JP7221630B2 - 電力供給システム - Google Patents

電力供給システム Download PDF

Info

Publication number
JP7221630B2
JP7221630B2 JP2018185403A JP2018185403A JP7221630B2 JP 7221630 B2 JP7221630 B2 JP 7221630B2 JP 2018185403 A JP2018185403 A JP 2018185403A JP 2018185403 A JP2018185403 A JP 2018185403A JP 7221630 B2 JP7221630 B2 JP 7221630B2
Authority
JP
Japan
Prior art keywords
power
fuel cell
storage battery
generation unit
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018185403A
Other languages
English (en)
Other versions
JP2020058102A (ja
Inventor
卓也 藤本
真宏 原田
竜太 西田
昌作 門脇
伸太郎 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2018185403A priority Critical patent/JP7221630B2/ja
Publication of JP2020058102A publication Critical patent/JP2020058102A/ja
Application granted granted Critical
Publication of JP7221630B2 publication Critical patent/JP7221630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、自然エネルギーを利用して発電可能な発電部、蓄電池及び燃料電池を具備する電力供給システムの技術に関する。
従来、太陽電池、燃料電池及び蓄電池の3電池を活用する電力供給システムの技術は公知となっている。例えば、特許文献1に記載の如くである。
特許文献1に記載の電力供給システムは、太陽電池(太陽光発電部)、燃料電池及び蓄電池(蓄電装置)を具備する。また特許文献1には、燃料電池で発電を行うと共に、余剰した電力(太陽電池で発電された電力等)を逆潮流させて売電することが可能な旨が記載されている。このように余剰電力を売電することで、経済的な利益を得ることができる。
しかしながら、近年、太陽電池の余剰電力の買取価格が低下しており、購入電力単価や燃料電池の発電単価よりも太陽電池の余剰電力の買取単価のほうが安価となる場合がある。このような場合、燃料電池を発電させて太陽電池の発電電力の売電量を増やすよりも、当該発電電力を自家消費することが望ましく、自家消費を促進することが可能な電力供給システムが必要とされている。
特開2014-233144号公報
本発明は以上の如き状況に鑑みてなされたものであり、その解決しようとする課題は、発電部で得られた電力の自家消費を促進することが可能な電力供給システムを提供することである。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
即ち、請求項1においては、自然エネルギーを利用して発電可能な発電部と、燃料を用いて発電可能な燃料電池と、電力を充放電可能な蓄電池と、前記燃料電池及び前記蓄電池の動作を制御可能な制御装置と、を具備し、前記制御装置は、電力需要に対して、前記燃料電池からの電力よりも、前記発電部及び前記蓄電池からの電力を優先して供給させることが可能であり、前記発電部及び前記蓄電池からの電力では前記電力需要を賄うことができない場合に、前記燃料電池を発電させることが可能であり、前記燃料電池を発電させるため燃料の単価から当該燃料電池の発電に伴って得られる熱の価値を差し引いた値が、系統電源から購入する電力単価以下である場合に、前記燃料電池を負荷追従運転により発電させることが可能であるものである。
請求項2においては、前記燃料電池は、系統電源から電力需要へと電力を供給可能な配電線において、前記発電部及び前記蓄電池よりも系統電源側に配置されているものである。
請求項においては、前記制御装置は、前記燃料電池を発電させるため燃料の単価が、系統電源から購入する電力単価以下である場合に、前記燃料電池を定格能力で発電させることが可能なものである。
請求項においては、前記制御装置は、所定の制約条件に応じて前記燃料電池の運転を停止することが可能なものである。
請求項においては、前記制御装置は、少なくとも電力需要の予測値及び前記発電部からの発電電力の予測値に基づいて、前記蓄電池及び前記燃料電池の運転を予め計画するものである。
本発明の効果として、以下に示すような効果を奏する。
