JP7205211B2 - high pressure pump - Google Patents

high pressure pump Download PDF

Info

Publication number
JP7205211B2
JP7205211B2 JP2018238241A JP2018238241A JP7205211B2 JP 7205211 B2 JP7205211 B2 JP 7205211B2 JP 2018238241 A JP2018238241 A JP 2018238241A JP 2018238241 A JP2018238241 A JP 2018238241A JP 7205211 B2 JP7205211 B2 JP 7205211B2
Authority
JP
Japan
Prior art keywords
fuel
passage
plunger
leaked
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018238241A
Other languages
Japanese (ja)
Other versions
JP2020101100A (en
Inventor
凌大 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018238241A priority Critical patent/JP7205211B2/en
Priority to DE102019127935.6A priority patent/DE102019127935A1/en
Priority to CN201911289034.6A priority patent/CN111350622B/en
Publication of JP2020101100A publication Critical patent/JP2020101100A/en
Application granted granted Critical
Publication of JP7205211B2 publication Critical patent/JP7205211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0443Draining of the housing; Arrangements for handling leaked fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/442Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston means preventing fuel leakage around pump plunger, e.g. fluid barriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/053Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0076Piston machines or pumps characterised by having positively-driven valving the members being actuated by electro-magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/042Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being cams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)

Description

本発明は、高圧ポンプに関する。 The present invention relates to high pressure pumps.

従来、加圧室からシリンダとプランジャとの隙間を通って漏れ出たリーク燃料を回収し外部に排出するリーク燃料回収路が形成された高圧ポンプが知られている。 2. Description of the Related Art Conventionally, a high-pressure pump is known in which a leaked fuel collection path is formed to collect leaked fuel leaked from a pressure chamber through a gap between a cylinder and a plunger and discharge the leaked fuel to the outside.

例えば特許文献1に開示された燃料供給装置は、シリンダにおけるプランジャ挿入孔の内壁に環状のリーク回収溝が形成されている。燃料ギャラリに流入した燃料は、燃料バイパス経路を経由してリーク回収溝に供給される。リーク回収溝に流入した燃料は、戻し通路孔及び戻し燃料配管を経由して燃料タンクに戻される。また、戻し通路孔は、リリーフ通路孔を経由して燃料ギャラリに連通している。 For example, in the fuel supply device disclosed in Patent Document 1, an annular leak recovery groove is formed in the inner wall of the plunger insertion hole in the cylinder. The fuel that has flowed into the fuel gallery is supplied to the leak collection groove via the fuel bypass route. The fuel that has flowed into the leak collection groove is returned to the fuel tank via the return passage hole and the return fuel pipe. Also, the return passage hole communicates with the fuel gallery via the relief passage hole.

特開2016-142197号公報JP 2016-142197 A

プランジャの軸方向をシリンダの上下方向と定義し、加圧室側をシリンダ上部、加圧室と反対側をシリンダ下部と表す。特許文献1の従来技術において、シリンダ下部に形成されたリーク回収溝と戻し燃料配管とを接続する戻し通路孔が「リーク燃料回収路」に相当する。シリンダ上部に位置する戻し通路孔の下流部は、リリーフ通路孔を経由して燃料入口に連通している。また、シリンダ下部に位置する戻し通路孔の上流部は、リーク回収溝から燃料バイパス経路を経由して燃料入口に連通している。 The axial direction of the plunger is defined as the vertical direction of the cylinder, the pressure chamber side is referred to as the cylinder upper portion, and the side opposite to the pressure chamber is referred to as the cylinder lower portion. In the prior art of Patent Document 1, the return passage hole that connects the leak recovery groove formed in the lower part of the cylinder and the return fuel pipe corresponds to the "leak fuel recovery path". A downstream portion of the return passage hole located in the upper part of the cylinder communicates with the fuel inlet via the relief passage hole. Further, the upstream portion of the return passage hole located in the lower portion of the cylinder communicates with the fuel inlet via the fuel bypass passage from the leak collection groove.

以下、本明細書では、燃料温度について「高温」、「低温」は相対的な温度を意味する。シリンダ内壁を摺動するプランジャの温度は高温になるのに対し、リーク燃料回収路の上流部に燃料タンクから低温の燃料が流入すると、シリンダ下部が冷却される。その結果、高温のプランジャ外壁と低温のシリンダ内壁とのクリアランスが熱膨張差により縮小し、プランジャの作動不良が生じるおそれがある。 Hereinafter, in this specification, "high temperature" and "low temperature" mean relative temperatures with respect to fuel temperature. While the temperature of the plunger sliding on the inner wall of the cylinder becomes high, when low-temperature fuel flows from the fuel tank into the upstream portion of the leaked fuel recovery passage, the lower portion of the cylinder is cooled. As a result, the clearance between the high-temperature outer wall of the plunger and the inner wall of the low-temperature cylinder is reduced due to the difference in thermal expansion, which may cause malfunction of the plunger.

本発明はこのような点に鑑みて創作されたものであり、その目的は、リーク燃料回収路の上流部でのプランジャとシリンダとの温度差を低減し、プランジャの作動不良を防止する高圧ポンプを提供することにある。 SUMMARY OF THE INVENTION The present invention has been created in view of such points, and its object is to reduce the temperature difference between the plunger and the cylinder in the upstream portion of the leak fuel recovery path, thereby preventing malfunction of the plunger. is to provide

本発明は、シリンダ(20)と、電磁弁部(30)と、シリンダ内に摺動可能に設けられたプランジャ(25)とを備え高圧ポンプである。電磁弁部は、シリンダの燃料入口(41)側に設けられ、ボディ(31)に形成された弁通路(32)の開口(33)を開閉させるように弁体(35)を動作させて燃料入口から加圧室(24)に吸入される燃料を調量する。この高圧ポンプは、加圧室に流入した燃料をプランジャの動作により加圧して吐出する。 The present invention is a high-pressure pump comprising a cylinder (20), an electromagnetic valve (30), and a plunger (25) slidably provided in the cylinder. The electromagnetic valve portion is provided on the side of the fuel inlet (41) of the cylinder, and operates the valve body (35) to open and close the opening (33) of the valve passage (32) formed in the body (31) to release the fuel. It meters the fuel sucked into the pressurized chamber (24) from the inlet. The high-pressure pump pressurizes and discharges the fuel that has flowed into the pressurization chamber by the operation of the plunger .

この高圧ポンプは、加圧室からシリンダとプランジャとの隙間を通って漏れ出たリーク燃料を回収しシリンダの外部に排出するリーク燃料回収路(60、601、602)が形成されている。リーク燃料回収路においてリーク燃料が流入する側の部位を上流部とし、リーク燃料が排出される側の部位を下流部とすると、リーク燃料回収路は、下流部でのみ燃料入口と連通する。リーク燃料回収路は、プランジャの軸に対する角度が互いに異なる上流側流路(63)と下流側流路(64)とが接続されており、上流側流路がプランジャの軸となす角度(θ1)は、下流側流路がプランジャの軸となす角度(θ2)より小さい。燃料入口とリーク燃料回収路の下流部とを連通する経路(43)の少なくとも一部に、連通路としての機能以外の機能を有する容積室として、弁通路が含まれる。 This high-pressure pump is formed with leaked fuel recovery passages (60, 601, 602) for recovering leaked fuel leaked from the pressure chamber through the gap between the cylinder and the plunger and discharging the leaked fuel to the outside of the cylinder. Assuming that the upstream portion of the leaked fuel recovery passage is the side into which the leaked fuel flows and the downstream portion is the portion of the leaked fuel recovery passage that is discharged, the leaked fuel recovery passage communicates with the fuel inlet only at the downstream portion. The leaked fuel recovery path is connected to an upstream channel (63) and a downstream channel (64) that have different angles with respect to the axis of the plunger. is smaller than the angle (θ2) that the downstream channel makes with the axis of the plunger. At least part of the path (43) connecting the fuel inlet and the downstream portion of the leak fuel recovery path includes a valve passage as a volumetric chamber having a function other than that of a communication passage.

