JP7213456B2 - 光検出装置、光検出システム、およびフィルタアレイ - Google Patents

光検出装置、光検出システム、およびフィルタアレイ Download PDF

Info

Publication number
JP7213456B2
JP7213456B2 JP2021212082A JP2021212082A JP7213456B2 JP 7213456 B2 JP7213456 B2 JP 7213456B2 JP 2021212082 A JP2021212082 A JP 2021212082A JP 2021212082 A JP2021212082 A JP 2021212082A JP 7213456 B2 JP7213456 B2 JP 7213456B2
Authority
JP
Japan
Prior art keywords
refractive index
filter
layer
index layer
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021212082A
Other languages
English (en)
Other versions
JP2022058424A (ja
Inventor
篤 石川
安寿 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2022058424A publication Critical patent/JP2022058424A/ja
Priority to JP2022211438A priority Critical patent/JP7457952B2/ja
Application granted granted Critical
Publication of JP7213456B2 publication Critical patent/JP7213456B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1282Spectrum tailoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/2806Array and filter array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/28132D-array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Filters (AREA)
  • Color Television Image Signal Generators (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本開示は、光検出装置、光検出システム、およびフィルタアレイに関する。
各々が狭帯域である多数のバンド、例えば数十バンドのスペクトル情報を活用することにより、従来のRGB画像では不可能であった対象物の詳細な物性を把握することができる。このような多波長の情報を取得するカメラは、「ハイパースペクトルカメラ」と呼ばれる。例えば、特許文献1から5に開示されているように、ハイパースペクトルカメラは、食品検査、生体検査、医薬品開発、および鉱物の成分分析などの様々な分野で利用されている。
米国特許出願公開第2016/138975号明細書 米国特許第7907340号明細書 米国特許第9929206号明細書 特表2013-512445号公報 特表2015-501432号公報
本開示は、ハイパースペクトルカメラの波長分解能を向上させることができる新規な光検出装置を提供する。
本開示の一態様に係る光検出装置は、2次元に配列された複数のフィルタを含むフィルタアレイであって、前記複数のフィルタは、第1フィルタおよび第2フィルタを含み、前記第1フィルタおよび前記第2フィルタの各々が、第1反射層、第2反射層、および前記第1反射層と前記第2反射層との間の中間層を含み、かつ互いに次数の異なる複数の共振モードを有する共振構造を有し、前記第1フィルタの前記中間層の屈折率および厚さからなる群から選択される少なくとも1つは、前記第2フィルタの前記中間層の屈折率および厚さからなる群から選択される前記少なくとも1つと異なる、フィルタアレイと、前記第1フィルタを透過した光を受ける位置に配置された第1光検出素子および前記第2フィルタを透過した光を受ける位置に配置された第2光検出素子を含むイメージセンサと、を備える。前記第1反射層は、各々が第1の屈折率を有する複数の第1誘電体層と、各々が前記第1の屈折率よりも高い第2の屈折率を有する複数の第2誘電体層と、を含む。前記第1反射層において、前記複数の第1誘電体層と前記複数の第2誘電体層とが交互に位置している。前記複数の第1誘電体層の少なくとも2つは、互いに異なる厚さを有し、前記複数の第2誘電体層の少なくとも2つは、互いに異なる厚さを有する。前記第2反射層は、各々が第3の屈折率を有する複数の第3誘電体層と、各々が前記第3の屈折率よりも高い第4の屈折率を有する複数の第4誘電体層と、を含む。前記第2反射層において、前記複数の第3誘電体層と前記複数の第4誘電体層とが交互に位置している。前記複数の第3誘電体層の少なくとも2つは、互いに異なる厚さを有し、前記複数の第4誘電体層の少なくとも2つは、互いに異なる厚さを有する。
本開示によれば、ハイパースペクトルカメラの波長分解能を向上させることができる。
図1は、例示的な実施形態における光検出システムを模式的に示す図である。 図2Aは、フィルタアレイの例を模式的に示す図である。 図2Bは、対象波長域に含まれる複数の波長域のそれぞれの光の透過率の空間分布の一例を示す図である。 図2Cは、図2Aに示すフィルタアレイの複数の領域に含まれる2つの領域の一方の透過スペクトルの例を示す図である。 図2Dは、図2Aに示すフィルタアレイの複数の領域に含まれる2つの領域の他方の透過スペクトルの例を示す図である。 図3Aは、対象波長域と、それに含まれる複数の波長域との関係を説明するための図である。 図3Bは、対象波長域と、それに含まれる複数の波長域との関係を説明するための図である。 図4Aは、フィルタアレイのある領域における透過スペクトルの特性を説明するための図である。 図4Bは、図4Aに示す透過スペクトルを、波長域ごとに平均化した結果を示す図である。 図5は、例示的な実施形態における光検出装置を模式的に示す断面図である。 図6は、各画素での透過スペクトルの例を模式的に示す図である。 図7Aは、一般的な誘電体多層膜を含むファブリ・ペローフィルタの例を模式的に示す図である。 図7Bは、図7Aに示すファブリ・ペローフィルタの透過スペクトルを示す図である。 図8Aは、基板上の、複数のペア層の厚さが線形に変調された誘電体多層膜を含むファブリ・ペローフィルタの例を模式的に示す図である。 図8Bは、図8Aに示すファブリ・ペローフィルタの透過スペクトルを示す図である。 図9Aは、複数のペア層の厚さが非線形に変調された誘電体多層膜を含むファブリ・ペローフィルタの例を模式的に示す図である。 図9Bは、図9Aに示すファブリ・ペローフィルタの透過スペクトルを示す図である。 図10Aは、複数のペア層の厚さが非線形に変調された誘電体多層膜を含むファブリ・ペローフィルタの第1の例を模式的に示す図である。 図10Bは、複数のペア層の厚さが非線形に変調された誘電体多層膜を含むファブリ・ペローフィルタの第2の例を模式的に示す図である。 図10Cは、複数のペア層の厚さが非線形に変調された誘電体多層膜を含むファブリ・ペローフィルタの第3の例を模式的に示す図である。 図10Dは、複数のペア層の厚さが非線形に変調された誘電体多層膜を含むファブリ・ペローフィルタの第4の例を模式的に示す図である。 図11Aは、図10Aに示すファブリ・ペローフィルタの透過スペクトルを示す図である。 図11Bは、図10Bに示すファブリ・ペローフィルタの透過スペクトルを示す図である。 図11Cは、図10Cに示すファブリ・ペローフィルタの透過スペクトルを示す図である。 図11Dは、図10Dに示すファブリ・ペローフィルタの透過スペクトルを示す図である。 図12Aは、図5に示す光検出装置の第1の変形例を模式的に示す図である。 図12Bは、図5に示す光検出装置の第2の変形例を模式的に示す図である。 図12Cは、図5に示す光検出装置の第3の変形例を模式的に示す図である。 図12Dは、図5に示す光検出装置の第4の変形例を模式的に示す図である。 図12Eは、図5に示す光検出装置の第5の変形例を模式的に示す図である。 図12Fは、図5に示す光検出装置の第6の変形例を模式的に示す図である。
本開示の実施形態を説明する前に、本開示の基礎となった知見を説明する。
特許文献1は、高い解像度の多波長画像を取得することが可能な撮像装置を開示している。当該撮像装置では、対象物からの光の像が、「符号化素子」と称される光学素子によって符号化されて撮像される。符号化素子は、2次元に配列された複数の領域を有する。当該複数の領域のうちの少なくとも2つの領域の各々の透過スペクトルは、複数の波長域において、それぞれ透過率の極大値を有する。複数の領域は、例えばイメージセンサの複数の画素にそれぞれ対応して配置される。当該符号化素子を用いた撮像では、各画素のデータは、複数の波長域の情報を含む。すなわち、生成される画像データは、波長情報が圧縮されたデータである。したがって、2次元データを保有するだけで済み、データ量を抑えることができる。例えば、記録媒体の容量に制約がある場合であっても、長時間の動画像のデータを取得することが可能になる。
符号化素子は、様々な方法を用いて製造され得る。例えば、顔料または染料などの有機材料を用いた方法が考えられる。この場合、符号化素子の複数の領域は、異なる光透過特性を有する光吸収材料によって形成される。そのような構造では、配置する光吸収材料の種類の数に応じて製造工程数が増える。このため、有機材料を用いた符号化素子の作製は容易ではない。
一方、特許文献2から特許文献5は、互いに異なる透過スペクトルを有する複数のファブリ・ペローフィルタを備える装置を開示している。ファブリ・ペローフィルタは、有機材料から形成されたフィルタよりも容易に作製することができる。しかし、特許文献2から特許文献5に開示された例のいずれにおいても、各画素のデータは、単一の波長域の情報しか含まない。このため、空間分解能が犠牲になる。
本発明者らは、以上の検討に基づき、以下の項目に記載の光検出装置、光検出システム、およびフィルタアレイに想到した。
(第1の項目)
