JP7244595B2 - wooden earthquake-resistant wall - Google Patents

wooden earthquake-resistant wall Download PDF

Info

Publication number
JP7244595B2
JP7244595B2 JP2021144088A JP2021144088A JP7244595B2 JP 7244595 B2 JP7244595 B2 JP 7244595B2 JP 2021144088 A JP2021144088 A JP 2021144088A JP 2021144088 A JP2021144088 A JP 2021144088A JP 7244595 B2 JP7244595 B2 JP 7244595B2
Authority
JP
Japan
Prior art keywords
wall
joint
wooden
earthquake
wooden earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021144088A
Other languages
Japanese (ja)
Other versions
JP2021191942A (en
Inventor
修 貞広
誠 木村
淳一 田村
武 河内
慎哉 津畑
智貴 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Publication of JP2021191942A publication Critical patent/JP2021191942A/en
Application granted granted Critical
Publication of JP7244595B2 publication Critical patent/JP7244595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Vibration Dampers (AREA)

Description

特許法第30条第2項適用 日本建築学会大会学術講演梗概集(中国)、2017年8月、239頁~242頁、日本建築学会 発行日 平成29年7月20日Application of Article 30, Paragraph 2 of the Patent Law Summaries of Technical Papers of Annual Meeting of Architectural Institute of Japan (China), August 2017, pp.239-242, Architectural Institute of Japan Publication date: July 20, 2017

本発明は、構造物に設置される木質耐震壁に関するものであり、特に、直交集成板(CLT:Cross Laminated Timber)を壁体に用いた木質耐震壁に関するものである。 TECHNICAL FIELD The present invention relates to a wooden earthquake-resistant wall installed in a structure, and more particularly to a wooden earthquake-resistant wall using Cross Laminated Timber (CLT) for walls.

従来、CLTと呼ばれる直交集成板が知られている。CLTは、ひき板または小角材(これらをその繊維方向を互いにほぼ平行にして長さ方向に接合接着して調整したものを含む。以下、ラミナということがある。)をその繊維方向を互いにほぼ平行にして幅方向に並べ、または接着したものを、主としてその繊維方向を互いにほぼ直角にして積層接着し3層以上の構造を持たせた木質板材であり、耐震・耐火性能が高いという特長がある。 Conventionally, a cross laminated board called CLT is known. CLT is a sawn board or small square timber (including those prepared by bonding and bonding these in the length direction with their fiber directions almost parallel to each other; hereinafter sometimes referred to as lamina). It is a wooden board that has a structure of three or more layers, which is made by laying or gluing parallel pieces in the width direction, with the fiber direction almost perpendicular to each other, and laminating and gluing them together. be.

このCLTを壁体に用いたCLT耐震壁は、CLTからなる床スラブを介して上下階のCLT耐震壁と金物にて緊結することで、耐震壁としての性能を確保することが告示等で要請されている。 The CLT seismic wall using this CLT as a wall body is requested by the public notice to secure the performance as a seismic wall by connecting it to the CLT seismic wall on the upper and lower floors with metal fittings through the floor slab made of CLT. It is

一方、従来の木質耐震壁として、例えば特許文献1や特許文献2に記載の構造が知られている。 On the other hand, as a conventional wooden seismic wall, for example, structures described in Patent Document 1 and Patent Document 2 are known.

特開2015-040402号公報JP 2015-040402 A 特開2003-314083号公報Japanese Patent Application Laid-Open No. 2003-314083

ところで近年、木質中高層建物を合理的に計画する一例として梁を鉄骨構造とすることが検討されている。この場合、CLT耐震壁は上下の鉄骨梁に直接接合する必要があるが、接合部をドリフトピンもしくはボルトとした場合、施工精度や耐震壁に生ずるせん断力および偶力による複合応力により壁体のCLTが脆性的に破壊を生じるおそれがある。このため、壁体の脆性的な破壊を防ぐことのできる構造が求められていた。 By the way, in recent years, as an example of rationally planning a wooden medium-to-high-rise building, it has been considered to use a steel beam structure. In this case, the CLT earthquake-resistant wall must be directly connected to the upper and lower steel beams. CLTs can brittlely fracture. Therefore, there has been a demand for a structure capable of preventing brittle fracture of the wall.

本発明は、上記に鑑みてなされたものであって、壁体の脆性的な破壊を防ぐことのできる明快な構造の木質耐震壁を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a wooden earthquake-resisting wall with a clear structure that can prevent brittle failure of the wall body.

上記した課題を解決し、目的を達成するために、本発明に係る木質耐震壁は、CLTからなる壁体を備え、この壁体の上端と下端が鋼材からなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、壁体は、上側に配置されて上端が上梁に接合される上部壁体と、下側に配置されて下端が下梁に接合される下部壁体とに上下に分割されており、上部壁体と下部壁体は、所定の荷重が作用すると梁接合部に先行して破壊する構造の壁接合部で接合されていることを特徴とする。 In order to solve the above-described problems and achieve the object, a wooden earthquake-resistant wall according to the present invention comprises a wall body made of CLT, and the upper and lower ends of the wall body are beam-jointed to upper and lower beams made of steel material. A wooden earthquake-resisting wall that is joined to each other via a part, the walls are arranged on the upper side and the upper end is joined to the upper beam, and the wall is arranged on the lower side and the lower end is joined to the lower beam. The upper and lower walls are joined by wall joints that break before the beam joints when a predetermined load is applied. and

また、本発明に係る他の木質耐震壁は、上述した発明において、壁接合部は、上部壁体と下部壁体に挿入配置される鋼板と、この鋼板と上部壁体と下部壁体とを連結する連結部材とからなり、連結部材に降伏が生じる破壊モードで破壊するものであることを特徴とする。 Further, in another wooden earthquake-resistant wall according to the present invention, in the above-described invention, the wall joint portion includes a steel plate inserted and arranged in the upper wall and the lower wall, and the steel plate, the upper wall and the lower wall. It is characterized in that it consists of a connecting member that connects and is destroyed in a failure mode in which the connecting member yields.

また、本発明に係る他の木質耐震壁は、上述した発明において、連結部材は、鋼板と上部壁体とを連結する箇所と、鋼板と下部壁体とを連結する箇所の2箇所に設けられていることを特徴とする。 Further, in another wooden earthquake-resistant wall according to the present invention, in the above-described invention, the connecting members are provided at two locations, one connecting the steel plate and the upper wall and the other connecting the steel plate and the lower wall. It is characterized by

また、本発明に係る他の木質耐震壁は、上述した発明において、連結部材は、上部壁体の下端から鉛直上方向、および、下部壁体の上端から鉛直下方向にそれぞれ距離bだけ離れた位置において、水平方向に距離aの間隔で複数設けられる直径dのピン部材であり、距離aが3d以上、かつ、距離bが4d以上であることを特徴とする。 In another wooden earthquake-resistant wall according to the present invention, in the above-described invention, the connecting member is separated vertically upward from the lower end of the upper wall and vertically downward from the upper end of the lower wall by a distance b. In the position, a plurality of pin members having a diameter d are provided at intervals of a distance in the horizontal direction, and the distance a is 3d or more and the distance b is 4d or more.

また、本発明に係る他の木質耐震壁は、上述した発明において、上部壁体と下部壁体との間に組み込まれた制震デバイスを備えることを特徴とする。 Another wooden seismic wall according to the present invention is characterized by comprising a seismic control device incorporated between the upper wall and the lower wall in the invention described above.

また、本発明に係る他の木質耐震壁は、上述した発明において、壁体は、その上下方向略中央で上部壁体と下部壁体とに上下に分割されており、壁接合部は、壁体の左右方向略中央に設けられることを特徴とする。 Another wooden earthquake-resisting wall according to the present invention is the above-described invention, wherein the wall is vertically divided into an upper wall and a lower wall at substantially the center in the vertical direction, and the wall joint is formed by the wall It is characterized in that it is provided substantially in the center of the body in the left-right direction.

また、本発明に係る他の木質耐震壁は、CLTからなる壁体を備え、この壁体の上端と下端が鋼材からなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、壁体の上端と下端のいずれか一方の梁接合部は、所定の荷重が作用すると他方の梁接合部に先行して破壊する構造であることを特徴とする。 Another wooden earthquake-resistant wall according to the present invention comprises a wall body made of CLT, and the upper and lower ends of the wall body are joined to upper and lower beams made of steel through beam joints, respectively. The wall is characterized in that one of the beam joints at the upper end and the lower end of the wall breaks prior to the other beam joint when a predetermined load acts thereon.