本発明ではリーク燃料回収路の上流部に低温燃料が流入しないため、シリンダ下部におけるリーク燃料は冷却されない。そのため、高温のリーク燃料の熱がシリンダ下部に伝わりやすくなる。したがって、プランジャとシリンダとの温度差を低減し、適切なクリアランスを維持することができる。よって、プランジャの作動不良を防止することができる。 In the present invention, since the low-temperature fuel does not flow into the upstream portion of the leaked fuel recovery path, the leaked fuel in the lower portion of the cylinder is not cooled. Therefore, the heat of high-temperature leaked fuel is easily transferred to the lower part of the cylinder. Therefore, the temperature difference between the plunger and the cylinder can be reduced and an appropriate clearance can be maintained. Therefore, malfunction of the plunger can be prevented.

一方、リーク燃料回収路の下流部には燃料入口から低温燃料が流入されることで、高圧ポンプの外部に排出されるリーク燃料を冷却し、リターン燃料冷却装置の負担を軽減することができる。 On the other hand, the low-temperature fuel flows into the downstream portion of the leaked fuel recovery path from the fuel inlet, so that the leaked fuel discharged to the outside of the high-pressure pump can be cooled, and the load on the return fuel cooling device can be reduced.

本実施形態の高圧ポンプが適用されるコモンレールシステムの全体構成図。1 is an overall configuration diagram of a common rail system to which a high-pressure pump of this embodiment is applied; FIG. 第1実施形態の高圧ポンプの断面図。Sectional drawing of the high-pressure pump of 1st Embodiment. 第1実施形態の高圧ポンプの模式断面図。1 is a schematic cross-sectional view of a high-pressure pump according to a first embodiment; FIG. 第1実施形態の高圧ポンプの模式平面図。FIG. 2 is a schematic plan view of the high-pressure pump of the first embodiment; (a)比較例、(b)本実施形態の高圧ポンプのシリンダ及びプランジャの温度解析図。(a) Comparative example, (b) temperature analysis diagram of the cylinder and plunger of the high-pressure pump of the present embodiment. 第2実施形態の高圧ポンプの模式断面図。The schematic cross section of the high pressure pump of 2nd Embodiment. 第2実施形態の高圧ポンプの模式平面図。The schematic plan view of the high-pressure pump of 2nd Embodiment. 第3実施形態の高圧ポンプの模式断面図。The schematic cross section of the high pressure pump of 3rd Embodiment. 第3実施形態の高圧ポンプの模式平面図。The schematic plan view of the high-pressure pump of 3rd Embodiment. 第4実施形態の高圧ポンプの模式断面図。The schematic cross section of the high pressure pump of 4th Embodiment. 第4実施形態の高圧ポンプの模式平面図。The schematic plan view of the high-pressure pump of 4th Embodiment. 第5実施形態の高圧ポンプの模式断面図。The schematic cross section of the high pressure pump of 5th Embodiment.

以下、高圧ポンプの複数の実施形態を図面に基づいて説明する。複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。また、第1~第5実施形態を包括して「本実施形態」という。本実施形態は、例えばディーゼルエンジンに適用され、高圧燃料をコモンレールに供給する高圧ポンプである。第1、第5実施形態が特許請求の範囲に記載の発明を実施するための形態に相当する。 A plurality of embodiments of the high-pressure pump will be described below with reference to the drawings. In a plurality of embodiments, substantially the same configurations are denoted by the same reference numerals, and descriptions thereof are omitted. In addition, the first to fifth embodiments will be collectively referred to as "this embodiment". This embodiment is a high-pressure pump that is applied to, for example, a diesel engine and supplies high-pressure fuel to a common rail. The first and fifth embodiments correspond to modes for carrying out the invention described in the claims.

[コモンレールシステム]
最初に図1を参照し、コモンレールシステムの全体構成を説明する。コモンレールシステムは、燃料タンク1、高圧ポンプ(又はサプライポンプ)10、コモンレール8、複数の燃料噴射弁12等がそれぞれパイプで接続されて構成されている。燃料タンク1と高圧ポンプ10とは低圧燃料パイプ2で接続されており、低圧燃料パイプ2の途中には異物を除去するための燃料フィルタ3が設けられている。高圧ポンプ10とコモンレール8との間はレール前高圧燃料パイプ7で接続されている。コモンレール8と複数の燃料噴射弁12との間は複数のレール後高圧燃料パイプ11で接続されている。
[Common rail system]
First, referring to FIG. 1, the overall configuration of the common rail system will be described. The common rail system is configured by connecting a fuel tank 1, a high pressure pump (or supply pump) 10, a common rail 8, a plurality of fuel injection valves 12, etc. with pipes. A fuel tank 1 and a high-pressure pump 10 are connected by a low-pressure fuel pipe 2, and a fuel filter 3 is provided in the middle of the low-pressure fuel pipe 2 for removing foreign substances. The high-pressure pump 10 and the common rail 8 are connected by a rail-front high-pressure fuel pipe 7 . A plurality of post-rail high-pressure fuel pipes 11 are connected between the common rail 8 and the plurality of fuel injection valves 12 .

高圧ポンプ10は、燃料タンク1から吸入した低圧燃料を加圧し、高圧燃料をコモンレール8に供給する。コモンレール8に供給された高圧燃料は、複数(図1の例では4つ)の燃料噴射弁12に分配される。燃料噴射弁12は、エンジンの気筒に燃料を噴射する。なお、制御系の構成に関する図示及び動作説明を省略する。 The high-pressure pump 10 pressurizes the low-pressure fuel sucked from the fuel tank 1 and supplies the high-pressure fuel to the common rail 8 . The high-pressure fuel supplied to the common rail 8 is distributed to a plurality of (four in the example of FIG. 1) fuel injection valves 12 . The fuel injection valve 12 injects fuel into the cylinder of the engine. Illustrations and descriptions of the operation of the configuration of the control system are omitted.

また、噴射により消費されないリターン燃料を燃料タンク1に戻すためのリターンパイプ14が設けられている。高圧ポンプ10、コモンレール8、燃料噴射弁12からリターンパイプ14までの間は、それぞれオーバーフローパイプ6、リリーフパイプ9、リークパイプ13で接続されている。このうち本実施形態では、高圧ポンプ10からオーバーフローパイプ6を経由してリターンパイプ14に排出されるリターン燃料に着目する。 Also, a return pipe 14 is provided for returning the return fuel that is not consumed by injection to the fuel tank 1 . The high pressure pump 10, common rail 8, fuel injection valve 12 and return pipe 14 are connected by an overflow pipe 6, a relief pipe 9 and a leak pipe 13, respectively. Of these, in this embodiment, attention is paid to the return fuel discharged from the high-pressure pump 10 to the return pipe 14 via the overflow pipe 6 .

[高圧ポンプ]
続いて、高圧ポンプ10の構成及び作用効果について実施形態毎に説明する。本実施形態の高圧ポンプ10におけるリーク燃料回収路60に関する構成以外の構成及び動作は、基本的に特許文献1(特開2016-142197号公報)に記載された燃料供給装置と同じであるため、以下の説明において詳細な記述を省略する。各実施形態の高圧ポンプの符号は、「10」に続く3桁目に実施形態の番号を付す。
[High pressure pump]
Next, the configuration and effects of the high-pressure pump 10 will be described for each embodiment. The configuration and operation of the high-pressure pump 10 of the present embodiment other than the configuration related to the leak fuel recovery path 60 are basically the same as those of the fuel supply device described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2016-142197). Detailed description is omitted in the following description. The code|symbol of the high pressure pump of each embodiment attaches the number of embodiment to the 3rd digit following "10."