第1の項目に係る光検出装置は、2次元に配列された複数のフィルタを含むフィルタアレイであって、前記複数のフィルタは、第1フィルタおよび第2フィルタを含み、前記第1フィルタおよび前記第2フィルタの各々が、第1反射層、第2反射層、および前記第1反射層と前記第2反射層との間の中間層を含み、かつ互いに次数の異なる複数の共振モードを有する共振構造を有し、前記第1フィルタの前記中間層の屈折率および厚さからなる群から選択される少なくとも1つは、前記第2フィルタの前記中間層の屈折率および厚さからなる群から選択される前記少なくとも1つと異なる、フィルタアレイと、前記第1フィルタを透過した光を受ける位置に配置された第1光検出素子および前記第2フィルタを透過した光を受ける位置に配置された第2光検出素子を含むイメージセンサと、を備える。前記第1反射層は、各々が第1の屈折率を有する複数の第1誘電体層と、各々が前記第1の屈折率よりも高い第2の屈折率を有する複数の第2誘電体層と、を含む。前記第1反射層において、前記複数の第1誘電体層と前記複数の第2誘電体層とが交互に位置している。前記複数の第1誘電体層の少なくとも2つは、互いに異なる厚さを有し、前記複数の第2誘電体層の少なくとも2つは、互いに異なる厚さを有する。前記第2反射層は、各々が第3の屈折率を有する複数の第3誘電体層と、各々が前記第3の屈折率よりも高い第4の屈折率を有する複数の第4誘電体層と、を含む。前記第2反射層において、前記複数の第3誘電体層と前記複数の第4誘電体層とが交互に位置している。前記複数の第3誘電体層の少なくとも2つは、互いに異なる厚さを有し、前記複数の第4誘電体層の少なくとも2つは、互いに異なる厚さを有する。
この光検出装置では、上記のフィルタアレイにより、透過スペクトルの複数の波長域にそれぞれ含まれる複数のピークの線幅の不均一さおよびピーク間隔の不均一さの少なくとも一方が抑制される。これにより、イメージセンサによって検出される各波長域における光量の均一性を向上させることができる。その結果、光検出装置の波長分解能を向上させることができる。
(第2の項目)
第1の項目に係る光検出装置において、前記第1フィルタおよび前記第2フィルタの各々の透過スペクトルは、ある波長域に含まれる複数の波長の各々において透過率の極大値を有し、前記複数の波長は前記複数の共振モードにそれぞれ対応し、前記第1光検出素子および前記第2光検出素子の各々は、前記波長域の光に感度を有していてもよい。
この光検出装置では、透過スペクトルのある波長域に含まれる複数のピークにより、多波長画像を取得することができる。
(第3の項目)
第1または第2の項目に係る光検出装置において、前記複数の第1誘電体層の各々の光学長が、前記複数の第2誘電体層のうち、前記複数の第1誘電体層の各々に隣り合う第2誘電体層の光学長に等しく、前記複数の第3誘電体層の各々の光学長が、前記複数の第4誘電体層のうち、前記複数の第3誘電体層の各々に隣り合う第4誘電体層の光学長に等しくてもよい。
この光検出装置では、上記の光学長に対応する波長の光が、第1反射層および第2反射層によって反射される。これにより、複数のピークの線幅の不均一さおよびピーク間隔の不均一さの少なくとも一方が抑制される。
(第4の項目)
第1から第3の項目のいずれかに係る光検出装置において、前記第1反射層の少なくとも一部において、前記複数の第1誘電体層の各々の厚さ、および前記複数の第2誘電体層の各々の厚さが、前記中間層から離れる第1の方向に沿って漸減または漸増し、前記第2反射層の少なくとも一部において、前記複数の第3誘電体層の各々の厚さ、および前記複数の第4誘電体層の各々の厚さが、前記第1の方向とは反対の第2の方向に沿って漸減または漸増してもよい。
この光検出装置では、第1および第2誘電体層の厚さが漸減した場合に複数のピークの線幅の不均一さがさらに抑制され、第1および第2誘電体層の厚さが漸増した場合にピーク間隔の不均一さがが、さらに抑制される。
(第5の項目)
第4の項目に係る光検出装置において、前記複数の第1誘電体層は、第1膜厚を有する第1誘電体層と、各々が前記第1膜厚よりも大きなまたは小さな第2膜厚を有する2つの第1誘電体層と、を含み、前記2つの第1誘電体層は、前記複数の第2誘電体層のうちの1つの第2誘電体層を挟んで、連続して配置され、前記複数の第3誘電体層は、第3膜厚を有する第3誘電体層と、各々が前記第3膜厚よりも大きなまたは小さな第4膜厚を有する2つの第3誘電体層と、を含み、前記2つの第3誘電体層は、前記複数の第4誘電体層のうちの1つの第4誘電体層を挟んで、連続して配置されていてもよい。
この光検出装置では、第1膜厚よりも第2膜厚が大きく、第3膜厚よりも第4膜厚が大きい場合に複数のピークの線幅の不均一さが、第1膜厚よりも第2膜厚が小さく、第3膜厚よりも第4膜厚が小さい場合に複数のピークの間隔の不均一さが、さらに抑制される。
(第6の項目)
第1から第5の項目のいずれかに係る光検出装置において、前記第1の屈折率が、前記第3の屈折率に等しく、前記第2の屈折率が、前記第4の屈折率に等しくてもよい。
この光検出装置では、第1から第5の項目のいずれかに係る光検出装置と同様の効果を得ることができる。
(第7の項目)
第1から第6の項目のいずれかに係る光検出装置において、前記中間層が、シリコン、シリコン窒化物、チタン酸化物、ニオブ酸化物、およびタンタル酸化物からなる群から選択される少なくとも1つを含んでいてもよい。
この光検出装置では、第1から第6の項目のいずれかに係る光検出装置と同様の効果を得ることができる。
(第8の項目)
第8の項目に係る光検出システムは、第2の項目に係る光検出装置と、信号処理回路と、を備える。前記信号処理回路は、前記第1光検出素子からの信号および前記第2光検出素子からの信号に基づいて、前記複数の波長の情報を含む画像データを生成する。
この光検出システムでは、多波長情報を含む画像データを生成することができる。
(第9の項目)
第9の項目に係るフィルタアレイは、2次元に配列された複数のフィルタを備え、前記複数のフィルタは、第1フィルタおよび第2フィルタを含み、前記第1フィルタおよび前記第2フィルタの各々が、第1反射層、第2反射層、および前記第1反射層と前記第2反射層との間の中間層を含み、かつ互いに次数の異なる複数の共振モードを有する共振構造を有し、前記第1フィルタの前記中間層の屈折率および厚さからなる群から選択される少なくとも1つは、前記第2フィルタの前記中間層の屈折率および厚さからなる群から選択される前記少なくとも1つと異なり、第1から第7の項目のいずれかに係る光検出装置に用いられる。
このフィルタアレイでは、透過スペクトルの複数の波長域にそれぞれ含まれる複数のピークの線幅の不均一さおよびピーク間隔の不均一さの少なくとも一方が抑制される。
本開示において、回路、ユニット、装置、部材または部の全部または一部、またはブロック図における機能ブロックの全部または一部は、例えば、半導体装置、半導体集積回路(IC)、またはLSI(large scale integration)を含む1つまたは複数の電子回路によって実行され得る。LSIまたはICは、1つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、1つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(very large scale integration)、もしくはULSI(ultra large scale integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、またはLSI内部の接合関係の再構成またはLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。
さらに、回路、ユニット、装置、部材または部の全部または一部の機能または動作は、ソフトウェア処理によって実行することが可能である。この場合、ソフトウェアは1つまたは複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウェアが処理装置(processor)によって実行されたときに、そのソフトウェアで特定された機能が処理装置(processor)および周辺装置によって実行される。システムまたは装置は、ソフトウェアが記録されている1つまたは複数の非一時的記録媒体、処理装置(processor)、および必要とされるハードウェアデバイス、例えばインターフェースを備えていてもよい。
以下、図面を参照しながら、本開示のより具体的な実施形態を説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明および実質的に同一の構成に対する重複する説明を省略することがある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似する構成要素については、同じ参照符号を付している。
(実施形態)
<光検出システム>
最初に、本実施形態における光検出システムを説明する。
図1は、例示的な実施形態における光検出システム400を模式的に示す図である。光検出システム400は、光学系40と、フィルタアレイ100Cと、イメージセンサ60と、信号処理回路200とを備える。フィルタアレイ100Cは、特許文献1に開示されている「符号化素子」と同様の機能を有する。このため、フィルタアレイ100Cを、「符号化素子」と称することもできる。光学系40、およびフィルタアレイ100Cは、対象物70から入射する光の光路に配置されている。
フィルタアレイ100Cは、行および列状に配列された透光性の複数の領域を備える。フィルタアレイ100Cは、光の透過スペクトル、すなわち光透過率の波長依存性が領域によって異なる光学素子である。フィルタアレイ100Cは、入射した光の強度を変調させて通過させる。フィルタアレイ100Cは、イメージセンサ60の近傍または直上に配置され得る。ここで「近傍」とは、光学系40からの光の像がある程度鮮明な状態でフィルタアレイ100Cの面上に形成される程度に近接していることを意味する。「直上」とは、ほとんど隙間が生じない程両者が近接していることを意味する。フィルタアレイ100Cおよびイメージセンサ60は一体化されていてもよい。フィルタアレイ100Cおよびイメージセンサ60を備える装置を、「光検出装置300」と称する。
光学系40は、少なくとも1つのレンズを含む。図1では、1つのレンズとして示されているが、光学系40は複数のレンズの組み合わせによって構成されていてもよい。光学系40は、フィルタアレイ100Cを介して、イメージセンサ60の撮像面上に像を形成する。
信号処理回路200は、イメージセンサ60によって取得された画像120に基づいて、多波長の情報を含む複数の分離画像220を再構成する。複数の分離画像220、および信号処理回路200の画像信号の処理方法の詳細については、後述する。なお、信号処理回路200は、光検出装置300に組み込まれていてもよいし、光検出装置300に有線または無線によって電気的に接続された信号処理装置の構成要素であってもよい。