請求項1においては、発電部で得られた電力の自家消費を促進することができる。また、発電部で得られた電力の自家消費を促進しながらも、必要に応じて燃料電池からの電力も電力需要へと供給することができる。また、燃料電池による発電と、系統電源からの電力の購入のうち、コストが低い方法で電力需要を賄うことができる。
請求項2においては、燃料電池よりも優先的に発電部及び蓄電池からの電力を電力需要へと供給し易くすることができる。
請求項においては、燃料電池を比較的安価に発電させることができる場合に、当該燃料電池に高効率な運転を行わせることができる。
請求項においては、燃料電池の運転を適切に制御することができる。
請求項においては、適切な電力の供給が可能となる。
本発明の一実施形態に係る電力供給システムの構成を示した模式図。 電力供給システムの制御態様を示したフローチャート。 電力供給システムの制御態様の続きを示したフローチャート。 太陽光発電部の発電電力を自家消費させた状態を示した図。 太陽光発電部の余剰電力を充電及び売電させた状態を示した図。 電力需要に対して蓄電池を放電させた状態を示した図。 燃料電池を負荷追従運転で発電させた状態を示した図。 燃料電池を定格能力で発電させた状態を示した図。
以下では、図1を用いて、本発明の一実施形態に係る電力供給システム1の構成について説明する。
本実施形態に係る電力供給システム1は、住宅に設けられ、当該住宅の電力負荷Hで発生する電力需要に対して適宜電力を供給するものである。電力供給システム1は、主として太陽光発電部(PV)11、蓄電池12、パワコン13、燃料電池14及びEMS15を具備する。
太陽光発電部11は、太陽光を利用して発電する装置である。太陽光発電部11は、太陽電池パネル等により構成される。太陽光発電部11は、例えば、住宅の屋根の上等の日当たりの良い場所に設置される。
蓄電池12は、電力を充放電可能に構成されるものである。蓄電池12は、例えば、リチウムイオン電池により構成される。
パワコン13は、電力を適宜変換するもの(ハイブリッドパワーコンディショナ)である。パワコン13は、太陽光発電部11及び蓄電池12に接続される。またパワコン13は、系統電源Kと住宅の電力負荷Hとをつなぐ配電線Lの中途部(第一接続点P1)に接続される。
パワコン13は、配電線Lにおいて第一接続点P1のすぐ上流側(系統電源K側)に隣接するように設けられた第一電力センサ13aと接続される。第一電力センサ13aは、配電線Lを流通する電力を検出するものである。第一電力センサ13aは、設けられた箇所を流通する電力(例えば、電力負荷H側へと流れる電力や、系統電源K側へと流れる電力)の電圧(供給電圧)及び電流(供給電流)を検出する。第一電力センサ13aの検出結果は、パワコン13に出力される。
燃料電池14は、水素等の燃料を用いて発電する装置である。燃料電池14は、図示せぬ貯湯ユニットを具備し、発電時に発生する熱を用いて当該貯湯ユニット内で湯を沸かすことができる。当該熱(湯)は、住宅の給湯負荷に対して供給し、当該住宅で利用することができる。燃料電池14は、配電線Lの中途部に接続される。より具体的には、燃料電池14は、配電線Lにおいて、第一接続点P1及び第一電力センサ13aよりも上流側(系統電源K側)に設定された第二接続点P2に接続される。
燃料電池14は、配電線Lにおいて第二接続点P2のすぐ上流側(系統電源K側)に隣接するように設けられた第二電力センサ14aと接続される。第二電力センサ14aは、配電線Lを流通する電力を検出するものである。第二電力センサ14aは、設けられた箇所を流通する電力(例えば、電力負荷H側へと流れる電力や、系統電源K側へと流れる電力)の電圧(供給電圧)及び電流(供給電流)を検出する。第二電力センサ14aの検出結果は、燃料電池14に出力される。
EMS15は、電力供給システム1の動作を管理するエネルギーマネジメントシステム(Energy Management System)である。EMS15は、CPU等の演算処理部、RAMやROM等の記憶部や、タッチパネル等の入出力部等を具備する。EMS15の記憶部には、電力供給システム1の動作を制御する際に用いられる種々の情報やプログラム等が予め記憶される。EMS15の演算処理部は、前記プログラムを実行して前記種々の情報を用いた所定の演算処理等を行うことで、電力供給システム1を動作させることができる。
EMS15は、パワコン13及び燃料電池14と電気的に接続される。EMS15は、所定の信号をパワコン13に送信し、各部の動作を制御することができる。例えばEMS15は、蓄電池12に充電や放電の指示を出すことができる。特にEMS15は、当該蓄電池12に、第一電力センサ13aの検出値に基づく負荷追従運転を行わせることができる。
また、EMS15は、所定の信号を燃料電池14に送信し、当該燃料電池14の動作を制御することができる。例えばEMS15は、燃料電池14を発電状態(燃料を用いて発電する状態)、待機状態(自己の運転に必要な最低限の電力のみ発電した待機する状態)、停止状態(運転を停止した状態)等に切り替えることができる。特にEMS15は、当該燃料電池14を発電状態として、第二電力センサ14aの検出値に基づく負荷追従運転を行わせたり、定格能力による発電を行わせることができる。
