿命特性が劣ると想定される。 In the negative electrode material powder of the present invention, by satisfying P2 / P1 < 0.1, the other crystal peaks remain at the noise level, and the single amorphous peak unique to the negative electrode material powder of the present invention structure is obtained. The amorphous structure with one peak is considered to be more homogenized than the amorphous structure with other crystal peaks. As a result, it becomes easier for Li to diffuse uniformly within the SiOx particles, and stress concentration due to expansion and contraction during charging and discharging is alleviated, thereby suppressing particle cracking and resistance increases, thereby improving life characteristics. it is conceivable that. In conventional powders for negative electrode materials, there is a broad peak derived from an amorphous structure even in the range of diffraction angles 2θ = 40 to 60°, and it is assumed that life characteristics are inferior because homogenization is not sufficient. be done.

負極材粉末の平均組成については、SiOx(0.5<x<1.5)であることが必要である。x≦0.5だと、充放電時の膨張収縮が大きくなり、寿命特性が悪化する。x≧1.5だと、不活性な酸化物が多くなり、電池特性が低下する。 The average composition of the negative electrode material powder must be SiOx (0.5<x<1.5). If x≤0.5, expansion and contraction during charging and discharging become large, resulting in deterioration of life characteristics. If x≧1.5, the amount of inactive oxides increases and the battery characteristics deteriorate.

本発明の負極材用粉末においては、粉末粒子の非晶質構造及び平均組成の他に、粉末粒子の表面状態及び平均粒径が重要である。 In the powder for negative electrode material of the present invention, the surface state and average particle size of the powder particles are important in addition to the amorphous structure and average composition of the powder particles.

粉末粒子の形状については、下記の(1)式を満足することが望ましい。
1.5≦B/A≦100・・・(1)
ただし、Aは粒度分布を用い、粉末粒子が球体であると仮定して算出した負極材用粉末の比表面積であり、下記の(2)式により表される。
The shape of the powder particles preferably satisfies the following formula (1).
1.5≦B/A≦100 (1)
However, A is the specific surface area of the negative electrode material powder calculated using the particle size distribution and assuming that the powder particles are spherical, and is represented by the following formula (2).

A=Σ{ni ×(di/2)}/〔ρ×Σ{ni ×(di/2)/3 }〕・・・(2)
ここで、di は負極材用粉末の粒径、ni は粒度分布において粒径di ~di+1 の範囲にある粒子数、ρはSiOの真密度(2.2g/cm) である。
A = Σ {ni × (di/2) 2 }/[ρ × Σ {ni × (di/2) 3 /3 }] (2)
Here, di is the particle size of the negative electrode material powder, ni is the number of particles in the range of particle sizes di to di+1 in the particle size distribution, and ρ is the true density of SiO (2.2 g/cm 3 ).

また、BはBET法により1点法で測定した負極材用粉末の比表面積である。 Further, B is the specific surface area of the negative electrode material powder measured by the one-point method by the BET method.

つまり、B/Aは、粉末が球形であると仮定した場合の理論比表面積Aと、実際の比表面積Bの差異を示す値であり、粒子の形状や表面状態を反映しており、B/Aが小さいほど粉末粒子が球形で表面が平坦であり、反対にB/Aが大きいほど凹凸が多く、多孔質状の表面であることを示し、これらにより粒度分布に依存しない表面状態評価を可能とする。このB/Aが100を超えると、粉末粒子の表面積が大きすぎるために、表面酸化による不活性なSiOの増加、充放電時における被膜形成量の増加などの悪影響が生じ、電池性能が低下する。B/Aが1.5より小さい場合、粒子が球状かつ平滑な表面性状を有していなければならず、通常の作製方法では製造が困難となる。特に好ましいB/Aは、1.5以上50以下である。 In other words, B/A is a value that indicates the difference between the theoretical specific surface area A when the powder is assumed to be spherical and the actual specific surface area B, and reflects the shape and surface state of the particles. The smaller the A, the more spherical the powder particles and the flatter the surface. Conversely, the larger the B/A, the more irregular and porous the surface. and If this B/A exceeds 100, the surface area of the powder particles is too large, which causes adverse effects such as an increase in inactive SiO2 due to surface oxidation and an increase in the amount of film formed during charging and discharging, resulting in deterioration of battery performance. do. If B/A is less than 1.5, the particles must have a spherical and smooth surface, which makes it difficult to produce by ordinary production methods. A particularly preferable B/A is 1.5 or more and 50 or less.

負極材用粉末の平均粒径については、粒度分布におけるD50の値が、1μm≦D50≦50μmを満足することが望まれる。粒径が大きい場合、充放電による粒子への応力増大、割れを引き起こすと共に、電極作製においても問題が生じる。粒径が小さい場合は比表面積が大きくなり、電池性能が悪化する。 As for the average particle size of the negative electrode material powder, it is desired that the D50 value in the particle size distribution satisfies 1 μm≦D 50 ≦50 μm. If the particle size is large, the stress on the particles increases due to charge/discharge, cracking occurs, and problems also arise in electrode production. If the particle size is small, the specific surface area becomes large and the battery performance deteriorates.