また、本発明に係る他の木質耐震壁は、上述した発明において、壁体の左右両側が間柱に接合されることを特徴とする。 Another wooden earthquake-resisting wall according to the present invention is characterized in that, in the above invention, both left and right sides of the wall are joined to studs.

本発明に係る木質耐震壁によれば、CLTからなる壁体を備え、この壁体の上端と下端が鋼材からなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、壁体は、上側に配置されて上端が上梁に接合される上部壁体と、下側に配置されて下端が下梁に接合される下部壁体とに上下に分割されており、上部壁体と下部壁体は、所定の荷重が作用すると梁接合部に先行して破壊する構造の壁接合部で接合されているので、壁体の脆性的な破壊を防ぐことのできる明快な構造の木質耐震壁を提供することができるという効果を奏する。 According to the wooden earthquake-resistant wall according to the present invention, the wooden earthquake-resistant wall is provided with a wall body made of CLT, and the upper and lower ends of the wall body are respectively joined to the upper and lower beams made of steel through beam joints. The wall is divided vertically into an upper wall whose upper end is joined to the upper beam and a lower wall whose lower end is joined to the lower beam. , The upper wall and the lower wall are joined by a wall joint that breaks before the beam joint when a predetermined load is applied, so it is clear that brittle breakage of the wall can be prevented. There is an effect that it is possible to provide a wooden earthquake-resistant wall with a simple structure.

また、本発明に係る他の木質耐震壁によれば、壁接合部は、上部壁体と下部壁体に挿入配置される鋼板と、この鋼板と上部壁体と下部壁体とを連結する連結部材とからなり、連結部材に降伏が生じる破壊モードで破壊するものであるので、所定の荷重が作用すると梁接合部に先行して連結部材が降伏して破壊する。このため、CLTの壁体が割裂等の脆性的な破壊を生じることはなくなり、靱性に富んだ復元力を確保することが可能になるという効果を奏する。 According to another wooden earthquake-resistant wall according to the present invention, the wall joint includes a steel plate inserted into the upper wall and the lower wall, and a connection connecting the steel plate, the upper wall, and the lower wall. Since it is broken in a failure mode in which the connecting member yields, when a predetermined load acts, the connecting member yields and breaks before the beam joint. As a result, the wall of the CLT is free from brittle fracture such as splitting, and it is possible to secure a restoring force with high toughness.

また、本発明に係る他の木質耐震壁によれば、連結部材は、鋼板と上部壁体とを連結する箇所と、鋼板と下部壁体とを連結する箇所の2箇所に設けられているので、連結部材が降伏(靱性を有する)する箇所が例えば略中央部分の2箇所となり、中央部分の変形性能(層間変形)を大きくすることが可能であるという効果を奏する。 In addition, according to another wooden earthquake-resistant wall according to the present invention, the connecting members are provided at two locations, one at which the steel plate and the upper wall are connected and the other at which the steel plate and the lower wall are connected. , the connecting member yields (has toughness) at two locations, for example, at approximately the central portion, and the deformation performance (interlayer deformation) of the central portion can be increased.

また、本発明に係る他の木質耐震壁によれば、上部壁体と下部壁体との間に組み込まれた制震デバイスを備えるので、復元力による吸収エネルギーをさらに大きく確保することが可能になるという効果を奏する。 In addition, according to another wooden earthquake-resistant wall according to the present invention, since it is equipped with a vibration control device incorporated between the upper wall and the lower wall, it is possible to secure a larger amount of energy absorbed by the restoring force. It has the effect of becoming

また、本発明に係る他の木質耐震壁によれば、壁体は、その上下方向略中央で上部壁体と下部壁体とに上下に分割されており、壁接合部は、壁体の左右方向略中央に設けられるので、壁体の脆性的な破壊を防ぐことのできる極めて明快で簡単な構造の木質耐震壁を提供することができるという効果を奏する。 Further, according to another wooden earthquake-resistant wall according to the present invention, the wall is divided vertically into an upper wall and a lower wall at substantially the center in the vertical direction, and the wall joints are located on the left and right sides of the wall. Since it is provided substantially in the center of the direction, it is possible to provide a wooden earthquake-resisting wall with an extremely clear and simple structure that can prevent brittle breakage of the wall.

また、本発明に係る他の木質耐震壁によれば、CLTからなる壁体を備え、この壁体の上端と下端が鋼材からなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、壁体の上端と下端のいずれか一方の梁接合部は、所定の荷重が作用すると他方の梁接合部に先行して破壊する構造であるので、壁体に必要な接合部を2箇所に削減することができるという効果を奏する。 Further, according to another wooden earthquake-resistant wall according to the present invention, a wall made of CLT is provided, and the upper and lower ends of the wall are joined to upper and lower beams made of steel via beam joints, respectively. A wooden seismic wall is a structure in which the beam joint at either the upper end or the lower end of the wall breaks before the other beam joint when a predetermined load is applied. There is an effect that the number of joints can be reduced to two.

また、本発明に係る他の木質耐震壁によれば、壁体の左右両側が間柱に接合されるので、壁体に作用する軸力を間柱に負担させることができるという効果を奏する。 In addition, according to another wooden earthquake-resistant wall according to the present invention, since both the left and right sides of the wall are joined to the studs, there is an effect that the axial force acting on the wall can be borne by the studs.

図1は、本発明に係る木質耐震壁の実施の形態1を示す正面図である。FIG. 1 is a front view showing Embodiment 1 of a wooden earthquake-resistant wall according to the present invention. 図2は、本発明に係る木質耐震壁の実施の形態1を示す平断面図である。FIG. 2 is a cross-sectional plan view showing Embodiment 1 of the wooden earthquake-resistant wall according to the present invention. 図3(1)は、本発明に係る木質耐震壁が設置された構造物の架構の一例を示す正面図であり、(2)は(1)のA部分における他の一例を示す部分拡大図である。FIG. 3(1) is a front view showing an example of the framework of a structure in which a wooden earthquake-resistant wall according to the present invention is installed, and (2) is a partial enlarged view showing another example of the part A of (1). is. 図4は、本発明に係る木質耐震壁の実施の形態1の変形例1を示す梁接合部の正面拡大図である。FIG. 4 is an enlarged front view of a beam joint portion showing Modification 1 of Embodiment 1 of the wooden earthquake-resistant wall according to the present invention. 図5は、本発明に係る木質耐震壁の実施の形態1の変形例2を示す梁接合部の正面拡大図である。FIG. 5 is an enlarged front view of a beam joint portion showing Modification 2 of Embodiment 1 of the wooden earthquake-resistant wall according to the present invention. 図6は、本発明に係る木質耐震壁の実施の形態2を示す正面図である。FIG. 6 is a front view showing Embodiment 2 of the wooden earthquake-resistant wall according to the present invention. 図7は、本発明に係る木質耐震壁の実施の形態2の梁接合部の平断面図である。FIG. 7 is a plan cross-sectional view of a beam joint of Embodiment 2 of the wooden earthquake-resistant wall according to the present invention. 図8は、本発明に係る木質耐震壁の実施の形態2の梁接合部の正面断面図である。FIG. 8 is a front cross-sectional view of a beam joint of Embodiment 2 of the wooden earthquake-resistant wall according to the present invention. 図9は、ドリフトピン接合部の要素実験の説明図であり、(1)は正面図、(2)は側面図、(3)は耐震壁中央のピン配置を示す部分拡大図である。9A and 9B are explanatory diagrams of an element experiment of the drift pin joint, in which (1) is a front view, (2) is a side view, and (3) is a partially enlarged view showing the pin arrangement at the center of the earthquake-resistant wall. 図10は、ドリフトピン接合部の要素実験の試験体および加力方法を示す図であり、(1)は実験1試験体、(2)は実験2試験体、(3)は実験3試験体である。なお、各図において(a)は正面図、(b)は断面図を示している。FIG. 10 is a diagram showing test specimens and force application methods for the element experiment of the drift pin joint, (1) is the experiment 1 specimen, (2) is the experiment 2 specimen, and (3) is the experiment 3 specimen. is. In each figure, (a) shows a front view, and (b) shows a cross-sectional view. 図11は、ドリフトピン接合部の要素実験の試験体の一覧図である。FIG. 11 is a list of specimens for elemental experiments of drift pin junctions. 図12は、ドリフトピン接合部の要素実験による荷重-変形関係を示す図であり、(1)~(3)は実験1、(4)、(5)は実験2、(6)は実験3に関する図である。FIG. 12 is a diagram showing the load-deformation relationship in the element experiment of the drift pin joint, where (1) to (3) are Experiment 1, (4) and (5) are Experiment 2, and (6) is Experiment 3. It is a figure about. 図13は、試験後解体状況の一例を示す写真図である。FIG. 13 is a photograph showing an example of dismantling after the test.