また、EMS15は、パワコン13及び燃料電池14から所定の信号が入力可能に構成され、パワコン13及び燃料電池14が有する各種の情報を取得することができる。またEMS15は、図示せぬ各種センサを用いて、太陽光発電部11の発電電力、蓄電池12の充電量、電力負荷Hで生じる電力需要等を検出することができる。
本実施形態に係る電力供給システム1は、近年の発電電力の買取価格の低下に鑑みて、太陽光発電部11で発電された電力を極力自家消費させる(住宅の電力負荷Hで消費させる)ことを目的として、電力の流通を制御する。以下では、当該電力供給システム1の制御態様について、図2及び図3を用いて具体的に説明する。なお、図2及び図3には図示していないが、太陽光発電部11で発電された電力は、電力需要が生じていれば、パワコン13を介して当該電力負荷Hへと供給される。
図2のステップS101において、EMS15は、太陽光発電部11で発電される電力(発電電力)が電力負荷Hの電力需要を超過しているか否かを判定する。発電電力が電力需要を超過していれば、当該発電電力だけで電力需要を賄うことができる。
EMS15は、発電電力が電力需要を超過していると判定した場合、ステップS102に移行する。
またEMS15は、発電電力が電力需要以下であると判定した場合、ステップS104に移行する。
ステップS102において、EMS15は、蓄電池12が満充電か否かを判定する。
EMS15は、蓄電池12が満充電であると判定した場合、太陽光発電部11の発電電力のうち、電力需要に対して余剰する電力(余剰電力)は売電される。
またEMS15は、蓄電池12が満充電ではないと判定した場合、ステップS103に移行する。
ステップS103において、EMS15は、余剰電力を蓄電池12に充電させる。
このように電力供給システム1においては、基本的に発電電力だけで電力需要を賄おうとする。またパワコン13は、発電電力だけで電力需要を賄うことができると判断した場合(ステップS101でYES)、蓄電池12が充電可能であれば余剰電力を当該蓄電池12に充電する(ステップS102でNO、ステップS103)。
ステップS101から移行したステップS104において、EMS15は、蓄電池12の残量(蓄電池残量)が所定の閾値α(例えば、満充電の30%)を超過しているか否かを判定する。当該閾値αは、停電などの非常時の備えとして、蓄電池12に蓄えておくべき電力量に基づいて定められる。
EMS15は、蓄電池残量が閾値αを超過していると判定した場合、ステップS105に移行する。
またEMS15は、蓄電池残量が閾値α以下であると判定した場合、ステップS110(図3参照)に移行する。
ステップS105において、EMS15は、蓄電池12から電力を放電させる。この際、蓄電池12は、第一電力センサ13aにより検出される電力需要(より詳細には、太陽光発電部11の発電電力では賄いきれない分の電力需要)に応じた負荷追従運転により放電を行う。EMS15は、当該ステップS105の処理を行った後、ステップS106に移行する。
このようにEMS15は、発電電力だけで電力需要を賄うことができない場合(ステップS101でNO)、蓄電池12の残量がある程度残っていれば(ステップS104でYES)、当該蓄電池12を放電させる(ステップS105)。このように電力供給システム1においては、発電電力だけで電力需要を賄うことができない場合には、蓄電池12を放電させ、発電電力と放電電力だけで電力需要を賄おうとする。
ステップS106において、EMS15は、太陽光発電部11の発電電力及び蓄電池12から放電される電力(放電電力)で電力需要を賄うことができるか否かを判定する。具体的には、EMS15は、太陽光発電部11の発電電力と蓄電池12から放電可能な電力の和が、電力負荷Hの電力需要を超過しているか否かを判定する。発電電力等の和が電力需要を超過していれば、当該発電電力等で電力需要を賄うことができる。
EMS15は、発電電力等の和が電力需要以下であると判定した場合、ステップS107に移行する。
ステップS107において、EMS15は、所定の制約条件に基づいて、燃料電池14が発電可能か否かを判定する。ここで、「所定の制約条件」とは、燃料電池14の運転効率の向上等を目的として設定され、当該燃料電池14の運転を停止する(停止状態とする)ためのものである。当該制約条件として、例えば、(1)燃料電池14の発停(発電及び停止)の頻発を避けるために「1日に1回の発停とする」と定めたり、(2)定額料金制の範囲に収めるために、検診日近辺において、燃料電池14の発電量を制限することを目的として定めたりすることが可能である。
EMS15は、燃料電池14が発電可能であると判定した場合、ステップS108に移行する。
また、EMS15が燃料電池14は発電不可であると判定した場合、燃料電池14は停止状態とされ、当該燃料電池14の発電は行われない。