<フィルタアレイ>
以下に、本実施形態におけるフィルタアレイ100Cを説明する。フィルタアレイ100Cは、撮像対象の波長域に含まれる複数の波長域ごとの画像を生成する分光システムにおいて用いられる。本明細書において、撮像対象の波長域を、「対象波長域」と称することがある。フィルタアレイ100Cは、対象物から入射する光の光路に配置され、入射光の強度を波長ごとに変調して出力する。フィルタアレイすなわち符号化素子によるこの過程を、本明細書では「符号化」と称する。
図2Aは、フィルタアレイ100Cの例を模式的に示す図である。フィルタアレイ100Cは、2次元に配列された複数の領域を有する。本明細書では、当該領域を、「セル」と称することがある。各領域には、個別に設定された透過スペクトルを有するフィルタが配置されている。透過スペクトルは、入射光の波長をλとして、関数T(λ)で表される。透過スペクトルT(λ)は、0以上1以下の値を取り得る。フィルタの構成の詳細については、後述する。
図2Aに示す例では、フィルタアレイ100Cは、6行8列に配列された48個の矩形領域を有している。これはあくまで例示であり、実際の用途では、これよりも多くの領域が設けられ得る。その数は、例えばイメージセンサなどの一般的な光検出器の画素数と同程度であり得る。当該画素数は、例えば数十万から数千万である。ある例では、フィルタアレイ100Cは、光検出器の直上に配置され、各領域が光検出器の1つの画素に対応するように配置され得る。各領域は、例えば、光検出器の1つの画素に対向する。
図2Bは、対象波長域に含まれる複数の波長域W1、W2、・・・、Wiのそれぞれの光の透過率の空間分布の一例を示す図である。図2Bに示す例では、各領域の濃淡の違いは、透過率の違いを表している。淡い領域ほど透過率が高く、濃い領域ほど透過率が低い。図2Bに示すように、波長域によって光透過率の空間分布が異なっている。
図2Cおよび図2Dは、それぞれ、図2Aに示すフィルタアレイ100Cの複数の領域に含まれる領域A1および領域A2の透過スペクトルの例を示す図である。領域A1の透過スペクトルと領域A2の透過スペクトルとは、互いに異なっている。このように、フィルタアレイ100Cの透過スペクトルは、領域によって異なる。ただし、必ずしもすべての領域の透過スペクトルが異なっている必要はない。フィルタアレイ100Cでは、複数の領域の少なくとも一部の領域の透過スペクトルが互いに異なっている。当該少なくとも一部の領域は、2以上の領域である。すなわち、フィルタアレイ100Cは、透過スペクトルが互いに異なる2つ以上のフィルタを含む。ある例では、フィルタアレイ100Cに含まれる複数の領域の透過スペクトルのパターンの数は、対象波長域に含まれる波長域の数iと同じか、それ以上であり得る。フィルタアレイ100Cは、半数以上の領域の透過スペクトルが異なるように設計されていてもよい。
図3Aおよび図3Bは、対象波長域Wと、それに含まれる複数の波長域W1、W2、・・・、Wiとの関係を説明するための図である。対象波長域Wは、用途によって様々な範囲に設定され得る。対象波長域Wは、例えば、約400nmから約700nmの可視光の波長域、約700nmから約2500nmの近赤外線の波長域、約10nmから約400nmの近紫外線の波長域、その他、中赤外、遠赤外、テラヘルツ波、またはミリ波などの電波域であり得る。このように、使用される波長域は可視光域とは限らない。本明細書では、可視光に限らず、近紫外線、近赤外線、および電波などの非可視光も便宜上「光」と称する。
図3Aに示す例では、iを4以上の任意の整数として、対象波長域Wをi等分したそれぞれを波長域W1、波長域W2、・・・、波長域Wiとしている。ただしこのような例に限定されない。対象波長域Wに含まれる複数の波長域は任意に設定してもよい。例えば、波長域によって帯域幅を不均一にしてもよい。隣接する波長域の間にギャップがあってもよい。図3Bに示す例では、波長域によって帯域幅が異なり、かつ、隣接する2つの波長域の間にギャップがある。このように、複数の波長域は、互いに異なっていればよく、その決め方は任意である。波長の分割数iは3以下でもよい。
図4Aは、フィルタアレイ100Cのある領域における透過スペクトルの特性を説明するための図である。図4Aに示す例では、透過スペクトルは、対象波長域W内の波長に関して、複数の極大値P1から極大値P5、および複数の極小値を有する。図4Aに示す例では、対象波長域W内での光透過率の最大値が1、最小値が0となるように正規化されている。図4Aに示す例では、波長域W2、および波長域Wi-1などの波長域において、透過スペクトルが極大値を有している。このように、本実施形態では、各領域の透過スペクトルは、複数の波長域W1から波長域Wiのうち、少なくとも2つの複数の波長域において極大値を有する。図4Aからわかるように、極大値P1、極大値P3、極大値P4、および極大値P5は0.5以上である。
以上のように、各領域の光透過率は、波長によって異なる。したがって、フィルタアレイ100Cは、入射する光のうち、ある波長域の成分を多く透過させ、他の波長域の成分をそれほど透過させない。例えば、i個の波長域のうちのk個の波長域の光については、透過率が0.5よりも大きく、残りのi-k個の波長域の光については、透過率が0.5未満であり得る。kは、2≦k<iを満たす整数である。仮に入射光が、すべての可視光の波長成分を均等に含む白色光であった場合には、フィルタアレイ100Cは、入射光を領域ごとに、波長に関して離散的な複数の強度のピークを有する光に変調し、これらの多波長の光を重畳して出力する。
図4Bは、一例として、図4Aに示す透過スペクトルを、波長域W1、波長域W2、・・・、波長域Wiごとに平均化した結果を示す図である。平均化された透過率は、透過スペクトルT(λ)を波長域ごとに積分してその波長域の帯域幅で除算することによって得られる。本明細書では、このように波長域ごとに平均化した透過率の値を、その波長域における透過率と称する。この例では、極大値P1、極大値P3、および極大値P5をとる3つの波長域において、透過率が突出して高くなっている。特に、極大値P3、および極大値P5をとる2つの波長域において、透過率が0.8を超えている。
各領域の透過スペクトルの波長方向の分解能は、所望の波長域の帯域幅程度に設定され得る。言い換えれば、透過スペクトル曲線における1つの極大値を含む波長範囲のうち、当該極大値に最も近接する極小値と当該極大値との平均値以上の値をとる範囲の幅は、所望の波長域の帯域幅程度に設定され得る。この場合、透過スペクトルを、例えばフーリエ変換によって周波数成分に分解すれば、その波長域に相当する周波数成分の値が相対的に大きくなる。
フィルタアレイ100Cは、典型的には、図2Aに示すように、格子状に区分けされた複数のセルに分割される。これらのセルが、互いに異なる透過スペクトルを有する。フィルタアレイ100Cでの各領域の光透過率の波長分布および空間分布は、例えばランダム分布または準ランダム分布であり得る。
ランダム分布および準ランダム分布の考え方は次の通りである。まず、フィルタアレイ100Cにおける各領域は、光透過率に応じて、例えば0から1の値を有するベクトル要素と考えることができる。ここで、透過率が0の場合、ベクトル要素の値は0であり、透過率が1の場合、ベクトル要素の値は1である。言い換えると、行方向または列方向に一列に並んだ領域の集合を0から1の値を有する多次元のベクトルと考えることができる。したがって、フィルタアレイ100Cは、多次元ベクトルを列方向または行方向に複数備えていると言える。このとき、ランダム分布とは、任意の2つの多次元ベクトルが独立である、すなわち平行でないことを意味する。また、準ランダム分布とは、一部の多次元ベクトル間で独立でない構成が含まれることを意味する。したがって、ランダム分布および準ランダム分布においては、複数の領域に含まれる1つの行または列に並んだ領域の集合に属する各領域での第1の波長域の光の透過率の値を要素とするベクトルと、他の行または列に並んだ領域の集合に属する各領域における第1の波長域の光の透過率の値を要素とするベクトルとは、互いに独立である。第1の波長域とは異なる第2の波長域についても同様に、複数の領域に含まれる1つの行または列に並んだ領域の集合に属する各領域における第2の波長域の光の透過率の値を要素とするベクトルと、他の行または列に並んだ領域の集合に属する各領域における第2の波長域の光の透過率の値を要素とするベクトルとは、互いに独立である。
フィルタアレイ100Cをイメージセンサ60の近傍あるいは直上に配置する場合、フィルタアレイ100Cでの複数の領域の相互の間隔であるセルピッチは、イメージセンサ60の画素ピッチと略一致させてもよい。このようにすれば、フィルタアレイ100Cから出射した符号化された光の像の解像度が画素の解像度と略一致する。各セルを透過した光が対応する1つの画素にのみ入射するようにすることにより、後述する演算を容易にすることができる。フィルタアレイ100Cをイメージセンサ60から離して配置する場合には、その距離に応じてセルピッチを細かくしてもよい。
図2Aから図2Dに示す例では、各領域の透過率が0以上1以下の任意の値をとり得るグレースケールの透過率分布を想定した。しかし、必ずしもグレースケールの透過率分布にする必要はない。例えば、各領域の透過率が略0または略1のいずれかの値を取り得るバイナリ-スケールの透過率分布を採用してもよい。バイナリ-スケールの透過率分布では、各領域は、対象波長域に含まれる複数の波長域のうちの少なくとも2つの波長域の光の大部分を透過させ、残りの波長域の光の大部分を透過させない。ここで「大部分」とは、概ね80%以上を指す。
全セルのうちの一部、例えば半分のセルを、透明領域に置き換えてもよい。そのような透明領域は、対象波長域に含まれるすべての波長域W1から波長域Wiの光を同程度の高い透過率で透過させる。当該高い透過率は、例えば0.8以上である。そのような構成では、複数の透明領域は、例えば市松状に配置され得る。すなわち、フィルタアレイ100Cにおける複数の領域の2つの配列方向において、光透過率が波長によって異なる領域と、透明領域とが交互に配列され得る。図2Aに示す例では、2つの配列方向は、横方向および縦方向である。
<信号処理回路>
次に、図1に示す信号処理回路200により、画像120、およびフィルタアレイ100Cの波長ごとの透過率の空間分布特性に基づいて多波長の分離画像220を再構成する方法を説明する。ここで多波長とは、例えば通常のカラーカメラで取得されるRGBの3色の波長域よりも多くの波長域を意味する。この波長域の数は、例えば4から100程度の数であり得る。この波長域の数を、「分光帯域数」と称することがある。用途によっては、分光帯域数は100を超えていてもよい。