以下に、本発明に係る木質耐震壁の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 EMBODIMENT OF THE INVENTION Below, embodiment of the wooden earthquake-resisting wall which concerns on this invention is described in detail based on drawing. In addition, this invention is not limited by this embodiment.

(実施の形態1)
まず、本発明の実施の形態1について説明する。
(Embodiment 1)
First, Embodiment 1 of the present invention will be described.

図1および図2に示すように、本実施の形態1に係る木質耐震壁100は、CLTからなる壁体10を備え、この壁体10の上端と下端がH形鋼(鉄骨梁:鋼材)である上梁12と下梁14に梁接合部16を介してそれぞれ接合された矩形の壁である。CLTの繊維方向は鉛直面内の方向としてある。 As shown in FIGS. 1 and 2, the wooden earthquake-resistant wall 100 according to Embodiment 1 includes a wall body 10 made of CLT, and the upper and lower ends of the wall body 10 are H-shaped steel (steel beams: steel materials). is a rectangular wall joined to the upper beam 12 and the lower beam 14 through beam joints 16, respectively. The fiber orientation of the CLT is in the vertical plane.

壁体10は、その上下方向略中央で上部壁体10Aと下部壁体10Bとに上下に二分割されている。上部壁体10Aは上側に配置されて上端が梁接合部16で上梁12に接合され、下部壁体10Bは下側に配置されて下端が梁接合部16で下梁14に接合される。上部壁体10Aと下部壁体10Bは、壁体10の左右方向略中央に設けた壁接合部18で接合されている。壁接合部18は、所定の荷重が作用すると梁接合部16に先行して破壊する仕様に設計されている。 The wall 10 is vertically divided into an upper wall 10A and a lower wall 10B at substantially the center in the vertical direction. The upper wall 10A is placed on the upper side and its upper end is joined to the upper beam 12 at the beam joint 16, and the lower wall 10B is placed on the lower side and its lower end is joined to the lower beam 14 by the beam joint 16. The upper wall 10A and the lower wall 10B are joined at a wall joint portion 18 provided approximately in the center of the wall 10 in the left-right direction. The wall joint 18 is designed to break before the beam joint 16 when a predetermined load is applied.

上側の梁接合部16は、上梁12に接合するとともに上部壁体10Aの上端から挿入配置されるガセットプレート20(鋼板)と、このガセットプレート20と上部壁体10Aとを連結する複数のドリフトピン22(連結部材)とからなる。ドリフトピン22の代わりにボルトなどの円形鋼棒型の接合具を用いてもよい。なお、左右両側部分のガセットプレート20については、上部壁体10Aへの挿入長さを他部分よりも長くしてある。また、下側の梁接合部16も上側の梁接合部16と同様の構成である。 The upper beam joint portion 16 includes a gusset plate 20 (steel plate) joined to the upper beam 12 and inserted from the upper end of the upper wall 10A, and a plurality of drifts connecting the gusset plate 20 and the upper wall 10A. It consists of a pin 22 (connecting member). Circular steel bar connectors such as bolts may be used instead of the drift pins 22 . The gusset plates 20 on the left and right sides are inserted into the upper wall 10A longer than the other parts. Also, the beam joint portion 16 on the lower side has the same configuration as the beam joint portion 16 on the upper side.

なお、本発明の梁接合部16は、この構成に限るものではなく、曲げおよびせん断力を明確に伝える接合具からなる構成であれば、いかなる構成を用いてもよい。また、この梁接合部16が壁接合部18に先行して破壊しない仕様であればよいので、ドリフトピン22の降伏破壊モードはI(木部のめり込みで決まる脆性的なモード)に設計してもよい。このようにすれば、太径の接合具を設けることができるので、その設置本数を削減可能である。 Note that the beam joint 16 of the present invention is not limited to this configuration, and any configuration may be used as long as it is composed of a connector that clearly transmits bending and shear forces. In addition, since it is sufficient that the beam joint 16 does not break prior to the wall joint 18, the drift pin 22 may be designed to have a yield fracture mode I (brittle mode determined by embedment of the wood). good. In this way, since it is possible to provide large-diameter joints, it is possible to reduce the number of joints to be installed.

壁接合部18は、上部壁体10Aと下部壁体10Bに挿入配置されるガセットプレート24(鋼板)と、このガセットプレート24と上部壁体10Aと下部壁体10Bとをそれぞれ連結するドリフトピン26(連結部材、ピン部材)とからなる。ガセットプレート24と上部壁体10Aと下部壁体10Bにはそれぞれ対応する位置に水平方向の貫通孔が格子点状に複数設けられており、各貫通孔には連結用のドリフトピン26が通されている。 The wall joint 18 includes a gusset plate 24 (steel plate) inserted into the upper wall 10A and the lower wall 10B, and a drift pin 26 connecting the gusset plate 24 to the upper wall 10A and the lower wall 10B. (connecting member, pin member). The gusset plate 24, the upper wall 10A, and the lower wall 10B are provided with a plurality of horizontal through-holes in a grid pattern at corresponding positions, and drift pins 26 for connection are passed through the respective through-holes. ing.

この壁接合部18は、木質耐震壁100に所定の過大な荷重が作用した場合に、上下の梁接合部16に先行して破壊するような仕様で設計されている。より具体的には、壁接合部18の破壊態様が、ドリフトピン26に降伏が生じる降伏モードIII、IV(下記の参考文献1を参照)となるような仕様となっている。なお、ドリフトピン26の代わりにボルトなどの円形鋼棒型の接合具を用いてもよいが、接合具に降伏が生じる降伏モード(III、IV)の接合具を用いる。 The wall joints 18 are designed to break before the upper and lower beam joints 16 when a predetermined excessive load acts on the wooden seismic wall 100 . More specifically, the specifications are such that the breakdown mode of the wall joint portion 18 is the yield mode III, IV (see Reference 1 below) in which the drift pin 26 yields. Although a circular steel rod type connector such as a bolt may be used instead of the drift pin 26, a yield mode (III, IV) connector in which yield occurs in the connector is used.

[参考文献1] 日本建築学会、「木質構造設計規準・同解説―許容応力度・許容耐力設計法―」、p.225、2006年12月 [Reference 1] Architectural Institute of Japan, "Wooden Structural Design Criteria and Commentary - Allowable Stress and Allowable Strength Design Method -", p. 225, December 2006

上記の構成によれば、上下の梁接合部16に先行して中央の壁接合部18のドリフトピン26に降伏が生じて破壊するような仕様で設計されている。このため、CLTの壁体10が割裂等の脆性的な破壊を生じることはなくなり、靱性に富んだ復元力を確保することが可能になる。このため、本実施の形態によれば、壁体10の脆性的な破壊を防ぐことのできる極めて明快で簡単な構造の木質耐震壁を提供することができる。 According to the above configuration, the specifications are designed such that the drift pin 26 of the central wall joint 18 is yielded and destroyed prior to the upper and lower beam joints 16 . Therefore, the wall 10 of the CLT is free from brittle fracture such as splitting, and it is possible to secure a restoring force with high toughness. Therefore, according to this embodiment, it is possible to provide a wooden earthquake-resisting wall having an extremely clear and simple structure that can prevent brittle breakage of the wall 10 .