また、本発明の負極材製造方法においては、SiOガスを冷却して回収する析出部が-25~+80℃の低温に保持されることにより、SiOガスが急冷されると共に急冷後の低温に維持され、均質化の進んだ非晶質構造のSiOxが析出生成される。この結果、その析出体を回収し、粉砕することにより、本発明の負極材用粉末の製造が可能となる。 In addition, in the negative electrode material manufacturing method of the present invention, the deposition part where the SiO gas is cooled and recovered is kept at a low temperature of -25 to +80 ° C., so that the SiO gas is rapidly cooled and maintained at a low temperature after quenching. SiOx having an amorphous structure with advanced homogenization is precipitated. As a result, the powder for negative electrode material of the present invention can be produced by collecting and pulverizing the precipitate.

析出部の温度が80℃を超えている場合は、負極材粉末のXRD測定において回折角2θ=40~60°の範囲に非晶質由来のブロードな結晶ピークが発生し、従来の非晶質SiOxとなる。また、析出部の温度が900℃以上の場合は、XRD測定において回折角2θ=47.4付近にSi結晶に由来する、半値幅が2°を下回る尖った結晶ピークが発現し、非晶質と呼べない構造となる。析出部の温度が-25℃を下回る場合は、低温維持が容易でなく、量産設備としては不適となる。 When the temperature of the deposition part exceeds 80 ° C., a broad crystal peak derived from amorphous occurs in the range of diffraction angle 2θ = 40 to 60 ° in the XRD measurement of the negative electrode material powder, and the conventional amorphous becomes SiOx. In addition, when the temperature of the precipitation part is 900 ° C. or higher, a sharp crystal peak with a half-value width of less than 2 ° derived from the Si crystal appears near the diffraction angle 2θ = 47.4 in the XRD measurement, and the crystal is amorphous. It becomes a structure that cannot be called If the temperature of the precipitation part is below -25°C, it is not easy to maintain the temperature low, making it unsuitable for mass production equipment.

析出部は、ガス発生部の直上に、ガス発生部に対面して配置されるのが好ましい。SiOガスが高温状態で直接、析出部に到達することにより、組織が緻密化し、非晶質でありながら、比表面積及びB/Aの小さいSiOxが析出生成される。 It is preferable that the deposition section is arranged directly above the gas generation section so as to face the gas generation section. When the SiO gas reaches the deposition part directly in a high temperature state, the structure is densified and amorphous SiOx having a small specific surface area and B/A is deposited.

析出部に回収される析出体の厚みは1μm以上1mm以下とするのが好ましい。析出体の厚みが大きすぎる場合は、析出体自体が断熱材として機能し、SiOガス回収時に発生する昇華熱やガス発生部からの輻射熱によって析出体の表面温度が上昇する。その結果、析出体の非晶質構造が変化するおそれが生じる。析出体の厚みが薄すぎる場合は析出体の回収が難しく、かつ粉砕後の粒径が小さくなり、粒度調整が困難となる。 It is preferable that the thickness of the precipitate collected in the precipitation portion is 1 μm or more and 1 mm or less. When the thickness of the precipitate is too large, the precipitate itself functions as a heat insulating material, and the surface temperature of the precipitate rises due to sublimation heat generated during SiO gas recovery and radiant heat from the gas generating portion. As a result, the amorphous structure of the precipitate may change. If the thickness of the precipitate is too thin, it is difficult to recover the precipitate, and the particle size after pulverization becomes small, making it difficult to adjust the particle size.

析出原料にはSi単体とSi酸化物との混合物やSiOxなどを用いることができる。SiOガス発生反応は、減圧下で析出原料を加熱することにより進行する。この観点から反応温度は1000℃以上、特に1100~1600℃が望ましい。 A mixture of elemental Si and Si oxide, SiOx, or the like can be used as the deposition raw material. The SiO gas generation reaction proceeds by heating the deposition raw material under reduced pressure. From this point of view, the reaction temperature is desirably 1000°C or higher, particularly 1100 to 1600°C.

析出部から回収した析出体については、所定の粒度に粉砕、調整することで、負極材用粉末とすることができる。粉砕方法は特に限定されないが、金属不純物が混入しないように、粉末との接触部にはセラミック等の非金属材料を用いるのが望ましい。 The precipitate collected from the precipitation part can be pulverized and adjusted to a predetermined particle size to obtain powder for a negative electrode material. The pulverization method is not particularly limited, but it is desirable to use a non-metallic material such as ceramic for the portion that comes into contact with the powder so as not to mix metallic impurities.

得られた負極材用粉末をリチウムイオン二次電池の負極活物質として使用することにより、負極の寿命特性が向上し、イオン二次電池の電池特性が向上する。 By using the obtained negative electrode material powder as a negative electrode active material of a lithium ion secondary battery, the life characteristics of the negative electrode are improved, and the battery characteristics of the ion secondary battery are improved.

本発明の負極材用粉末は、均質化が進んだ固有の非晶質構造を有することにより、電池性能の向上、特に寿命特性の向上に有効である。 The negative electrode material powder of the present invention is effective in improving battery performance, particularly in improving life characteristics, by having a unique amorphous structure with advanced homogenization.

また、本発明の負極材料製造方法は、SiOガスを冷却して回収する析出部の温度を80℃以下に保持することにより、均質化が進んだ固有の非晶質構造を有する析出体の生成を可能にし、これを粉末化して負極活物質として用いることにより、電池性能の向上、特に寿命特性の向上に寄与する。 In addition, in the method for producing a negative electrode material of the present invention, the temperature of the precipitation part where the SiO gas is cooled and recovered is maintained at 80 ° C. or less, thereby forming a precipitate having a unique amorphous structure with advanced homogenization. can be made possible, and by pulverizing it and using it as a negative electrode active material, it contributes to the improvement of battery performance, particularly to the improvement of life characteristics.

