JP7234775B2 - Desalination system for chlorine-containing ash - Google Patents

Desalination system for chlorine-containing ash Download PDF

Info

Publication number
JP7234775B2
JP7234775B2 JP2019084368A JP2019084368A JP7234775B2 JP 7234775 B2 JP7234775 B2 JP 7234775B2 JP 2019084368 A JP2019084368 A JP 2019084368A JP 2019084368 A JP2019084368 A JP 2019084368A JP 7234775 B2 JP7234775 B2 JP 7234775B2
Authority
JP
Japan
Prior art keywords
tank
desalting
chlorine
ash
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019084368A
Other languages
Japanese (ja)
Other versions
JP2020179352A (en
Inventor
孝宏 柴原
浩志 林
大輔 原口
達哉 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019084368A priority Critical patent/JP7234775B2/en
Publication of JP2020179352A publication Critical patent/JP2020179352A/en
Application granted granted Critical
Publication of JP7234775B2 publication Critical patent/JP7234775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、塩素含有灰を脱塩するシステムであって、塩素含有灰のスラリーに二酸化炭素ガスを吹き込んで塩素化合物を分解する脱塩システムにおいて、ガス吹込口の閉塞を防止して安定に脱塩処理することができ、脱塩スラリーの脱水による脱塩効果のよい脱塩システムに関する。 The present invention is a system for desalinating chlorine-containing ash, and in a desalting system in which carbon dioxide gas is blown into a slurry of chlorine-containing ash to decompose chlorine compounds, the gas injection port is prevented from being clogged and desalination is performed stably. The present invention relates to a desalting system capable of being salted and having a good desalting effect by dewatering desalted slurry.

一般廃棄物や産業廃棄物の焼却灰や、セメント工場から発生するダストなどは、概ね10%~25%の濃度で塩素が含まれている塩素含有灰であるので、これらの塩素含有灰を再資源化するためには、用途に応じた程度まで脱塩する必要がある。上記塩素含有灰に含まれる塩素化合物の大部分は水溶性であるので水洗浄して脱塩できるが、塩素化合物の一部は水難溶性のフリーデル氏塩(3CaO・AlO・CaCl・10HO)等を形成しており、水洗浄だけでは脱塩することができない。 Incineration ash of general waste and industrial waste, and dust generated from cement factories are chlorine-containing ash containing chlorine at a concentration of approximately 10% to 25%. For recycling, it is necessary to desalinate to a degree suitable for the intended use. Most of the chlorine compounds contained in the chlorine-containing ash are water-soluble and can be desalted by washing with water .・10H 2 O), etc. are formed, and cannot be desalted only by washing with water.

一方、フリーデル氏塩等は酸によって分解されると水溶性塩になるため、フリーデル氏塩等を酸分解した後に濾過洗浄することによって脱塩する方法が知られている。例えば、フリーデル氏塩は塩酸によって次式[1]のように、水酸化アルミニウムと塩化カルシウムに分解する。この塩化カルシウムは水溶性なので、水洗浄して脱塩することができる。ただし、水洗浄が不十分であると、洗浄灰粒子間の間隙水中に残存する塩化カルシウム量が多くなり、脱塩不十分になる問題がある。
3CaO・AlO・CaCl・10HO+6HCl →2Al(OH)+4CaCl+10HO ・・・ [1]
On the other hand, since Friedel's salt and the like become water-soluble salts when decomposed by acid, a method of desalting by decomposing Friedel's salt and the like with acid and then filtering and washing is known. For example, Friedel's salt is decomposed by hydrochloric acid into aluminum hydroxide and calcium chloride as shown in the following formula [1]. Since this calcium chloride is water-soluble, it can be desalted by washing with water. However, if water washing is insufficient, the amount of calcium chloride remaining in the interstitial water between the washed ash particles increases, resulting in insufficient desalting.
3CaO.Al2O3.CaCl2.10H2O + 6HCl → 2Al (OH) 3 + 4CaCl2 + 10H2O ... [ 1 ]

一方、酸として二酸化炭素を用いると、フリーデル氏塩は次式[2]のように分解し、カルシウムの一部は水不溶性の炭酸カルシウムになるので、塩化カルシウムの生成量が少なくなり、効果的に脱塩できるようになる。
3CaO・AlO・CaCl・10HO+3CO →3CaCO+2Al(OH)+CaCl+7HO・・・[2]
On the other hand, when carbon dioxide is used as the acid, the Friedel's salt is decomposed as shown in the following formula [2], and part of the calcium becomes water-insoluble calcium carbonate, so the amount of calcium chloride produced is reduced. can be desalted effectively.
3CaO.Al2O3.CaCl2.10H2O + 3CO23CaCO3 + 2Al (OH) 3 + CaCl2 + 7H2O [ 2 ]

特許第6252653号公報Japanese Patent No. 6252653 特開2006-326462号公報JP 2006-326462 A 特許第4482636号公報Japanese Patent No. 4482636 特許第3924822号公報Japanese Patent No. 3924822 特許第5748418号公報Japanese Patent No. 5748418 特許第4358014号公報Japanese Patent No. 4358014 特許第3911538号公報Japanese Patent No. 3911538 特許第5561326号公報Japanese Patent No. 5561326

塩素含有灰のスラリーに二酸化炭素を吹き込んでフリーデル氏塩を分解する場合、塩化カルシウムと共に炭酸カルシウムが生成し、この炭酸カルシウムが二酸化炭素ガスの吹込口に析出し吹込口が閉塞されて脱塩処理が継続不能になると云う問題がある。また、脱塩灰の間隙水の洗浄が適切でないと脱塩が不十分になる。
本発明は上記問題を解決した脱塩システムを提供する。
When carbon dioxide is blown into a slurry of chlorine-containing ash to decompose Friedel's salt, calcium carbonate is produced together with calcium chloride, and this calcium carbonate precipitates at the carbon dioxide gas inlet, blocking the inlet for desalting. There is a problem that processing cannot be continued. In addition, if the interstitial water of the desalted ash is not washed properly, the desalting will be insufficient.
The present invention provides a desalination system that solves the above problems.