ステップS108において、EMS15は、系統電源Kから電力を購入する場合と、燃料電池14を発電させる場合の、メリットを比較する。具体的には、EMS15は、燃料電池14を発電させるための燃料(ガス)の実質的な単価(発電単価)から、当該燃料電池14の発電に伴って得られる熱の価値(熱価値)を減算し、燃料電池14を発電させる際の実質的なコストを算出する。そしてEMS15は、当該コストと系統電源Kから購入する電力の単価(購入単価)を比較して、どちらがメリットがあるか(コストが低いか)を判定する。発電単価と熱価値の差が、購入単価以下であれば、燃料電池14を発電させたほうがコストが低くなる。
なお、発電単価は、「発電単価=ガス単価÷熱量×発電効率」の式で算出することができる。具体的な数値の一例を挙げると、「発電単価=150円/m÷45MJ/m×3.6MJ/kWh÷40%=30円/kWh」のように算出することができる。また熱価値は、「熱価値=排熱回収量÷熱効率×ガス単価」の式で算出することができる。具体的な数値の一例を挙げると、「熱価値=1kWh÷90%×3.6MJ/kWh÷45MJ/m×150円/m=13円/kWh」のように算出することができる。
EMS15は、発電単価と熱価値の差が、購入単価以下であると判定した場合、ステップS109に移行する。
ステップS109において、EMS15は、燃料電池14に発電を行わせる。この際、燃料電池14は、第二電力センサ14aにより検出される電力需要(より詳細には、太陽光発電部11の発電電力及び蓄電池12からの放電電力では賄いきれない分の電力需要)に応じた負荷追従運転により発電を行う。
このようにEMS15は、発電電力及び放電電力だけで電力需要を賄うことができない場合(ステップS106でNO)、燃料電池14による発電を行うことを検討する。具体的には、EMS15は、燃料電池14の発電が可能であり(ステップS107でYES)、かつ燃料電池14で発電を行うメリットがあると判断した場合(ステップS108でNO)に、当該燃料電池14を負荷追従運転により発電させる(ステップS109)。このように電力供給システム1においては、発電電力及び放電電力だけで電力需要を賄うことができない場合に、はじめて燃料電池14による発電を検討する。
ステップS104から移行したステップS110(図3参照)において、EMS15は、所定の条件に基づいて、燃料電池14が発電可能か否かを判定する。なお、当該ステップS110の処理は、ステップS107の処理と同様であるため、詳細な説明は省略する。
EMS15は、燃料電池14が発電可能であると判定した場合、ステップS111に移行する。
またEMS15は、燃料電池14が発電不可であると判定した場合、燃料電池は停止とし、不足分を系統電力(系統電源K)から購入する。
ステップS111において、EMS15は、発電単価が購入単価を超過しているか否かを判定する。
EMS15は、発電単価が購入単価以下であると判定した場合、ステップS112に移行する。
またEMS15は、発電単価が購入単価を超過していると判定した場合、ステップS114に移行する。
ステップS112において、EMS15は、燃料電池14に発電を行わせる。この際、燃料電池14は、定格能力で発電を行う。これによって燃料電池14は、高効率な発電を行うことができる。またEMS15は、当該燃料電池14の発電によって発生する余剰電力を、蓄電池12に充電させる。これによって、安価(低コスト)な電力を蓄電池12に充電することができる。
このようにEMS15は、蓄電池12の残量が少ない場合(ステップS104でNO)、燃料電池14による発電を行うことを検討する。具体的には、EMS15は、燃料電池14の発電が可能であり(ステップS110でYES)、発電単価が購入単価以下である場合(ステップS111でNO)に、燃料電池14を定格能力で発電させる(ステップS112)。このように、発電単価のほうが購入単価よりも安価な場合には、燃料電池14を高効率な状態で発電させることで、低コストな電力を電力需要へと供給すると共に、当該安価な電力を蓄電池12に蓄えて活用することができる。
EMS15は、当該ステップS112の処理を行った後、ステップS113に移行する。
ステップS113において、EMS15は、蓄電池12の残量(蓄電池残量)が所定の閾値β(例えば、満充電の50%)を超過しているか否かを判定する。
EMS15は、蓄電池残量が閾値β以下であると判定した場合、ステップS110に移行する。
またEMS15は、蓄電池残量が閾値βを超過していると判定した場合、ステップS115に移行する。
ステップS111から移行したステップS114において、EMS15は、系統電源Kから電力を購入する場合と、燃料電池14を発電させる場合の、メリットを比較する。なお、当該ステップS111の処理は、ステップS108の処理を同様であるため、詳細な説明は省略する。
EMS15は、発電単価と熱価値の差が、購入単価以下であると判定した場合、ステップS115に移行する。
またEMS15は、発電単価と熱価値の差が、購入単価を超過していると判定した場合、燃料電池は発電させず、不足分を系統電力(系統電源K)から購入する。