本発明の負極材用粉末の製造実験に用いた析出体生成装置の概略構成図である。1 is a schematic configuration diagram of a deposit forming apparatus used in a production experiment of a negative electrode material powder of the present invention; FIG. 本発明の負極材用粉末の一例についてその非晶質構造を示すXRDプロファイ図である。1 is an XRD profile diagram showing an amorphous structure of an example of the negative electrode material powder of the present invention. FIG. 従来の負極材用粉末の典型的な非晶質構造を示すXRDプロファイ図である。FIG. 2 is an XRD profile diagram showing a typical amorphous structure of a conventional negative electrode material powder.

以下に本発明の実施形態を説明する。本発明の負極材粉末は、典型的には次のような方法により製造される。 Embodiments of the present invention are described below. The negative electrode material powder of the present invention is typically produced by the following method.

Si粉末とSiO粉末とを所定比率で混合した粉末原料を、図3に示す析出装置内に装填する。析出装置は、チャンバー1と、チャンバー1内の中心部に配置されたるつぼ2と、るつぼ2を周囲から包囲するヒータ3とを備えている。ヒータ3は、るつぼ2と共に断熱材4に覆われた状態でチャンバー1内に配置されており、るつぼ2の内部に装填された前記粉末原料5を所定温度以上に加熱する。チャンバー1内は、真空ポンプ10により所定の減圧雰囲気に保持される。 A powder raw material obtained by mixing Si powder and SiO 2 powder at a predetermined ratio is loaded into the deposition apparatus shown in FIG. The deposition apparatus comprises a chamber 1, a crucible 2 arranged centrally within the chamber 1, and a heater 3 surrounding the crucible 2 from the periphery. The heater 3 is arranged inside the chamber 1 while being covered with a heat insulating material 4 together with the crucible 2, and heats the raw material powder 5 loaded inside the crucible 2 to a predetermined temperature or higher. The inside of the chamber 1 is maintained in a predetermined reduced pressure atmosphere by a vacuum pump 10 .

チャンバー1内には又、るつぼ2の直上に位置して、水平板状の第1蒸着板6が配置されると共に、第1蒸着板6の更に上側に位置して第2蒸着板7が設置されている。第1蒸着板6は、下面をるつぼ2内に対向させており、背面側(上面側)より冷却機構8により所定温度に冷却され保持される。第1蒸着板6の背面側(上面側)に位置する第2蒸着板7は、チャンバー1の天井面に直接取付けられており、背面側(上面側)より冷却機構9により所定温度に冷却され保持される。冷却機構8,9は、銅板に冷媒流通用の銅管を取り付けた構造である。 In the chamber 1, a first vapor deposition plate 6 in the form of a horizontal plate is arranged directly above the crucible 2, and a second vapor deposition plate 7 is arranged above the first vapor deposition plate 6. It is The first vapor deposition plate 6 faces the inside of the crucible 2 at its lower surface, and is cooled and held at a predetermined temperature by a cooling mechanism 8 from the rear surface side (upper surface side). The second vapor deposition plate 7 located on the back side (top side) of the first vapor deposition plate 6 is directly attached to the ceiling surface of the chamber 1, and is cooled to a predetermined temperature by the cooling mechanism 9 from the back side (top side). retained. The cooling mechanisms 8 and 9 have a structure in which a copper pipe for circulating a coolant is attached to a copper plate.

実施例1~4及び比較例1,2として、上記析出装置を使用して実際に得た析出体から、負極材用粉末を製造し、その組織を調査した。 As Examples 1 to 4 and Comparative Examples 1 and 2, negative electrode material powders were produced from deposits actually obtained using the deposition apparatus described above, and their structures were investigated.

(実施例1)
Si粉末とSiO粉末とを1:1のモル比で混合して得た粉末原料を前記析出装置により1Paの減圧下にて1400℃に加熱することによりSiOガスを発生させた。ガス発生部であるるつぼ内の真上に設置され-25℃に冷却された第1蒸着板の下面にSiOガスを10μm析出させた。回収した析出体のSi量、及びO量をICP発光分析法、赤外線吸収法により分析して、析出体の平均組成がSiOx(x=1.15)であることを確認した。そのSiOx析出体をめのう乳鉢により粉砕し、リチウムイオン電池用負極向けの粉末とした。
(Example 1)
Si powder and SiO 2 powder were mixed at a molar ratio of 1:1, and the raw material powder was heated to 1400° C. under a reduced pressure of 1 Pa by the precipitation apparatus to generate SiO gas. SiO gas was deposited to a thickness of 10 μm on the lower surface of the first vapor deposition plate which was placed right above the inside of the crucible serving as the gas generating portion and cooled to −25° C. The amount of Si and the amount of O in the collected precipitates were analyzed by ICP emission spectrometry and infrared absorption, and it was confirmed that the average composition of the precipitates was SiOx (x=1.15). The SiOx precipitate was pulverized with an agate mortar to obtain a powder for a lithium ion battery negative electrode.