(第1実施形態)
第1実施形態の高圧ポンプ101について図2~図5を参照して説明する。図2に示すように、高圧ポンプ101は、シリンダ20のプランジャ孔23に挿入されたプランジャ25が摺動することにより加圧室24の容積を変化させる。以下、図2の上下方向に従って、プランジャ孔23の加圧室24側を上側とし、加圧室24と反対側を下側とする。プランジャ25はプランジャ孔23に沿って上下方向に往復移動する。なお、実際にエンジンのシリンダブロック等に搭載された形態では、プランジャ25の移動方向は厳密な鉛直方向に限らず、傾いて搭載されてもよい。
(First embodiment)
A high-pressure pump 101 of the first embodiment will be described with reference to FIGS. 2 to 5. FIG. As shown in FIG. 2, the high-pressure pump 101 changes the volume of the pressure chamber 24 by sliding the plunger 25 inserted into the plunger hole 23 of the cylinder 20 . Hereinafter, according to the vertical direction of FIG. 2, the pressurizing chamber 24 side of the plunger hole 23 is referred to as the upper side, and the side opposite to the pressurizing chamber 24 is referred to as the lower side. The plunger 25 reciprocates vertically along the plunger hole 23 . In addition, in a form in which the plunger 25 is actually mounted on a cylinder block or the like of an engine, the movement direction of the plunger 25 is not limited to the strictly vertical direction, and may be mounted in an inclined manner.

プランジャ25の下端には、スプリング28により下向きに付勢されたシート29が連結されている。図示しないカムシャフトの回転がプランジャ25の下端に伝達されることにより、プランジャ25はスプリング28の付勢力に抗して上昇し、燃料入口41から加圧室24に流入した燃料を加圧してコモンレール8に吐出する。なお、高圧燃料の吐出口は図2の断面には表れておらず、図3、図4に参照される。 A seat 29 biased downward by a spring 28 is connected to the lower end of the plunger 25 . When the rotation of the camshaft (not shown) is transmitted to the lower end of the plunger 25, the plunger 25 rises against the urging force of the spring 28, pressurizes the fuel flowing into the pressure chamber 24 from the fuel inlet 41, and pressurizes the common rail. 8 to dispense. It should be noted that the high-pressure fuel discharge port is not shown in the cross section of FIG. 2, and is referred to in FIGS.

シリンダ20の上部に形成された弁ボディ収容部21には、電磁弁部30のボディ31が収容されている。ボディ31には、径方向に貫通し、加圧室24に連通する開口33を有する弁通路32が形成されている。後述するように、弁通路32は、「燃料入口41とリーク燃料回収路60の下流部との連通路としての機能以外の機能を有する容積室」に相当する。本明細書では「容積室」の用語を、具体的な部位の名称としてではなく、「連通路の一部を構成する空間」を意味する上位概念の用語として用いる。 A body 31 of an electromagnetic valve portion 30 is accommodated in a valve body accommodation portion 21 formed in the upper portion of the cylinder 20 . A valve passage 32 is formed through the body 31 in the radial direction and has an opening 33 communicating with the pressurizing chamber 24 . As will be described later, the valve passage 32 corresponds to "a volumetric chamber having a function other than a function as a communication passage between the fuel inlet 41 and the downstream portion of the leak fuel recovery passage 60". In this specification, the term "volume chamber" is used not as a name of a specific part, but as a generic term meaning "a space forming part of a communication path".

シリンダ20のダンパ装着部22には、燃料の脈動を抑制するダンパ42が装着されている。燃料入口41から流入した燃料は、ダンパ42を経由して弁通路32に至る。弁体35は、開弁時に弁通路32の開口33を開放し、閉弁時にシート部34に着座して開口33を閉鎖することで、加圧室24に吸入される燃料を調量する。シリンダ20の上方には、電磁弁部30を構成するコイル36、ステータコア37、アーマチャ38、スプリングガイドストッパ39等が設けられている。 A damper 42 that suppresses fuel pulsation is mounted on the damper mounting portion 22 of the cylinder 20 . Fuel flowing from the fuel inlet 41 reaches the valve passage 32 via the damper 42 . The valve body 35 opens the opening 33 of the valve passage 32 when the valve is opened, and sits on the seat portion 34 to close the opening 33 when the valve is closed, thereby adjusting the amount of fuel sucked into the pressurization chamber 24 . Above the cylinder 20, a coil 36, a stator core 37, an armature 38, a spring guide stopper 39, and the like, which constitute the electromagnetic valve portion 30, are provided.

シリンダ20の下部にはカバー26が設けられており、プランジャ25の外周をシールするオイルシール27がカバー26によって固定されている。オイルシール27の上側の環状空間には、加圧室24からシリンダ20の内壁とプランジャ25の外壁との隙間を通って漏れ出たリーク燃料が溜まる。 A cover 26 is provided under the cylinder 20 , and an oil seal 27 for sealing the outer periphery of the plunger 25 is fixed by the cover 26 . In the annular space above the oil seal 27, leaked fuel that has leaked from the pressure chamber 24 through the gap between the inner wall of the cylinder 20 and the outer wall of the plunger 25 accumulates.

シリンダ20には、この環状空間とリターン燃料出口68とを連通し、リーク燃料をシリンダ20の外部に排出するリーク燃料回収路60が形成されている。つまり、この環状空間はリーク燃料がリーク燃料回収路60に流入する「回収路入口61」をなす。また、リーク燃料回収路60においてリーク燃料が流入する側の部位を「上流部」とし、リーク燃料が排出される側の部位を「下流部」とする。 The cylinder 20 is formed with a leak fuel recovery passage 60 that communicates the annular space with a return fuel outlet 68 and discharges the leak fuel to the outside of the cylinder 20 . That is, this annular space forms a "recovery path entrance 61" through which the leaked fuel flows into the leaked fuel recovery path 60. As shown in FIG. In the leak fuel recovery passage 60, the portion of the leak fuel collection path 60 on the side into which the leak fuel flows is called the "upstream portion", and the portion on the side where the leak fuel is discharged is called the "downstream portion".

ここで、第1実施形態のリーク燃料回収路60は、下流部に位置する合流部66において、弁通路32から連通する弁部連通路43が合流している。すなわち、リーク燃料回収路60の下流部は、弁部連通路43及び弁通路32を経由して燃料入口41と連通している。弁部連通路43には合流部66の直前部に絞り45が設けられている。絞り45の径及び長さは適宜設定される。一方、リーク燃料回収路60の上流部には、燃料入口41と連通する経路は形成されていない。要するにリーク燃料回収路60は、下流部でのみ燃料入口41と連通している。 Here, in the leaked fuel recovery passage 60 of the first embodiment, the valve portion communication passage 43 communicating with the valve passage 32 joins at a junction portion 66 located in the downstream portion. That is, the downstream portion of the leaked fuel recovery passage 60 communicates with the fuel inlet 41 via the valve section communication passage 43 and the valve passage 32 . A throttle 45 is provided in the valve portion communication passage 43 immediately before the confluence portion 66 . The diameter and length of the diaphragm 45 are appropriately set. On the other hand, no path communicating with the fuel inlet 41 is formed in the upstream portion of the leaked fuel recovery path 60 . In short, the leaked fuel recovery path 60 communicates with the fuel inlet 41 only at the downstream portion.