ステップS113又はステップS114から移行したステップS115において、EMS15は、燃料電池14に発電を行わせる。この際、燃料電池14は、第二電力センサ14aにより検出される電力需要(より詳細には、太陽光発電部11の発電電力では賄いきれない分の電力需要)に応じた負荷追従運転により放電を行う。EMS15は、当該ステップS115の処理を行った後、処理を終了する。
このようにEMS15は、発電単価が購入単価を超過している場合には(ステップS111でYES)、燃料電池14で発電を行うメリットがあると判断した場合に限り(ステップS114でNO)、当該燃料電池14を負荷追従運転により発電させる(ステップS115)。またパワコン13は、ステップS113で蓄電池残量が閾値βを超過していると判定した場合、燃料電池14を定格能力での発電ではなく負荷追従運転させることで(ステップS115)、それ以上蓄電池12に充電させないようにする。
EMS15は、上述の制御(図2及び図3参照)を繰り返し行うことで、太陽光発電部11で発電された電力を極力自家消費させることができる。なお、上述の制御は、あらかじめ予測される太陽光発電部11の発電量や電力需要等に基づいて事前に行う(すなわち、上述の制御により蓄電池12や燃料電池14の運転の計画を立てる)ことが可能である。
例えばEMS15は、ある日(当日)の燃料電池14等の運転を計画する場合、当日予測される電力需要や太陽光発電部11の発電量等に基づいて、当該燃料電池14等の運転を事前に(例えば前日までに)計画することができる。電力需要や太陽光発電部11の発電量等の予測は、任意の方法(過去データの学習等)により行うことができる。
なお、上述の制御をリアルタイムで実行することも可能であるが、燃料電池14の運転の切り替え(停止状態から発電状態への切り替え等)には時間がかかるため、所望の制御を行うことは困難である。従って、上述のように予め計画を立て、当該計画に基づいた燃料電池14等の運転を実行することが望ましい。
以下では、図2から図8までを用いて、上述の制御(図2及び図3参照)を実行した場合の一例について説明する。図4から図8までは、ある一日において上記制御(図2及び図3参照)を行った結果(計画)の一例を、段階的に示している。
ある一日において、図4に示すように電力需要と太陽光発電部11の発電電力(PV発電量)が生じる場合、太陽光発電部11の発電電力が得られる時間帯は、当該発電電力を電力負荷Hで使用(自家消費)する。
図5に示すように、太陽光発電部11の発電電力が余剰する(余剰電力が発生する)時間帯(図5の例では8時~12時)には、当該余剰電力を蓄電池12に充電する(図2のステップS103)。当該蓄電池12が満充電になった場合(図5の例では12時~14時)には、余剰電力は売電される(図2のステップS102でYES)。
図6に示すように、太陽光発電部11の発電電力で電力需要を賄えず、かつ蓄電池12が放電可能な時間帯(図6の例では4時~6時、及び15時~20時)には、蓄電池12を放電させ、電力需要を賄う(図2のステップS105)。
図7に示すように、例えば蓄電池12が放電不能な場合や、蓄電池12を放電させてもなお電力需要が賄えない場合(図7の例では0時~3時、及び20時~23時)には、燃料電池14で発電を行う。このとき、発電単価と熱価値の差が購入単価以下である場合には(図2又は図3のステップS108又はステップS114でNO)、燃料電池14は負荷追従運転により発電を行う(ステップS109又はステップS115)。
また図8に示すように、発電単価が購入単価以下である場合(図8の例では、21時~23時)には(図3のステップS111でNO)、燃料電池14に定格能力で発電を行わせる(ステップS112)。このとき、燃料電池14の発電によって発生する余剰電力は、蓄電池12に充電させる。但し、燃料電池14による発電電力だけで蓄電池12が満充電にならないように、例えば満充電の50%までなど、充電の制限を設けている(ステップS113)。
なお、上述の制御を行っても電力需要を賄うことができない場合(図8の例では、6時)には、系統電源Kから電力を購入(買電)し、当該電力によって電力需要が賄われる。
このように本実施形態の制御では、電力需要に対して燃料電池14からの電力ではなく、太陽光発電部11からの電力を優先的に供給させることで、当該太陽光発電部11の発電電力の自家消費を促すことができる。
以上の如く、本実施形態に係る電力供給システム1は、
自然エネルギーを利用して発電可能な太陽光発電部11(発電部)と、
燃料を用いて発電可能な燃料電池14と、
電力を充放電可能な蓄電池12と、
前記燃料電池14及び前記蓄電池12の動作を制御可能なEMS15(制御装置)と、
を具備し、
前記EMS15は、
電力需要に対して、前記燃料電池14からの電力よりも、前記太陽光発電部11及び前記蓄電池12からの電力を優先して供給させることが可能なものである。