得られた負極用粉末に対して、レーザー回折式粒度分布測定により粒度測定を実施すると共に、BET比表面積測定装置により比表面積測定を実施した。また、粉末X線回折装置により、CuKα線を用い、回折角の間隔を0.2°としてXDR測定を実施した。そのXDRプロフィルを図2に示す。回折角2θ=25°をピークとする半値幅11°の非晶質に由来するブロードな結晶ピークが検出された。その他の結晶ピークについては明確なものは存在せず、前記P2/P1の最大値は0.05であった。 The obtained negative electrode powder was subjected to particle size measurement by laser diffraction particle size distribution measurement and specific surface area measurement by a BET specific surface area measurement device. Further, XDR measurement was performed with a powder X-ray diffractometer using CuKα rays with a diffraction angle interval of 0.2°. Its XDR profile is shown in FIG. A broad crystalline peak derived from an amorphous material and having a peak at a diffraction angle 2θ of 25° and a half width of 11° was detected. Other crystal peaks did not have a clear peak, and the maximum value of P2/P1 was 0.05.

(実施例2)
Si粉末とSiO粉末とを1:1のモル比で混合して得た粉末原料を前記析出装置により1Paの減圧下にて1400℃に加熱することによりSiOガスを発生させた。ガス発生部であるるつぼ内の真上に設置され80℃に冷却された第1蒸着板の下面にSiOガスを10μm厚に析出させた。回収した析出体のSi量、及びO量をICP発光分析法、赤外線吸収法により分析して、析出体の平均組成がSiOx(x=1.11)であることを確認した。そのSiOx析出体をめのう乳鉢により粉砕し、リチウムイオン電池用負極向けの粉末とした。
(Example 2)
Si powder and SiO 2 powder were mixed at a molar ratio of 1:1, and the raw material powder was heated to 1400° C. under a reduced pressure of 1 Pa by the precipitation apparatus to generate SiO gas. SiO gas was deposited to a thickness of 10 μm on the lower surface of the first vapor deposition plate which was placed right above the inside of the crucible serving as the gas generating portion and cooled to 80°C. The amount of Si and the amount of O in the collected precipitates were analyzed by ICP emission spectrometry and infrared absorption, and it was confirmed that the average composition of the precipitates was SiOx (x=1.11). The SiOx precipitate was pulverized with an agate mortar to obtain a powder for a lithium ion battery negative electrode.

得られた負極用粉末に対して、レーザー回折式粒度分布測定により粒度測定を実施すると共に、BET比表面積測定装置により比表面積測定を実施した。また、粉末X線回折装置により、CuKα線を用い、回折角の間隔を0.2°としてXDR測定を実施した。XDR測定においては、回折角2θ=25°をピークとする半値幅11°の非晶質に由来するブロードな結晶ピークが検出された。その他の結晶ピークについては明確なものは存在せず、前記P2/P1の最大値は0.08であった。 The obtained negative electrode powder was subjected to particle size measurement by laser diffraction particle size distribution measurement and specific surface area measurement by a BET specific surface area measurement device. Further, XDR measurement was performed with a powder X-ray diffractometer using CuKα rays with a diffraction angle interval of 0.2°. In the XDR measurement, a broad crystalline peak derived from an amorphous material was detected with a peak at a diffraction angle 2θ of 25° and a half width of 11°. Other crystal peaks did not have a clear peak, and the maximum value of P2/P1 was 0.08.

(実施例3)
Si粉末とSiO粉末とを1:1のモル比で混合して得た粉末原料を前記析出装置により1Paの減圧下にて1400℃に加熱することによりSiOガスを発生させた。るつぼ内の真上に設置された第1蒸着板を冷却せず、その上の天井面に設置された第2蒸着板を-25℃に冷却し、その下面にSiOガスを10μm厚に析出させた。回収した析出体のSi量、及びO量をICP発光分析法、赤外線吸収法により分析して、析出体の平均組成がSiOx(x=1.21)であることを確認した。そのSiOx析出体をめのう乳鉢により粉砕し、リチウムイオン電池用負極向けの粉末とした。
(Example 3)
Si powder and SiO 2 powder were mixed at a molar ratio of 1:1, and the raw material powder was heated to 1400° C. under a reduced pressure of 1 Pa by the precipitation apparatus to generate SiO gas. Without cooling the first vapor deposition plate installed directly above the crucible, the second vapor deposition plate installed on the ceiling surface above it is cooled to -25 ° C., and SiO gas is deposited on the bottom surface to a thickness of 10 μm. rice field. The amount of Si and the amount of O in the recovered precipitates were analyzed by ICP emission spectrometry and infrared absorption, and it was confirmed that the average composition of the precipitates was SiOx (x=1.21). The SiOx precipitate was pulverized with an agate mortar to obtain a powder for a lithium ion battery negative electrode.

得られた負極用粉末に対して、レーザー回折式粒度分布測定により粒度測定を実施すると共に、BET比表面積測定装置により比表面積測定を実施した。また、粉末X線回折装置により、CuKα線を用い、回折角の間隔を0.2°としてXDR測定を実施した。XDR測定においては、回折角2θ=25°をピークとする半値幅11°の非晶質に由来するブロードな結晶ピークが検出された。その他の結晶ピークについては明確なものは存在せず、前記P2/P1の最大値は0.04であった。 The obtained negative electrode powder was subjected to particle size measurement by laser diffraction particle size distribution measurement and specific surface area measurement by a BET specific surface area measurement device. Further, XDR measurement was performed with a powder X-ray diffractometer using CuKα rays with a diffraction angle interval of 0.2°. In the XDR measurement, a broad crystalline peak derived from an amorphous material was detected with a peak at a diffraction angle 2θ of 25° and a half width of 11°. Other crystal peaks did not exist, and the maximum value of P2/P1 was 0.04.