求めたいデータは分離画像220であり、そのデータは、fとして表される。分光帯域数がwとして表されると、fは、各帯域の画像データf、f、・・・、fを統合したデータである。求めるべき画像データのx方向の画素数がnとして表され、y方向の画素数がmとして表されると、画像データf、f、・・・、fの各々は、n×m画素の2次元データの集まりである。したがって、データfは要素数n×m×wの3次元データである。一方、フィルタアレイ100Cによって符号化および多重化されて取得される画像120のデータgの要素数はn×mである。本実施の形態におけるデータgは、以下の式(1)によって表すことができる。
Figure 0007213456000001
ここで、f、f、・・・、fは、n×m個の要素を有するデータである。したがって、右辺のベクトルは、厳密にはn×m×w行1列の1次元ベクトルである。ベクトルgは、n×m行1列の1次元ベクトルに変換して表され、計算される。行列Hは、ベクトルfの各成分f、f、・・・、fを波長域ごとに異なる符号化情報で符号化・強度変調し、それらを加算する変換を表す。したがって、Hは、n×m行n×m×w列の行列である。
さて、ベクトルgと行列Hが与えられれば、式(1)の逆問題を解くことにより、fを算出することができそうである。しかし、求めるデータfの要素数n×m×wが取得データgの要素数n×mよりも多いため、この問題は不良設定問題となり、このままでは解くことができない。そこで、本実施の形態の信号処理回路200は、データfに含まれる画像の冗長性を利用し、圧縮センシングの手法を用いて解を求める。具体的には、以下の式(2)を解くことにより、求めるデータfが推定される。
Figure 0007213456000002
ここで、f’は、推定されたfのデータを表す。上式の括弧内の第1項は、推定結果Hfと取得データgとのずれ量、いわゆる残差項を表す。ここでは2乗和を残差項としているが、絶対値あるいは二乗和平方根等を残差項としてもよい。括弧内の第2項は、後述する正則化項または安定化項である。式(2)は、第1項と第2項との和を最小化するfを求めることを意味する。信号処理回路200は、再帰的な反復演算によって解を収束させ、最終的な解f’を算出することができる。
式(2)の括弧内の第1項は、取得データgと、推定過程のfを行列Hによってシステム変換したHfとの差分の二乗和を求める演算を意味する。第2項のΦ(f)は、fの正則化における制約条件であり、推定データのスパース情報を反映した関数である。働きとしては、推定データを滑らかまたは安定にする効果がある。正則化項は、例えば、fの離散的コサイン変換(DCT)、ウェーブレット変換、フーリエ変換、またはトータルバリエーション(TV)などによって表され得る。例えば、トータルバリエーションを使用した場合、観測データgのノイズの影響を抑えた安定した推測データを取得できる。それぞれの正則化項の空間における対象物70のスパース性は、対象物70のテキスチャによって異なる。対象物70のテキスチャが正則化項の空間においてよりスパースになる正則化項を選んでもよい。あるいは、複数の正則化項を演算に含んでもよい。τは、重み係数である。重み係数τが大きいほど冗長的なデータの削減量が多くなり、圧縮する割合が高まる。重み係数τが小さいほど解への収束性が弱くなる。重み係数τは、fがある程度収束し、かつ、過圧縮にならない適度な値に設定される。
なお、ここでは式(2)に示す圧縮センシングを用いた演算例を示したが、その他の方法を用いて解いてもよい。例えば、最尤推定法またはベイズ推定法などの他の統計的方法を用いることができる。また、分離画像220の数は任意であり、各波長域も任意に設定してよい。再構成の方法の詳細は、特許文献1に開示されている。特許文献1の開示内容全体を本明細書に援用する。
<ファブリ・ペローフィルタを備えるフィルタアレイ>
次に、フィルタアレイ100Cのより具体的な構造の例を説明する。
図5は、例示的な実施形態における光検出装置300を模式的に示す断面図である。光検出装置300は、フィルタアレイ100Cと、イメージセンサ60とを備える。
フィルタアレイ100Cは、2次元に配列された複数のフィルタ100を備える。複数のフィルタ100は、例えば図2Aに示すように、行および列状に配列されている。図5は、図2Aに示す1つの行の断面構造を模式的に示している。複数のフィルタ100の各々は、共振構造を備える。共振構造とは、ある波長の光が、内部で定在波を形成して安定に存在する構造を意味する。当該光の状態を、「共振モード」と称することがある。図5に示す共振構造は、第1反射層28a、第2反射層28b、および第1反射層28aと第2反射層28bとの間の中間層26を含む。第1反射層28aおよび/または第2反射層28bは、誘電体多層膜または金属薄膜から形成され得る。中間層26は、特定の波長域において透明な誘電体または半導体から形成され得る。中間層26は、例えば、シリコン、シリコン窒化物、チタン酸化物、ニオブ酸化物、およびタンタル酸化物からなる群から選択される少なくとも1つから形成され得る。複数のフィルタ100の中間層26の屈折率および/または厚さは、フィルタによって異なる。複数のフィルタ100の各々の透過スペクトルは、複数の波長で透過率の極大値を有する。当該複数の波長は、上記の共振構造における次数の異なる複数の共振モードにそれぞれ対応する。本実施形態では、フィルタアレイ100Cにおける全てのフィルタ100が上記の共振構造を備える。フィルタアレイ100Cは、上記の共振構造を有しないフィルタを含んでいてもよい。例えば、透明フィルタまたはNDフィルタ(Neutral Density Filter)などの、光透過率の波長依存性を有しないフィルタがフィルタアレイ100Cに含まれていてもよい。本開示において、複数のフィルタ100のうちの2つ以上のフィルタ100の各々が上記の共振構造を備える。
イメージセンサ60は、複数の光検出素子60aを備える。複数の光検出素子60aの各々は、複数のフィルタの1つに対向して配置されている。複数の光検出素子60aの各々は、特定の波長域の光に感度を有する。この特定の波長域は、前述の対象波長域Wに相当する。なお、本開示において「ある波長域の光に感度を有する」とは、当該波長域の光を検出するのに必要な実質的な感度を有することを指す。例えば、当該波長域における外部量子効率が1%以上であることを指す。光検出素子60aの外部量子効率は10%以上であってもよい。光検出素子60aの外部量子効率は20%以上であってもよい。各フィルタ100の光透過率が極大値をとる複数の波長は、いずれも対象波長域Wに含まれる。以下の説明において、光検出素子60aを「画素」と称することがある。
図5に示す例に限らず、フィルタアレイ100Cとイメージセンサ60とが分離していてもよい。その場合であっても、複数の光検出素子60aの各々は、複数のフィルタの1つを透過した光を受ける位置に配置される。複数のフィルタを透過した光が、ミラーを介して複数の光検出素子60aにそれぞれ入射するように、各構成要素が配置されていてもよい。その場合、複数の光検出素子60aの各々は、複数のフィルタの1つの直下には配置されない。
本明細書では、上記の共振構造を備えるフィルタ100を、「ファブリ・ペローフィルタ」と称することがある。本明細書では、極大値を有する透過スペクトルの部分を、「ピーク」と称し、透過スペクトルが極大値を有する波長を、「ピーク波長」と称することがある。
次に、ファブリ・ペローフィルタであるフィルタ100の透過スペクトルを説明する。
フィルタ100において、中間層26の厚さをL、屈折率をn、フィルタ100に入射する光の入射角度をθ、共振モードのモード次数をmとする。mは1以上の整数である。このとき、フィルタ100の透過スペクトルのピーク波長λは、以下の式(3)によって表される。
Figure 0007213456000003
対象波長域Wのうちの最短波長をλ、最長波長をλとする。本明細書では、λ≦λ≦λを満たすmが1つ存在するフィルタ100を、「単一モードフィルタ」と称する。λ≦λ≦λを満たすmが2つ以上存在するフィルタ100を、「多モードフィルタ」と称する。以下、対象波長域Wの最短波長がλ=400nmであり、最長波長がλ=700nmである場合の例を説明する。
例えば、厚さL=300nm、屈折率n=1.0、垂直入射θ=0°のフィルタ100では、m=1のときのピーク波長は、λ=600nmであり、m≧2のときのピーク波長は、λm≧2≦300nmである。したがって、このフィルタ100は、対象波長域Wに1つのピーク波長が含まれる単一モードフィルタである。
一方、厚さLを300nmよりも大きくすると、対象波長域Wに、複数のピーク波長が含まれる。例えば、厚さL=3000nm、n=1.0、垂直入射θ=0のフィルタ100では、1≦m≦8のときのピーク波長は、λ1≦m≦8≧750nmであり、9≦m≦15のときのピーク波長は、400nm≦λ9≦m≦15≦700nmであり、m≧16のときのピーク波長は、λm≧16≦375nmである。したがって、このフィルタ100は、対象波長域Wに7つのピーク波長が含まれる多モードフィルタである。
以上のように、フィルタ100の中間層26の厚さを適切に設計することにより、多モードフィルタを実現することができる。中間層26の厚さの代わりに、フィルタ100の中間層26の屈折率を適切に設計してもよい。あるいは、フィルタ100の中間層26の厚さおよび屈折率の両方を適切に設計してもよい。
図6は、互いに透過スペクトルが異なる複数の多モードフィルタが、複数の光検出素子60aである複数の画素上にそれぞれ配置された場合における、各画素での透過スペクトルの例を模式的に示す図である。図6には、画素A、画素B、および画素Cでの透過スペクトルが例示されている。複数の多モードフィルタは、画素ごとにピーク波長がわずかに異なるように設計されている。このような設計は、式(3)における厚さLおよび/または屈折率nをわずかに変化させることによって実現することができる。この場合、各画素では、対象波長域Wにおいて複数のピークが現れる。当該複数のピークのそれぞれのモード次数は、各画素60aにおいて同じである。図6に示されている複数のピークのモード次数は、m、m+1、およびm+2である。本実施形態における光検出装置300は、画素ごとに異なる、複数のピーク波長の光を同時に検出することができる。
次に、第1反射層28aおよび第2反射層28bの各々が、誘電体多層膜から形成される例を説明する。