また、第1実施形態のリーク燃料回収路60は、プランジャ25の軸に対する角度が互いに異なる上流側流路63と下流側流路64とが接続されている。つまり、リーク燃料回収路60は、上流側流路63と下流側流路64とが折れ曲がって接続される形状を呈している。 Further, in the leaked fuel recovery path 60 of the first embodiment, an upstream side flow path 63 and a downstream side flow path 64 having different angles with respect to the axis of the plunger 25 are connected. In other words, the leak fuel recovery path 60 has a shape in which the upstream side flow path 63 and the downstream side flow path 64 are bent and connected.

その他、図2では、プランジャ25の軸に沿ってZ軸が定義されており、加圧室24の上端位置が「0」、回収路入口61の位置が「a」と記されている。これらは図5の説明で用いられる。 In addition, in FIG. 2, the Z-axis is defined along the axis of the plunger 25, the upper end position of the pressurizing chamber 24 is indicated by "0", and the position of the recovery path inlet 61 is indicated by "a". These are used in the description of FIG.

次に、図3の模式断面図及び図4の模式平面図を参照する。なお、他の実施形態の図も図3及び図4に準じて記載される。図3は、高圧ポンプ101の軸方向断面について、特に燃料が流れる経路を模式的に示したものである。図2に対し図3には、吐出通路46、吐出弁47及び吐出口48が図示されている点、電磁弁部30及びダンパ42を簡略化している点が主に異なる。燃料の吸入及び調量時、吐出弁47はスプリング力により閉弁している。プランジャ25が上昇し、加圧室24内の燃料圧力による力が吐出弁47のスプリング力を上回ると吐出弁47が開弁し、高圧燃料は、吐出通路46を通って吐出口48から外部へ吐出される。 Next, reference is made to the schematic cross-sectional view of FIG. 3 and the schematic plan view of FIG. The drawings of other embodiments are also described according to FIGS. 3 and 4. FIG. FIG. 3 schematically shows, in an axial cross-section of the high-pressure pump 101, in particular, the path through which fuel flows. 3 mainly differs from FIG. 2 in that the discharge passage 46, the discharge valve 47 and the discharge port 48 are illustrated, and the solenoid valve portion 30 and the damper 42 are simplified. During fuel intake and metering, the discharge valve 47 is closed by spring force. When the plunger 25 rises and the force due to the fuel pressure in the pressurizing chamber 24 exceeds the spring force of the discharge valve 47, the discharge valve 47 opens, and the high pressure fuel flows through the discharge passage 46 and out of the discharge port 48 to the outside. Dispensed.

図4は、高圧ポンプ101の上方から視た径方向断面について、燃料が流れる経路を模式的に示したものである。正確には径方向の模式断面図であるが、便宜上「模式平面図」と呼ぶ。略円筒状のシリンダ20の中心に加圧室24が形成され、燃料入口41、吐出口48及びリターン燃料出口68が周方向に適宜配置される。これらの配置は正確なものではなく、単にそれらが互いに干渉しない位置に配置されることを示しているに過ぎない。また、模式平面図上にて直線で示された経路が必ずしも真っ直ぐ形成されるわけでなく、逆に模式平面図にて折れ線で示された経路が実際には真っ直ぐ形成される場合もある。 FIG. 4 schematically shows a fuel flow path in a radial cross section of the high-pressure pump 101 viewed from above. To be precise, it is a schematic cross-sectional view in the radial direction, but for the sake of convenience, it is called a "schematic plan view". A pressurization chamber 24 is formed at the center of a substantially cylindrical cylinder 20, and a fuel inlet 41, a discharge port 48, and a return fuel outlet 68 are appropriately arranged in the circumferential direction. These placements are not exact, they merely indicate that they are placed so that they do not interfere with each other. Further, a straight path shown in a schematic plan view is not necessarily formed straight, and conversely, a path shown as a broken line in a schematic plan view may actually be formed straight.

シリンダ20の中心部においてボディ31を細破線で示し、弁通路32及び開口33を実線で示す。また、弁通路32よりも下方にある加圧室24、及び、加圧室24から吐出口48に連通する吐出通路46を破線で示す。弁通路32の開口33内にある弁体35の断面は図示しない。ダンパ42は、燃料入口41と弁通路32との間に模式的に記す。燃料入口41からダンパ42を経由して弁通路32に流入した燃料は、弁体35の開弁時に開口33から紙面奥の加圧室24に供給される。また、弁通路32に流入した燃料は、弁部連通路43及び絞り45を経由してリーク燃料回収路60の下流部に位置する合流部66でリーク燃料に合流する。合流した燃料は、リターン燃料出口68から排出される。 A body 31 is indicated by a thin dashed line at the center of the cylinder 20, and a valve passage 32 and an opening 33 are indicated by solid lines. The pressurizing chamber 24 located below the valve passage 32 and the discharge passage 46 communicating from the pressurizing chamber 24 to the discharge port 48 are indicated by broken lines. A cross-section of the valve body 35 within the opening 33 of the valve passage 32 is not shown. A damper 42 is schematically depicted between the fuel inlet 41 and the valve passage 32 . The fuel that has flowed into the valve passage 32 from the fuel inlet 41 via the damper 42 is supplied from the opening 33 to the pressure chamber 24 at the back of the paper when the valve body 35 is opened. Further, the fuel that has flowed into the valve passage 32 passes through the valve portion communication passage 43 and the throttle 45 and joins the leaked fuel at the junction portion 66 located downstream of the leaked fuel recovery passage 60 . The merged fuel is discharged from the return fuel outlet 68 .

このように第1実施形態では、ボディ31の弁通路32は、調量弁における「容積室」という本来の機能に加え、「燃料入口41とリーク燃料回収路60の下流部との連通路」として機能する。すなわち、第1実施形態の高圧ポンプ101は、調量弁の「容積室」である弁通路32を「燃料入口41とリーク燃料回収路60の下流部との連通路」として共用している。 Thus, in the first embodiment, the valve passage 32 of the body 31 functions as a "communication passage between the fuel inlet 41 and the downstream portion of the leak fuel recovery passage 60" in addition to the original function of the "volume chamber" in the metering valve. function as That is, the high-pressure pump 101 of the first embodiment shares the valve passage 32, which is the "volume chamber" of the metering valve, as a "communication passage between the fuel inlet 41 and the downstream portion of the leak fuel recovery passage 60".

図2を参照して上述したように、第1実施形態のリーク燃料回収路60は、プランジャ25の軸に対する角度が互いに異なる上流側流路63と下流側流路64とが接続されている。詳しくは、上流側流路63がプランジャ25の軸となす角度θ1は、下流側流路64がプランジャ25の軸となす角度θ2より小さい。すなわち、相対的に上流側流路63はプランジャ孔23に沿うように形成され、下流側流路64はプランジャ孔23から離れるように形成されている。なお、図2では下流側流路64はプランジャ25の軸に対して傾斜しており、「θ1<θ2<90°」の関係にある。ただし、下流側流路64はプランジャ25の軸に対して直交(すなわち「θ2=90°」)するように形成されてもよい。 As described above with reference to FIG. 2, in the leaked fuel recovery path 60 of the first embodiment, the upstream side flow path 63 and the downstream side flow path 64 having different angles with respect to the axis of the plunger 25 are connected. Specifically, the angle θ1 that the upstream flow path 63 forms with the axis of the plunger 25 is smaller than the angle θ2 that the downstream flow path 64 forms with the axis of the plunger 25 . That is, the upstream flow path 63 is formed along the plunger hole 23 , and the downstream flow path 64 is formed away from the plunger hole 23 . In addition, in FIG. 2, the downstream flow path 64 is inclined with respect to the axis of the plunger 25, and has a relationship of "θ1<θ2<90°". However, the downstream flow path 64 may be formed so as to be perpendicular to the axis of the plunger 25 (that is, "θ2=90°").