(実施例4)
Si粉末とSiO粉末とを1:1のモル比で混合して得た粉末原料を前記析出装置により1Paの減圧下にて1400℃に加熱することによりSiOガスを発生させた。るつぼ内の真上に設置された第1蒸着板を冷却せず、その上の天井面に設置された第2蒸着板を80℃に冷却し、その下面にSiOガスを10μm厚に析出させた。回収した析出体のSi量、及びO量をICP発光分析法、赤外線吸収法により分析して、析出体の平均組成がSiOx(x=1.18)であることを確認した。そのSiOx析出体をめのう乳鉢により粉砕し、リチウムイオン電池用負極向けの粉末とした。
(Example 4)
Si powder and SiO 2 powder were mixed at a molar ratio of 1:1, and the raw material powder was heated to 1400° C. under a reduced pressure of 1 Pa by the precipitation apparatus to generate SiO gas. Without cooling the first deposition plate installed directly above the crucible, the second deposition plate installed on the ceiling surface above it was cooled to 80 ° C., and SiO gas was deposited on the bottom surface to a thickness of 10 μm. . The amount of Si and the amount of O in the recovered precipitates were analyzed by ICP emission spectrometry and infrared absorption, and it was confirmed that the average composition of the precipitates was SiOx (x=1.18). The SiOx precipitate was pulverized with an agate mortar to obtain a powder for a lithium ion battery negative electrode.

得られた負極用粉末に対して、レーザー回折式粒度分布測定により粒度測定を実施すると共に、BET比表面積測定装置により比表面積測定を実施した。また、粉末X線回折装置により、CuKα線を用い、回折角の間隔を0.2°としてXDR測定を実施した。XDR測定においては、回折角2θ=25°をピークとする半値幅11°の非晶質に由来するブロードな結晶ピークが検出された。その他の結晶ピークについては明確なものは存在せず、前記P2/P1の最大値は0.06であった。 The obtained negative electrode powder was subjected to particle size measurement by laser diffraction particle size distribution measurement and specific surface area measurement by a BET specific surface area measurement device. Further, XDR measurement was performed with a powder X-ray diffractometer using CuKα rays with a diffraction angle interval of 0.2°. In the XDR measurement, a broad crystalline peak derived from an amorphous material was detected with a peak at a diffraction angle 2θ of 25° and a half width of 11°. There were no clear peaks for other crystals, and the maximum value of P2/P1 was 0.06.

(比較例1)
Si粉末とSiO粉末とを1:1のモル比で混合して得た粉末原料を前記析出装置により1Paの減圧下にて1400℃に加熱することによりSiOガスを発生させた。るつぼ内の真上に設置された第1蒸着板の下面にSiOガスを2cm厚に析出させた。第1蒸着板の温度は400℃になっていた。回収した析出体のSi量、及びO量をICP発光分析法、赤外線吸収法により分析して、析出体の平均組成がSiOx(x=1.09)であることを確認した。そのSiOx析出体をめのう乳鉢により粉砕し、リチウムイオン電池用負極向けの粉末とした。
(Comparative example 1)
Si powder and SiO 2 powder were mixed at a molar ratio of 1:1, and the raw material powder was heated to 1400° C. under a reduced pressure of 1 Pa by the precipitation apparatus to generate SiO gas. SiO gas was deposited to a thickness of 2 cm on the lower surface of the first vapor deposition plate placed right above the crucible. The temperature of the first deposition plate was 400°C. The amount of Si and the amount of O in the recovered precipitates were analyzed by ICP emission spectrometry and infrared absorption, and it was confirmed that the average composition of the precipitates was SiOx (x=1.09). The SiOx precipitate was pulverized with an agate mortar to obtain a powder for a lithium ion battery negative electrode.

得られた負極用粉末に対して、レーザー回折式粒度分布測定により粒度測定を実施すると共に、BET比表面積測定装置により比表面積測定を実施した。また、粉末X線回折装置により、CuKα線を用い、回折角の間隔を0.2°としてXDR測定を実施した。そのXDRプロフィルを図3に示す。回折角2θ=25°をピークとする半値幅12°の非晶質に由来するブロードな結晶ピークの他に、回折角2θ=52°をピークとする半値幅10°の非晶質に由来するブロードな結晶ピークが検出され、その他には、P2/P1>0.1となるピークは存在しなかった。結果、前記P2/P1の最大値は0.27であった。 The obtained negative electrode powder was subjected to particle size measurement by laser diffraction particle size distribution measurement and specific surface area measurement by a BET specific surface area measurement device. Further, XDR measurement was performed with a powder X-ray diffractometer using CuKα rays with a diffraction angle interval of 0.2°. Its XDR profile is shown in FIG. In addition to a broad crystalline peak with a half-value width of 12° and a peak at a diffraction angle of 2θ = 25°, derived from an amorphous with a half-value width of 10° with a peak at a diffraction angle of 2θ = 52°. A broad crystal peak was detected, and no other peaks satisfying P2/P1>0.1 were present. As a result, the maximum value of P2/P1 was 0.27.