本発明は、以下の構成によって上記問題を解決した、塩素含有灰の脱塩システムに関する。
〔1〕塩素含有灰が水洗浄される洗浄槽、水洗浄された塩素含有灰が脱塩処理される脱塩槽、脱塩用ガスを上記脱塩槽に供給する脱塩用ガス供給手段、および上記脱塩槽から排出された脱塩灰スラリーを洗浄する洗浄水が流れる脱水洗浄機を有し、上記脱塩用ガス供給手段は二酸化炭素貯槽および塩酸貯槽を有し、2vol%以上~50vol%以下の塩化水素と二酸化炭素ガスの混合ガスからなる脱塩用ガスが上記脱塩槽に供給され、該脱塩用ガスの吹込口周囲のスケールの析出を抑制しつつ上記塩素含有灰の脱塩処理が行われることを特徴とする塩素含有灰の脱塩システム。
〔2〕上記脱塩用ガス供給手段は二酸化炭素貯槽および塩酸貯槽とバブリング槽を有し、該塩酸貯槽から該バブリング槽に塩酸が供給され、この塩酸に上記二酸化炭素貯槽から二酸化炭素ガスが吹き込まれてバブリングされることによって、2vol%以上~50vol%以下の塩化水素と二酸化炭素ガスの混合ガスからなる脱塩用ガスが形成される上記[1]に記載する塩素含有灰の脱塩システム。
〔3〕塩素含有灰が水洗浄される上記洗浄槽の次に分離槽を有し、さらに該分離槽で脱水した水洗浄灰を受け入れる再スラリー槽を有し、スラリー状態の塩素含有灰が該再スラリー槽から上記脱塩槽に供給される上記[1]または上記[2]の何れかに記載する塩素含有灰の脱塩システム。
〔4〕上記脱水洗浄機が洗浄水量を制御する手段を有し、脱塩灰の間隙水の2倍以上~6倍以下の洗浄水量でケーキ洗浄が行われる上記[1]~上記[3]の何れかに記載する塩素含有灰の脱塩システム。
The present invention relates to a chlorine-containing ash desalination system that solves the above problems by the following configuration.
[1] A washing tank in which the chlorine-containing ash is washed with water, a desalting tank in which the water-washed chlorine-containing ash is desalted, a desalting gas supply means for supplying the desalting gas to the desalting tank, and a desalting washing machine through which washing water for washing the desalted ash slurry discharged from the desalting tank flows, and the desalting gas supply means has a carbon dioxide storage tank and a hydrochloric acid storage tank, and is 2 vol% or more to 50 vol. % or less of hydrogen chloride and carbon dioxide gas is supplied to the desalting tank, and the chlorine-containing ash is removed while suppressing scale deposition around the desalting gas inlet. A desalting system for chlorine-containing ash, characterized in that salting is performed .
[2] The desalting gas supply means has a carbon dioxide storage tank, a hydrochloric acid storage tank, and a bubbling tank, and hydrochloric acid is supplied from the hydrochloric acid storage tank to the bubbling tank, and carbon dioxide gas is blown into the hydrochloric acid from the carbon dioxide storage tank. The chlorine-containing ash desalination system according to [1] above, wherein the gas for desalination is formed of a mixed gas of 2 vol% to 50 vol% of hydrogen chloride and carbon dioxide gas by bubbling.
[3] Having a separation tank next to the washing tank in which the chlorine-containing ash is washed with water, and further having a re-slurry tank for receiving the water-washed ash dehydrated in the separation tank, wherein the chlorine-containing ash in a slurry state is said The chlorine-containing ash desalination system according to any one of the above [1] and [2], which is supplied from the reslurry tank to the desalting tank.
[4] The above [1] to [3] , wherein the dehydration washing machine has a means for controlling the amount of washing water, and the cake is washed with an amount of washing water that is two to six times as much as the interstitial water of the desalted ash. A desalination system for chlorine-containing ash according to any of

〔具体的な説明〕
以下、本発明を具体的に説明する。
本発明の脱塩システムは、塩素含有灰が水洗浄される洗浄槽、水洗浄された塩素含有灰が脱塩処理される脱塩槽、脱塩用ガスを上記脱塩槽に供給する脱塩用ガス供給手段、および上記脱塩槽から排出された脱塩灰スラリーを洗浄する洗浄水が流れる脱水洗浄機を有し、上記脱塩用ガス供給手段は二酸化炭素貯槽および塩酸貯槽を有し、2vol%以上~50vol%以下の塩化水素と二酸化炭素ガスの混合ガスからなる脱塩用ガスが上記脱塩槽に供給され、該脱塩用ガスの吹込口周囲のスケールの析出を抑制しつつ上記塩素含有灰の脱塩処理が行われることを特徴とする塩素含有灰の脱塩システムである。
本発明の脱塩システムの構成例を図1に示す。

[Specific explanation]
The present invention will be specifically described below.
The desalination system of the present invention comprises a washing tank in which chlorine-containing ash is washed with water, a desalination tank in which the water-washed chlorine-containing ash is desalted, and a desalting tank that supplies desalting gas to the desalting tank . and a desalination washing machine through which washing water for washing the desalted ash slurry discharged from the desalting tank flows, the desalting gas supply means having a carbon dioxide storage tank and a hydrochloric acid storage tank, A desalting gas consisting of a mixed gas of 2 vol% or more and 50 vol% or less of hydrogen chloride and carbon dioxide gas is supplied to the desalting tank, and the deposition of scale around the inlet of the desalting gas is suppressed. A chlorine-containing ash desalination system characterized by desalinating chlorine-containing ash.
FIG. 1 shows a configuration example of the desalting system of the present invention.

本発明の脱塩システムは、図1に示すように、塩素含有灰を水洗浄する洗浄槽10、水洗浄された塩素含有灰を脱塩処理する脱塩槽11、脱塩槽11に脱塩用ガス供給手段12、脱塩槽11から排出された脱塩灰スラリーを脱水洗浄する脱水洗浄機13が設けられている。 The desalination system of the present invention, as shown in FIG. A gas supply means 12 and a desalted ash slurry discharged from the desalting tank 11 are desalted and washed.