また、上流側流路63及び下流側流路64は一般にドリル加工されるため、断面は円形である。そして、上流側流路63の直径D1は、下流側流路64の直径D2より小さい。なお、流路の断面形状が厳密に円形でない場合でも、例えば楕円形状であれば長径と短径との平均を直径とみなして比較すればよい。 Also, the upstream channel 63 and the downstream channel 64 are generally drilled and therefore circular in cross-section. The diameter D1 of the upstream channel 63 is smaller than the diameter D2 of the downstream channel 64 . Even if the cross-sectional shape of the flow path is not strictly circular, if it is, for example, an elliptical shape, the average of the major axis and the minor axis can be regarded as the diameter for comparison.

次に図5を参照し、本実施形態の効果について比較例と対比しつつ説明する。「発明が解決しようとする課題」の欄に記載した通り、本明細書では、燃料温度について「高温」、「低温」は相対的な温度を意味する。比較例の高圧ポンプは、リーク燃料回収路の上流部で燃料入口と連通する構成であり、燃料タンクから低温の燃料が回収路入口61付近に導入される。例えば独国DE102017204843B3のFIGに開示された高圧ポンプが比較例に該当する。 Next, with reference to FIG. 5, the effect of this embodiment will be described in comparison with a comparative example. As described in the section "Problems to be Solved by the Invention", in this specification, "high temperature" and "low temperature" mean relative temperatures with respect to the fuel temperature. The high-pressure pump of the comparative example is configured to communicate with the fuel inlet at the upstream portion of the leak fuel recovery path, and low-temperature fuel is introduced from the fuel tank to the vicinity of the recovery path inlet 61 . For example, the high-pressure pump disclosed in FIG of German DE102017204843B3 corresponds to the comparative example.

なお、特許文献1(特開2016-142197号公報)の図1等に開示された燃料供給装置は、リーク燃料回収路の上流部及び下流部の両方で燃料入口と連通しており、この燃料供給装置の構成は比較例とは異なる。 In addition, the fuel supply device disclosed in FIG. 1 of Patent Document 1 (Japanese Patent Application Laid-Open No. 2016-142197) communicates with the fuel inlet at both the upstream and downstream portions of the leak fuel recovery path. The configuration of the supply device is different from that of the comparative example.

図5の横軸は、図2に示すZ軸上の位置を示す。Z軸の「0」は加圧室24の上端位置であり、Z軸の「a」は、オイルシール27の上側に相当する回収路入口61の位置である。シリンダ20の上部であるZ軸の0付近において、燃料入口41から加圧室24に流入したばかりの燃料は比較的低温である。シリンダ20の下部に近づきZ軸の値が大きくなると、プランジャ25とシリンダ20との摺動によるリーク燃料の温度上昇が伝わることにより、プランジャ温度、シリンダ温度ともに上昇する。高温のリーク燃料が溜まるZ軸の「a」の位置では最も高温となる。 The horizontal axis in FIG. 5 indicates the position on the Z-axis shown in FIG. “0” on the Z-axis is the upper end position of the pressurizing chamber 24 , and “a” on the Z-axis is the position of the recovery path inlet 61 corresponding to the upper side of the oil seal 27 . In the vicinity of 0 on the Z axis, which is the upper portion of the cylinder 20, the fuel that has just flowed into the pressurization chamber 24 from the fuel inlet 41 is at a relatively low temperature. As the lower part of the cylinder 20 is approached and the Z-axis value increases, the temperature rise of the leaked fuel due to the sliding between the plunger 25 and the cylinder 20 is transmitted, and both the plunger temperature and the cylinder temperature rise. The temperature is highest at the position "a" on the Z-axis where high-temperature leaked fuel accumulates.

図5(a)に示す比較例では、燃料入口からリーク燃料回収路の上流部に流入する低温燃料によりシリンダが冷却されるため、シリンダ温度が低下し、プランジャ温度との温度差が大きくなる。その結果、高温のプランジャ外壁と低温のシリンダ内壁とのクリアランスが熱膨張差により縮小し、プランジャの作動不良が生じるおそれがある。最悪の場合にはプランジャの焼き付きに至ることが懸念される。 In the comparative example shown in FIG. 5(a), the cylinder is cooled by the low-temperature fuel flowing from the fuel inlet into the upstream portion of the leaked fuel recovery path, so the cylinder temperature drops and the temperature difference from the plunger temperature increases. As a result, the clearance between the high-temperature outer wall of the plunger and the inner wall of the low-temperature cylinder is reduced due to the difference in thermal expansion, which may cause malfunction of the plunger. In the worst case, there is concern that the plunger may be seized.

それに対し、図5(b)に示す本実施形態では、リーク燃料回収路60の上流部に低温燃料が流入しないため、シリンダ20の下部、すなわち「a」付近の位置におけるリーク燃料は冷却されない。そのため、高温のリーク燃料の熱がシリンダ20の下部に伝わりやすくなる。したがって、プランジャ25とシリンダ20との温度差を低減し、適切なクリアランスを維持することができる。よって、プランジャ25の作動不良を防止することができる。 In contrast, in the present embodiment shown in FIG. 5B, low-temperature fuel does not flow into the upstream portion of the leaked fuel recovery passage 60, so the leaked fuel in the lower portion of the cylinder 20, that is, the position near "a" is not cooled. Therefore, the heat of high-temperature leaked fuel is easily transmitted to the lower portion of the cylinder 20 . Therefore, the temperature difference between the plunger 25 and the cylinder 20 can be reduced, and an appropriate clearance can be maintained. Therefore, malfunction of the plunger 25 can be prevented.

一方、リーク燃料回収路60の下流部には燃料入口41から低温燃料が流入されることで、高圧ポンプ101の外部に排出されるリーク燃料を冷却し、リターン燃料冷却装置の負担を軽減することができる。その他、第1実施形態の高圧ポンプ101は以下のような効果を奏する。 On the other hand, the low-temperature fuel flows into the downstream portion of the leak fuel recovery path 60 from the fuel inlet 41, thereby cooling the leak fuel discharged to the outside of the high-pressure pump 101 and reducing the load on the return fuel cooling device. can be done. In addition, the high-pressure pump 101 of the first embodiment has the following effects.

燃料入口41とリーク燃料回収路60の下流部とは、「連通路としての機能以外の機能を有する容積室」としての弁通路32を経由して連通する。言い換えれば、燃料入口41とリーク燃料回収路60の下流部とを連通する経路の一部に弁通路32が含まれる。これにより、高圧ポンプ101に専用の連通路を設けることなく、他の機能を有する容積室を有効に共用することができる。 The fuel inlet 41 and the downstream portion of the leak fuel recovery path 60 are communicated with each other via the valve passage 32 as a "capacity chamber having a function other than that of a communication passage". In other words, the valve passage 32 is included in a part of the passage connecting the fuel inlet 41 and the downstream portion of the leak fuel recovery passage 60 . As a result, the high-pressure pump 101 can effectively share a volumetric chamber having other functions without providing a dedicated communication path.

