JP7196372B2 - LAMINATED STRUCTURE AND METHOD FOR MANUFACTURING LAMINATED STRUCTURE - Google Patents

LAMINATED STRUCTURE AND METHOD FOR MANUFACTURING LAMINATED STRUCTURE Download PDF

Info

Publication number
JP7196372B2
JP7196372B2 JP2022550351A JP2022550351A JP7196372B2 JP 7196372 B2 JP7196372 B2 JP 7196372B2 JP 2022550351 A JP2022550351 A JP 2022550351A JP 2022550351 A JP2022550351 A JP 2022550351A JP 7196372 B2 JP7196372 B2 JP 7196372B2
Authority
JP
Japan
Prior art keywords
titanium
laminated structure
layer
plane
titanium layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022550351A
Other languages
Japanese (ja)
Other versions
JPWO2022059277A1 (en
Inventor
祐輔 氏原
雅文 若井
淳三 須川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of JPWO2022059277A1 publication Critical patent/JPWO2022059277A1/ja
Application granted granted Critical
Publication of JP7196372B2 publication Critical patent/JP7196372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、第1のチタン層と、アルミニウム層と、第2のチタン層とを順次積層した積層構造体及び積層構造体の製造方法に関する。 The present invention relates to a laminated structure in which a first titanium layer, an aluminum layer, and a second titanium layer are sequentially laminated, and a method for manufacturing the laminated structure.

この種の積層構造体は、ディスプレイ、スマートフォンや電子ペーパーなどの電子デバイスにて、スイッチング素子(薄膜トランジスタ)のソース/ドレイン電極として用いられている(例えば特許文献1参照)。一方、近年の可撓性を有する電子デバイスの開発に伴い、比較的高硬度のチタン層を有する積層構造体に対し、高い屈曲耐性が要求されるようになっている。 Laminated structures of this type are used as source/drain electrodes of switching elements (thin film transistors) in electronic devices such as displays, smartphones, and electronic paper (see, for example, Patent Document 1). On the other hand, with the development of flexible electronic devices in recent years, there has been a demand for high bending resistance for laminated structures having relatively high-hardness titanium layers.

一般に、積層構造体のチタン層やアルミニウム層は、真空雰囲気中でスパッタリング法により一貫して成膜される(例えば、特許文献1参照)。例えば、チタン層やアルミニウム層の成膜に際しては、チタン製またはアルミニウム製のターゲットと基材とを対向配置した真空チャンバ内を所定圧力まで真空排気した後、真空チャンバ内に希ガス(例えば、アルゴンガス)を導入し、ターゲットに負の電位を持つ直流電力を投入してプラズマを形成し、プラズマ中で電離した希ガスのイオンによりターゲットをスパッタリングし、ターゲットから飛散したスパッタ粒子を基材に付着、堆積させて、所望の膜厚(例えば、第1のチタン層を50nm、アルミニウム層を500nm、第2のチタン層を50nm)でチタン層やアルミニウム層が成膜される。このとき、ターゲットへの投入電力、希ガスのガス導入量や成膜中の真空チャンバ内の全圧といった各種のスパッタ条件は、生産性や膜厚分布を考慮して設定される(例えば、投入電力20~40kW、全圧が0.2~1.0Pa)。 In general, a titanium layer and an aluminum layer of a laminated structure are consistently formed by a sputtering method in a vacuum atmosphere (see, for example, Patent Document 1). For example, when forming a titanium layer or an aluminum layer, after evacuating a vacuum chamber in which a titanium or aluminum target and a substrate are arranged to face each other to a predetermined pressure, a rare gas (for example, argon) is introduced into the vacuum chamber. gas) is introduced, DC power with a negative potential is applied to the target to form plasma, the target is sputtered by ionized noble gas ions in the plasma, and the sputtered particles scattered from the target adhere to the substrate. , to form a titanium layer or an aluminum layer with a desired film thickness (eg, a first titanium layer of 50 nm, an aluminum layer of 500 nm, and a second titanium layer of 50 nm). At this time, various sputtering conditions such as input power to the target, amount of rare gas introduced, and total pressure in the vacuum chamber during film formation are set in consideration of productivity and film thickness distribution (for example, input power 20-40 kW, total pressure 0.2-1.0 Pa).

ここで、積層構造体の屈曲耐性を確認するために、所定形状の試験基材を用い、試験基材表面に第1のチタン層、アルミニウム層、第2のチタン層を所定のスパッタ条件で順次積層した後、試験基材から剥離した積層構造体に対し、引張試験を実施したところ、5%の伸び量を与えるのに必要な引張荷重を加えただけで、積層構造体が倍以上に伸びることが判明した。また、引張試験後の積層構造体の表面(即ち、チタン層表面)状態を観察したところ、チタン層に厚さ方向にのびるクラックが多数発生していることが判明した。そこで、本発明者らは、鋭意研究を重ね、比較的小さい結晶粒が膜厚方向に整列して結晶粒界がその膜厚方向にのびるように繋がった結晶構造を有すると共に、成膜時にチタン層内に取り込まれた窒素分子や酸素分子といった不純物により結晶粒界に硬くてもろい窒化チタンや酸化チタンといったチタン化合物が形成されていると、積層構造体に強い屈曲耐性が得られないことを知見するのに至った。 Here, in order to confirm the bending resistance of the laminated structure, a test substrate having a predetermined shape was used, and a first titanium layer, an aluminum layer, and a second titanium layer were sequentially formed on the surface of the test substrate under predetermined sputtering conditions. After lamination, when a tensile test was performed on the laminated structure peeled from the test base material, the laminated structure elongated by more than double just by applying a tensile load necessary to give an elongation amount of 5%. It has been found. Further, when the state of the surface of the laminated structure (that is, the surface of the titanium layer) after the tensile test was observed, it was found that many cracks extending in the thickness direction were generated in the titanium layer. Therefore, the present inventors have made intensive studies and found that the crystal structure has a crystal structure in which relatively small crystal grains are aligned in the film thickness direction and the crystal grain boundaries are connected so as to extend in the film thickness direction. It was discovered that when hard and brittle titanium compounds such as titanium nitride and titanium oxide were formed at the grain boundaries due to impurities such as nitrogen molecules and oxygen molecules taken into the layers, the laminated structure could not obtain strong bending resistance. I came to do it.