洗浄槽10には、セメント工場のダストや一般の焼却施設の焼却灰などの塩素含有灰が供給される。洗浄槽10には洗浄用の水が供給される。好ましくは、該洗浄槽10に分離槽30を接続し、該分離槽30に再スラリー槽31を接続し、該再スラリー槽31にスラリー用の水が供給されるようにすると良い。洗浄槽10に供給される塩素含有灰には概ね1万ppm以上の塩素が含まれており、洗浄槽10において水洗されることによって、水溶性の塩素化合物が洗い流されて、塩素濃度が数千ppm~1万ppm程度に低減される。該洗浄槽10には撹拌手段を設けるとよい。水洗浄された塩素含有灰は上記分離槽30で脱水され、水溶性の塩素化合物を含む水分が分離されて、再スラリー槽31に供給される。水洗された塩素含有灰はここで再び水が供給され、スラリー状態で再スラリー槽31から脱塩槽11に送られる。 The washing tank 10 is supplied with chlorine-containing ash such as dust from a cement factory or incineration ash from a general incineration facility. Washing water is supplied to the washing tank 10 . Preferably, a separation tank 30 is connected to the washing tank 10, a reslurry tank 31 is connected to the separation tank 30, and water for slurry is supplied to the reslurry tank 31. The chlorine-containing ash supplied to the cleaning tank 10 contains approximately 10,000 ppm or more of chlorine. It is reduced to about ppm to 10,000 ppm. The washing tank 10 is preferably provided with stirring means. The water-washed chlorine-containing ash is dehydrated in the separation tank 30 to separate water containing water-soluble chlorine compounds and supplied to the re-slurry tank 31 . The washed chlorine-containing ash is supplied with water again here, and sent in a slurry state from the reslurry tank 31 to the desalting tank 11 .

脱塩槽11の塩素含有灰スラリーに脱塩用ガスが吹き込まれる。脱塩用ガスは塩化水素と二酸化炭素ガスの混合ガスであり、好ましくは、塩化水素濃度が2vol%以上~50vol%以下の塩化水素と二酸化炭素ガスの混合ガスである。脱塩槽11には撹拌手段を設けるとよい。 A desalting gas is blown into the chlorine-containing ash slurry in the desalting tank 11 . The desalting gas is a mixed gas of hydrogen chloride and carbon dioxide gas, preferably a mixed gas of hydrogen chloride and carbon dioxide gas having a hydrogen chloride concentration of 2 vol % or more and 50 vol % or less. The desalting tank 11 is preferably provided with stirring means.

上記脱塩用ガスは二酸化炭素ガスと塩化水素ガスを混合して形成することができる。あるいは、塩酸に二酸化炭素ガスを吹き込み、塩酸中で二酸化炭素ガスをバブリングすることによって形成することができる。図1に示すシステムは、この塩酸バブリングの例を示す。 The desalting gas can be formed by mixing carbon dioxide gas and hydrogen chloride gas. Alternatively, it can be formed by blowing carbon dioxide gas into hydrochloric acid and bubbling the carbon dioxide gas through the hydrochloric acid. The system shown in FIG. 1 shows an example of this hydrochloric acid bubbling.

図1に示すように、脱塩用ガス供給手段12には、二酸化炭素の貯槽20と塩酸の貯槽21が設けられており、塩酸貯槽21から管路23を通じてバブリング槽22に塩酸が供給される。一方、二酸化炭素の貯槽20から気化器24を介して二酸化炭素ガスが管路25を通じてバブリング槽22の塩酸中に吹き込まれ、塩化水素を含む二酸化炭素ガスが形成され、この塩化水素を含む二酸化炭素ガスが脱塩用ガスとして管路26を通じて脱塩槽11に供給され、脱塩槽11の塩素含有灰スラリー中に吹き込まれる。 As shown in FIG. 1, the desalting gas supply means 12 is provided with a carbon dioxide storage tank 20 and a hydrochloric acid storage tank 21. Hydrochloric acid is supplied from the hydrochloric acid storage tank 21 to the bubbling tank 22 through a conduit 23. . On the other hand, carbon dioxide gas is blown from the carbon dioxide storage tank 20 through the vaporizer 24 into the hydrochloric acid in the bubbling tank 22 through the pipe line 25 to form carbon dioxide gas containing hydrogen chloride. Gas is supplied to desalting tank 11 as desalting gas through line 26 and blown into the chlorine-containing ash slurry in desalting tank 11 .

この塩酸バブリングでは、塩化水素が発生して二酸化炭素ガスに取り込まれ、これが脱塩用ガスとして抜き出されるので、バブリング槽22の塩酸は次第に濃度が低下して希塩酸になり、塩化水素蒸発量が少なくなるため、この希塩酸を抜き出しながら新たに濃塩酸を塩酸貯槽21から供給し、バブリング槽内の塩酸濃度を一定に保ち、脱塩用ガスの塩化水素濃度が2vol%以上~50vol%以下になるようにするのが好ましい。なお、バブリング後の廃塩酸は濃度が概ね30%以上なので他の用途に使用することができる。 In this hydrochloric acid bubbling, hydrogen chloride is generated and taken into carbon dioxide gas, which is extracted as desalting gas, so the concentration of hydrochloric acid in the bubbling tank 22 gradually decreases to dilute hydrochloric acid, and the amount of hydrogen chloride evaporation increases. Therefore, while extracting this dilute hydrochloric acid, new concentrated hydrochloric acid is supplied from the hydrochloric acid storage tank 21 to keep the hydrochloric acid concentration in the bubbling tank constant, and the hydrogen chloride concentration of the desalting gas becomes 2 vol% or more to 50 vol% or less. It is preferable to Note that the waste hydrochloric acid after bubbling has a concentration of approximately 30% or more, so it can be used for other purposes.

脱塩槽11では、吹き込まれた脱塩用ガスの主体は二酸化炭素であるので、これが塩素含有灰スラリーに含まれているフリーデル氏塩と反応し、上記式[2]に示すように、フリーデル氏塩が分解されて水溶性の塩化カルシウムになり、これを脱水することによって脱塩することができる。 In the desalting tank 11, the blown desalting gas is mainly carbon dioxide, so this reacts with Friedel's salt contained in the chlorine-containing ash slurry, and as shown in the above formula [2], Friedel's salt is decomposed into water-soluble calcium chloride, which can be desalted by dehydration.