リーク燃料回収路60は、プランジャ25の軸に対する角度が互いに異なる上流側流路63及び下流側流路64が順に接続されて構成されている。これにより、リターン燃料出口68の位置や孔加工の都合に応じて、リーク燃料回収路60のレイアウトの自由度を増すことができる。 The leaked fuel recovery path 60 is configured by sequentially connecting an upstream side flow path 63 and a downstream side flow path 64 having different angles with respect to the axis of the plunger 25 . As a result, it is possible to increase the degree of freedom in the layout of the leaked fuel recovery path 60 according to the position of the return fuel outlet 68 and the convenience of hole processing.

特に第1実施形態では、上流側流路63がプランジャ25の軸となす角度θ1は、下流側流路64がプランジャ25の軸となす角度θ2より小さい。高温のリーク燃料が通る上流側流路63がプランジャ孔23に近接しているため、シリンダ20の下部を効果的に加温し、プランジャ25とシリンダ20との温度差をより小さくすることができる。また、上流側流路63の直径D1は下流側流路64の直径D2より小さいため、シリンダ20の下部での燃料流速を上げ、シリンダ20の下部での熱伝達率を増加させることができる。 Particularly in the first embodiment, the angle θ1 formed by the upstream flow path 63 and the axis of the plunger 25 is smaller than the angle θ2 formed by the downstream flow path 64 and the axis of the plunger 25 . Since the upstream flow path 63 through which high-temperature leaked fuel passes is close to the plunger hole 23, the lower portion of the cylinder 20 can be effectively heated, and the temperature difference between the plunger 25 and the cylinder 20 can be further reduced. . Also, since the diameter D1 of the upstream flow path 63 is smaller than the diameter D2 of the downstream flow path 64, the fuel flow velocity in the lower portion of the cylinder 20 can be increased, and the heat transfer coefficient in the lower portion of the cylinder 20 can be increased.

さらに、燃料入口41とリーク燃料回収路60の下流部とを連通する弁部連通路43には、絞り45が設けられている。リーク燃料を冷却するために必要な燃料量に比べて弁部連通路43を通ってリターンされる燃料量が過剰になると、圧送される燃料の比率が低下する。つまり、加圧室24へ吸入される燃料が減少するため、高圧ポンプ101に要求される吐出量を吐出することができなくなる。そこで、弁部連通路43に絞り45を設けることで、リーク燃料回収路60に合流する燃料量を適切に調整することができる。 Further, a throttle 45 is provided in the valve portion communication passage 43 that communicates the fuel inlet 41 and the downstream portion of the leak fuel recovery passage 60 . If the amount of fuel returned through the valve section communication passage 43 becomes excessive compared to the amount of fuel required to cool the leaked fuel, the ratio of the fuel pumped will decrease. In other words, since the amount of fuel sucked into the pressurizing chamber 24 is reduced, the high-pressure pump 101 cannot discharge the required amount of fuel. Therefore, by providing the throttle 45 in the valve portion communication passage 43, the amount of fuel that joins the leaked fuel recovery passage 60 can be appropriately adjusted.

(第2実施形態)
図6、図7に第2実施形態の高圧ポンプ102を示す。第2実施形態は、第1実施形態のリーク燃料回収路60の形状等を単純化したものである。すなわち、リーク燃料回収路60は、上流部から下流部まで単一径かつ直線状に形成されている。また、燃料入口41と弁通路32との間のダンパ42は省略されており、弁部連通路43には絞り45が設けられていない。
(Second embodiment)
6 and 7 show the high-pressure pump 102 of the second embodiment. The second embodiment simplifies the shape and the like of the leaked fuel recovery path 60 of the first embodiment. That is, the leaked fuel recovery path 60 is formed in a straight line with a uniform diameter from the upstream portion to the downstream portion. Also, the damper 42 between the fuel inlet 41 and the valve passage 32 is omitted, and the valve section communication passage 43 is not provided with the throttle 45 .

要するに第2実施形態の高圧ポンプ102は、「リーク燃料回収路60の下流部のみが燃料入口41と連通する構成」を最低限に実現する形態である。少なくとも図6、図7の構成とすることで、プランジャ25とシリンダ20との温度差が小さくなり、プランジャ25とシリンダ20との適切なクリアランスが維持される。よって、プランジャ25の作動不良を防止することができる。また第2実施形態では、単一径のリーク燃料回収路60を直線状に加工すればよいため、加工工数を低減することができる。 In short, the high-pressure pump 102 of the second embodiment is a form that minimally realizes "a configuration in which only the downstream portion of the leaked fuel recovery path 60 communicates with the fuel inlet 41". 6 and 7 reduces the temperature difference between the plunger 25 and the cylinder 20, and maintains an appropriate clearance between the plunger 25 and the cylinder 20. FIG. Therefore, malfunction of the plunger 25 can be prevented. In addition, in the second embodiment, since the leaked fuel recovery path 60 having a single diameter can be processed straight, the number of processing steps can be reduced.

(第3実施形態)
図8、図9に第3実施形態の高圧ポンプ103を示す。第3実施形態は、第2実施形態に対し、燃料入口41からリーク燃料回収路60の下流部に連通する経路が異なる。すなわち、燃料入口41とリーク燃料回収路60の下流部とは、専用の傍流連通路44を経由して直接連通する。ここで「傍流連通路」の用語は、弁通路32を経由する弁部連通路43を「主流」の経路とみなしたとき、主流に対して傍流であるという意味合いに過ぎず、連通路が形成される位置を限定するものではない。図8、図9では、傍流連通路44は数箇所で屈折するように模式的に示されているが、実際には加工が可能もしくは容易な形状に形成されればよい。
(Third embodiment)
8 and 9 show the high-pressure pump 103 of the third embodiment. The third embodiment differs from the second embodiment in the path communicating from the fuel inlet 41 to the downstream portion of the leak fuel recovery path 60 . That is, the fuel inlet 41 and the downstream portion of the leaked fuel recovery path 60 are directly communicated with each other via the dedicated side stream communication path 44 . Here, the term "side-flow communication path" simply means that when the valve portion communication path 43 passing through the valve passage 32 is regarded as a "main flow" path, it is a side flow with respect to the main flow. It does not limit the position where In FIGS. 8 and 9, the side-flow communication passage 44 is schematically shown as being bent at several points, but in practice it may be formed into a shape that can be or easily processed.

図8、図9において、弁通路32とリーク燃料回収路60の下流部との間は連通していなくてもよいし、二点鎖線で示すように弁部連通路43が形成されてもよい。弁部連通路43が形成されていない場合、燃料入口41とリーク燃料回収路60の下流部とは、傍流連通路44のみを経由して連通する。また、弁部連通路43が形成されている場合、燃料入口41とリーク燃料回収路60とは、傍流連通路44及び弁部連通路43の両方を並列に経由して連通する。 8 and 9, the valve passage 32 and the downstream portion of the leaked fuel recovery passage 60 may not be communicated with each other, or a valve portion communication passage 43 may be formed as indicated by a two-dot chain line. . If the valve portion communication passage 43 is not formed, the fuel inlet 41 and the downstream portion of the leaked fuel recovery passage 60 communicate with each other only via the side stream communication passage 44 . Further, when the valve portion communication passage 43 is formed, the fuel inlet 41 and the leaked fuel recovery passage 60 communicate with each other via both the side stream communication passage 44 and the valve portion communication passage 43 in parallel.

第3実施形態では、燃料入口41とリーク燃料回収路60の下流部とを連通する専用の傍流連通路44が形成されるため、燃料入口41からリーク燃料回収路60の下流部に、低温燃料をより安定的に供給することができる。なお、第3実施形態も第1実施形態と同様に、プランジャ25の軸に対する角度の異なる複数の流路が接続されてもよい。また、複数の流路の直径を変えたり、傍流連通路44に絞りを設けたりしてもよい。 In the third embodiment, since the dedicated side stream communication passage 44 that communicates between the fuel inlet 41 and the downstream portion of the leak fuel recovery passage 60 is formed, low-temperature fuel flows from the fuel inlet 41 to the downstream portion of the leak fuel recovery passage 60. can be supplied more stably. In the third embodiment, as in the first embodiment, a plurality of flow paths having different angles with respect to the axis of the plunger 25 may be connected. Further, the diameters of the plurality of flow paths may be changed, or the side flow communication path 44 may be provided with a throttle.