特開2015-177105号公報JP 2015-177105 A

本発明は、上記知見に基づきなされたものであり、強い屈曲耐性を有する積層構造体及び積層構造体の製造方法を提供することをその課題とするものである。 The present invention has been made based on the above findings, and an object of the present invention is to provide a laminated structure having strong bending resistance and a method for producing the laminated structure.

上記課題を解決するために、第1のチタン層と、アルミニウム層と、第2のチタン層とを順次積層した本発明の積層構造体は、第1及び第2の各チタン層が、X線回折測定によるミラー指数における(002)面及び(100)面に回析ピークを持つ結晶構造を有し、(002)面での回折ピークの半値幅が1.0deg以下、(100)面での回折ピークの半値幅が0.6deg以下であることを特徴とする。この場合、前記アルミニウム層は、X線回折測定によるミラー指数における(111)面に回析ピークを持つ結晶構造を有することが好ましい。 In order to solve the above problems, a laminated structure of the present invention in which a first titanium layer, an aluminum layer, and a second titanium layer are laminated in this order is provided. It has a crystal structure with diffraction peaks on the (002) plane and the (100) plane in the Miller index measured by diffraction measurement, the half width of the diffraction peak on the (002) plane is 1.0 deg or less, and the (100) plane The diffraction peak has a half width of 0.6 deg or less. In this case, the aluminum layer preferably has a crystal structure having a diffraction peak in the (111) plane in the Miller index measured by X-ray diffraction.

また、上記課題を解決するために、第1のチタン層と、アルミニウム層と、第2のチタン層とを順次積層した積層構造体を製造する本発明の積層構造体の製造方法は、スパッタリング法により、基材上に第1のチタン層を成膜する第1工程と、第1のチタン層の上にアルミニウム層を成膜する第2工程と、アルミニウム層の上に第2のチタン層を成膜する第3工程とを含み、第1及び第3の各工程は、窒素ガスの分圧が3.0×10-4Pa以下、酸素ガスの分圧が9.0×10-5Pa以下、水蒸気ガスの分圧が8.0×10-4Pa以下、水素ガスの分圧が5.0×10-5Pa以下に夫々達するまで、チタン製のターゲットと基材とが配置された真空チャンバ内を真空排気する真空排気工程と、真空チャンバ内の全圧が0.2Pa~0.5Paの範囲内に維持されるように希ガスを導入し、チタン製のターゲットに所定電力を投入して3nm/sec~5nm/secの範囲内の成膜速度で第1及び第2の各チタン層を成膜する成膜工程と、を更に含むことを特徴とする。この場合、前記第2工程は、アルミニウム製のターゲットと基材とが配置された真空チャンバ内の全圧が0.2Pa~0.5Paの範囲内に維持されるように希ガスを導入し、アルミニウム製のターゲットに所定電力を投入して7nm/sec~10nm/secの範囲内の成膜速度でアルミニウム層を成膜する成膜工程を更に含むことが好ましい。Further, in order to solve the above problems, a method for manufacturing a laminated structure according to the present invention for producing a laminated structure in which a first titanium layer, an aluminum layer, and a second titanium layer are sequentially laminated includes a sputtering method. A first step of forming a first titanium layer on the base material, a second step of forming an aluminum layer on the first titanium layer, and a second titanium layer on the aluminum layer by In each of the first and third steps, the partial pressure of nitrogen gas is 3.0 × 10 -4 Pa or less and the partial pressure of oxygen gas is 9.0 × 10 -5 Pa. Thereafter, the titanium target and the substrate were placed until the partial pressure of water vapor gas reached 8.0×10 −4 Pa or less and the partial pressure of hydrogen gas reached 5.0×10 −5 Pa or less. An evacuation step of evacuating the inside of the vacuum chamber, introducing a rare gas so that the total pressure in the vacuum chamber is maintained within the range of 0.2 Pa to 0.5 Pa, and applying a predetermined power to the titanium target. and a film forming step of forming the first and second titanium layers at a film forming rate within the range of 3 nm/sec to 5 nm/sec. In this case, the second step includes introducing a rare gas such that the total pressure in the vacuum chamber in which the aluminum target and the base material are arranged is maintained within a range of 0.2 Pa to 0.5 Pa, It is preferable to further include a film forming step of applying a predetermined electric power to a target made of aluminum to form an aluminum layer at a film forming rate within the range of 7 nm/sec to 10 nm/sec.