図7Aは、一般的な誘電体多層膜を含むファブリ・ペローフィルタであるフィルタ1000の例を模式的に示す図である。フィルタ1000は、基板80上に設けられている。第1反射層28aおよび第2反射層28bの各々は、誘電体多層膜から形成されている。すなわち、第1反射層28aおよび第2反射層28bの各々は、複数の低屈折率を有する誘電体層である低屈折率層27lと、複数の高屈折率を有する誘電体層である高屈折率層27hとが交互に位置する構造を備える。複数の低屈折率層27lの各々は、屈折率nを有し、複数の高屈折率層27hの各々は、屈折率nよりも高い屈折率nを有する。第1反射層28aでの低屈折率層27lと、第2反射層28bでの低屈折率層27lとは、同じ屈折率を有していてもよいし、異なる屈折率を有していてもよい。第1反射層28aでの高屈折率層27hと、第2反射層28bでの高屈折率層27hとは、同じ屈折率を有していてもよいし、異なる屈折率を有していてもよい。なお、本明細書において、第1反射層28aでの低屈折率層27lを、「第1誘電体層」と称し、第1反射層28aでの高屈折率層27hを、「第2誘電体層」と称し、第2反射層28bでの低屈折率層27lを、「第3誘電体層」と称し、第2反射層28bでの高屈折率層27hを、「第4誘電体層」と称することがある。第1反射層28aでの低屈折率層27lの屈折率を、「第1の屈折率」と称し、第1反射層28aでの高屈折率層27hの屈折率を、「第2の屈折率」と称し、第2反射層28bでの低屈折率層27lの屈折率を、「第3の屈折率」と称し、第2反射層28bでの高屈折率層27hの屈折率を、「第4の屈折率」と称することがある。
誘電体多層膜は、複数のペア層を備える。1つのペア層は、1つの低屈折率層27l、および1つの高屈折率層27hを含む。図7Aに示す例では、第1反射層28aおよび第2反射層28bの各々は、8層の屈折率層を含む4つのペア層を備える。図7Aに示す例では、対象波長域W内の特定の波長λにおいて高い反射率を得るために、高屈折率層27hの厚さは、t=λ/(4n)に設定され、低屈折率層27lの厚さは、t=λ/(4n)に設定される。言い換えれば、高屈折率層27hの厚さtの光学長、および低屈折率層27lの厚さtの光学長は、λ/4である。ここで、光学長とは、厚さに屈折率を掛けた値を意味する。特定の波長λは、例えば、対象波長域Wの中心波長(λ+λ)/2に設定され得る。
図7Bは、図7Aに示すフィルタ1000の透過スペクトルを示す図である。この例では、低屈折率層27lは二酸化ケイ素から形成され、高屈折率層27hは二酸化チタンから形成されている。中間層26は、二酸化チタンから形成されている。透過スペクトルの計算には、RSoft社の厳密結合波理論(RCWA:Rigorous Coupled-Wave Analysis)に基づくDiffractMODが用いられた。図7Bに示すように、対象波長域Wにおいて、複数のピークが現れる。ここでは、簡単のために、対象波長域Wのうち、400nmから460nmまで、および680nmから700nmまでの透過率が高い部分は考慮されない。複数のピークの線幅及びピーク間隔は均一ではない。図7Bに示す例では、対象波長域Wの中央付近でのピークの線幅は狭く、対象波長域Wの中央から離れると、ピークの線幅は広くなり、また、短波長側ではピーク間隔は狭く、長波長側ではピーク間隔は広くなる。ピークの線幅は、フィルタ1000に入射した光が中間層26に閉じ込められる時間に関係している。フィルタ1000に入射した光は、第1反射層28aおよび第2反射層28bによる反射によって中間層26に一定時間閉じ込められた後、基板80側に出射される。ピークの線幅が狭いほど、入射光がフィルタ1000内に閉じ込められる時間が長い。逆に、ピークの線幅が広いほど、入射光がフィルタ1000内に閉じ込められる時間が短い。一般的な誘電体多層膜では、対象波長域Wの中心波長λでの反射率が最も高く、対象波長域Wの中央から離れると、反射率は減少する。言い換えれば、通常の誘電体多層膜での反射率は、対象波長域Wにおいて不均一である。このため、入射光がフィルタ1000内に閉じ込められる時間が、波長によって異なる。その結果、対象波長域Wでの複数のピークの線幅は均一にならない。ピークの間隔は式(3)の関係から決定される。一般に、ファブリ・ペローフィルタにおいてピーク間隔、すなわちλm―λm+1は中間層の光学長の逆数と波長の二乗に比例する。図7Bに示す例では、対象波長域W内の光は第1反射層28aおよび第2反射層28bによる反射によって中間層26に閉じ込められるため、中間層の光学長は中間層26の屈折率と膜厚の乗算により一意に定められ、ピーク間隔は波長の二乗に比例する。その結果、短波長側でピーク間隔は狭く、長波長側でピーク間隔は広くなり、対象波長域Wでの複数のピークの間隔は均一にならない。
対象波長域Wでの複数のピークの線幅及びピーク間隔が不均一であると、以下の問題が生じ得る。画素によって検出されるピークの光量は、ピークの線幅の範囲内で透過率を積分した値に相当する。ピークの線幅が狭いと、あるいはピーク間隔が広いと、光量は少なくなる。このため、画素の感度によっては、分離画像220の再構成の演算処理の際に、波長情報が失われることがある。その結果、分離画像220の空間分解能が低下し得る。逆に、ピークの線幅が広いと、あるいはピーク間隔が狭いと、光量は多くなる。これにより、有効な光量が得られる一方、分離画像220の波長分解能が低下し得る。
本発明者らは、上記の課題を見出し、新たなファブリ・ペローフィルタの構造に想到した。以下、対象波長域Wでの複数のピークの線幅の不均一さ及びピーク間隔を抑制するファブリ・ペローフィルタの例を説明する。
図8Aは、複数のペア層の厚さが線形に変調された誘電体多層膜を含むファブリ・ペローフィルタであるフィルタ100の例を模式的に示す図である。複数のペア層の厚さが積層方向に徐々に増加または減少する誘電体多層膜は、「チャープミラー(chirped mirror)」とも称される。図8Aに示す例では、図7に示す例とは異なり、第1反射層28aおよび第2反射層28bの各々において、複数の高屈折率層27hの厚さ、および複数の低屈折率層27lの厚さは、均一ではない。すなわち、第1反射層28aおよび第2反射層28bの各々において、低屈折率層27lの少なくとも2つは、互いに異なる厚さを有し、高屈折率層27hの少なくとも2つは、互いに異なる厚さを有する。第1反射層28aおよび第2反射層28bの各々において、複数の低屈折率層27lの各々の光学長は、低屈折率層27lに隣り合う高屈折率層27hの光学長に等しい。図8Aに示す誘電体多層膜は、例えば、波長λから波長λまでの波長域の光を反射するように設計され得る。波長λは、波長λよりも長い。第1反射層28aおよび第2反射層28bの各々において、複数のペア層を、中間層26から遠い順に、n=0からn=3のように番号付けすると、高屈折率層27hの厚さは、t(n)=[λ+n(λ-λ)/3]/(4n)であり、低屈折率層27lの厚さは、t(n)=[λ+n(λ-λ)/3]/(4n)である。このように、第1反射層28aおよび第2反射層28bの各々において、高屈折率層27hの厚さt(n)、および低屈折率層27lの厚さt(n)の両方とも、λ/4からλ/4まで線形に変調されている。以下では、波長λ=350nmおよび波長λ=700nmとする。このとき、ペア層の各厚さの光学長は、λ/4=87.5nmからλ/4=175nmまで線形に変化する。なお、波長λ=λおよび波長λ=λとしてもよい。
図8Aに示す例において、細い線の第1ループ29aおよび太い線の第2ループ29bは、それぞれ、フィルタ100内に閉じ込められる波長λおよび波長λの光を表している。波長λの光は、第1反射層28aでの入射面側のペア層と、第2反射層28bでの基板80側のペア層によって反射される。波長λの光は、第1反射層28aでの中間層26側のペア層と、第2反射層28bでの中間層26側のペア層によって反射される。このように、入射光は、その波長に対応するペア層によって反射される。これにより、誘電体多層膜における対象波長域Wでの反射率の不均一さが抑制される。
図8Bは、図8Aに示すフィルタ100の透過スペクトルを示す図である。図8Bに示す例では、図7Bに示す例とは異なり、対象波長域W全体において、複数のピークが得られる。さらに、対象波長域Wの中央付近でのピークの線幅が、最短波長λに近いピークの線幅と同程度に広くなっている。このように、対象波長域Wでの複数のピークの線幅の均一性が改善される。一方、最長波長λに近いピークの線幅は、対象波長域Wの中央付近でのピークの線幅、および最短波長λに近いピークの線幅よりも広い。これは、以下のことが原因であると考えられる。フィルタ100内に閉じ込められた光の強度分布は、第1反射層28aおよび第2反射層28bでは、中間層26から離れる方向に沿って減少する。フィルタ100内に閉じ込められた光の波長が短いとき、光の強度分布は急峻に減少し、当該波長が長いときは、光の強度分布は緩やかに減少する傾向にある。したがって、光の閉じ込めが不十分になることから、長波長の光がフィルタ100内で閉じ込められる時間が短くなる。その結果、最長波長λに近いピークの線幅は広くなる傾向にある。
そこで、長波長の光が閉じ込められる時間を長くするファブリ・ペローフィルタの例を説明する。
図9Aは、複数のペア層の厚さが非線形に変調された誘電体多層膜を含むファブリ・ペローフィルタであるフィルタ100の例を模式的に示す図である。図8Aに示す例と比較して、各厚さの光学長がλ/4であるペア層が、中間層26の両側に新たに追加されている。第1反射層28aおよび第2反射層28bの各々は、10層の屈折率層を含む5つのペア層を備える。ここで、第1反射層28aおよび第2反射層28の各々において、複数のペア層を、中間層26に遠い順に、n=0からn=4のように番号付けする。すると、n=0からn=3では、高屈折率層27hの厚さは、t(n)=[λ+n(λ-λ)/3]/(4n)であり、低屈折率層27lの厚さは、t(n)=[λ+n(λ-λ)/3]/(4n)である。n=4では、高屈折率層27hの厚さは、λ/(4n)であり、低屈折率層27lの厚さは、λ/(4n)である。すなわち、n=0からn=3までは、高屈折率層27hの厚さおよび低屈折率層27lの厚さは線形に変化し、n=4での高屈折率層27hの厚さおよび低屈折率層27lの厚さは、それぞれ、n=3での高屈折率層27hの厚さおよび低屈折率層27lの厚さに等しい。言い換えれば、第1反射層28aにおいて、複数の低屈折率層27lのうち、中間層26に最も近い層の厚さ、および中間層26に2番目に近い層の厚さは等しい。第1反射層28aにおいて、複数の高屈折率層27hのうち、中間層26に最も近い層の厚さ、および中間層26に2番目に近い層の厚さは等しい。同様に、第2反射層28bにおいて、複数の低屈折率層27lのうち、中間層26に最も近い層の厚さ、および中間層26に2番目に近い層の厚さは等しい。第2反射層28bにおいて、複数の高屈折率層27hのうち、中間層26に最も近い層の厚さ、および中間層26に2番目に近い層の厚さは等しい。このように、第1反射層28aにおいて、複数の低屈折率層27lは、第1膜厚を有する低屈折率層27lと、第1膜厚よりも大きな第2膜厚を有する低屈折率層27lが2層以上繰り返される部分とを含む。第2反射層28bにおいて、複数の低屈折率層27lは、第3膜厚を有する低屈折率層27lと、第3膜厚よりも大きな第4膜厚を有する低屈折率層27lが2層以上繰り返される部分とを含む。第1反射層28aおよび第2反射層28bにおける複数の高屈折率層27hについても同様である。