特に、本実施の形態では、壁体10にラミナが直交するCLTを用いることにより、割裂を生じにくく確実にドリフトピン26に降伏が生じる降伏モードIII、IVを実現することができるというメリットを有している。これにより木質耐震壁100は割裂等の脆性的な破壊が生じることがない靱性に富んだ復元力を確保することが可能である。このため、木質耐震壁100は木質中高層建物の上部階、3階建て程度の木質構造の耐震要素として有効である。また、通常のラーメン構造では、柱の曲げ応力の反曲点高さは、上下梁の剛性等の影響により階数により異なるが、分割位置でのドリフトピン接合部の回転剛性が小さいため分割レベルを階高中央付近に統一しても接合部に大きな曲げモーメントは作用せず、所要のせん断耐力を確保し易い。 In particular, in the present embodiment, by using a CLT whose lamina is orthogonal to the wall 10, there is an advantage that it is possible to realize the yield modes III and IV in which the drift pin 26 is surely yielded without causing splitting. are doing. As a result, the wooden earthquake-resisting wall 100 can secure a restoring force rich in toughness that does not cause brittle fracture such as splitting. For this reason, the wooden earthquake-resistant wall 100 is effective as an earthquake-resistant element of a wooden structure of about three stories, which is the upper floor of a wooden medium-to-high-rise building. In addition, in a normal Rahmen structure, the height of the rebound point of the bending stress of the column varies depending on the floor due to the influence of the rigidity of the upper and lower beams. Even if it is unified near the center of the floor height, a large bending moment does not act on the joint, and it is easy to secure the required shear strength.

また、壁体10を上下に分割して取り付けるため、施工誤差を中央の壁接合部18の位置で吸収可能である。この場合、壁体10またはガセットプレート24の貫通孔を実測した後に削孔してもよい。 Moreover, since the wall 10 is divided into upper and lower parts and attached, construction errors can be absorbed at the position of the wall joint 18 in the center. In this case, the through hole of the wall 10 or the gusset plate 24 may be drilled after the actual measurement.

なお、本実施の形態では、壁体10の高さが2.5m程度、幅が2m、厚さが0.2m程度のものを想定している。また、梁接合部16のガセットプレート20の左右方向中央位置の高さが0.3m程度のものを想定している。また、壁接合部18のガセットプレート24の高さが0.6m程度、幅が0.8m程度のものを想定している。梁接合部16および壁接合部18のガセットプレート20、24の寸法、ドリフトピン22、26の配置数、位置、間隔等については、要求される耐力性能に応じて適宜選択可能である。 In this embodiment, it is assumed that the wall 10 has a height of about 2.5 m, a width of about 2 m, and a thickness of about 0.2 m. Further, it is assumed that the height of the gusset plate 20 of the beam joint portion 16 at the center position in the left-right direction is about 0.3 m. Further, it is assumed that the gusset plate 24 of the wall joint portion 18 has a height of about 0.6 m and a width of about 0.8 m. The dimensions of the gusset plates 20 and 24 of the beam joint portion 16 and the wall joint portion 18, the number of drift pins 22 and 26, positions, intervals, etc. can be appropriately selected according to the required load-bearing performance.

ここで、壁接合部18に配置されるドリフトピン26については、例えば図9(3)に示すように、上部壁体10Aの下端から鉛直上方向、および、下部壁体10Bの上端から鉛直下方向にそれぞれ距離bだけ離れた位置において、水平方向に距離aの間隔で複数設けることができる。この場合、距離aを3d以上、かつ、距離bを4d以上確保すれば(dはドリフトピン26の直径)、後述のように変形性能に優れた接合構造とすることができるので好ましい。 Here, as shown in FIG. 9C, the drift pin 26 arranged in the wall joint portion 18 is vertically upward from the lower end of the upper wall 10A and vertically downward from the upper end of the lower wall 10B. A plurality of them can be provided horizontally at intervals of a distance a at positions separated from each other by a distance b in each direction. In this case, if the distance a is 3d or more and the distance b is 4d or more (d is the diameter of the drift pin 26), it is possible to obtain a joint structure excellent in deformation performance as described later, which is preferable.

また、上記の木質耐震壁100を形成する場合には、図2に示すように、上部壁体10Aおよび下部壁体10Bとして同厚のCLTを2枚使用し、CLTを壁接合部18のガセットプレート24の表裏両面より取り付けるようにして形成してもよい。この場合、例えば壁厚90mm(例えば3層3プライ:MX60)のCLTを2枚使用することができる。このCLTは1枚当たりの重量が85kg程度であることから、職人が手で取り付けることも可能である。また、取替も容易であるため、既設の壁体を耐震補強する場合に応用可能である。 When forming the above-mentioned wooden earthquake-resistant wall 100, as shown in FIG. It may be formed so as to be attached from both the front and back sides of the plate 24 . In this case, for example, two CLTs with a wall thickness of 90 mm (eg, 3-layer 3-ply: MX60) can be used. Since each CLT has a weight of about 85 kg, it can be manually attached by a craftsman. In addition, since replacement is easy, it can be applied to seismic reinforcement of existing walls.

また、上記の実施の形態において、上部壁体10Aと下部壁体10Bとの間の中央の分割部分に、粘弾性ダンパー等の制震デバイスを組み込んでもよい。このようにすれば、復元力による吸収エネルギーをさらに大きく確保することが可能になる。 Further, in the above embodiment, a damping device such as a viscoelastic damper may be incorporated in the central dividing portion between the upper wall 10A and the lower wall 10B. In this way, it is possible to secure a larger amount of energy absorbed by the restoring force.

また、上記の実施の形態では、偶力による付加軸力は原則として取り合う側の梁で処理するが、図3(1)に示すように、壁体10の左右両側に鉄骨または木柱からなる間柱28を配置し、壁体10の左右両側を間柱28に接合してもよい。この場合、例えば間柱28の上下端において壁体10に向けて延びる接合部30を設け、この接合部30に壁体10の左右の上下端を接合することができる。なお、図3(2)に示すように、間柱28は直接梁14(梁12)に接合されるようにしてもよい。このようにすれば、壁体10に作用する軸力を間柱28に負担させることができる。この場合、間柱28には長期の軸力を負担させないことで無耐火被覆仕様としてもよい。 In the above-described embodiment, the additional axial force due to the couple is basically handled by the beams on the side of the joint, but as shown in FIG. The studs 28 may be arranged and both the left and right sides of the wall body 10 may be joined to the studs 28 . In this case, for example, joint portions 30 extending toward the wall 10 may be provided at the upper and lower ends of the studs 28 , and the left and right upper and lower ends of the wall 10 may be joined to the joint portions 30 . In addition, as shown in FIG. 3(2), the studs 28 may be joined directly to the beams 14 (beams 12). In this way, the axial force acting on the wall 10 can be borne by the studs 28 . In this case, the studs 28 may be provided with a non-refractory coating specification by not bearing a long-term axial force.

また、上記の実施の形態において、中央部の壁接合部18を上梁12または下梁14の近くに配置することも可能である。その場合には壁接合部18が配置されない側の梁接合部16の応力は増加する。なお、壁接合部18の機能を上下いずれか一方の梁接合部16に兼備させてもよい。この場合、中央の壁接合部18を省略できるので、壁体10に必要な接合部を上下2箇所に削減することができる。 It is also possible to arrange the central wall joint 18 near the upper beam 12 or the lower beam 14 in the above embodiment. In that case, the stress in the beam joint 16 on the side where the wall joint 18 is not arranged increases. Either one of the upper and lower beam joints 16 may have the function of the wall joints 18 . In this case, since the central wall joint 18 can be omitted, the number of joints necessary for the wall 10 can be reduced to two upper and lower parts.

ところで、上述したように、上下の梁接合部16は中央の壁接合部18に先行して破壊しなければいかなる構造でもよい。したがって、梁接合部16は上記のドリフトピン22を用いた構成に限るものではなく、この条件を満足するのであれば、例えば図4や図5に示すように、LSB(ラグスクリューボルト)とHTB(高力ボルト)を併用した構造でもよい。この図4を変形例1とし、図5を変形例2として以下に説明する。 By the way, as described above, the upper and lower beam joints 16 may have any structure as long as they do not break prior to the central wall joint 18 . Therefore, the beam joint portion 16 is not limited to the configuration using the above-described drift pin 22. If this condition is satisfied, for example, as shown in FIGS. (High-strength bolt) may be used together. This FIG. 4 is referred to as Modified Example 1, and FIG. 5 is referred to as Modified Example 2 to be described below.