以上によれば、真空雰囲気中にて真空チャンバ内で第1のチタン層、アルミニウム層及び第2のチタン層をスパッタリング法により成膜するのに先立って、真空チャンバ内を不純物ガス(例えば窒素ガス、酸素ガス、水蒸気ガス、水素ガス)の分圧が所定値以下に達するまで真空排気することで、第1及び第2の各チタン層の結晶粒界に、窒化チタンや酸化チタンといったチタン化合物が形成されることが可及的に抑制される。そして、第1及び第2の各チタン層の成膜時には、その成膜速度を3nm/sec~5nm/secの範囲内にすれば、第1及び第2の各チタン層を、粒径の大きい結晶粒がその膜厚方向に不揃いに重なって結晶粒界が膜厚方向に繋がらない結晶構造を有するものにできる。 According to the above, prior to depositing the first titanium layer, the aluminum layer, and the second titanium layer in the vacuum chamber in a vacuum atmosphere, an impurity gas (for example, nitrogen gas) is introduced into the vacuum chamber. , oxygen gas, water vapor gas, and hydrogen gas) is evacuated until the partial pressure reaches a predetermined value or less, whereby titanium compounds such as titanium nitride and titanium oxide are formed at the grain boundaries of the first and second titanium layers. formation is suppressed as much as possible. Then, when the first and second titanium layers are formed, if the film formation rate is set within the range of 3 nm/sec to 5 nm/sec, the first and second titanium layers can be formed with a large grain size. It can have a crystal structure in which the crystal grains overlap irregularly in the film thickness direction and the crystal grain boundaries do not connect in the film thickness direction.

上記のようにして成膜したチタン層をX線回折したところ、(002)面での回折ピークと、(100)面での回折ピークとが確認され、(002)面での回折ピークに対する(100)面での回折ピークの強度比は0.20以上であった。このとき、(002)面での回折ピークの半値幅が1.0deg以下、(100)面での回折ピークの半値幅が0.6deg以下であり、これから、上記回析パターンを有していれば、第1及び第2の各チタン層の結晶粒界に、チタン化合物が形成されることが抑制され、粒径の大きい結晶粒がその膜厚方向に不揃いに重なって結晶粒界が繋がらない結晶構造を有するものとなる。そして、上記同様の積層構造体に対する引張試験にて5%または10%の伸び量を与えるのに必要な引張荷重を加えても、積層構造体の伸び量は10%以内に抑制され、しかも、引張試験後の積層構造体の表面観察でも、クラックが発生していないことが確認された。その結果、本発明の積層構造体は、従来例のものと比較して強い屈曲耐性を有する。 When the titanium layer formed as described above was subjected to X-ray diffraction, a diffraction peak on the (002) plane and a diffraction peak on the (100) plane were confirmed. The intensity ratio of diffraction peaks on the 100) plane was 0.20 or more. At this time, the half-value width of the diffraction peak on the (002) plane is 1.0 deg or less, and the half-value width of the diffraction peak on the (100) plane is 0.6 deg or less. This suppresses the formation of a titanium compound at the crystal grain boundaries of the first and second titanium layers, and crystal grains having a large grain size overlap unevenly in the film thickness direction, preventing the crystal grain boundaries from connecting. It has a crystal structure. Further, even when a tensile load necessary to give an elongation of 5% or 10% is applied to the laminated structure similar to the above, the elongation of the laminated structure is suppressed to within 10%, and Observation of the surface of the laminated structure after the tensile test also confirmed that no cracks occurred. As a result, the laminate structure of the present invention has a higher resistance to bending than that of the conventional example.

本発明の実施形態の積層構造体を模式的に説明する図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which illustrates typically the laminated structure of embodiment of this invention. 本発明の実施形態の積層構造体の製造方法を実施するスパッタリング装置を模式的に説明する図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which illustrates typically the sputtering apparatus which enforces the manufacturing method of the laminated structure of embodiment of this invention. 図2に示す成膜チャンバPc1を模式的に説明する図。FIG. 3 is a diagram schematically explaining a film forming chamber Pc1 shown in FIG. 2; 本発明の効果を確認する実験結果を示すグラフ。The graph which shows the experimental result which confirms the effect of this invention. (a)~(c)は、比較実験1~比較実験3で成膜したチタン層の結晶構造を模式的に説明する図。4(a) to 4(c) are diagrams for schematically explaining the crystal structures of titanium layers deposited in Comparative Experiments 1 to 3. FIG.

以下、図面を参照して、本発明の積層構造体及び積層構造体の製造方法の実施形態について説明する。 Hereinafter, embodiments of the laminated structure and the method for manufacturing the laminated structure of the present invention will be described with reference to the drawings.

図1に示すように、本実施形態の積層構造体LSは、基材Swを例えばガラス基板Sgの表面にポリイミドフィルムPfを貼付したものとし(ガラス基板SgとポリイミドフィルムPfとの界面で剥離可能)、基材Sw表面に、真空雰囲気中でスパッタリング法により一貫して順次成膜(積層)される第1のチタン層L1と、アルミニウム層L2と、第2のチタン層L3とを備える。 As shown in FIG. 1, in the laminated structure LS of the present embodiment, the substrate Sw is made by attaching a polyimide film Pf to the surface of a glass substrate Sg (separable at the interface between the glass substrate Sg and the polyimide film Pf). ), a first titanium layer L1, an aluminum layer L2, and a second titanium layer L3 are formed (stacked) in sequence on the surface of the substrate Sw consistently by sputtering in a vacuum atmosphere.