このように構成することにより、太陽光発電部11で得られた電力の自家消費を促進することができる。すなわち、燃料電池14よりも優先的に太陽光発電部11や蓄電池12からの電力を電力需要へと供給することで、当該太陽光発電部11で得られた電力の逆潮流を抑制し、ひいては自家消費を促進させることができる。
また、前記燃料電池14は、
系統電源Kから電力需要へと電力を供給可能な配電線Lにおいて、前記太陽光発電部11及び前記蓄電池12よりも系統電源K側に配置されているものである。
このように構成することにより、燃料電池14よりも優先的に太陽光発電部11及び蓄電池12からの電力を電力需要へと供給し易くすることができる。すなわち、蓄電池12や燃料電池14が負荷追従運転を行う場合、下流側(電力需要側)に配置された蓄電池12や太陽光発電部11からの電力が優先的に電力需要へと供給される。このため、複雑な制御等を行わずとも、太陽光発電部11及び蓄電池12からの電力を優先的に電力需要へと供給することができる。
また、前記EMS15は、
前記太陽光発電部11及び前記蓄電池12からの電力では前記電力需要を賄うことができない場合に、前記燃料電池14を発電させることが可能なものである。
このように構成することにより、太陽光発電部11で得られた電力の自家消費を促進しながらも、必要に応じて燃料電池14からの電力も電力需要へと供給することができる。これによって、電力需要を適切に賄うことができる。
また、前記EMS15は、
前記燃料電池14を発電させるため燃料の単価から当該燃料電池14の発電に伴って得られる熱の価値を差し引いた値が、系統電源Kから購入する電力単価以下である場合に(ステップS108又はステップS114でNO)、前記燃料電池14を負荷追従運転により発電させる(ステップS109又はステップS115)ことが可能なものである。
このように構成することにより、燃料電池14による発電と、系統電源Kからの電力の購入のうち、コストが低い方法で電力需要を賄うことができる。
また、前記EMS15は、
前記燃料電池14を発電させるため燃料の単価が、系統電源Kから購入する電力単価以下である場合に(ステップS111でNO)、前記燃料電池14を定格能力で発電させる(ステップS113)ことが可能なものである。
このように構成することにより、燃料電池14を比較的安価に発電させることができる場合に、当該燃料電池14に高効率な運転を行わせることができる。また当該発電によって得られた電力が余剰した場合には、蓄電池12に充電しておくことで、安価に得られた電力を活用することができる。
また、前記EMS15は、
所定の制約条件に応じて前記燃料電池の運転を停止する(ステップS107又はステップS110でNO)ことが可能なものである。
このように構成することにより、燃料電池14の運転を適切に制御することができる。すなわち、種々の観点から制約条件を設定することで、当該観点に適した態様で燃料電池14の発電を行うことができる。
また、前記EMS15は、
少なくとも電力需要の予測値及び前記太陽光発電部11からの発電電力の予測値に基づいて、前記蓄電池12及び前記燃料電池14の運転を予め計画するものである。
このように構成することにより、適切な電力の供給が可能となる。すなわち、制御に時間を要する機器(状態の切り替えに時間がかかる燃料電池14等)が含まれていても、事前に立てられた計画に従って運転を制御することで、望みどおりの制御(電力の供給)を行い易くすることができる。
なお、本実施形態に係る太陽光発電部11は、本発明に係る発電部の実施の一形態である。
また、本実施形態に係るEMS15は、本発明に係る制御装置の実施の一形態である。
以上、本発明の一実施形態を説明したが、本発明は上記構成に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能である。
例えば、電力供給システム1は、太陽光を利用して発電可能な太陽光発電部11を具備するものとしたが、本発明はこれに限るものではない。すなわち、その他種々の自然エネルギーを利用して発電可能な発電部(例えば、風力発電部等)を具備するものであってもよい。
また、本実施形態では、EMS15が電力供給システム1の各部の動作を適宜制御するものとしたが、本発明はこれに限るものではなく、制御の主体は任意に変更することが可能である。例えば、燃料電池14が有する制御部等によって制御を行うことも可能である。
また、図2及び図3に示したフローチャートは一例であり、本発明の範囲内で、各ステップの処理を適宜省略又は追加することも可能である。例えば、蓄電池残量と閾値(閾値αや閾値β)を比較する処理(ステップS104やステップS112)を省略したり、燃料電池14の発電の可否を判断する処理(ステップS107やステップS110)を省略することも可能である。また、上記フローチャート(図3)では、所定の場合(ステップS113でNO,ステップS114でYES、ステップS115の終了後)にステップS110の処理を再度行うものとしたが、例えば当該場合に一旦制御を終了し、ステップS101(図2)の処理から再度繰り返すことも可能である。
1 電力供給システム
11 太陽光発電部
12 蓄電池
13 パワコン
14 燃料電池
15 EMS