(実施の形態1の変形例1)
図4に示すように、この変形例1に係る木質耐震壁101は、上部壁体10Aの左側上端に正面視でL字状に窪んだ切欠部32を設けるとともに、この切欠部32にガセットプレート34をラグスクリューボルト36で上下方向、左右方向に取付け固定して梁接合部を構成したものである。ガセットプレート34は、上梁12に接合したプレート38に対してプレート40および高力ボルト42を介して連結している。なお、図には示していないが、上部壁体10Aの右側上端、下部壁体10Bの左右下端についても同様の梁接合部の構造を有している。この変形例1では、切欠部32の高さ、幅はそれぞれ0.3m程度を想定している。このようにしても、上記の実施の形態1と同様の作用効果を奏することができる。なお、施工時には、この梁接合部の部分で施工誤差を吸収してもよい。
(Modification 1 of Embodiment 1)
As shown in FIG. 4, the wooden earthquake-resisting wall 101 according to Modification 1 is provided with a notch 32 recessed in an L-shape in front view at the left upper end of the upper wall 10A, and the notch 32 is provided with a gusset plate. 34 are attached and fixed with lag screw bolts 36 in the vertical and horizontal directions to form a beam joint. Gusset plate 34 is connected via plate 40 and high strength bolts 42 to plate 38 which is joined to upper beam 12 . Although not shown in the drawings, the upper right end of the upper wall 10A and the lower right and left ends of the lower wall 10B have similar beam joint structures. In Modification 1, the height and width of the notch 32 are assumed to be approximately 0.3 m. Even in this way, the same effects as in the first embodiment can be obtained. During construction, construction errors may be absorbed by this beam joint portion.

(実施の形態1の変形例2)
図5に示すように、この変形例2に係る木質耐震壁102は、上記の変形例1の切欠部32の割れ防止を図るため、切欠部32の代わりに、上部壁体10Aの左上端を正面視で斜めに切断した切欠部32Aを備えたものである。この斜面状の切欠部32Aにガセットプレート46をボルト44で斜め方向に取付け固定して梁接合部を構成する。ガセットプレート46は、上梁12に接合したプレート38に対して高力ボルト48を介して連結している。なお、図には示していないが、上部壁体10Aの右側上端、下部壁体10Bの左右下端についても同様の梁接合部の構造を有している。このようにしても、上記の実施の形態1と同様の作用効果を奏することができる。
(Modification 2 of Embodiment 1)
As shown in FIG. 5, in the wooden earthquake-resistant wall 102 according to Modification 2, instead of the cutout 32, the upper left end of the upper wall 10A is attached to prevent cracking of the cutout 32 of Modification 1. It has a notch 32A that is obliquely cut in front view. A gusset plate 46 is obliquely attached and fixed to the slope-shaped notch 32A with a bolt 44 to form a beam joint. Gusset plate 46 is connected via high strength bolts 48 to plate 38 which is joined to upper beam 12 . Although not shown in the drawings, the upper right end of the upper wall 10A and the lower right and left ends of the lower wall 10B have similar beam joint structures. Even in this way, the same effects as in the first embodiment can be obtained.

(実施の形態2)
次に、本発明の実施の形態2について説明する。
(Embodiment 2)
Next, Embodiment 2 of the present invention will be described.

図6~図8に示すように、本実施の形態2に係る木質耐震壁200は、上記の実施の形態1において、梁接合部16の代わりに梁接合部50を用いたものである。 As shown in FIGS. 6 to 8, a wooden earthquake-resistant wall 200 according to the second embodiment uses beam joints 50 instead of the beam joints 16 in the first embodiment.

梁接合部50は、上部壁体10Aの左右上側と、下部壁体10Bの左右下側に設けられ、ガセットプレート52とドリフトピン54とラグスクリューボルト56とを備える。上下左右の梁接合部50は同じ構造であることから、以下においては、上部壁体10Aの左上側の梁接合部50を例にとり説明する。 The beam joints 50 are provided on the left and right upper sides of the upper wall body 10A and on the left and right lower sides of the lower wall body 10B, and include gusset plates 52, drift pins 54, and lag screw bolts 56. Since the upper, lower, left, and right beam joints 50 have the same structure, the beam joint 50 on the upper left side of the upper wall body 10A will be described below as an example.

図7および図8に示すように、ガセットプレート52は上部壁体10Aの上端から内部に挿入配置され、上部壁体10Aの上端面に配置されるベースプレート58と接合している。ベースプレート58には貫通孔が設けてあり、この貫通孔から上部壁体10Aに向けてラグスクリューボルト56がねじ込まれている。また、ガセットプレート52と上部壁体10Aの対応する位置には貫通孔が設けられており、ガセットプレート52と上部壁体10Aは貫通孔を通るドリフトピン54で水平に連結されている。また、ベースプレート58には上方に突出するプレート60が接合している。一方、上梁12の下側にはプレート62が接合している。プレート60とプレート62に跨ってプレート64が配置されており、各プレートには高力ボルト用の貫通孔が設けられている。プレート60とプレート62はプレート64を介して高力ボルト66で連結固定されている。 As shown in FIGS. 7 and 8, the gusset plate 52 is inserted inside from the upper end of the upper wall 10A and joined to a base plate 58 arranged on the upper end surface of the upper wall 10A. A through hole is provided in the base plate 58, and a lag screw bolt 56 is screwed through the through hole toward the upper wall member 10A. Further, through holes are provided at corresponding positions of the gusset plate 52 and the upper wall 10A, and the gusset plate 52 and the upper wall 10A are horizontally connected by drift pins 54 passing through the through holes. A plate 60 projecting upward is joined to the base plate 58 . On the other hand, a plate 62 is joined to the lower side of the upper beam 12 . A plate 64 is arranged across the plate 60 and the plate 62, and each plate is provided with a through-hole for a high-strength bolt. Plates 60 and 62 are connected and fixed by high-strength bolts 66 via plate 64 .

この梁接合部50は、壁体10からの偶力を主にラグスクリューボルト56で処理し、せん断力を主にドリフトピン54で処理する考え方に基づいている。それらの応力を高力ボルト66を介して上梁12、下梁14に伝達している。なお、CLTの壁厚は210mm程度(7層7プライ)を想定している。梁接合部50をこのように構成しても、上記の実施の形態1と同様の作用効果を奏することができる。 The beam joint 50 is based on the idea that the lag screw bolts 56 mainly handle the couple of forces from the wall 10 and the drift pins 54 mainly handle shear forces. Those stresses are transmitted to the upper beam 12 and the lower beam 14 via the high-strength bolts 66 . The wall thickness of CLT is assumed to be about 210 mm (7 layers and 7 plies). Even if the beam joint portion 50 is configured in this way, it is possible to obtain the same effects as those of the first embodiment.

特に、本実施の形態の場合には、壁倍率を75倍程度に設計することも可能である。このため、木質中高層建物の上部階、3階建て程度の木質構造の耐震要素として有効である。また、上記の実施の形態1と同様に、壁体10の中央の分割部分に粘弾性ダンパー等の制震デバイスを組み込むことも極めて容易である。 In particular, in the case of this embodiment, it is possible to design the wall magnification to be about 75 times. For this reason, it is effective as an earthquake-resistant element for wooden structures such as the upper floors of medium-to-high-rise wooden buildings and three-story buildings. Also, as in the first embodiment, it is extremely easy to incorporate a damping device such as a viscoelastic damper into the central divided portion of the wall 10 .

(本発明の効果の検証)
次に、本発明の効果を検証するために行ったドリフトピン接合部の要素実験と、この実験による検証結果について、図9~図13を参照しながら説明する。
(Verification of effects of the present invention)
Next, an element experiment of the drift pin junction, which was conducted to verify the effect of the present invention, and the results of verification by this experiment will be described with reference to FIGS. 9 to 13. FIG.