図2に示すように、上記積層構造体LSの成膜に利用できるスパッタリング装置Smは、所謂クラスターツール式のものであり、搬送ロボットRを有する中央の搬送チャンバTcを備え、搬送チャンバTcの周囲に、ゲートバルブGvを介して、ロードロックチャンバLcと、第1のチタン層L1を成膜する真空チャンバ(以下「成膜チャンバ」という)Pc1と、アルミ二ウム層L2を成膜する成膜チャンバPc2と、第2のチタン層L3を成膜する成膜チャンバPc3とが夫々連結されている。ここで、成膜チャンバPc1,Pc2,Pc3内には、使用されるターゲットを除き、同一の構造部品が設けられるため、図3を参照して、成膜チャンバPc1を例に説明すると、成膜チャンバPc1には、ターボ分子ポンプやロータリーポンプなどからなる真空ポンプユニットPuに通じる排気管11が接続され、成膜チャンバPc1を所定の真空度(例えば1×10-6Pa)まで真空排気することができる。真空チャンバPc1の側壁には、マスフローコントローラ12が介設されたガス管13が接続され、流量制御された希ガス(例えばアルゴンガス)を成膜チャンバPc1内に導入することができる。成膜チャンバPc1の上部には、チタン製のターゲット2(成膜チャンバPc2では、アルミニウム製のターゲット)が基材Swを臨む姿勢で配置され、その上方に公知の磁石ユニット3が配置されている。As shown in FIG. 2, the sputtering apparatus Sm that can be used for film formation of the laminated structure LS is of a so-called cluster tool type, and includes a central transfer chamber Tc having a transfer robot R. Then, through the gate valve Gv, a load lock chamber Lc, a vacuum chamber (hereinafter referred to as "deposition chamber") Pc1 for depositing a first titanium layer L1, and a deposition for depositing an aluminum layer L2. The chamber Pc2 and the deposition chamber Pc3 for depositing the second titanium layer L3 are connected to each other. Here, since the same structural parts are provided in the deposition chambers Pc1, Pc2, and Pc3 except for the targets used, the deposition chamber Pc1 will be described as an example with reference to FIG. The chamber Pc1 is connected to an exhaust pipe 11 leading to a vacuum pump unit Pu composed of a turbomolecular pump, a rotary pump, or the like, and the film formation chamber Pc1 is evacuated to a predetermined degree of vacuum (eg, 1×10 −6 Pa). can be done. A gas pipe 13 in which a mass flow controller 12 is interposed is connected to the side wall of the vacuum chamber Pc1, and a rare gas (for example, argon gas) whose flow rate is controlled can be introduced into the deposition chamber Pc1. A target 2 made of titanium (a target made of aluminum in the film formation chamber Pc2) is arranged in the upper part of the film formation chamber Pc1 so as to face the substrate Sw, and a known magnet unit 3 is arranged above it. .

チタン製のターゲット2としては、純度が99.9%以上のものが、また、アルミニウム製のターゲットとしては、純度が99.99%以上のものが利用される。ターゲット2には、スパッタ電源Psからの出力が接続され、負の電位を持つ直流電力をターゲット2に投入できる。成膜チャンバPc1の下部には、ターゲット2に対向させて、ステージ4が配置され、基材Swを設置することができる。成膜チャンバPc1には、その内部の全圧と不純物ガス(例えば、窒素ガス、酸素ガス、水蒸気ガス、水素ガス)の分圧とを測定する測定器5が設けられている。このような測定器5としては、電離真空計や質量分析計などの公知のものが利用できるため、これ以上の説明は省略する。以下に、スパッタリング装置Smによる積層構造体LSの製造方法を具体的に説明する。 The titanium target 2 has a purity of 99.9% or higher, and the aluminum target has a purity of 99.99% or higher. An output from a sputtering power source Ps is connected to the target 2 , and DC power having a negative potential can be supplied to the target 2 . A stage 4 is arranged in the lower part of the film forming chamber Pc1 so as to face the target 2, and the substrate Sw can be placed thereon. The deposition chamber Pc1 is provided with a measuring instrument 5 for measuring the total internal pressure and the partial pressures of impurity gases (for example, nitrogen gas, oxygen gas, water vapor gas, and hydrogen gas). Known devices such as an ionization vacuum gauge and a mass spectrometer can be used as such a measuring device 5, so further explanation is omitted. A method for manufacturing the laminated structure LS by the sputtering apparatus Sm will be specifically described below.

大気雰囲気のロードロックチャンバLcに基材Swを投入し、ロードロックチャンバLcを真空排気した後、搬送ロボットRにより基材Swを成膜チャンバPc1に搬送する。なお、ロードロックチャンバLcへの基材Swの投入に先立ち、搬送チャンバTc及び各成膜チャンバPc1,Pc2,Pc3は予め所定圧力(1×10-3Pa)まで真空排気され、待機状態となっている。基材Swが成膜チャンバPc1のステージ4上に設置されると、真空排気を続行し、質量分析計5により測定される窒素ガスの分圧が3.0×10-4Pa以下、酸素ガスの分圧が9.0×10-5Pa以下、水蒸気ガスの分圧が8.0×10-4Pa以下、水素ガスの分圧が5.0×10-5Pa以下に達するまで成膜チャンバPc1内を真空排気する(第1工程の真空排気工程)。The substrate Sw is put into the load-lock chamber Lc in the atmosphere, and the load-lock chamber Lc is evacuated. Prior to loading the substrate Sw into the load lock chamber Lc, the transfer chamber Tc and each of the film forming chambers Pc1, Pc2, and Pc3 are previously evacuated to a predetermined pressure (1×10 −3 Pa) and are in a standby state. ing. When the substrate Sw is placed on the stage 4 of the deposition chamber Pc1, the evacuation is continued, and the partial pressure of the nitrogen gas measured by the mass spectrometer 5 is 3.0 × 10 -4 Pa or less, and the oxygen gas film formation until the partial pressure of 9.0 × 10 -5 Pa or less, the partial pressure of water vapor gas reaches 8.0 × 10 -4 Pa or less, and the partial pressure of hydrogen gas reaches 5.0 × 10 -5 Pa or less. The inside of the chamber Pc1 is evacuated (evacuation step of the first step).