Claims (5)

  1. 自然エネルギーを利用して発電可能な発電部と、
    燃料を用いて発電可能な燃料電池と、
    電力を充放電可能な蓄電池と、
    前記燃料電池及び前記蓄電池の動作を制御可能な制御装置と、
    を具備し、
    前記制御装置は、
    電力需要に対して、前記燃料電池からの電力よりも、前記発電部及び前記蓄電池からの電力を優先して供給させることが可能であり、
    前記発電部及び前記蓄電池からの電力では前記電力需要を賄うことができない場合に、前記燃料電池を発電させることが可能であり、
    前記燃料電池を発電させるため燃料の単価から当該燃料電池の発電に伴って得られる熱の価値を差し引いた値が、系統電源から購入する電力単価以下である場合に、前記燃料電池を負荷追従運転により発電させることが可能である、
    電力供給システム。
  2. 前記燃料電池は、
    系統電源から電力需要へと電力を供給可能な配電線において、前記発電部及び前記蓄電池よりも系統電源側に配置されている、
    請求項1に記載の電力供給システム。
  3. 前記制御装置は、
    前記燃料電池を発電させるため燃料の単価が、系統電源から購入する電力単価以下である場合に、前記燃料電池を定格能力で発電させることが可能である、
    請求項1又は請求項2に記載の電力供給システム。
  4. 前記制御装置は、
    所定の制約条件に応じて前記燃料電池の運転を停止することが可能である、
    請求項1から請求項3までのいずれか一項に記載の電力供給システム。
  5. 前記制御装置は、
    少なくとも電力需要の予測値及び前記発電部からの発電電力の予測値に基づいて、前記蓄電池及び前記燃料電池の運転を予め計画する、
    請求項1から請求項4までのいずれか一項に記載の電力供給システム。
JP2018185403A 2018-09-28 2018-09-28 電力供給システム Active JP7221630B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018185403A JP7221630B2 (ja) 2018-09-28 2018-09-28 電力供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018185403A JP7221630B2 (ja) 2018-09-28 2018-09-28 電力供給システム