(比較例2)
Si粉末とSiO粉末とを1:1のモル比で混合して得た粉末原料を前記析出装置により1Paの減圧下にて1400℃に加熱することによりSiOガスを発生させた。るつぼ内の真上に設置され100℃に冷却された第1蒸着板の下面にSiOガスを2cm厚に析出させた。回収した析出体のSi量、及びO量をICP発光分析法、赤外線吸収法により分析して、析出体の平均組成がSiOx(x=1.12)であることを確認した。そのSiOx析出体をめのう乳鉢により粉砕し、リチウムイオン電池用負極向けの粉末とした。
(Comparative example 2)
Si powder and SiO 2 powder were mixed at a molar ratio of 1:1, and the raw material powder was heated to 1400° C. under a reduced pressure of 1 Pa by the precipitation apparatus to generate SiO gas. SiO gas was deposited to a thickness of 2 cm on the lower surface of the first vapor deposition plate which was placed directly above the inside of the crucible and cooled to 100°C. The amount of Si and the amount of O in the recovered precipitates were analyzed by ICP emission spectrometry and infrared absorption, and it was confirmed that the average composition of the precipitates was SiOx (x=1.12). The SiO x precipitate was pulverized with an agate mortar to obtain a powder for lithium ion battery negative electrodes.

得られた負極用粉末に対して、レーザー回折式粒度分布測定により粒度測定を実施すると共に、BET比表面積測定装置により比表面積測定を実施した。また、粉末X線回折装置により、CuKα線を用い、回折角の間隔を0.2°としてXDR測定を実施した。XDR測定においては、回折角2θ=25°をピークとする半値幅12°の非晶質に由来するブロードな結晶ピークの他に、回折角2θ=52°をピークとする半値幅10°の非晶質に由来するブロードな結晶ピークが検出され、その他には、P2/P1>0.1となるピークは存在しなかった。結果、前記P2/P1の最大値は0.20であった。 The obtained negative electrode powder was subjected to particle size measurement by laser diffraction particle size distribution measurement and specific surface area measurement by a BET specific surface area measurement device. Further, XDR measurement was performed with a powder X-ray diffractometer using CuKα rays with a diffraction angle interval of 0.2°. In the XDR measurement, in addition to a broad crystalline peak with a half-value width of 12° and a peak at a diffraction angle of 2θ = 25°, a noncrystalline peak with a half-value width of 10° and a peak at a diffraction angle of 2θ = 52° was observed. A broad crystal peak derived from crystalloid was detected, and no other peaks satisfying P2/P1>0.1 were present. As a result, the maximum value of P2/P1 was 0.20.

(電池評価)
次に、実施例1~4及び比較例1,2で得られた負極材用の粉末試料に対して、以下の手順で電池評価を実施した。
(Battery evaluation)
Next, the powder samples for negative electrode materials obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were subjected to battery evaluation according to the following procedure.

粉末試料、PIバインダー、及び導電助材(KB)を80:15:5の重量割合で混合し、NMPを溶媒として混練することにより、スラリーを作製した。作製したスラリーを銅箔上に塗工し、350℃で30分間真空処理を行うことで、負極を得た。対極にLi箔、電解液にECとDECの1:1混合液、電解質にLiPFの1mol/l 液、セパレータにポリエチレン製多孔質フィルムを用いて、コインセル電池を作製し、その電池性能を評価した。 A powder sample, a PI binder, and a conductive aid (KB) were mixed at a weight ratio of 80:15:5, and kneaded using NMP as a solvent to prepare a slurry. A negative electrode was obtained by applying the prepared slurry onto a copper foil and performing vacuum treatment at 350° C. for 30 minutes. A coin cell battery was fabricated using a Li foil as the counter electrode, a 1:1 mixture of EC and DEC as the electrolyte, a 1 mol/l solution of LiPF 6 as the electrolyte, and a polyethylene porous film as the separator, and the battery performance was evaluated. bottom.

電池性能試験では、電池の両極間の電圧が0.005Vに達するまでは0.1Cの定電流にて充電を行い、電圧が0.005Vに達した後は、電流が0.01Cになるまで、定電位充電を行った。放電は、電池の両極間の電圧が1.5Vに達するまで0.1Cの定電流で行った。 In the battery performance test, the battery was charged at a constant current of 0.1 C until the voltage between both electrodes of the battery reached 0.005 V, and after the voltage reached 0.005 V, the current decreased to 0.01 C. , constant potential charging was performed. Discharging was carried out at a constant current of 0.1C until the voltage across the battery reached 1.5V.

各粉末試料につき、電池性能として劣化特性を50回充放電後の容量維持率により測定した。各粉末試料の他の仕様(平均粒径D50、ブロードピークの回折角、P2/P1、比表面積B、及びB/A)と共に表1に示す。 For each powder sample, deterioration characteristics as battery performance were measured by capacity retention rate after 50 charging/discharging cycles. Other specifications of each powder sample (average particle size D 50 , broad peak diffraction angle, P2/P1, specific surface area B, and B/A) are shown in Table 1.