また、フリーデル氏塩の分解によって炭酸カルシウムが生成するが、脱塩用ガスには二酸化炭素と共に塩化水素が含まれているので、次式[3]に示すように、生成した炭酸カルシウムは塩化水素によって分解され、水溶性の塩化カルシウムになり、脱塩用ガスの吹込口周囲に炭酸カルシウムのスケールが析出せず、吹込み口が閉塞しないので、継続して脱塩処理を進めることができる。
CaCO + 2HCl → CaCl + HO + CO ・・・ [3]
Calcium carbonate is produced by the decomposition of Friedel's salt. Since the desalting gas contains hydrogen chloride as well as carbon dioxide, the produced calcium carbonate is chloride It is decomposed by hydrogen to form water-soluble calcium chloride, and calcium carbonate scale does not precipitate around the desalting gas blowing port, and the blowing port is not clogged, so desalination can be continued. .
CaCO 3 + 2HCl → CaCl 2 + H 2 O + CO 2 [3]

脱塩用ガス中の塩化水素濃度は2vol%以上~50vol%以下が好ましい。塩化水素濃度が1vol%程度では炭酸カルシウムの分解が不十分になり、ガス吹込みから10分程度で吹込口が閉塞することが多い。なお、塩化水素はガス吹込口周囲の炭酸カルシウムを溶解すればよいので、塩化水素濃度は過剰に高い必要はない。しかも、塩化水素はガス吹込口付近で炭酸カルシウムと反応して消費されるので、ガス吹込口から離れた場所では二酸化炭素によるフリーデル氏塩の分解は実質的な影響を受けず、脱塩効果は低下しない。 The concentration of hydrogen chloride in the desalting gas is preferably 2 vol % or more and 50 vol % or less. If the concentration of hydrogen chloride is about 1 vol %, the decomposition of calcium carbonate becomes insufficient, and the blowing port often clogs about 10 minutes after gas blowing. The hydrogen chloride concentration does not need to be excessively high because the hydrogen chloride may dissolve the calcium carbonate around the gas inlet. Moreover, since hydrogen chloride reacts with calcium carbonate near the gas inlet and is consumed, the decomposition of Friedel's salt by carbon dioxide is not substantially affected at a location away from the gas inlet, resulting in a desalting effect. does not decrease.

一方、塩化水素濃度が過剰に高くなると、塩化カルシウムの発生量が多くなって脱塩効果が低下し、さらに余剰の塩化水素が大気中に放出されて作業環境が悪化するので、塩化水素濃度は50vol%以下が好ましい。 On the other hand, if the concentration of hydrogen chloride becomes excessively high, the amount of calcium chloride generated will increase and the desalting effect will decrease. 50 vol% or less is preferable.

脱塩された灰スラリー(脱塩灰スラリーと云う)は脱塩槽11から脱水洗浄機13に送られる。脱水洗浄機13は、例えば、洗浄水が流れるフィルタープレスであって、プレスして生じた脱水ケーキに洗浄水を流して脱塩を進めるとよい。 The desalted ash slurry (referred to as desalted ash slurry) is sent from the desalting tank 11 to the dewatering washing machine 13 . The dehydration washing machine 13 is, for example, a filter press through which washing water flows, and desalting is preferably carried out by flowing washing water over the dehydrated cake produced by pressing.

脱塩時に水難溶性塩素化合物のフリーデル氏塩が分解されて水溶性塩が液中に放出されるのに加え、脱塩時に塩化水素を添加するのに伴って液中の塩素濃度が上昇するため、脱塩灰スラリーを脱水してケーキ状の脱塩灰を得ても、脱塩灰ケーキの間隙水中に塩素が含まれるので、脱塩灰中の塩素濃度は十分に下がらない。 During desalting, Friedel's salt, which is a poorly water-soluble chlorine compound, is decomposed and water-soluble salts are released into the liquid. In addition, the chlorine concentration in the liquid increases as hydrogen chloride is added during desalting. Therefore, even if the desalted ash slurry is dehydrated to obtain a cake-like desalted ash, chlorine is contained in the pore water of the desalted ash cake, so the chlorine concentration in the desalted ash does not sufficiently decrease.

そこで、脱水手段として洗浄水が流れるフィルタープレスなどを用い、プレス脱水しながら脱水ケーキに洗浄水を流してケーキ洗浄すれば、脱塩灰中の間隙水は洗浄水で置換されるため、塩素濃度の低い脱塩灰を得ることができる。 Therefore, if a filter press through which washing water flows is used as a dehydrating means, and washing water is passed through the dehydrated cake while dehydrating the press to wash the cake, the interstitial water in the desalted ash will be replaced by the washing water. can obtain demineralized ash with low

なお、二酸化炭素ガスと共に塩化水素を含む混合ガスを脱塩用ガスとして用いた場合、この塩化水素の影響で脱塩灰の塩素濃度は脱塩処理初期の水洗灰の塩素濃度より高くなる場合があるので、洗浄水量を制御して脱塩効果を高めるように、脱水洗浄機は洗浄水量を所定範囲に制御する手段を有するものが好ましい。なお、脱塩効果を確認するために、脱水洗浄機から排出される濾液の電気伝導度を測定する手段を有することが好ましい。 When a mixed gas containing hydrogen chloride and carbon dioxide gas is used as the desalting gas, the chlorine concentration in the desalted ash may become higher than the chlorine concentration in the washed ash at the initial stage of desalting due to the influence of the hydrogen chloride. Therefore, it is preferable that the dehydration washing machine has means for controlling the amount of washing water within a predetermined range so as to control the amount of washing water and enhance the desalination effect. In addition, in order to confirm the desalting effect, it is preferable to have a means for measuring the electric conductivity of the filtrate discharged from the dehydration washing machine.