次に、各ガスの分圧が夫々所定値以下になると、真空排気されている成膜チャンバPc1内に、その全圧が0.2Pa~0.5Paの範囲内に維持されるようにアルゴンガスを導入し、スパッタ電源Psからターゲット2に負の電位を持つ直流電力を20kW~30kW投入する。すると、成膜チャンバPc1内にプラズマが形成され。プラズマ中で電離したアルゴンガスのイオンによりターゲット2がスパッタリングされる。これにより、ターゲット2から飛散したスパッタ粒子が基材Swの成膜面(ポリイミドフィルムPf)に付着、堆積して基材Sw上に第1のチタン層L1が3nm/sec~5nm/secの成膜速度で成膜される(第1工程での成膜工程)。このとき、スパッタ時間を適宜設定して、第1のチタン層L1は、例えば10nm~50nmの膜厚とされる。 Next, when the partial pressure of each gas becomes equal to or less than a predetermined value, argon gas is introduced into the evacuated deposition chamber Pc1 so that the total pressure is maintained within the range of 0.2 Pa to 0.5 Pa. is introduced, and 20 kW to 30 kW of DC power having a negative potential is applied to the target 2 from the sputtering power source Ps. Then, plasma is formed in the deposition chamber Pc1. The target 2 is sputtered by argon gas ions ionized in the plasma. As a result, the sputtered particles scattered from the target 2 adhere to and accumulate on the film formation surface (polyimide film Pf) of the base material Sw, and the first titanium layer L1 is formed on the base material Sw at a rate of 3 nm/sec to 5 nm/sec. The film is formed at the film speed (film formation step in the first step). At this time, the sputtering time is appropriately set so that the thickness of the first titanium layer L1 is, for example, 10 nm to 50 nm.

第1工程の終了後、基材Swを成膜チャンバPc2に搬送し、第1工程と同様に真空排気工程を行う。各ガスの分圧が夫々所定値以下になると、真空排気されている成膜チャンバPc2内に、その全圧が0.2Pa~0.5Paの範囲内に維持されるようにアルゴンガスを導入し、スパッタ電源Psからアルミニウム製のターゲット2に負の電位を持つ直流電力を30kW~40kW投入する。すると、成膜チャンバPc2内にプラズマが形成され、ターゲット2から飛散したスパッタ粒子が第1のチタン層L1の表面に付着、堆積して第1のチタン層L1上にアルミニウム層L2が7nm/sec~10nm/secの成膜速度で成膜される(第2工程での成膜工程)。このとき、スパッタ時間を適宜制御して、アルミニウム層L2は、例えば200nm~800nmの膜厚とされる。 After completion of the first step, the substrate Sw is transported to the film forming chamber Pc2, and an evacuation step is performed in the same manner as in the first step. When the partial pressure of each gas becomes equal to or less than a predetermined value, argon gas is introduced into the evacuated deposition chamber Pc2 so that the total pressure is maintained within the range of 0.2 Pa to 0.5 Pa. , DC power of 30 kW to 40 kW having a negative potential is applied to the target 2 made of aluminum from the sputtering power source Ps. Then, plasma is formed in the deposition chamber Pc2, and the sputtered particles scattered from the target 2 adhere and deposit on the surface of the first titanium layer L1, forming an aluminum layer L2 of 7 nm/sec on the first titanium layer L1. A film is formed at a film formation rate of ~10 nm/sec (film formation step in the second step). At this time, the sputtering time is appropriately controlled so that the thickness of the aluminum layer L2 is, for example, 200 nm to 800 nm.

第2工程の終了後、基材Swを成膜チャンバPc3に搬送し、第1工程と同様に真空排気工程を行う。各ガスの分圧が夫々所定値以下になると、第1工程と同じスパッタ条件で、アルミ二ウム層L2の上に第2のチタン層L3が3nm/sec~5nm/secの成膜速度で成膜される(第3工程での成膜工程)。このとき、スパッタ時間を適宜制御して、第2のチタン層L3の膜厚は、第1のチタン層L1と同様の膜厚(例えば10~50nm)とされる。 After completion of the second step, the substrate Sw is transported to the film forming chamber Pc3, and an evacuation step is performed in the same manner as in the first step. When the partial pressure of each gas becomes equal to or less than a predetermined value, the second titanium layer L3 is formed on the aluminum layer L2 at a film formation rate of 3 nm/sec to 5 nm/sec under the same sputtering conditions as in the first step. A film is formed (film formation step in the third step). At this time, the film thickness of the second titanium layer L3 is set to the same film thickness (for example, 10 to 50 nm) as the first titanium layer L1 by appropriately controlling the sputtering time.