Figure 0007251915000001
Figure 0007251915000001

実施例1~4については、粉末試料のXDR測定において半値幅が10°を超える非晶質に由来のブロードな結晶ピークが、回折角2θが10~40°の範囲内にのみただ一つ検出され、そのピーク強度P1に対する他の結晶ピークの強度P2の比率が0.1より小さい固有の非晶質構造が認められたことにより、50回充放電後の容量維持率が70%以上を示し、75%を超えている。特に実施例1及び2においては、実施例3及び4に比して、粉末粒子の比表面積Bが小さく、B/Aが50以下であるため、50回充放電後の容量維持率は80%を超えている。 For Examples 1 to 4, a broad crystalline peak with a half-value width of more than 10° in the XDR measurement of the powder sample was detected only in the diffraction angle 2θ range of 10 to 40°. , and the ratio of the intensity P2 of other crystal peaks to the peak intensity P1 was found to be less than 0.1, so that the capacity retention rate after 50 charge-discharge cycles was 70% or more. , exceeds 75%. Especially in Examples 1 and 2, the specific surface area B of the powder particles is smaller than in Examples 3 and 4, and B/A is 50 or less, so the capacity retention rate after 50 charge/discharge cycles is 80%. exceeds

これに対し、比較例1及び2については、粉末試料のXDR測定において半値幅が10°に達する非晶質に由来のブロードな結晶ピークが、回折角2θが10~40°の範囲と50~60°の範囲に2つ検出され、その結果として、ピーク強度P1に対する他の結晶ピークの強度P2の比率が0.1を超えた。その結果として、50回充放電後の容量維持率は70%に達していない。 On the other hand, for Comparative Examples 1 and 2, a broad crystalline peak derived from an amorphous substance with a half-value width reaching 10 ° in the XDR measurement of the powder sample was observed in the diffraction angle 2θ range of 10 to 40 ° and 50 to 40 °. Two were detected in the range of 60°, and as a result, the ratio of the intensity P2 of other crystal peaks to the peak intensity P1 exceeded 0.1. As a result, the capacity retention rate after 50 charge/discharge cycles has not reached 70%.

なお、実施例1~4及び比較例1,2においては、負極用粉末にLiドープ及びCコートを実施していないが、本発明の負極用粉末に適宜これらを実施することにより、更に電池性能を向上させることが可能なのは言うまでもない。 In Examples 1 to 4 and Comparative Examples 1 and 2, the negative electrode powder was not Li-doped and C-coated. It goes without saying that it is possible to improve

Claims (5)

平均組成がSiO(0.5<x<1.5)で表される酸化珪素粉末であって、
CuKα線を用いるXRD測定を行った際に、回折角2θ=10~60°の範囲において、半値幅が2°以上のブロードな結晶ピークが10~40°にのみ一つだけ検出され、
そのブロードな結晶ピークの強度をP1とするとき、他の結晶ピークの強度P2がP2/P1<0.1を満足する負極材用粉末。
A silicon oxide powder having an average composition represented by SiO x (0.5<x<1.5),
When performing XRD measurement using CuKα rays , only one broad crystal peak with a half width of 2° or more is detected at 10 to 40° in the range of diffraction angles 2θ = 10 to 60°,
A powder for a negative electrode material, wherein the intensity P2 of another crystal peak satisfies P2/P1<0.1, where P1 is the intensity of the broad crystal peak.
請求項1に記載の負極材用粉末において、1.5≦B/A≦100が満足される負極材用粉末。
ここで、Aは粒度分布を用い、粉末粒子が球体であると仮定して算出した負極材用粉末の比表面積で、下式により表され、BはBET法により1点法で測定した負極材用粉末の比表面積である。
A=Σ{ni ×(di/2)2}/〔ρ×Σ{ni ×(di/2) 3/3 }〕
ここで、di は負極材用粉末の粒径、ni は粒度分布において粒径di ~di+1 の範囲にある粒子数、ρはSiOの真密度(2.2g/cm3) である。
2. The negative electrode material powder according to claim 1, wherein 1.5≤B/A≤100 is satisfied.
Here, A is the specific surface area of the negative electrode material powder calculated using the particle size distribution and assuming that the powder particles are spherical, and is represented by the following formula, and B is the negative electrode material measured by the one-point method by the BET method. is the specific surface area of the powder for
A = Σ {ni × (di/2) 2 }/[ρ × Σ {ni × (di/2) 3 /3 }]
Here, di is the particle size of the negative electrode material powder, ni is the number of particles in the range of particle size di to di+1 in the particle size distribution, and ρ is the true density of SiO (2.2 g/cm 3 ).
請求項1又は2に記載の負極材用粉末において、当該粉末の平均粒径が、粒度分布におけるD50の値で表して、1μm≦D50≦50μmを満足する負極材用粉末。 3. The negative electrode material powder according to claim 1 or 2, wherein the average particle size of the powder satisfies 1 μm≦D 50 ≦50 μm in terms of D 50 value in the particle size distribution. 請求項1~3の何れかに記載の負極材用粉末を負極に負極活物質として含むリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode material powder according to any one of claims 1 to 3 as a negative electrode active material in a negative electrode. 原料を加熱して発生させたSiOガスを冷却して回収する負極材用析出体の製造方法であって、SiOガスを冷却して回収する析出部の温度を-25~+80℃に維持する負極材料製造方法。 A method for producing a deposit for a negative electrode material in which SiO gas generated by heating a raw material is cooled and recovered, wherein the temperature of the deposition part where the SiO gas is cooled and recovered is maintained at -25 to +80 ° C. Material manufacturing method.
JP2017192525A 2017-10-02 2017-10-02 Powder for negative electrode material and method for producing negative electrode material Active JP7251915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017192525A JP7251915B2 (en) 2017-10-02 2017-10-02 Powder for negative electrode material and method for producing negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017192525A JP7251915B2 (en) 2017-10-02 2017-10-02 Powder for negative electrode material and method for producing negative electrode material