この洗浄水量は脱塩灰中の間隙水の2倍以上~6倍以下が好ましい。洗浄水量が間隙水の2倍より少ないと脱塩が不十分になる。また洗浄水量が間隙水の6倍を超えても脱塩効果は変わらないので、洗浄水量は2倍以上~6倍以下が好ましい。なお、濾液の電気伝導度は濾液の塩素濃度にほぼ比例し、洗浄水量2倍とした場合における電気伝導度は凡そ1S/mになる。よって、ケーキ洗浄中に濾液の電気伝導度を測定することで、脱塩効果を確認しながらケーキ洗浄の終了可否を判断することができる。 The amount of washing water is preferably 2 to 6 times the interstitial water in the desalted ash. If the amount of washing water is less than twice the amount of pore water, desalting will be insufficient. Further, even if the amount of washing water exceeds six times the interstitial water, the desalting effect does not change, so the amount of washing water is preferably two times or more and six times or less. The electric conductivity of the filtrate is approximately proportional to the chlorine concentration of the filtrate, and the electric conductivity is about 1 S/m when the amount of washing water is doubled. Therefore, by measuring the electrical conductivity of the filtrate during washing of the cake, it is possible to determine whether or not the washing of the cake should be completed while confirming the desalting effect.

本発明の脱塩システムでは、塩素含有灰スラリーに二酸化炭素を吹き込んで脱塩する場合に、ガス吹込口が炭酸カルシウムのスケールによって閉塞しないので、二酸化炭素ガスを安定に吹き込むことができ、継続して脱塩効果を進めることができる。さらに吹込口の閉塞を防ぐためのメンテナンスの手間を省くことができる。また、脱塩灰の間隙水の2倍以上~6倍以下の洗浄水量で脱水洗浄を行うことによって、塩素濃度が格段に低い脱塩灰を得ることができる。 In the desalination system of the present invention, when carbon dioxide is blown into the chlorine-containing ash slurry for desalination, the gas injection port is not blocked by calcium carbonate scale, so carbon dioxide gas can be blown stably and continuously. The desalting effect can be promoted by Furthermore, maintenance work for preventing clogging of the blowing port can be saved. Further, desalted ash having a remarkably low chlorine concentration can be obtained by performing desalting and washing with an amount of washing water that is two to six times as much as the interstitial water of the desalted ash.

本発明の脱塩システムの概略図Schematic diagram of the desalination system of the present invention 脱塩灰スラリーの洗浄効果を示すグラフGraph showing cleaning effect of desalted ash slurry 脱塩灰スラリーの洗浄効果を示すグラフGraph showing cleaning effect of desalted ash slurry ケーキ洗浄時に排出された濾液の電気伝導度と塩素濃度の関係を示すグラフGraph showing the relationship between the electrical conductivity and chlorine concentration of the filtrate discharged during cake washing 実施例2のフィルターの閉塞状態を示すグラフGraph showing the blocked state of the filter of Example 2

以下、本発明の実施例を示す。塩素濃度は電量滴定式塩分計(ソルメイト,中研コンサルタント社製品)を用いて測定した。 Examples of the present invention are shown below. The chlorine concentration was measured using a coulometric salt meter (Solmate, product of Chuken Consultants Co., Ltd.).

〔実施例1〕
塩素含有灰300gを洗浄槽10に入れ、800mLの水を加えて15分間水洗し、分離槽30にて脱水して水溶性塩を除去した。 得られた水洗灰を再スラリー槽31に入れ、800mLの水を加えて撹拌し再スラリー化した。このスラリーを脱塩槽11に供給し、60℃に加温し、脱塩用ガスを0.2L/minの流量で3時間吹き込んで脱塩を行った。脱塩用ガスは、塩酸貯槽21からバブリング槽22に塩酸を供給し、この塩酸に二酸化炭素貯槽20から二酸化炭素ガスを吹き込んでバブリングして形成した。脱塩用ガスの塩化水素濃度は11~15vol%調整した。
脱塩槽11から抜き出した脱塩灰スラリーを脱水洗浄機13に入れ、含水率40質量%の脱塩灰ケーキ315g(固形分189g、間隙水分126g)を得た。この脱塩灰ケーキを濾過脱水しながら洗浄水を流してケーキ洗浄を続け、サンプリングを順次行って脱塩灰の塩素濃度を測定した。この結果を図2、図3に示した。図2はケーキ洗浄水量に対する脱塩灰中の塩素濃度を示すグラフである。図3は脱塩灰ケーキの間隙水量に対する洗浄水量の比と脱塩灰中の塩素濃度の関係を示すグラフである。
なお、図2、図3の水洗灰の塩素濃度は洗浄槽11から抜き出した水洗灰の塩素濃度であり、本例では概ね0.5%程度である。
[Example 1]
300 g of chlorine-containing ash was placed in the washing tank 10, washed with 800 mL of water for 15 minutes, and dehydrated in the separation tank 30 to remove water-soluble salts. The obtained washed ash was placed in a reslurry tank 31, and 800 mL of water was added and stirred to reslurry. This slurry was supplied to the desalting tank 11, heated to 60° C., and desalted by blowing desalting gas at a flow rate of 0.2 L/min for 3 hours. The desalting gas was formed by supplying hydrochloric acid from the hydrochloric acid storage tank 21 to the bubbling tank 22 and blowing carbon dioxide gas into the hydrochloric acid from the carbon dioxide storage tank 20 for bubbling. The concentration of hydrogen chloride in the desalting gas was adjusted to 11-15 vol %.
The desalted ash slurry extracted from the desalting tank 11 was put into the desalting washer 13 to obtain 315 g of desalted ash cake (solid content: 189 g, interstitial water: 126 g) with a moisture content of 40% by mass. While filtering and dehydrating the desalted ash cake, washing water was poured to continue washing the cake, and sampling was sequentially performed to measure the chlorine concentration of the desalted ash. The results are shown in FIGS. 2 and 3. FIG. FIG. 2 is a graph showing the chlorine concentration in the desalted ash with respect to the amount of cake washing water. FIG. 3 is a graph showing the relationship between the ratio of the amount of washing water to the amount of interstitial water in the desalted ash cake and the chlorine concentration in the desalted ash.
The chlorine concentration of the washed ash in FIGS. 2 and 3 is the chlorine concentration of the washed ash extracted from the washing tank 11, and is approximately 0.5% in this example.