以上説明したように積層構造体LSを製造すると、各チタン層L1,L3の内部に不純物が取り込まれることが可及的に抑制され、結晶粒界Cfに窒化チタンや酸化チタンといったチタン化合物が形成されることが抑制される(図1中、一点鎖線で囲う部分参照)。加えて、各チタン層L1,L3を3nm/sec~5nm/secの範囲内の成膜速度で成膜することで、結晶粒Cgの粒径が従来例のものと比較して大きくなり、しかも、これらの結晶粒Cgがその膜厚方向に不揃いに重なり、その結果として、結晶粒界Cfが膜厚方向に繋がらない結晶構造を有するものにできる(図1参照)。なお、このようなチタン層L1,L3のX線回折を測定したところ、(002)面での回折ピークと、(100)面での回折ピークとが確認され、(002)面での回折ピークに対する(100)面での回折ピークの強度比は0.20以上であった。このとき、(002)面での回折ピークの半値幅が1.0deg以下であり、(100)面での回折ピークの半値幅が0.6deg以下であった。 When the laminated structure LS is manufactured as described above, the introduction of impurities into the titanium layers L1 and L3 is suppressed as much as possible, and titanium compounds such as titanium nitride and titanium oxide are formed at the grain boundaries Cf. (See the part enclosed by the dashed line in FIG. 1). In addition, by forming the titanium layers L1 and L3 at a film formation rate within the range of 3 nm/sec to 5 nm/sec, the grain size of the crystal grains Cg becomes larger than that of the conventional example, and moreover, , these crystal grains Cg overlap irregularly in the film thickness direction, and as a result, a crystal structure in which the crystal grain boundaries Cf are not connected in the film thickness direction can be obtained (see FIG. 1). When the X-ray diffraction of the titanium layers L1 and L3 was measured, a diffraction peak on the (002) plane and a diffraction peak on the (100) plane were confirmed, and a diffraction peak on the (002) plane was confirmed. The intensity ratio of the diffraction peak on the (100) plane to the peak was 0.20 or more. At this time, the half width of the diffraction peak on the (002) plane was 1.0 deg or less, and the half width of the diffraction peak on the (100) plane was 0.6 deg or less.

次に、上記効果を確認するために、上記スパッタリング装置Smを用い、以下の実験を行った。 Next, in order to confirm the above effect, the following experiment was conducted using the sputtering apparatus Sm.