図9(1)、(2)は、上下に配置したCLT板2枚を壁中央でドリフトピン(以下、ピンということがある。)と鋼板により接合した仕様である。壁全体の構造としては上記の実施の形態2の木質耐震壁に相当する。このような仕様によれば、中央のピンの降伏が先行して破壊に至るように設計することで、鋼材の靱性を活かした優れた変形性能が期待できる。本実験は、この壁中央部の接合部について、各荷重に対する適切なピン配置を決定するために行ったものである。 FIGS. 9(1) and 9(2) show specifications in which two CLT plates arranged one above the other are joined to a drift pin (hereinafter sometimes referred to as a pin) at the center of the wall by a steel plate. The structure of the entire wall corresponds to the wooden earthquake-resistant wall of the second embodiment. According to such specifications, by designing so that the central pin yields first and leads to fracture, excellent deformation performance that makes use of the toughness of the steel material can be expected. This experiment was conducted to determine the appropriate pin arrangement for each load on the joint at the center of the wall.

<実験概要>
実験は、2面せん断接合部のせん断実験とし、直径24、32、12mmの3種類のピンについて、ピン1本の基本性状を調べるための実験1、図9(1)に示す荷重に対する図9(3)の距離a、b決定のための実験2、図9(3)に示す偶力に対する距離b決定のための実験3を、実験1、2は圧縮試験、実験3は引張試験の形式で実施した。図10に試験体と加力方法の概略、図11に試験体一覧を示す。
<Outline of experiment>
The experiment was a shearing experiment of a two-sided shear joint. Experiment 1 for examining the basic properties of one pin for three types of pins with diameters of 24, 32, and 12 mm. Experiment 2 for determining the distances a and b in (3), Experiment 3 for determining the distance b for the couple shown in FIG. was carried out. Fig. 10 shows an outline of the specimen and the method of applying force, and Fig. 11 shows a list of the specimens.

このうち、No.24-nd-*は、最外層ラミナ繊維方向の継目がピン1-φ24と交差するものがA、しないものがBである。また、CLTはすべてMx60、7層7プライ、スギで構成した。 Of these, No. 24-nd-* is A when the joint in the outermost layer lamina fiber direction crosses the pin 1-φ24, and B when it does not. All CLTs were made of Mx60, 7 layers and 7 plies, and cedar.

<実験1の結果>
図12(1)~(3)に、No.24-1-1~6、No.32-1-1~6、No.12-1-1~6の荷重-変形関係を示す。図の縦軸は図10(1)に示した載荷荷重、横軸はピン中心位置とCLT最下端の間の木材表面の変位である。
<Results of Experiment 1>
In FIGS. 12(1) to 12(3), No. 24-1-1 to 6, No. 32-1-1 to 6, No. 12-1-1 to 6 shows the load-deformation relationship. The vertical axis of the figure is the applied load shown in FIG. 10(1), and the horizontal axis is the displacement of the wood surface between the pin center position and the lowest point of the CLT.

No.24-1、No.32-1、No.12-1とも、ピンの折れ曲がりが卓越しながら変形が進んだ。荷重-変形関係はNo.24-1、No.32-1、No.12-1ともばらつきはあるものの、おおむね同等の形状を示している。最終的な破壊モード(上記の参考文献1に示される破壊モード)は、No.24-1がモードIII、No.32-1がモードIII(ただし、No.24-1よりもモードIに近い)、No.12-1がモードIVとなった。
図13(1)に、試験後の解体時の木材とピンの状況を示す。
No. 24-1, No. 32-1, No. In 12-1 as well, the deformation progressed while the bending of the pin was prominent. The load-deformation relationship is No. 24-1, No. 32-1, No. Although 12-1 also has variations, it shows roughly the same shape. The final failure mode (the failure mode shown in reference 1 above) is the No. 24-1 is Mode III, No. No. 32-1 is Mode III (but closer to Mode I than No. 24-1); 12-1 became mode IV.
FIG. 13(1) shows the state of the wood and the pins at the time of dismantling after the test.

<実験2の結果>
実験は、図9(3)に示した距離a、bをパラメータとし、a=3d=80、b=4d=100mm(dはピン径)を中心に、a=2d、3d、4d、b=2d、3d、4d、5dとした。
<Results of Experiment 2>
The experiment was conducted using the distances a and b shown in FIG. 9(3) as parameters, a=2d, 3d, 4d, b= 2d, 3d, 4d, and 5d.

図12(4)にNo.24-6-a-b、図12(5)にNo.24-3-a-bの荷重-変形関係を示す。図の縦軸は図10(2)に示した載荷荷重、横軸は最上端のドリフトピン中心位置とCLT最下端の間の木材表面の変位である。 No. in FIG. 12(4). 24-6-a-b, No. 12 in FIG. 24-3-ab load-deformation relationship. The vertical axis of the figure is the applied load shown in FIG. 10(2), and the horizontal axis is the displacement of the wood surface between the center position of the drift pin at the top end and the bottom end of the CLT.

No.24-6,3-a-bとも、最終的には加力部-ピン最上部の間の距離の関係で、この間の木材が面外(図10(2)の紙面直交方向)に孕み出て、木材割れにより耐力低下した。No.24-6,3-50-100では、ピンの木材へのめり込みが卓越しながら、ピンが折れ曲がるが、最終的に加力方向=繊維方向のラミナに集合破壊が発生し(目視では、2層目のラミナで確認)、モードIの破壊モード(上記の参考文献1に示される破壊モード)となった。それ以外では、ピンの折れ曲がりが卓越しながら変形が進み、いずれもモードIIIの破壊モード(上記の参考文献1に示される破壊モード)となった。また、標準形であるNo.24-6,3-80-100に対し、これよりa、bの値が大きいNo.24-6,3-80-120、No.24-6,3-100-100では、概ね標準形と同じ荷重-変形関係となった。bの値が小さいNo.24-6,3-80-50やNo.24-6,3-80-80では、端距離部分の割れが発生しやすく破壊までの変形も小さくなる傾向が見られるが、割れ発生前にピンが十分変形すれば、No.24-6,3-80-50-3、No.24-6,3-80-80-3のように全体の変形が伸びる可能性もある。同一試験体同士(No.24-6,3-a-b-1,2)では、破壊時の変位は異なるが、最大耐力までの荷重-変形関係は概ね同じ形状を示す。 No. In both 24-6 and 3-a-b, finally, due to the relationship of the distance between the force applying part and the top of the pin, the wood between them is squeezed out of the plane (perpendicular to the paper surface of Fig. 10 (2)). However, the strength decreased due to wood cracking. No. In 24-6 and 3-50-100, the pin is bent while the pin is embedded into the wood prominently, but finally collective failure occurs in the lamina in the direction of the applied force = fiber direction (visually, the second layer lamina), resulting in a Mode I failure mode (the failure mode shown in Reference 1 above). Other than that, deformation progressed while bending of the pin was prominent, and in all cases, the failure mode of mode III (the failure mode shown in Reference 1 above) occurred. In addition, the standard No. No. 24-6 and 3-80-100 have larger a and b values. 24-6, 3-80-120, No. In 24-6 and 3-100-100, the load-deformation relationship was roughly the same as the standard type. No. with a small value of b. 24-6, 3-80-50 and No. In No. 24-6 and 3-80-80, cracks are likely to occur at the end distance portion and the deformation until breakage tends to be small. 24-6, 3-80-50-3, No. There is also the possibility that the overall deformation will be extended like 24-6, 3-80-80-3. The same specimens (No. 24-6, 3-ab-1, 2) show different displacements at breakage, but show roughly the same shape in terms of the load-deformation relationship up to the maximum yield strength.

図12(5)内には、図12(1)~(3)に示した荷重-変形関係の代表例としてNo.24-1-2の結果、および、No.24-1-2の荷重値を6倍してプロットしたものも重ねて示す。No.24-1-2の荷重値を6倍した曲線は、ピン6本の試験体とほぼ同じ曲線となるが、破壊時の耐力はNo.24-1-2の荷重値を6倍したものの方が若干だけ上回る。 In FIG. 12(5), No. 1 is shown as a representative example of the load-deformation relationship shown in FIGS. 12(1) to 12(3). 24-1-2 results and No. A plot of the load value of 24-1-2 multiplied by 6 is also shown. No. The curve obtained by multiplying the load value of 24-1-2 by 6 is almost the same curve as the specimen with 6 pins, but the yield strength at breakage is No. 24-1-2. Six times the load value of 24-1-2 is only slightly higher.