図2に示すように、ケーキ洗浄水量が100mLよりも少ないと、脱塩灰中の塩素濃度は水洗灰よりも高い。これは脱塩時に添加した塩化水素の影響であり、ケーキ洗浄水量が増加すると脱塩灰中の塩素濃度は指数関数的に減少し、ケーキ洗浄水量が200mLより多くなると水洗灰の塩素濃度より低くなる。ケーキ洗浄水量が1200mLになると脱塩灰の塩素濃度は約0.3%程度であり、水洗灰の塩素濃度の6割程度に低減された。 As shown in FIG. 2, when the amount of washing water for the cake is less than 100 mL, the chlorine concentration in the desalted ash is higher than that in the washed ash. This is due to the effect of the hydrogen chloride added during desalting. As the amount of washing water for the cake increases, the chlorine concentration in the desalted ash decreases exponentially. Become. When the amount of cake washing water was 1200 mL, the chlorine concentration of the desalted ash was about 0.3%, which was reduced to about 60% of the chlorine concentration of the washed ash.

また、図3に示すように、ケーキ洗浄水量が脱塩灰間隙水量の約2倍以上であれば、脱塩灰の塩素濃度は水洗灰の塩素濃度よりも低くなり、ケーキ洗浄水量が多くなれば脱塩灰の塩素濃度が次第に低下する。ただし、ケーキ洗浄水量が間隙水量の約6倍以上になると脱塩灰の塩素低減効果は僅かであり、むしろ排液量が増すので、ケーキ洗浄水量は間隙水量の約2倍以上~約6倍以下が好ましいことが分かる。 Further, as shown in FIG. 3, if the cake washing water amount is about twice or more the desalted ash interstitial water amount, the chlorine concentration of the desalted ash becomes lower than the chlorine concentration of the washed ash, and the cake washing water amount increases. Chlorine concentration in the desalted ash gradually decreases. However, if the cake washing water volume is about 6 times or more the pore water volume, the chlorine reduction effect of the desalted ash will be slight, and the amount of wastewater will rather increase. It can be seen that the following are preferred.

また、図2、図3の結果から、塩化水素ガスと二酸化炭素ガスの混合ガスを脱塩用ガスとして用いる脱塩システムでは、脱水洗浄における洗浄水量を脱塩灰の間隙水量に対して適切な範囲に制御しなければ、脱塩効果に差がでることが分かる。 From the results of FIGS. 2 and 3, in the desalination system using a mixed gas of hydrogen chloride gas and carbon dioxide gas as the desalting gas, the washing water amount in the desalination washing is appropriate for the pore water amount of the desalted ash. It can be seen that there is a difference in the desalting effect unless the range is controlled.

なお、図4の結果から、濾液の電気伝導度は濾液中に含まれる塩素濃度にほぼ比例することが分かる。よって、濾液の電気伝導度が減少しなくなった時点で間隙水の置換が終了したと判断することができる。 From the results of FIG. 4, it can be seen that the electric conductivity of the filtrate is approximately proportional to the concentration of chlorine contained in the filtrate. Therefore, it can be determined that the interstitial water replacement is completed when the electric conductivity of the filtrate stops decreasing.

〔実施例2〕
塩素含有灰300gを、800mLの水で15分間水洗・ろ過し、さらに800mLの水でケーキ洗浄し、ろ過して水溶性塩を除去した。得られた水洗灰に800mLの水を加えて撹拌しスラリーとした。このスラリーを60℃に加温し、塩化水素と二酸化炭素の混合ガスを0.2L/minの流量で3時間吹き込んだ。吹込口が閉塞してガスが吹き込まれなくなったときはその時点で試験を終了した。なお、塩化水素は塩酸バブリング(図2の方法)で二酸化炭素に混合し、バブリングさせる塩酸の濃度を35質量%、30質量%、27質量%、0質量%にして、塩化水素濃度を11~15vol%、2.8~3.0vol%、1.1vol%、0vol%になるように調整した。
吹込口周囲のスケールの発生量は、吹込口に設けた散気フィルターの重量を脱塩前後で比較することによって求めた。また、発生したスケールを捕集し、X線回折法にて組成を同定した。散気フィルターの重量増加量を図5に示す。
[Example 2]
300 g of chlorine-containing ash was washed with 800 mL of water for 15 minutes and filtered, and the cake was washed with 800 mL of water and filtered to remove water-soluble salts. 800 mL of water was added to the obtained washed ash and stirred to form a slurry. This slurry was heated to 60° C., and a mixed gas of hydrogen chloride and carbon dioxide was blown in at a flow rate of 0.2 L/min for 3 hours. The test was terminated when the blowing port was blocked and gas was no longer blown. In addition, hydrogen chloride is mixed with carbon dioxide by hydrochloric acid bubbling (method in FIG. 2), and the concentration of hydrochloric acid to be bubbled is set to 35% by mass, 30% by mass, 27% by mass, and 0% by mass, and the hydrogen chloride concentration is 11 to 11%. They were adjusted to 15 vol%, 2.8 to 3.0 vol%, 1.1 vol% and 0 vol%.
The amount of scale generated around the blowing port was obtained by comparing the weight of the diffuser filter provided at the blowing port before and after desalting. Also, the produced scale was collected and the composition was identified by the X-ray diffraction method. FIG. 5 shows the amount of weight increase of the diffuser filter.

図5に示すように、二酸化炭素ガス中の塩化水素濃度が0vol%、1.1vol%のときは、吹込み10分程度で吹込口が閉塞した。一方、塩化水素濃度が2.8vol%~3.0vol%、11vol%~15vol%のときは、吹込み180分でも吹込口は閉塞しなかった。閉塞した場合の散気フィルターの重量増加は5~8mgであったのに対して、閉塞しなかったときの散気フィルターの重量増加は19~24mgであり、重量増加が多くても閉塞していない。これを吹き込み時間に対する重量増加の傾きでみると、閉塞しなかった場合の傾きが小さく、スケールの発生が抑制されていることが分かる。 As shown in FIG. 5, when the hydrogen chloride concentration in the carbon dioxide gas was 0 vol % and 1.1 vol %, the blowing port was clogged after about 10 minutes of blowing. On the other hand, when the hydrogen chloride concentration was 2.8 vol % to 3.0 vol % and 11 vol % to 15 vol %, the blowing port was not clogged even after 180 minutes of blowing. The weight increase of the diffusion filter when clogged was 5-8 mg, while the weight increase of the diffusion filter when it was not clogged was 19-24 mg. do not have. When looking at the slope of the weight increase with respect to the blowing time, the slope is small when there is no clogging, and it can be seen that the generation of scale is suppressed.