以上のように、高屈折率層27hの厚さおよび低屈折率層27lの厚さは、全体として、非線形に変調されている。図9Aに示す例では、図8Aに示す例と比較して、第1反射層28aおよび第2反射層28bの各々と、中間層26との間に、各厚さの光学長がλ/4である1つのペア層が新たに追加されている。これにより、長波長の光は、中間層26付近における各厚さの光学長がλ/4である2つのペア層により、図8Aに示す例よりも強く反射される。その結果、フィルタ100内で長波長の光が閉じ込められる時間が長くなる。このため、最長波長λに近いピークの線幅が狭くなることが期待できる。
図9Bは、図9Aに示すフィルタ100の透過スペクトルを示す図である。図9Bに示す例では、図8Bに示す例とは異なり、最長波長λに近いピークの線幅が狭くなっている。このように、複数のペア層の厚さが非線形に変調された誘電体多層膜により、対象波長域Wにおける複数のピークの線幅がより均一になる。
図9Bに示す例では、誘電体多層膜において、厚さが線形に変調された複数のペア層に新たに1つのペア層が追加されているが、このような構造に限定されない。例えば、第1反射層28aおよび第2反射層28bの各々において、中間層26に近づくにつれ、複数のペア層の厚さの光学長が、λ/4からλ/4まで漸近的に増加してもよい。言い換えれば、中間層26に近づくにつれ、複数のペア層の厚さの光学長の増加率が緩やかになってもよい。
なお、第1反射層28aの全部ではなく少なくとも一部において、複数の低屈折率層27lの各々の厚さ、および複数の高屈折率層27hの各々の厚さが、中間層26から離れて入射面に向かう方向に沿って漸減していてもよい。同様に、第2反射層28bの全部ではなく少なくとも一部において、複数の低屈折率層27lの各々の厚さ、および複数の高屈折率層27hの各々の厚さが、中間層26から離れて基板80に向かう方向に沿って漸減していてもよい。
次に、誘電体多層膜における複数のペア層の厚さが変化する方向と、対象波長域Wにおけるピークの数との関係を説明する。
図10Aから図10Dは、複数のペア層の厚さが異なる方向に非線形に変調された誘電体多層膜を含むファブリ・ペローフィルタであるフィルタ100の例を模式的に示す図である。図10Bは図9Aと同じである。
図10Aに示す例では、入射面から中間層26に向かって、第1反射層28aにおける複数のペア層の厚さが非線形に増加し、中間層26から基板80に向かって、第2反射層28bにおける複数のペア層の厚さが非線形に増加する。第1ループ29aによって表すように、波長λの光は、第1反射層28aでの入射面側のペア層と、第2反射層28bでの中間層26側のペア層とによって閉じ込められる。第2ループ29bによって表すように、波長λの光は、第1反射層28aでの中間層26側のペア層と、第2反射層28bでの基板80側のペア層とによって閉じ込められる。
図10Bに示す例では、入射面から中間層26に向かって、第1反射層28aにおける複数のペア層の厚さが非線形に増加し、中間層26から基板80に向かって、第2反射層28bにおける複数のペア層の厚さが非線形に減少する。第1ループ29aによって表すように、波長λの光は、第1反射層28aでの入射面側のペア層と、第2反射層28bでの基板80側のペア層とによって閉じ込められる。第2ループ29bによって表すように、波長λの光は、第1反射層28aでの中間層26側のペア層と、第2反射層28bでの中間層26側のペア層とによって閉じ込められる。
図10Cに示す例では、入射面から中間層26に向かって、第1反射層28aにおける複数のペア層の厚さが非線形に減少し、中間層26から基板80に向かって、第2反射層28bにおける複数のペア層の厚さが非線形に減少する。第1ループ29aによって表すように、波長λの光は、第1反射層28aでの中間層26側のペア層と、第2反射層28bでの基板80側のペア層とによって閉じ込められる。第2ループ29bによって表すように、波長λの光は、第1反射層28aでの入射面側のペア層と、第2反射層28bでの中間層26側のペア層とによって閉じ込められる。
図10Dに示す例では、光の入射面から中間層26に向かって、第1反射層28aにおける複数のペア層の厚さが非線形に減少し、中間層26から基板80に向かって、第2反射層28bにおける複数のペア層の厚さが非線形に増加する。第1ループ29aによって表すように、波長λの光は、第1反射層28aでの中間層26側のペア層と、第2反射層28bでの中間層26側のペア層とによって閉じ込められる。第2ループ29bによって表すように、波長λの光は、第1反射層28aでの入射面側のペア層と、第2反射層28bでの基板80側のペア層とによって閉じ込められる。このとき、波長λの光と波長λの光において中間層の光学長が異なる。すなわち、波長λsの光は中間層26のみがファブリ・ペローフィルタの中間層となるのに対し、波長λlの光は第1反射層28aでの入射面側のペア層と、第2反射層28bでの基板80側のペア層で挟まれた領域がファブリ・ペローフィルタの実質的な中間層となる。すなわち、長波長の光ほどファブリ・ペローフィルタの中間層の光学長が長くなることにより、波長の二乗に比例したピーク間隔の拡大と、中間層の光学長の逆数が小さくなることによるピーク間隔の縮小が打ち消しあい、対象波長域Wにおける複数のピークの間隔がより均一になる。
図10Aから図10Dに示すように、入射光は、第1反射層28aおよび第2反射層28bにおけるその波長に対応するペア層によって反射される。これにより、入射光がフィルタ100内に閉じ込められる領域は、入射光の波長に応じて変化する。すなわち、複数のペア層の厚さを変調することにより、入射光の波長に応じて、中間層26の実質的な厚さを変化させることができる。
図11Aから図11Dは、それぞれ、図10Aから図10Dに示すフィルタ100の透過スペクトルを示す図である。図11Bは図9Bと同じである。図11Aから図11Dに示す例において、対象波長域Wでのピークの数は、それぞれ、8本、9本、8本、および7本である。これにより、第1反射層28aおよび第2反射層28bの各々において、複数のペア層の厚さが、中間層26から外側に向かう方向に非線形に減少するときに、対象波長域Wにおいて最も多くのピークを得ることができる。
表1は、第1反射層28aおよび第2反射層28bでの複数のペア層の厚さの変化と、対象波長域Wでのピーク数との関係を表している。
Figure 0007213456000004
フィルタアレイ100Cに含まれる各フィルタ100が対象波長域Wにおいて多くのピークを有すれば、分離画像220をより精度よく再構成することができる。確かに、前述したように、式(3)により、中間層26の厚さLを増加させれば、対象波長域Wにおけるピークの数が多くなる。しかし、中間層26を厚くすると、光検出装置300におけるフィルタ100のアスペクト比が増加する。このような光検出装置300の作製は容易ではない可能性がある。この点において、誘電体多層膜において複数のペア層の厚さが変化する方向を調整することにより、対象波長域Wにおけるピークの数を増加させるほうが、光検出装置300の作製が容易になる。
以上のように、誘電体多層膜における複数のペア層の厚さを線形または非線形に変調することにより、対象波長域Wにおける複数のピークの線幅の均一性を向上させることができる。これにより、ハイパースペクトルカメラの空間分解能および波長分解能を向上させることができる。
次に、図5に示す光検出装置300の変形例を説明する。
図12Aから図12Fは、図5に示す光検出装置300の変形例を模式的に示す図である。
図12Aに示すように、フィルタアレイ100Cにおいて、複数のフィルタ100が分割されていてもよい。すべてのフィルタ100が分割される必要はない。一部のフィルタ100が分割されていてもよい。
図12Bに示すように、一部の画素上にフィルタ100を配置しなくてもよい。言い換えれば、フィルタアレイ100Cにおいて、複数のフィルタ100の少なくとも1つは、透明であってもよい。
図12Cに示すように、フィルタアレイ100Cとイメージセンサ60との間にスペースを設けてもよい。言い換えれば、フィルタアレイ100Cとイメージセンサ60とは、空間を介して分離していてもよい。
図12Dに示すように、1つのフィルタ100を複数の画素上に跨いで配置してもよい。言い換えれば、中間層26は、2つ以上の画素に跨り連続的に設けられている。第1反射層28aおよび/または第2反射層28bは、2つ以上のフィルタ100に跨り連続的に設けられていてもよい。
図12Eおよび図12Fに示すように、透明層27を配置して、フィルタアレイ100Cの段差を平坦化してもよい。言い換えれば、フィルタアレイ100Cは、上記の共振構造を備える2つ以上のフィルタ100の段差を平坦化する透明層27をさらに備えていてもよい。図12Eに示す例では、フィルタアレイ100Cの第2反射層28bの上面に、段差が存在する。図12Fに示す例では、フィルタアレイ100Cの第1反射層28aの下面に、段差が存在する。透明層27によって2つ以上のフィルタ100の段差を平坦化することにより、透明層27上に他の部材を配置しやすくなる。
図12Eおよび図12Fに示すように、フィルタアレイ100C上に複数のマイクロレンズ40aを配置してもよい。複数のマイクロレンズ40aの各々は、複数のフィルタ100の1つのフィルタ100上に配置されている。言い換えれば、フィルタアレイ100Cは、2つ以上のマイクロレンズ40aをさらに備える。2つ以上のマイクロレンズ40aの各々は、上記の共振構造を備える2つ以上のフィルタ100の1つのフィルタ上に配置されている。2つ以上のマイクロレンズ40aによって入射光を集光することにより、効率よく光を検出することができる。
本開示における光検出装置、およびフィルタアレイは、例えば、多波長の2次元画像を取得するカメラおよび測定機器に有用である。本開示における光検出装置、およびフィルタアレイは、生体・医療・美容向けセンシング、食品の異物・残留農薬検査システム、リモートセンシングシステムおよび車載センシングシステム等にも応用できる。
26 中間層
27h 高屈折率層
27l 低屈折率層
28a 第1反射層
28b 第2反射層
40 光学系
40a マイクロレンズ
60a 光検出素子
70 対象物
80 基板
100 フィルタ
100C フィルタアレイ
120 画像
200 信号処理回路
220 分離画像
300 光検出装置