発明実験では、基材Swをガラス基板Sg上面にポリイミドフィルムPfが貼付されたものとし、基材Swを成膜チャンバPc1のステージ4上に設置した後、質量分析計5により測定される窒素ガスの分圧が1.0×10-4Pa、酸素ガスの分圧が8.0×10-5Pa、水蒸気ガスの分圧が5.0×10-4Pa、水素ガスの分圧が5.0×10-5Paに達するまで真空排気した(第1工程の真空排気工程)。このとき、真空チャンバPc1内の全圧は7.3×10-4Paであった。真空排気工程の後、真空チャンバPc1内の全圧が0.3Paに維持されるようにアルゴンガスを流量120sccmで真空チャンバPc1内に導入し、これと併せてターゲット2に直流電力を20~30kW投入してチタン製ターゲット2をスパッタリングして、3nm/secの成膜速度で基材Sw表面に第1のチタン層L1を50nmの膜厚で成膜した(第1工程の成膜工程)。成膜した第1のチタン層L1のX線回折を測定した結果を図4に実線で示す。表1も参照して、回折角(2θ)38~39°付近に(002)面での回折ピークが、回折角35~36°付近に(100)面での回折ピークが夫々確認され、(002)面での回折ピークに対する(100)面での回折ピークの強度比は0.25、(002)面での回折ピークの半値幅は0.5deg、(100)面での回折ピークの半値幅は0.6degであった。第1工程の後、基材Swを成膜チャンバPc2に搬送し、第1工程と同様に真空排気工程を行った後、成膜チャンバPc2の全圧が0.3Paに維持されるようにアルゴンガスを流量120sccmで成膜チャンバPc2内に導入し、これと併せてアルミニウム製のターゲット2に直流電力を35~40kW投入してターゲット2をスパッタリングして、7nm/secの成膜速度で第1のチタン層L1上にアルミニウム層L2を500nmの膜厚で成膜した。成膜したアルミニウム層L2のX線回折を測定したところ、回折角(2θ)38~39°付近に(111)面での回折ピークが確認された。第2工程の後、基材Swを成膜チャンバPc3に搬送し、第1工程と同様に真空排気工程を行い、その後、第1工程と同じ成膜条件で、3nm/secの成膜速度でアルミニウム層L2上に第2のチタン層L3を50nmの膜厚で成膜し、これにより、積層構造体LSを得た。成膜した第2のチタン層L3のX線回折を測定したところ、第1のチタン層L1と同様の回折パターン(図4参照)が得られた。そして、このようにして得られた積層構造体LSの屈曲耐性を確認するため、公知の形状(幅5mm、長さ20mm、厚さ0.02mm)を有する試験基材(ポリイミドフィルムPf)をガラス基板Sg上に形成し、試験基材表面に上述したスパッタ条件で第1のチタン層L1、アルミニウム層L2、第2のチタン層L3を順次積層した後、ガラス基板SgとポリイミドフィルムPfとの界面で剥離して得た積層構造体LSに対して、引張試験機(ORIENTEC製の「STA-1150」)を用いて引張試験(引張速度は0.5mm/min)を実施したところ、5%、10%の伸び量を与えるのに必要な引張荷重を加えても、積層構造体の伸び量は10%以内(5%、8%)に抑えられることが確認された。また、5%、10%の伸び量を与える引張荷重を加えたときの抵抗Rを抵抗測定器(ADVANTEST製の「AD7461A」)を用いて夫々測定し、引張荷重を加えないときの抵抗R0に対する抵抗上昇率(=(R-R0)/R0)を求めたところ、10%以内(5%、8%)に抑えることができることが確認された。また、引張試験後の積層構造体LSの表面状態を市販のMicroscopeを用いて観察したところ、クラックが発生していないことが確認された。これらの結果より、本発明実験で得られた積層構造体LSは、従来例のものと比較して強い屈曲耐性を有することが判った。In the invention experiment, the substrate Sw is assumed to be a glass substrate Sg with a polyimide film Pf attached on its upper surface, and after the substrate Sw is placed on the stage 4 of the deposition chamber Pc1, the nitrogen gas measured by the mass spectrometer 5 is 1.0×10 −4 Pa, the partial pressure of oxygen gas is 8.0×10 −5 Pa, the partial pressure of water vapor gas is 5.0×10 −4 Pa, and the partial pressure of hydrogen gas is 5 Evacuation was performed until the pressure reached 0×10 −5 Pa (first step, evacuation step). At this time, the total pressure in the vacuum chamber Pc1 was 7.3×10 −4 Pa. After the evacuation process, argon gas is introduced into the vacuum chamber Pc1 at a flow rate of 120 sccm so that the total pressure in the vacuum chamber Pc1 is maintained at 0.3 Pa, and at the same time, a DC power of 20 to 30 kW is applied to the target 2. Then, the titanium target 2 was sputtered to form a first titanium layer L1 with a film thickness of 50 nm on the surface of the substrate Sw at a film formation rate of 3 nm/sec (first film formation step). The solid line in FIG. 4 shows the result of measuring the X-ray diffraction of the deposited first titanium layer L1. Also referring to Table 1, a diffraction peak on the (002) plane is confirmed near the diffraction angle (2θ) of 38 to 39°, and a diffraction peak on the (100) plane is confirmed near the diffraction angle of 35 to 36°. The intensity ratio of the diffraction peak on the (100) plane to the diffraction peak on the (002) plane is 0.25, the half width of the diffraction peak on the (002) plane is 0.5 deg, and the half width of the diffraction peak on the (100) plane is 0.25. The price range was 0.6deg. After the first step, the substrate Sw is transported to the film forming chamber Pc2, and after performing the evacuation step in the same manner as in the first step, argon is supplied so that the total pressure in the film forming chamber Pc2 is maintained at 0.3 Pa. A gas is introduced into the film formation chamber Pc2 at a flow rate of 120 sccm, and at the same time, DC power of 35 to 40 kW is applied to the target 2 made of aluminum to sputter the target 2, and the first film is formed at a film formation rate of 7 nm/sec. An aluminum layer L2 having a film thickness of 500 nm was formed on the titanium layer L1. When the X-ray diffraction of the deposited aluminum layer L2 was measured, a diffraction peak on the (111) plane was confirmed near the diffraction angle (2θ) of 38 to 39°. After the second step, the substrate Sw is transported to the film forming chamber Pc3, and the evacuation step is performed in the same manner as in the first step. A second titanium layer L3 having a thickness of 50 nm was formed on the aluminum layer L2, thereby obtaining a laminated structure LS. When the X-ray diffraction of the deposited second titanium layer L3 was measured, a diffraction pattern (see FIG. 4) similar to that of the first titanium layer L1 was obtained. Then, in order to confirm the bending resistance of the laminated structure LS thus obtained, a test substrate (polyimide film Pf) having a known shape (width 5 mm, length 20 mm, thickness 0.02 mm) was placed on a glass. After forming on the substrate Sg and successively laminating the first titanium layer L1, the aluminum layer L2, and the second titanium layer L3 on the surface of the test substrate under the sputtering conditions described above, the interface between the glass substrate Sg and the polyimide film Pf A tensile test (tensile speed: 0.5 mm/min) was performed using a tensile tester ("STA-1150" manufactured by ORIENTEC) on the laminated structure LS obtained by peeling in . It was confirmed that the elongation of the laminated structure can be suppressed to within 10% (5%, 8%) even if a tensile load required to give an elongation of 10% is applied. In addition, the resistance R when a tensile load that gives an elongation of 5% and 10% is applied is measured using a resistance measuring instrument ("AD7461A" manufactured by ADVANTEST), and the resistance R0 when no tensile load is applied. When the resistance increase rate (=(R−R0)/R0) was determined, it was confirmed that it could be suppressed within 10% (5%, 8%). Moreover, when the surface state of the laminated structure LS after the tensile test was observed using a commercially available microscope, it was confirmed that no cracks occurred. From these results, it was found that the laminated structure LS obtained in the experiment of the present invention has a higher bending resistance than that of the conventional example.