<実験3の結果>
実験は、図9(3)に示した距離bをパラメータとし、b=4d=100mm(dはピン径)を中心に、b=2d、3d、4d、5d、7dとした。図12(6)にNo.24-bの荷重-変形関係を示す。図の縦軸は図10(3)に示した載荷荷重、横軸は試験側のピン中心位置とCLT最下端の間の木材表面の変位である。図13(2)に解体状況の例を示す。
<Results of Experiment 3>
In the experiment, the distance b shown in FIG. 9(3) was used as a parameter, and b=2d, 3d, 4d, 5d, and 7d, centering on b=4d=100 mm (d is the pin diameter). No. in FIG. 12 (6). 24-b shows the load-deformation relationship. The vertical axis of the figure is the applied load shown in FIG. 10(3), and the horizontal axis is the displacement of the wood surface between the center position of the pin on the test side and the lowest end of the CLT. FIG. 13(2) shows an example of the dismantling situation.

距離bが標準形であるNo.24-4dよりも短いNo.24-2d,3dでは、試験体底部の繊維方向=加力方向なるラミナが抜け落ちて、鋼板側ラミナが抜け落ち→反対側の鋼板側ラミナが抜け落ち→最外層のラミナが抜け落ち、の順で破壊が進み、ラミナが抜ける度に荷重が段階的に低下した。距離bがNo.24-4dよりも長いNo.24-5d,7dでは、ピンが「く」の字形に変形するのに伴い木材下部が面外に開き、鋼板挿入用の切欠き部から割れが発生して耐力低下した。 No. 1, which has a standard distance b. No. 24-4d shorter. In 24-2d and 24-3d, the lamina on the bottom of the test piece in the direction of the fiber direction = the applied force fell off, and the lamina on the steel plate side fell off → the lamina on the opposite side of the steel plate fell off → the lamina on the outermost layer fell off, and fracture occurred in this order. The load gradually decreased as the lamina came off. Distance b is No. No. longer than 24-4d. In 24-5d and 7d, the lower part of the wood opened out of the plane as the pin was deformed into a "<" shape, cracks occurred from the notch for inserting the steel plate, and the yield strength decreased.

標準形のNo.24-4dでは、No.24-2d,3dと同様の破壊、No.24-5d,7dと同様の破壊とこれらの中間的な破壊のもの、が混在する結果となり、No.24-2d,3dの破壊形式とNo.24-5d,7dの破壊形式の中間的な位置にあるものと思われる。最終的な破壊モード(上記の参考文献1に示される破壊モード)はいずれの試験体ともモードIIIとなった。また、ラミナ継ぎ目位置が異なるNo.24-b-A,Bタイプの明確な差は見られなかった。 Standard No. 24-4d, No. 24-2d, failure similar to 3d, no. No. 24-5d, 7d and intermediate fractures were mixed. 24-2d, 3d destruction type and No. It seems to be in an intermediate position between 24-5d and 7d destruction types. The final failure mode (the failure mode shown in Reference 1 above) was Mode III for all specimens. In addition, the No. 1 with different lamina seam positions. No clear difference was observed between the 24-b-A and B types.

<実験結果のまとめ>
国産スギ材を使用したCLTと鋼板のピン接合部の要素実験により、図9(3)に示す距離aは3d以上、距離bは4d以上(dはピン径)を確保することで変形性能に優れた接合となることを確認した。
<Summary of experimental results>
Element tests of pin joints between CLT and steel plates using domestically produced cedar materials have shown that the distance a shown in Fig. 9 (3) is 3d or more, and the distance b is 4d or more (d is the pin diameter). It was confirmed that excellent bonding was achieved.

以上説明したように、本発明に係る木質耐震壁によれば、CLTからなる壁体を備え、この壁体の上端と下端が鋼材からなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、壁体は、上側に配置されて上端が上梁に接合される上部壁体と、下側に配置されて下端が下梁に接合される下部壁体とに上下に分割されており、上部壁体と下部壁体は、所定の荷重が作用すると梁接合部に先行して破壊する構造の壁接合部で接合されているので、壁体の脆性的な破壊を防ぐことのできる明快な構造の木質耐震壁を提供することができる。 As described above, according to the wooden seismic wall according to the present invention, a wall made of CLT is provided, and the upper and lower ends of the wall are joined to the upper and lower beams made of steel through beam joints, respectively. The wall is composed of an upper wall placed on the upper side and whose upper end is joined to the upper beam, and a lower wall placed on the lower side whose lower end is joined to the lower beam. It is divided into upper and lower walls, and the upper and lower walls are joined at a wall joint that breaks before the beam joint when a predetermined load is applied, so brittle failure of the wall It is possible to provide a wooden seismic wall with a clear structure that can prevent

また、本発明に係る他の木質耐震壁によれば、壁接合部は、上部壁体と下部壁体に挿入配置される鋼板と、この鋼板と上部壁体と下部壁体とを連結する連結部材とからなり、連結部材に降伏が生じる破壊モードで破壊するものであるので、所定の荷重が作用すると梁接合部に先行して連結部材が降伏して破壊する。このため、CLTの壁体が割裂等の脆性的な破壊を生じることはなくなり、靱性に富んだ復元力を確保することが可能になる。 According to another wooden earthquake-resistant wall according to the present invention, the wall joint includes a steel plate inserted into the upper wall and the lower wall, and a connection connecting the steel plate, the upper wall, and the lower wall. Since it is broken in a failure mode in which the connecting member yields, when a predetermined load acts, the connecting member yields and breaks before the beam joint. For this reason, the wall of the CLT is free from brittle fracture such as splitting, and it is possible to secure a restoring force with high toughness.

また、本発明に係る他の木質耐震壁によれば、連結部材は、鋼板と上部壁体とを連結する箇所と、鋼板と下部壁体とを連結する箇所の2箇所に設けられているので、連結部材が降伏(靱性を有する)する箇所が例えば略中央部分の2箇所となり、中央部分の変形性能(層間変形)を大きくすることが可能である。 In addition, according to another wooden earthquake-resistant wall according to the present invention, the connecting members are provided at two locations, one at which the steel plate and the upper wall are connected and the other at which the steel plate and the lower wall are connected. , the connecting member yields (has toughness) at two locations, for example, at approximately the central portion, and it is possible to increase the deformation performance (interlayer deformation) of the central portion.

また、本発明に係る他の木質耐震壁によれば、上部壁体と下部壁体との間に組み込まれた制震デバイスを備えるので、復元力による吸収エネルギーをさらに大きく確保することが可能になる。 In addition, according to another wooden earthquake-resistant wall according to the present invention, since it is equipped with a vibration control device incorporated between the upper wall and the lower wall, it is possible to secure a larger amount of energy absorbed by the restoring force. Become.

また、本発明に係る他の木質耐震壁によれば、壁体は、その上下方向略中央で上部壁体と下部壁体とに上下に分割されており、壁接合部は、壁体の左右方向略中央に設けられるので、壁体の脆性的な破壊を防ぐことのできる極めて明快で簡単な構造の木質耐震壁を提供することができる。 Further, according to another wooden earthquake-resistant wall according to the present invention, the wall is divided vertically into an upper wall and a lower wall at substantially the center in the vertical direction, and the wall joints are located on the left and right sides of the wall. Since it is provided substantially in the center of the direction, it is possible to provide a wooden earthquake-resisting wall with an extremely clear and simple structure that can prevent brittle breakage of the wall.

また、本発明に係る他の木質耐震壁によれば、CLTからなる壁体を備え、この壁体の上端と下端が鋼材からなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、壁体の上端と下端のいずれか一方の梁接合部は、所定の荷重が作用すると他方の梁接合部に先行して破壊する構造であるので、壁体に必要な接合部を2箇所に削減することができる。 Further, according to another wooden earthquake-resistant wall according to the present invention, a wall made of CLT is provided, and the upper and lower ends of the wall are joined to upper and lower beams made of steel via beam joints, respectively. A wooden seismic wall is a structure in which the beam joint at either the upper end or the lower end of the wall breaks before the other beam joint when a predetermined load is applied. The number of joints can be reduced to two.

また、本発明に係る他の木質耐震壁によれば、壁体の左右両側が間柱に接合されるので、壁体に作用する軸力を間柱に負担させることができる。 In addition, according to another wooden earthquake-resistant wall according to the present invention, the left and right sides of the wall are joined to the studs, so the axial force acting on the wall can be borne by the studs.