Publications (2)

Publication Number Publication Date
JP2019067644A JP2019067644A (en) 2019-04-25
JP7251915B2 true JP7251915B2 (en) 2023-04-04

Family

ID=66339971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017192525A Active JP7251915B2 (en) 2017-10-02 2017-10-02 Powder for negative electrode material and method for producing negative electrode material

Country Status (1)

Country Link
JP (1) JP7251915B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155267A4 (en) 2020-05-21 2023-12-06 OSAKA Titanium Technologies Co., Ltd. Silicon-based active material particles, silicon-based active material precursor particles and method for producing same
US20230202850A1 (en) 2020-09-16 2023-06-29 Osaka Titanium Technologies Co., Ltd. Silicon monoxide gas generating raw material and method for continuously generating silicon monoxide gas
CN117446807A (en) * 2023-11-14 2024-01-26 银硅(宁波)科技有限公司 Silicon oxide composite material by melt quenching method and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260651A (en) 2001-02-28 2002-09-13 Shin Etsu Chem Co Ltd Silicon oxide powder and its manufacturing method
JP2004349057A (en) 2003-05-21 2004-12-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2007290919A (en) 2006-04-26 2007-11-08 Shin Etsu Chem Co Ltd METHOD FOR PRODUCING SiOx (x<1)
WO2014002356A1 (en) 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ Lithium-ion secondary battery negative electrode material powder, lithium-ion secondary battery negative electrode and capacitor electrode employing same, and lithium-ion secondary battery and capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260651A (en) 2001-02-28 2002-09-13 Shin Etsu Chem Co Ltd Silicon oxide powder and its manufacturing method
JP2004349057A (en) 2003-05-21 2004-12-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2007290919A (en) 2006-04-26 2007-11-08 Shin Etsu Chem Co Ltd METHOD FOR PRODUCING SiOx (x<1)
WO2014002356A1 (en) 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ Lithium-ion secondary battery negative electrode material powder, lithium-ion secondary battery negative electrode and capacitor electrode employing same, and lithium-ion secondary battery and capacitor

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HWA,Yoon et al.,Journal of Power Sources,2013年,222,129-134
JUNG, Chan-Ok et al.,Journal of Nanoscience and Nanotechnology,13(2),2013年,1153-1158
LI, Mingqi et al.,Electrochimica Acta,2015年,164,163-170
LV, Pengpeng et al.,Journal of Power Sources,2015年,274,542-550
NGUYEN, Dan Thien et al.,ACS Applied Materials & Interfaces,2013年,5,11234-11239
幸琢寛ほか,熱処理したSiO粉末の特性と高出力・耐熱性LiFePO4/SiOリチウムイオン二次電池,Electrochemistry,2012年,80(6),p.401-404

Also Published As

Publication number Publication date
JP2019067644A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP7427156B2 (en) Lithium nickelate-based positive electrode active material particles and method for producing the same, and non-aqueous electrolyte secondary battery
JP6470418B2 (en) Li-containing silicon oxide powder and method for producing the same
JP7237167B2 (en) Silicon composite negative electrode material, its preparation method and lithium ion battery
KR101531451B1 (en) Powder for lithium ion secondary battery negative pole material, lithium ion secondary battery negative pole and capacitor negative pole, and lithium ion secondary battery and capacitor
JP6107946B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and secondary battery
JP7435452B2 (en) Method for producing sulfide solid electrolyte, sulfide solid electrolyte, all-solid-state battery, and method for selecting raw material compounds used for producing sulfide solid electrolyte
JP7030185B2 (en) Manufacturing method of silicon oxide powder and negative electrode material
JP6801596B2 (en) All-solid-state lithium-ion secondary battery
JPWO2019171623A1 (en) Positive electrode active material for lithium-ion secondary battery and lithium-ion secondary battery
JP2009301935A (en) Negative electrode material for nonaqueous electrolyte secondary battery, method for manufacturing the same, lithium ion secondary battery and electrochemical capacitor
JP2010021100A (en) Negative electrode material for nonaqueous electrolyte secondary battery, lithium-ion secondary battery, and electrochemical capacitor
JP7251915B2 (en) Powder for negative electrode material and method for producing negative electrode material
JP2011192453A (en) Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
JP7397409B2 (en) Li-Ni composite oxide particles and non-aqueous electrolyte secondary battery
JP2013008696A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
TW201611394A (en) Positive electrode active material for sodium ion secondary batteries and method for producing same
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
CN112689612B (en) Method for producing SiO powder and spherical granular SiO powder
JP5909552B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP2019016517A (en) All-solid lithium ion secondary battery
JP2010248044A (en) LiNbO3 GLASS, METHOD FOR PRODUCING THE SAME AND NONAQUEOUS ELECTROLYTE CELL USING LiNbO3 GLASS
JP2013051104A (en) Lithium titanate particle powder, negative electrode active material particle powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019064547A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2004296269A (en) Negative electrode material for lithium ion secondary battery, its manufacturing method, and battery using the same
JP5807062B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R150 Certificate of patent or registration of utility model

Ref document number: 7251915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150