(第4実施形態)
図10、図11に第4実施形態の高圧ポンプ104を示す。第4実施形態は第3実施形態に対し、傍流連通路435の途中にダンパ51又はバルブ52が設けられている。ダンパ51は、図2に示すダンパ42に対し脈動を抑制するという機能は基本的に同じであるが設置位置が異なる。また、バルブ52は傍流連通路435を開閉するものであり、具体的な構成は問わない。ダンパ51やバルブ52内の容積室は、「燃料入口41とリーク燃料回収路60の下流部との連通路としての機能以外の機能を有する容積室」に相当する。したがって、第3実施形態の傍流連通路44とは異なり、第4実施形態の傍流連通路435は「専用の連通路」に該当しない場合がある。このように、燃料入口41とリーク燃料回収路60の下流部との連通路は、どのような形態で構成されてもよい。
(Fourth embodiment)
10 and 11 show the high pressure pump 104 of the fourth embodiment. In contrast to the third embodiment, the fourth embodiment is provided with a damper 51 or a valve 52 in the middle of the side flow communication passage 435 . The damper 51 has basically the same function of suppressing pulsation as the damper 42 shown in FIG. 2, but the installation position is different. Further, the valve 52 opens and closes the side flow communication passage 435, and its specific configuration is not limited. The volumetric chamber in the damper 51 and the valve 52 corresponds to "a volumetric chamber having a function other than a function as a communication passage between the fuel inlet 41 and the downstream portion of the leak fuel recovery path 60". Therefore, unlike the side-stream communication path 44 of the third embodiment, the side-stream communication path 435 of the fourth embodiment may not correspond to the "dedicated communication path". Thus, the communication path between the fuel inlet 41 and the downstream portion of the leaked fuel recovery path 60 may be configured in any form.

(第5実施形態)
図12に示す第5実施形態の高圧ポンプ105は、回収路入口61の周方向の異なる位置からそれぞれリターン燃料出口68に連通する2本のリーク燃料回収路601、602が形成されている。各リーク燃料回収路601、602は、プランジャ25の軸に対する角度が相対的に小さい上流部回収路631、632と、プランジャ25の軸に対する角度が相対的に大きい下流部回収路641、642とが接続されて構成されている。
(Fifth embodiment)
A high-pressure pump 105 of the fifth embodiment shown in FIG. 12 is formed with two leak fuel recovery paths 601 and 602 communicating with a return fuel outlet 68 from different positions in the circumferential direction of the recovery path inlet 61 . Each of the leaked fuel recovery paths 601 and 602 includes upstream recovery paths 631 and 632 having relatively small angles with respect to the axis of the plunger 25 and downstream recovery paths 641 and 642 having relatively large angles with respect to the axis of the plunger 25 . Connected and configured.

同様に、3本以上のリーク燃料回収路が形成されてもよい。回収路入口61の周方向の異なる位置に複数のリーク燃料回収路が形成されることで、リーク燃料排出量の周方向の偏りを低減することができる。よって、シリンダ温度を周方向で比較的均一にすることができる。 Similarly, three or more leaked fuel recovery paths may be formed. By forming a plurality of leaked fuel recovery paths at different positions in the circumferential direction of the recovery path entrance 61, it is possible to reduce unevenness in the amount of leaked fuel discharged in the circumferential direction. Therefore, the cylinder temperature can be made relatively uniform in the circumferential direction.

(その他の実施形態)
(a)上記第1実施形態に対し、上流側流路63がプランジャ25の軸となす角度θ1は、下流側流路64がプランジャ25の軸となす角度θ2より大きくなるようにしてもよい。その場合、プランジャ25とシリンダ20との温度差をより小さくする効果は期待できないが、リターン燃料出口68の位置や孔加工の都合に応じて、リーク燃料回収路60のレイアウトの自由度を増すことができるという効果は同様に得られる。
(Other embodiments)
(a) In contrast to the first embodiment, the angle θ1 formed by the upstream flow path 63 and the axis of the plunger 25 may be larger than the angle θ2 formed by the downstream flow path 64 and the axis of the plunger 25 . In that case, the effect of reducing the temperature difference between the plunger 25 and the cylinder 20 cannot be expected, but the degree of freedom in the layout of the leak fuel recovery path 60 can be increased according to the position of the return fuel outlet 68 and the convenience of hole processing. The effect of being able to

(b)上記第1実施形態に対し、リーク燃料回収路60は、加工が可能であれば、プランジャ25の軸に対する角度が互いに異なる3本以上の流路が順に接続されて構成されてもよい。 (b) In contrast to the above-described first embodiment, the leaked fuel recovery path 60 may be formed by sequentially connecting three or more flow paths having different angles with respect to the axis of the plunger 25, provided that processing is possible. .

(c)上記第1実施形態の上流側流路63及び下流側流路64は、いずれもストレート状、すなわち単一の直径D1、D2を有するように形成されている。それに対し、例えばリーク燃料回収路60が上流部から下流部に向かって連続的に拡径するテーパ状に形成されてもよい。その形態でも、リーク燃料回収路60は、上流部の直径が下流部の直径より小さくなる。したがって、シリンダ20下部での燃料流速を上げ、シリンダ20下部での熱伝達率を増加させるという効果を奏する。 (c) The upstream channel 63 and the downstream channel 64 of the first embodiment are both straight, that is, formed to have single diameters D1 and D2. On the other hand, for example, the leak fuel recovery path 60 may be formed in a tapered shape that continuously increases in diameter from the upstream portion toward the downstream portion. Even in this form, the diameter of the upstream portion of the leaked fuel recovery path 60 is smaller than the diameter of the downstream portion. Therefore, there is an effect that the fuel flow velocity in the lower part of the cylinder 20 is increased and the heat transfer coefficient in the lower part of the cylinder 20 is increased.

(d)上記各実施形態のリーク燃料回収路や連通路に関する構成は、矛盾しない限り、適宜組み合わせて用いられてよい。 (d) The configurations relating to the leaked fuel collection path and the communication path in each of the above embodiments may be used in combination as long as there is no contradiction.

(e)本発明の高圧ポンプは、ディーゼルエンジンに限らず、ガソリンエンジンその他の燃料圧送用ポンプとして使用されてもよい。 (e) The high-pressure pump of the present invention may be used not only for diesel engines but also for gasoline engines and other fuel pumps.

以上、本発明は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。 As described above, the present invention is by no means limited to the above embodiments, and can be embodied in various forms without departing from the spirit of the present invention.

101-105・・・高圧ポンプ、
20・・・シリンダ、 24・・・加圧室、 25・・・プランジャ、
32・・・弁通路(容積室)、
41・・・燃料入口、
60、601、602・・・リーク燃料回収路。
101-105... high pressure pump,
20... cylinder, 24... pressure chamber, 25... plunger,
32 ... valve passage (volume chamber),
41 ... fuel inlet,
60, 601, 602... Leakage fuel recovery paths.