以上のように、本発明に係る木質耐震壁は、CLTを壁体に用いた木質耐震壁に有用であり、特に、壁体の脆性的な破壊を防ぐのに適している。 As described above, the wooden earthquake-resistant wall according to the present invention is useful as a wooden earthquake-resistant wall using CLT as a wall, and is particularly suitable for preventing brittle failure of the wall.

10 壁体
10A 上部壁体
10B 下部壁体
12 上梁
14 下梁
16,50 梁接合部
18 壁接合部
20,24,34,52 ガセットプレート(鋼板)
22,26,54 ドリフトピン(連結部材)
28 間柱
30 接合部
32,32A 切欠部
36,56 ラグスクリューボルト
38,40,46,60,62,64 プレート
42,48,66 高力ボルト
44 ボルト
58 ベースプレート
100,101,102,200 木質耐震壁
10 wall 10A upper wall 10B lower wall 12 upper beam 14 lower beam 16, 50 beam joint 18 wall joint 20, 24, 34, 52 gusset plate (steel plate)
22, 26, 54 drift pin (connecting member)
28 stud 30 joint 32, 32A notch 36, 56 lag screw bolt 38, 40, 46, 60, 62, 64 plate 42, 48, 66 high-strength bolt 44 bolt 58 base plate 100, 101, 102, 200 wooden earthquake-resistant wall

Claims (2)

CLTからなる壁体を備え、この壁体の上端と下端が鋼材からなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、
壁体の上端と下端のいずれか一方の梁接合部は、所定の荷重が作用すると他方の梁接合部に先行して破壊する構造であり、
前記一方の梁接合部は、前記壁体に挿入配置される鋼板と、この鋼板と前記壁体とを連結するピン部材からなる連結部材とから構成され、前記鋼板と前記壁体とにはそれぞれ対応する位置に貫通孔が設けられており、各貫通孔に前記ピン部材からなる連結部材が通されており、
前記一方の梁接合部は、前記ピン部材に降伏が生じる破壊モードで破壊するものであることを特徴とする木質耐震壁。
A wooden earthquake-resistant wall comprising a wall made of CLT, the upper and lower ends of which are respectively joined to upper and lower beams made of steel via beam joints,
The beam joint at either the upper end or the lower end of the wall is a structure that breaks before the other beam joint when a predetermined load is applied,
The one beam joint portion is composed of a steel plate inserted into the wall and a connecting member made of a pin member that connects the steel plate and the wall. Through holes are provided at corresponding positions, and connecting members made of the pin members are passed through the respective through holes,
The wooden earthquake-resisting wall , wherein the one beam joint is broken in a breaking mode in which the pin member yields .
壁体の左右両側が間柱に接合されることを特徴とする請求項1に記載の木質耐震壁。 2. The wooden earthquake-resisting wall according to claim 1, wherein both right and left sides of the wall are joined to studs.
JP2021144088A 2016-11-09 2021-09-03 wooden earthquake-resistant wall Active JP7244595B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016218824 2016-11-09
JP2016218824 2016-11-09
JP2017210887A JP7079587B2 (en) 2016-11-09 2017-10-31 Wood shear wall

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017210887A Division JP7079587B2 (en) 2016-11-09 2017-10-31 Wood shear wall

Publications (2)

Publication Number Publication Date
JP2021191942A JP2021191942A (en) 2021-12-16
JP7244595B2 true JP7244595B2 (en) 2023-03-22

Family

ID=62198724

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017210887A Active JP7079587B2 (en) 2016-11-09 2017-10-31 Wood shear wall
JP2021144088A Active JP7244595B2 (en) 2016-11-09 2021-09-03 wooden earthquake-resistant wall

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017210887A Active JP7079587B2 (en) 2016-11-09 2017-10-31 Wood shear wall

Country Status (1)

Country Link
JP (2) JP7079587B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7079587B2 (en) * 2016-11-09 2022-06-02 清水建設株式会社 Wood shear wall
JP7119731B2 (en) * 2018-08-06 2022-08-17 積水ハウス株式会社 partition bearing wall
JP7252841B2 (en) * 2019-06-25 2023-04-05 大成建設株式会社 CLT bearing wall
JP7499042B2 (en) 2020-03-10 2024-06-13 清水建設株式会社 Strength evaluation method for wooden earthquake-resistant walls
JP7510272B2 (en) * 2020-04-21 2024-07-03 鹿島建設株式会社 Wall structure and construction method of wall structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295497A (en) 2000-04-14 2001-10-26 Takenaka Komuten Co Ltd Structure of installing viscous seismic control wall onto concrete beam
JP2003314083A (en) 2002-04-18 2003-11-06 Takenaka Komuten Co Ltd Wooden quake-resisting wall with deformation-absorbing layer
JP2010121315A (en) 2008-11-18 2010-06-03 Shinshu Univ High-rigidity bearing wall device of wooden building
CN104790562A (en) 2015-04-27 2015-07-22 南京工业大学 Steel frame filled wood shear wall structure connected by planting steel plates
CN110924566A (en) 2019-11-22 2020-03-27 苏州科技大学 Steel frame infilled CLT plate constraint steel plate shear wall combined structure
JP7079587B2 (en) 2016-11-09 2022-06-02 清水建設株式会社 Wood shear wall

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3261949B2 (en) * 1995-10-18 2002-03-04 鹿島建設株式会社 Vibration control structure using walls of existing building
JP5620062B2 (en) * 2009-01-05 2014-11-05 株式会社竹中工務店 Column wall structure and building having column wall structure
JP6353697B2 (en) * 2014-05-15 2018-07-04 株式会社竹中工務店 Wooden earthquake resistant wall structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295497A (en) 2000-04-14 2001-10-26 Takenaka Komuten Co Ltd Structure of installing viscous seismic control wall onto concrete beam
JP2003314083A (en) 2002-04-18 2003-11-06 Takenaka Komuten Co Ltd Wooden quake-resisting wall with deformation-absorbing layer
JP2010121315A (en) 2008-11-18 2010-06-03 Shinshu Univ High-rigidity bearing wall device of wooden building
CN104790562A (en) 2015-04-27 2015-07-22 南京工业大学 Steel frame filled wood shear wall structure connected by planting steel plates
JP7079587B2 (en) 2016-11-09 2022-06-02 清水建設株式会社 Wood shear wall
CN110924566A (en) 2019-11-22 2020-03-27 苏州科技大学 Steel frame infilled CLT plate constraint steel plate shear wall combined structure

Also Published As

Publication number Publication date
JP7079587B2 (en) 2022-06-02
JP2018080569A (en) 2018-05-24
JP2021191942A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP7244595B2 (en) wooden earthquake-resistant wall
Loss et al. Experimental investigation on in-plane stiffness and strength of innovative steel-timber hybrid floor diaphragms
US9909308B2 (en) Composite beam having truss reinforcement embedded in concrete
US10323402B1 (en) Beam-column connection structure
JP5859250B2 (en) Bonding structure of different structural members and composite structure
JP2019065685A (en) building
JP6503318B2 (en) Connected structure
JP6638905B2 (en) Beam-column connection structure and beam-column connection method
JP7187188B2 (en) Joint structure of wooden shaft members
JP7052949B2 (en) Flat slab structure
Stahl et al. Improved analysis of timber rivet connections
Vilguts et al. Moment resisting frames and connections using threaded rods in beam-to-column timber joints
JP6387236B2 (en) Column beam connection structure.
JP2018204397A (en) Wood-steel hybrid structure and method for constructing the same
JP6937457B2 (en) A connecting body in which wooden cross-shaped composite columns are tightly crimped with flat PC beams.
JP2008144577A (en) Bearing wall unit and bearing wall construction method
JP2014201870A (en) Cwood
Cochran et al. Design of special concentric braced frames
Zhang et al. Connection and performance of two-way CLT plates
JP2020002641A (en) Column-beam joint structure, and method of joining column and beam
JP6660724B2 (en) Column joint structure
JP6557900B2 (en) Non-structural wall and non-structural wall construction method
JP7438319B2 (en) CLT panel
JP5805436B2 (en) Seismic structure
JP2024044694A (en) Load transfer structure and method of constructing load transfer structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230309

R150 Certificate of patent or registration of utility model

Ref document number: 7244595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150