Claims (7)

  1. 2次元平面内に配置された複数のフィルタを含むフィルタアレイであって、
    前記複数のフィルタは、第1フィルタおよび前記第1フィルタと透過スペクトルが異なる第2フィルタを含み、
    前記第1フィルタおよび前記第2フィルタの各々が、第1反射層、第2反射層、および前記第1反射層と前記第2反射層との間の中間層を含み、かつ共振構造を有するフィルタアレイと、
    前記フィルタアレイを透過した光を受ける位置に配置されたイメージセンサと、
    を備え、
    前記第1反射層は、
    第1屈折率層と、
    前記第1屈折率層よりも高い屈折率を有し、かつ前記第1屈折率層と隣り合う第2屈折率層と、
    第3屈折率層と、
    前記第3屈折率層よりも高い屈折率を有し、かつ前記第3屈折率層と隣り合う第4屈折率層と、を含み、
    前記第1屈折率層および前記第2屈折率層の各々は、第1光学長を有し、
    前記第3屈折率層および前記第4屈折率層の各々は、前記第1光学長とは異なる第2光学長を有する、
    光検出装置。
  2. 前記第1フィルタおよび前記第2フィルタの各々の前記透過スペクトルは、複数の波長において、前記共振構造に起因した透過率の極大値を有し、
    前記イメージセンサは、前記複数の波長の光を検出する、
    請求項1に記載の光検出装置。
  3. 前記第1屈折率層の厚さと前記第3屈折率層の厚さとは互いに異なり、
    前記第2屈折率層の厚さと前記第4屈折率層の厚さとは互いに異なる、
    請求項1または2に記載の光検出装置。
  4. 前記第1反射層は、
    第5屈折率層と、
    前記第5屈折率層よりも高い屈折率を有し、かつ前記第5屈折率層と隣り合う第6屈折率層とをさらに含み、
    前記第2光学長は、前記第1光学長よりも長く、
    前記第5屈折率層および前記第6屈折率層の各々は前記第2光学長を有する、
    請求項1から3のいずれかに記載の光検出装置。
  5. 前記第1フィルタに含まれる前記中間層の光学長と、前記第2フィルタに含まれる前記中間層の光学長とは互いに異なる、
    請求項1から4のいずれかに記載の光検出装置。
  6. 請求項2に記載の光検出装置と、
    信号処理回路と、を備え、
    前記信号処理回路は、前記イメージセンサからの信号に基づいて、前記複数の波長の情報を含む画像データを生成する、
    光検出システム。
  7. 光検出装置に用いられるフィルタアレイであって、
    2次元平面内に配置された複数のフィルタを備え、
    前記複数のフィルタは、第1フィルタおよび前記第1フィルタと透過スペクトルが異なる第2フィルタを含み、
    前記第1フィルタおよび前記第2フィルタの各々が、第1反射層、第2反射層、および前記第1反射層と前記第2反射層との間の中間層を含み、かつ共振構造を有し
    前記第1反射層は、
    第1屈折率層と、
    前記第1屈折率層よりも高い屈折率を有し、かつ前記第1屈折率層と隣り合う第2屈折率層と、
    第3屈折率層と、
    前記第3屈折率層よりも高い屈折率を有し、かつ前記第3屈折率層と隣り合う第4屈折率層と、を含み、
    前記第1屈折率層および前記第2屈折率層の各々は、第1光学長を有し、
    前記第3屈折率層および前記第4屈折率層の各々は、前記第1光学長とは異なる第2光学長を有する、
    フィルタアレイ。
JP2021212082A 2019-03-06 2021-12-27 光検出装置、光検出システム、およびフィルタアレイ Active JP7213456B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022211438A JP7457952B2 (ja) 2019-03-06 2022-12-28 光検出装置、光検出システム、およびフィルタアレイ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019040847 2019-03-06
JP2019040847 2019-03-06
JP2021503459A JP7012275B2 (ja) 2019-03-06 2020-01-27 光検出装置、光検出システム、およびフィルタアレイ
PCT/JP2020/002755 WO2020179282A1 (ja) 2019-03-06 2020-01-27 光検出装置、光検出システム、およびフィルタアレイ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021503459A Division JP7012275B2 (ja) 2019-03-06 2020-01-27 光検出装置、光検出システム、およびフィルタアレイ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022211438A Division JP7457952B2 (ja) 2019-03-06 2022-12-28 光検出装置、光検出システム、およびフィルタアレイ