Claims (4)

シリンダ(20)と、
前記シリンダの燃料入口(41)側に設けられ、ボディ(31)に形成された弁通路(32)の開口(33)を開閉させるように弁体(35)を動作させて前記燃料入口から加圧室(24)に吸入される燃料を調量する電磁弁部(30)と、
前記シリンダ内に摺動可能に設けられたプランジャ(25)と、を備え、
前記加圧室に流入した燃料を前記プランジャの動作により加圧して吐出する高圧ポンプであって、
前記加圧室から前記シリンダと前記プランジャとの隙間を通って漏れ出たリーク燃料を回収し前記シリンダの外部に排出するリーク燃料回収路(60、601、602)が形成されており、
前記リーク燃料回収路においてリーク燃料が流入する側の部位を上流部とし、リーク燃料が排出される側の部位を下流部とすると、前記リーク燃料回収路は、下流部でのみ前記燃料入口と連通し、
前記リーク燃料回収路は、前記プランジャの軸に対する角度が互いに異なる上流側流路(63)と下流側流路(64)とが接続されており、前記上流側流路が前記プランジャの軸となす角度(θ1)は、前記下流側流路が前記プランジャの軸となす角度(θ2)より小さく、
前記燃料入口と前記リーク燃料回収路の下流部とを連通する経路(43)の少なくとも一部に、連通路としての機能以外の機能を有する容積室として、前記弁通路が含まれる高圧ポンプ。
a cylinder (20);
A valve body (35) is operated to open and close an opening (33) of a valve passage (32) formed in a body (31) provided on the side of the fuel inlet (41) of the cylinder, and pressure is applied from the fuel inlet. a solenoid valve portion (30) for metering the fuel sucked into the pressure chamber (24);
a plunger (25) slidably provided within the cylinder;
A high-pressure pump that pressurizes and discharges the fuel that has flowed into the pressurizing chamber by operating the plunger,
Leakage fuel recovery passages (60, 601, 602) are formed for recovering leaked fuel leaked from the pressurization chamber through the gap between the cylinder and the plunger and discharging the leaked fuel to the outside of the cylinder,
Assuming that the portion of the leaked fuel recovery passage on the side into which the leaked fuel flows is the upstream portion and the portion on the side from which the leaked fuel is discharged is the downstream portion, the leaked fuel recovery passage communicates with the fuel inlet only at the downstream portion. death,
The leaked fuel recovery path is connected to an upstream flow path (63) and a downstream flow path (64) having different angles with respect to the axis of the plunger, and the upstream flow path forms the axis of the plunger. the angle (θ1) is smaller than the angle (θ2) formed by the downstream channel with the axis of the plunger,
A high-pressure pump , wherein the valve passage is included as a volumetric chamber having a function other than that of a communication passage in at least a part of a passage (43) that communicates the fuel inlet and the downstream portion of the leak fuel recovery passage .
前記リーク燃料回収路は、上流部の直径(D1)が下流部の直径(D2)より小さい請求項1に記載の高圧ポンプ。 2. The high-pressure pump according to claim 1, wherein the leakage fuel recovery path has a diameter (D1) at an upstream portion smaller than a diameter (D2) at a downstream portion. 前記燃料入口と前記リーク燃料回収路の下流部とを連通する経路には、絞り(45)が設けられている請求項1または2に記載の高圧ポンプ。 3. A high-pressure pump according to claim 1, wherein a passage connecting said fuel inlet and a downstream portion of said leak fuel recovery passage is provided with a throttle (45). 複数の前記リーク燃料回収路(601、602)を有する請求項1~のいずれか一項に記載の高圧ポンプ。 A high-pressure pump according to any one of claims 1 to 3 , having a plurality of leak fuel recovery paths (601, 602).
JP2018238241A 2018-12-20 2018-12-20 high pressure pump Active JP7205211B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018238241A JP7205211B2 (en) 2018-12-20 2018-12-20 high pressure pump
DE102019127935.6A DE102019127935A1 (en) 2018-12-20 2019-10-16 high pressure pump
CN201911289034.6A CN111350622B (en) 2018-12-20 2019-12-13 High-pressure pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018238241A JP7205211B2 (en) 2018-12-20 2018-12-20 high pressure pump

Publications (2)

Publication Number Publication Date
JP2020101100A JP2020101100A (en) 2020-07-02
JP7205211B2 true JP7205211B2 (en) 2023-01-17

Family

ID=70969971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018238241A Active JP7205211B2 (en) 2018-12-20 2018-12-20 high pressure pump

Country Status (3)

Country Link
JP (1) JP7205211B2 (en)
CN (1) CN111350622B (en)
DE (1) DE102019127935A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307829A (en) 2005-03-30 2006-11-09 Denso Corp High pressure fuel pump
JP2016142197A (en) 2015-02-03 2016-08-08 株式会社デンソー Fuel supply device
JP2017057832A (en) 2015-09-18 2017-03-23 株式会社デンソー pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341090Y2 (en) * 1987-02-06 1991-08-29
JP3077738B2 (en) * 1994-04-28 2000-08-14 株式会社デンソー High pressure supply pump
JP3199105B2 (en) * 1994-06-24 2001-08-13 株式会社デンソー High pressure fuel supply pump
JPH10141178A (en) * 1996-11-12 1998-05-26 Denso Corp High-pressure fuel pump
JPH10184483A (en) * 1996-12-27 1998-07-14 Unisia Jecs Corp Pump device
DE102017204843B3 (en) 2017-03-22 2018-06-28 Continental Automotive Gmbh High-pressure fuel-plug-in pump for a fuel injection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307829A (en) 2005-03-30 2006-11-09 Denso Corp High pressure fuel pump
JP2016142197A (en) 2015-02-03 2016-08-08 株式会社デンソー Fuel supply device
JP2017057832A (en) 2015-09-18 2017-03-23 株式会社デンソー pump

Also Published As

Publication number Publication date
CN111350622A (en) 2020-06-30
JP2020101100A (en) 2020-07-02
DE102019127935A1 (en) 2020-06-25
CN111350622B (en) 2023-05-23

Similar Documents

Publication Publication Date Title
CN102472219B (en) Fuel system for an internal combustion engine
JP4361632B2 (en) Fuel pump unit
US9091255B2 (en) Fuel supply pump
CN102947564B (en) Device and method for metering a liquid into the exhaust gas tract of an internal combustion engine
KR101900981B1 (en) Pump unit for supplying fuel, preferably diesel oil, from a containing tank to an internal combustion engine
US20040096346A1 (en) High pressure fuel pump for internal combustion engine
JP6387812B2 (en) High pressure pump and fuel supply system using the same
CN104736810A (en) Internal combustion engine
JP2008064054A (en) Cylinder block and internal combustion engine
KR101815797B1 (en) Plug-in pump for a common-rail system and engine arrangement having an internal combustion engine, having a common rail system and having a plug-in pump
JP2011516768A (en) High pressure pump with safety valve and safety valve
WO2013150827A1 (en) Oil jet
CN107762588A (en) The installation constitution of Pcv valve
US4168689A (en) Fuel injector internal passages and filter
US20120240876A1 (en) Engine assembly including cooling system
JP7205211B2 (en) high pressure pump
WO2019065992A1 (en) High-pressure pump
CN108138728B (en) High-pressure fuel pump and fuel supply device for an internal combustion engine of a motor vehicle
JP6260478B2 (en) High pressure pump
JP2013512399A (en) Switching valve for distributing fluid, especially for feed pumps arranged downstream
US20060220446A1 (en) Check valve for high-pressure fluid reservoir
CN113906209A (en) Cylinder head with integrated turbocharger
JP2015163787A (en) Integrated thermostatic valve and charge air cooler cover assembly
CN112771252A (en) Oil supply device for internal combustion engine
CN109854427B (en) Valve device and fuel filter module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R151 Written notification of patent or utility model registration

Ref document number: 7205211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151