Publications (2)

Publication Number Publication Date
JP2020058102A JP2020058102A (ja) 2020-04-09
JP7221630B2 true JP7221630B2 (ja) 2023-02-14

Family

ID=70107903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018185403A Active JP7221630B2 (ja) 2018-09-28 2018-09-28 電力供給システム

Country Status (1)

Country Link
JP (1) JP7221630B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333751A (ja) 2002-05-13 2003-11-21 Hitachi Ltd 自然エネルギ発電システムの運用方法及びそれを用いた自然エネルギ発電システム
JP2016052156A (ja) 2014-08-29 2016-04-11 大和ハウス工業株式会社 電力供給システム
JP2016086594A (ja) 2014-10-28 2016-05-19 京セラ株式会社 電力供給システム、電力供給機器及び電力供給システムの制御方法
WO2018139603A1 (ja) 2017-01-27 2018-08-02 京セラ株式会社 電源制御方法、電源制御装置及び電源制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333751A (ja) 2002-05-13 2003-11-21 Hitachi Ltd 自然エネルギ発電システムの運用方法及びそれを用いた自然エネルギ発電システム
JP2016052156A (ja) 2014-08-29 2016-04-11 大和ハウス工業株式会社 電力供給システム
JP2016086594A (ja) 2014-10-28 2016-05-19 京セラ株式会社 電力供給システム、電力供給機器及び電力供給システムの制御方法
WO2018139603A1 (ja) 2017-01-27 2018-08-02 京セラ株式会社 電源制御方法、電源制御装置及び電源制御システム

Also Published As

Publication number Publication date
JP2020058102A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
JP5738212B2 (ja) 電力貯蔵型の発電システム
JP6109209B2 (ja) 電力供給システム
JP2014165952A (ja) 電力供給システム
JP6462369B2 (ja) 電力供給システム
JP6796402B2 (ja) 電力供給システム
JP7203551B2 (ja) 電力供給システム
JP7386028B2 (ja) 電力供給システム
JP7406437B2 (ja) 熱融通システム
JP7349840B2 (ja) 電力供給システム
JP7312661B2 (ja) 電力融通システム
JP6167438B2 (ja) 電力供給システム
JP7386029B2 (ja) 電力供給システム
JP7221630B2 (ja) 電力供給システム
JP2017175785A (ja) 蓄電システム、充放電制御装置、その制御方法、およびプログラム
JP7426278B2 (ja) 電力供給システム
JP6109208B2 (ja) 電力供給システム
JP7406436B2 (ja) 電力融通システム
JP7406438B2 (ja) 熱融通システム
JP2016073073A (ja) 電力供給システム
JP2021057962A (ja) 電力融通システム
JP7236862B2 (ja) 電力供給システム
JP6462284B2 (ja) エネルギー管理システム及びエネルギー管理方法
JP7346211B2 (ja) 電力供給システム
JP7452967B2 (ja) 電力供給システム
JP7123711B2 (ja) システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230202

R150 Certificate of patent or registration of utility model

Ref document number: 7221630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150