Publications (2)

Publication Number Publication Date
JP2022058424A JP2022058424A (ja) 2022-04-12
JP7213456B2 true JP7213456B2 (ja) 2023-01-27

Family

ID=72338248

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2021503459A Active JP7012275B2 (ja) 2019-03-06 2020-01-27 光検出装置、光検出システム、およびフィルタアレイ
JP2021212082A Active JP7213456B2 (ja) 2019-03-06 2021-12-27 光検出装置、光検出システム、およびフィルタアレイ
JP2022211438A Active JP7457952B2 (ja) 2019-03-06 2022-12-28 光検出装置、光検出システム、およびフィルタアレイ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021503459A Active JP7012275B2 (ja) 2019-03-06 2020-01-27 光検出装置、光検出システム、およびフィルタアレイ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022211438A Active JP7457952B2 (ja) 2019-03-06 2022-12-28 光検出装置、光検出システム、およびフィルタアレイ

Country Status (5)

Country Link
US (1) US20210341657A1 (ja)
EP (1) EP3936837A4 (ja)
JP (3) JP7012275B2 (ja)
CN (3) CN118190157A (ja)
WO (1) WO2020179282A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3936837A4 (en) * 2019-03-06 2022-04-27 Panasonic Intellectual Property Management Co., Ltd. LIGHT DETECTION DEVICE AND SYSTEM, AND NETWORK OF FILTERS
WO2022091769A1 (ja) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 光検出装置、構造体の製造方法、および光検出装置の製造方法
CN113670441A (zh) * 2021-08-11 2021-11-19 中国科学院光电技术研究所 基于滤波阵列的长波红外多光谱成像器件及其设计方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031510A (ja) 1998-07-09 2000-01-28 Tdk Corp 波長選択型光検出器
JP2004287191A (ja) 2003-03-24 2004-10-14 Seiko Epson Corp カラーフィルタアレイおよび空間光変調装置および投射型表示装置
WO2004096695A2 (de) 2003-04-25 2004-11-11 Universität Kassel Mikromechanisch aktuierbares, optoelektronisches bauelement
WO2008017490A2 (de) 2006-08-09 2008-02-14 Opsolution Nanophotonics Gmbh Optisches filter und verfahren zur herstellung desselben, sowie vorrichtung zur untersuchung elektromagnetischer strahlung
JP2008233344A (ja) 2007-03-19 2008-10-02 Calsonic Kansei Corp 可変表示構造
JP2009063386A (ja) 2007-09-05 2009-03-26 Panasonic Corp 電磁波イメージング装置
WO2009151700A1 (en) 2008-03-18 2009-12-17 Drs Sensors & Targeting Systems, Inc. Spectrally tunable infrared image sensor having multi-band stacked detectors
JP2012064824A (ja) 2010-09-17 2012-03-29 Toshiba Corp 固体撮像素子、その製造方法、カメラ
JP2012123136A (ja) 2010-12-08 2012-06-28 Olympus Imaging Corp 電子カメラ
JP2014164174A (ja) 2013-02-26 2014-09-08 Toshiba Corp 固体撮像装置、携帯情報端末、および固体撮像システム
JP2018156999A (ja) 2017-03-16 2018-10-04 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子装置
WO2020179282A1 (ja) 2019-03-06 2020-09-10 パナソニックIpマネジメント株式会社 光検出装置、光検出システム、およびフィルタアレイ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501470A (en) * 1981-09-28 1985-02-26 Rockwell International Corporation Christiansen-Bragg optical filter
US5144498A (en) * 1990-02-14 1992-09-01 Hewlett-Packard Company Variable wavelength light filter and sensor system
AU2228799A (en) * 1998-01-15 1999-08-02 Ciena Corporation Optical interference filter
JPH11242114A (ja) * 1998-02-25 1999-09-07 Toshiba Glass Co Ltd 多層膜フィルタ
US6081379A (en) * 1998-10-28 2000-06-27 Coherent, Inc. Multiple coupled Gires-Tournois interferometers for group-delay-dispersion control
GB0108502D0 (en) * 2001-04-04 2001-05-23 Isis Innovation Structure with variable emittance
US7521666B2 (en) * 2005-02-17 2009-04-21 Capella Microsystems Inc. Multi-cavity Fabry-Perot ambient light filter apparatus
CN1306288C (zh) 2005-04-27 2007-03-21 中国科学院上海技术物理研究所 具有平整谐振腔层的滤光片列阵
DE102006039071B4 (de) * 2006-08-09 2012-04-19 Universität Kassel Optisches Filter und Verfahren zu seiner Herstellung
JP2008191097A (ja) * 2007-02-07 2008-08-21 Tohoku Univ 分光計測装置
JP4621270B2 (ja) * 2007-07-13 2011-01-26 キヤノン株式会社 光学フィルタ
WO2010013326A1 (ja) * 2008-07-30 2010-02-04 オリンパス株式会社 光学素子、分光素子、光学ユニット及び光学装置
EP2511681B1 (en) 2009-11-30 2024-05-22 IMEC vzw Integrated circuit for spectral imaging system
JP2012128136A (ja) * 2010-12-15 2012-07-05 Seiko Epson Corp 光センサー
JP5760811B2 (ja) * 2011-07-28 2015-08-12 ソニー株式会社 固体撮像素子および撮像システム
IN2014CN03172A (ja) 2011-11-04 2015-07-03 Imec
JP5662396B2 (ja) * 2012-09-11 2015-01-28 株式会社東芝 干渉フィルタ、表示装置および表示装置の製造方法
US9568362B2 (en) * 2012-12-19 2017-02-14 Viavi Solutions Inc. Spectroscopic assembly and method
JP6257926B2 (ja) * 2013-05-31 2018-01-10 Hoya株式会社 波長可変光バンドパスフィルタモジュール、波長可変光源装置及び分光内視鏡装置
TWI692090B (zh) * 2014-11-05 2020-04-21 日商索尼半導體解決方案公司 固體攝像元件及其製造方法
CN105611117B (zh) 2014-11-19 2018-12-07 松下知识产权经营株式会社 摄像装置以及分光***
US9696199B2 (en) * 2015-02-13 2017-07-04 Taiwan Biophotonic Corporation Optical sensor
EP3112828B1 (en) 2015-06-30 2022-10-05 IMEC vzw Integrated circuit and method for manufacturing integrated circuit
WO2017000069A1 (en) * 2015-06-30 2017-01-05 Spectral Devices Inc. Flexible pixelated fabry-perot filter
JP6706814B2 (ja) * 2016-03-30 2020-06-10 パナソニックIpマネジメント株式会社 光検出装置および光検出システム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031510A (ja) 1998-07-09 2000-01-28 Tdk Corp 波長選択型光検出器
JP2004287191A (ja) 2003-03-24 2004-10-14 Seiko Epson Corp カラーフィルタアレイおよび空間光変調装置および投射型表示装置
WO2004096695A2 (de) 2003-04-25 2004-11-11 Universität Kassel Mikromechanisch aktuierbares, optoelektronisches bauelement
WO2008017490A2 (de) 2006-08-09 2008-02-14 Opsolution Nanophotonics Gmbh Optisches filter und verfahren zur herstellung desselben, sowie vorrichtung zur untersuchung elektromagnetischer strahlung
JP2008233344A (ja) 2007-03-19 2008-10-02 Calsonic Kansei Corp 可変表示構造
JP2009063386A (ja) 2007-09-05 2009-03-26 Panasonic Corp 電磁波イメージング装置
WO2009151700A1 (en) 2008-03-18 2009-12-17 Drs Sensors & Targeting Systems, Inc. Spectrally tunable infrared image sensor having multi-band stacked detectors
JP2012064824A (ja) 2010-09-17 2012-03-29 Toshiba Corp 固体撮像素子、その製造方法、カメラ
JP2012123136A (ja) 2010-12-08 2012-06-28 Olympus Imaging Corp 電子カメラ
JP2014164174A (ja) 2013-02-26 2014-09-08 Toshiba Corp 固体撮像装置、携帯情報端末、および固体撮像システム
JP2018156999A (ja) 2017-03-16 2018-10-04 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子装置
WO2020179282A1 (ja) 2019-03-06 2020-09-10 パナソニックIpマネジメント株式会社 光検出装置、光検出システム、およびフィルタアレイ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Hyper-selective plasmonic color filters,Optics Express,2017年10月24日,Vol. 25, No. 22,pp. 27386-27395,doi: 10.1364/OE.25.027386
Postanalyses of an optical multilayer interference filter using numerical reverse synthesis and Rutherford backscattering spectrometry,APPLIED OPTICS,米国,Optical Society of America,2013年03月27日,Vol. 52, No. 10,pp. 2102-2115,doi: 10.1364/AO.52.002102
フォトニック結晶構造を用いたCMOSイメージセンサ用カラーフィルタ設計技術,東芝レビュー[online],Vol. 68, No. 8,日本,2013年08月01日,pp. 56-57,<URL:https://www.toshiba.co.jp/tech/review/2013/08/68_08pdf/r01.pdf>

Also Published As

Publication number Publication date
CN113227729B (zh) 2024-04-26
CN118190158A (zh) 2024-06-14
CN118190157A (zh) 2024-06-14
JP7457952B2 (ja) 2024-03-29
JPWO2020179282A1 (ja) 2021-09-30
EP3936837A1 (en) 2022-01-12
JP7012275B2 (ja) 2022-01-28
EP3936837A4 (en) 2022-04-27
JP2022058424A (ja) 2022-04-12
JP2023052155A (ja) 2023-04-11
US20210341657A1 (en) 2021-11-04
CN113227729A (zh) 2021-08-06
WO2020179282A1 (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP7213456B2 (ja) 光検出装置、光検出システム、およびフィルタアレイ
JP7257644B2 (ja) 光検出装置、光検出システム、およびフィルタアレイ
US11852534B2 (en) Optical filter, light detecting device, and light detecting system
JP7142251B2 (ja) フィルタアレイおよび光検出システム
WO2021085014A1 (ja) フィルタアレイおよび光検出システム
US11843876B2 (en) Optical filter array, photodetection device, and photodetection system
JP7122636B2 (ja) フィルタアレイおよび光検出システム
JP7209273B2 (ja) フィルタアレイおよび光検出システム
WO2023286613A1 (ja) フィルタアレイ、光検出装置、および光検出システム
JP2021110869A (ja) 光学フィルタ、および光検出装置
WO2023171470A1 (ja) 光検出装置、光検出システム、およびフィルタアレイ
CN118251898A (zh) 在生成分光图像的***中使用的装置及滤光器阵列、生成分光图像的***以及滤光器阵列的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R151 Written notification of patent or utility model registration

Ref document number: 7213456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151