スケール発生量が多くなっても閉塞しなかった原因について確認するため、脱塩処理後の散気フィルター表面を観察したところ、閉塞した場合と閉塞しなかった場合の何れも、散気フィルター表面に白色のスケールが付着していたが、その付着状態は異なり、閉塞したものは、スケールがフィルター表面全体に薄く付着していたのに対して、閉塞しなかったものは、スケールがフィルター表面に偏在しており、スケールが無い箇所が存在していた。この結果より、吹出口が閉塞しなかったものは、混合ガスが吹き出す直近の気孔のみスケールの発生が抑制され、この気孔から離れた領域ではスケールが付着して成長したことによって、散気フィルター全体の重量は増加したが、閉塞は生じなかったことが推測された。 In order to confirm the reason why the diffusion filter did not become clogged even when the amount of scale generated increased, we observed the diffusion filter surface after desalination treatment. White scale adhered, but the state of adhesion was different. In the clogged case, the scale was thinly adhered to the entire filter surface. , and there were places where there was no scale. From this result, it was found that in the case where the outlet was not clogged, the generation of scale was suppressed only in the pore closest to where the mixed gas blew out, and in the area away from this pore, the scale adhered and grew, resulting in It was speculated that although the weight of the body increased, occlusion did not occur.

10-洗浄槽、11-脱塩槽、12-脱塩用ガス供給手段、13-脱水洗浄機、20-二酸化炭素貯槽、21-塩酸貯槽、22-バブリング槽、23-管路、24-気化器、25-管路、26-管路、30-分離槽、31-再スラリー槽。
10-Washing tank, 11-Desalting tank, 12-Desalting gas supply means, 13-Dehydration washing machine, 20-Carbon dioxide storage tank, 21-Hydrochloric acid storage tank, 22-Bubbling tank, 23-Pipe line, 24-Vaporization 25 - line, 26 - line, 30 - separation tank, 31 - reslurry tank.

Claims (4)

塩素含有灰が水洗浄される洗浄槽、水洗浄された塩素含有灰が脱塩処理される脱塩槽、脱塩用ガスを上記脱塩槽に供給する脱塩用ガス供給手段、および上記脱塩槽から排出された脱塩灰スラリーを洗浄する洗浄水が流れる脱水洗浄機を有し、上記脱塩用ガス供給手段は二酸化炭素貯槽および塩酸貯槽を有し、2vol%以上~50vol%以下の塩化水素と二酸化炭素ガスの混合ガスからなる脱塩用ガスが上記脱塩槽に供給され、該脱塩用ガスの吹込口周囲のスケールの析出を抑制しつつ上記塩素含有灰の脱塩処理が行われることを特徴とする塩素含有灰の脱塩システム。 a washing tank in which the chlorine-containing ash is washed with water, a desalting tank in which the water-washed chlorine-containing ash is desalted, a desalting gas supply means for supplying the desalting gas to the desalting tank, and the desalting It has a desalination washing machine through which washing water for washing the desalted ash slurry discharged from the salt tank flows, and the desalting gas supply means has a carbon dioxide storage tank and a hydrochloric acid storage tank, and has a concentration of 2 vol% to 50 vol%. A desalting gas composed of a mixed gas of hydrogen chloride and carbon dioxide gas is supplied to the desalting tank, and the chlorine-containing ash is desalted while suppressing scale deposition around the desalting gas inlet. Chlorine-bearing ash desalination system, characterized in that : 上記脱塩用ガス供給手段は二酸化炭素貯槽および塩酸貯槽とバブリング槽を有し、該塩酸貯槽から該バブリング槽に塩酸が供給され、この塩酸に上記二酸化炭素貯槽から二酸化炭素ガスが吹き込まれてバブリングされることによって、2vol%以上~50vol%以下の塩化水素と二酸化炭素ガスの混合ガスからなる脱塩用ガスが形成される請求項1に記載する塩素含有灰の脱塩システム。 The desalting gas supply means has a carbon dioxide storage tank, a hydrochloric acid storage tank, and a bubbling tank. Hydrochloric acid is supplied from the hydrochloric acid storage tank to the bubbling tank, and carbon dioxide gas is blown into the hydrochloric acid from the carbon dioxide storage tank to cause bubbling. 2. The chlorine-containing ash desalination system according to claim 1 , wherein a desalting gas comprising a mixed gas of 2 vol % or more and 50 vol % or less of hydrogen chloride and carbon dioxide gas is formed. 塩素含有灰が水洗浄される上記洗浄槽の次に分離槽を有し、さらに該分離槽で脱水した水洗浄灰を受け入れる再スラリー槽を有し、スラリー状態の塩素含有灰が該再スラリー槽から上記脱塩槽に供給される請求項1または請求項2の何れかに記載する塩素含有灰の脱塩システム。 It has a separation tank next to the washing tank in which the chlorine-containing ash is washed with water, and further has a re-slurry tank for receiving the water-washed ash dehydrated in the separation tank, wherein the chlorine-containing ash in a slurry state is transferred to the re-slurry tank. 3. The chlorine-containing ash desalination system according to claim 1 or 2, wherein the chlorine-containing ash is supplied from the desalination tank. 上記脱水洗浄機が洗浄水量を制御する手段を有し、脱塩灰の間隙水の2倍以上~6倍以下の洗浄水量でケーキ洗浄が行われる請求項1~請求項3の何れかに記載する塩素含有灰の脱塩システム。
4. The dehydration washing machine according to any one of claims 1 to 3, wherein the washing water amount is controlled by means for controlling the washing water amount, and the cake washing is performed with an amount of washing water that is two to six times as large as the interstitial water of the desalted ash. desalination system for chlorine-bearing ash.
JP2019084368A 2019-04-25 2019-04-25 Desalination system for chlorine-containing ash Active JP7234775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019084368A JP7234775B2 (en) 2019-04-25 2019-04-25 Desalination system for chlorine-containing ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019084368A JP7234775B2 (en) 2019-04-25 2019-04-25 Desalination system for chlorine-containing ash

Publications (2)

Publication Number Publication Date
JP2020179352A JP2020179352A (en) 2020-11-05
JP7234775B2 true JP7234775B2 (en) 2023-03-08

Family

ID=73022963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019084368A Active JP7234775B2 (en) 2019-04-25 2019-04-25 Desalination system for chlorine-containing ash

Country Status (1)

Country Link
JP (1) JP7234775B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000757A (en) 2003-06-10 2005-01-06 Taiheiyo Cement Corp Exhaust gas treatment method and exhaust gas treatment system
JP2008055395A (en) 2006-09-04 2008-03-13 Fujita Corp Method of treating burned ash
JP2009233610A (en) 2008-03-27 2009-10-15 Taiheiyo Cement Corp Treatment method for incineration residue
JP2012115767A (en) 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for washing sludge
JP2012254456A (en) 2012-08-06 2012-12-27 Sumitomo Osaka Cement Co Ltd Washing method for incineration ash
JP2013176739A (en) 2012-02-29 2013-09-09 Taiheiyo Cement Corp Method of treating refuse incineration ash and refuse incinerator
JP2013176740A (en) 2012-02-29 2013-09-09 Taiheiyo Cement Corp Treatment method and treatment apparatus for refuse incineration ash
JP2013184852A (en) 2012-03-08 2013-09-19 Taiheiyo Cement Corp Method for treating cement kiln exhaust gas
JP2015089864A (en) 2013-11-07 2015-05-11 太平洋セメント株式会社 Method for using incineration ash as cement raw material
JP2015182896A (en) 2014-03-20 2015-10-22 太平洋セメント株式会社 Method and apparatus for recycling incineration ash as cement raw material
JP2017029960A (en) 2015-08-06 2017-02-09 三菱マテリアル株式会社 Desalination processing system and desalination processing method of chlorine-containing ash
JP6252653B1 (en) 2016-10-31 2017-12-27 三菱マテリアル株式会社 Method and system for treating chlorine-containing ash
JP7119263B2 (en) 2019-03-21 2022-08-17 三菱マテリアル株式会社 Method for desalinating chlorine-containing ash

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924822B2 (en) * 1996-10-31 2007-06-06 太平洋セメント株式会社 Method and apparatus for cleaning ash dust
JP2009061365A (en) * 2007-09-04 2009-03-26 Sumitomo Osaka Cement Co Ltd Washing method for incineration ash

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000757A (en) 2003-06-10 2005-01-06 Taiheiyo Cement Corp Exhaust gas treatment method and exhaust gas treatment system
JP2008055395A (en) 2006-09-04 2008-03-13 Fujita Corp Method of treating burned ash
JP2009233610A (en) 2008-03-27 2009-10-15 Taiheiyo Cement Corp Treatment method for incineration residue
JP2012115767A (en) 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for washing sludge
JP2013176740A (en) 2012-02-29 2013-09-09 Taiheiyo Cement Corp Treatment method and treatment apparatus for refuse incineration ash
JP2013176739A (en) 2012-02-29 2013-09-09 Taiheiyo Cement Corp Method of treating refuse incineration ash and refuse incinerator
JP2013184852A (en) 2012-03-08 2013-09-19 Taiheiyo Cement Corp Method for treating cement kiln exhaust gas
JP2012254456A (en) 2012-08-06 2012-12-27 Sumitomo Osaka Cement Co Ltd Washing method for incineration ash
JP2015089864A (en) 2013-11-07 2015-05-11 太平洋セメント株式会社 Method for using incineration ash as cement raw material
JP2015182896A (en) 2014-03-20 2015-10-22 太平洋セメント株式会社 Method and apparatus for recycling incineration ash as cement raw material
JP2017029960A (en) 2015-08-06 2017-02-09 三菱マテリアル株式会社 Desalination processing system and desalination processing method of chlorine-containing ash
JP6252653B1 (en) 2016-10-31 2017-12-27 三菱マテリアル株式会社 Method and system for treating chlorine-containing ash
JP7119263B2 (en) 2019-03-21 2022-08-17 三菱マテリアル株式会社 Method for desalinating chlorine-containing ash

Also Published As

Publication number Publication date
JP2020179352A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
CA2439927C (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
JP3924822B2 (en) Method and apparatus for cleaning ash dust
JP2015223539A (en) Water treatment equipment and water treatment method
TW201728536A (en) Installation for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate
JP7234775B2 (en) Desalination system for chlorine-containing ash
JP3903746B2 (en) Circulating cooling water treatment method
JP7119263B2 (en) Method for desalinating chlorine-containing ash
JP4858449B2 (en) Treatment method for fluorine-containing wastewater
EP2701827A1 (en) Method for treatment of sludge from water and wastewater treatment plants with chemical treatment
JP2006255499A (en) Fluorine-containing wastewater treatment method and apparatus
JP2007002526A (en) Filter device and its washing method
CN108793479A (en) Central direct drinking water treatment system
JP2009119382A (en) Crystallization reactor and crystallization reaction method
JP2006263553A (en) Method for treating anionic organic material-containing waste water
KR20140044548A (en) A water treatment apparatus using nano membrane for softening water and method using the same
JP5142945B2 (en) Phosphoric acid-containing water treatment apparatus and phosphoric acid-containing water treatment method
JP6895058B2 (en) Wastewater reduction treatment method
JP6650817B2 (en) Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter
WO1994000390A1 (en) Coagulant
JP2002045887A (en) Scale preventing method for kraft pulp cleaning and bleaching process step
JP4481069B2 (en) Method for preparing reduced salt water mud
WO2021246161A1 (en) Water treatment method and water treatment apparatus
JP3100589B1 (en) Calcium oxalate scale inhibitor in paper pulp manufacturing process and its control method
JP6693804B2 (en) Wastewater recovery system and wastewater recovery method
KR200143602Y1 (en) Recycling system of waste water of a purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R150 Certificate of patent or registration of utility model

Ref document number: 7234775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150