(表1)

Figure 0007196372000001
(Table 1)
Figure 0007196372000001

次に、上記発明実験に対する比較のため、以下の比較実験を行った。比較実験1では、第1及び第3の各工程の成膜工程での成膜チャンバPc1内の全圧を0.6Paに維持して成膜速度を2nm/secとした点を除き、上記発明実験と同様の方法で積層構造体LSを得た。上記発明実験と同様の条件で引張試験を実施したところ、積層構造体LSの伸び量が倍以上となることが確認された。また、上記発明実験と同様に抵抗上昇率を求めたところ、30%、400%であった。また、上記発明実験と同様に引張試験後の積層構造体LSの表面状態を観察したところ、クラックが発生して白色化していることが確認された。これらの結果より、本比較実験1で得られた積層構造体LSは弱い屈曲耐性を有することが判った。尚、本比較実験1で成膜された第1のチタン層L1のX線回折を測定したところ、図4に破線で示すように、(100)面での回折ピークは確認されず、(002)面での回折ピークのみが確認され、その(002)面での回折ピークの半値幅は0.9degであった。このような回折パターンを有する場合、図5(a)に示すように、小さな結晶粒Cgが膜厚方向に整列して結晶粒界Cfがその膜厚方向にのびるように繋がった結晶構造を有すると推察される。 Next, the following comparative experiment was conducted for comparison with the above invention experiment. In Comparative Experiment 1, the above invention was used except that the total pressure in the film formation chamber Pc1 was maintained at 0.6 Pa and the film formation rate was 2 nm/sec in the film formation steps of the first and third steps. A laminated structure LS was obtained in the same manner as in the experiment. When a tensile test was performed under the same conditions as the above invention experiment, it was confirmed that the elongation amount of the laminated structure LS was more than doubled. Further, when the rate of increase in resistance was obtained in the same manner as in the experiment of the invention, it was 30% and 400%. Further, when the surface state of the laminated structure LS after the tensile test was observed in the same manner as in the above invention experiment, it was confirmed that cracks were generated and whitened. From these results, it was found that the laminated structure LS obtained in Comparative Experiment 1 had weak bending resistance. When the X-ray diffraction of the first titanium layer L1 formed in Comparative Experiment 1 was measured, no diffraction peak was observed on the (100) plane, as indicated by the dashed line in FIG. ) plane was confirmed, and the half width of the diffraction peak on the (002) plane was 0.9 deg. In the case of having such a diffraction pattern, as shown in FIG. 5A, it has a crystal structure in which small crystal grains Cg are aligned in the film thickness direction and crystal grain boundaries Cf are connected so as to extend in the film thickness direction. Then it is inferred.

また、比較実験2では、第1及び第3の各工程にて真空排気工程を行わない点(成膜工程のみを行う点)を除き、上記発明実験と同様の方法で積層構造体LSを得た。即ち、真空チャンバPc1内の全圧が所定真空度(2.8×10-3Pa)に到達すると、不純物ガスの分圧に関わらず、真空チャンバPc1内に希ガスを導入した。このときの不純物ガスの分圧を測定したところ、窒素ガスの分圧が5.0×10-4Pa、酸素ガスの分圧が2.0×10-4Pa、水蒸気ガスの分圧が2.0×10-3Pa、水素ガスの分圧が5.0×10-5Paであり、水素ガス以外は基準値を下回っていた。上記発明実験と同様の条件で引張試験を実施したところ、積層構造体LSの伸び量は倍以上となることが確認された。また、上記発明実験と同様に抵抗上昇率を求めたところ、比較実験1よりも更に悪い120%、650%であった。また、上記発明実験と同様に引張試験後の積層構造体LSの表面状態を観察したところ、クラックが発生して白色化していることが確認された。これらの結果より、本比較実験2で得られた積層構造体LSは弱い屈曲耐性を有することが判った。尚、成膜した第1のチタン層L1のX線回折を測定したところ、(002)面での回折ピークだけでなく(100)面での回折ピークが観察されたものの、(002)面での回折ピークに対する(100)面での回折ピークの強度比は0.20よりも小さい0.11であった。また、(100)面での回折ピークの半値幅は0.6degよりも大きい0.7degであった。このような回折パターンを有する場合、図5(b)に示すように、結晶粒界Cfに窒化チタンや酸化チタンといったチタン化合物Imが形成されていると推察される。In Comparative Experiment 2, the laminated structure LS was obtained in the same manner as in the Experiment of the Invention except that the first and third steps did not perform the evacuation step (only the film formation step was performed). rice field. That is, when the total pressure in the vacuum chamber Pc1 reached a predetermined degree of vacuum (2.8×10 −3 Pa), the rare gas was introduced into the vacuum chamber Pc1 regardless of the partial pressure of the impurity gas. When the partial pressure of the impurity gas at this time was measured, the partial pressure of the nitrogen gas was 5.0×10 −4 Pa, the partial pressure of the oxygen gas was 2.0×10 −4 Pa, and the partial pressure of the water vapor gas was 2. 0×10 −3 Pa, and the partial pressure of hydrogen gas was 5.0×10 −5 Pa, which were below the standard values except for hydrogen gas. When a tensile test was performed under the same conditions as the above invention experiment, it was confirmed that the elongation amount of the laminated structure LS was more than doubled. Further, when the rate of increase in resistance was obtained in the same manner as in the experiment of the invention, the results were 120% and 650%, which are even worse than those in the comparative experiment 1. Further, when the surface state of the laminated structure LS after the tensile test was observed in the same manner as in the above invention experiment, it was confirmed that cracks were generated and whitened. From these results, it was found that the laminated structure LS obtained in Comparative Experiment 2 had weak bending resistance. When X-ray diffraction of the formed first titanium layer L1 was measured, a diffraction peak was observed not only for the (002) plane but also for the (100) plane. The intensity ratio of the diffraction peak in the (100) plane to the diffraction peak in the (100) plane was 0.11, which is less than 0.20. Also, the half width of the diffraction peak on the (100) plane was 0.7 deg, which is larger than 0.6 deg. In the case of having such a diffraction pattern, as shown in FIG. 5B, it is presumed that a titanium compound Im such as titanium nitride or titanium oxide is formed at the grain boundary Cf.

また、比較実験3では、第1及び第3の各工程の成膜時の成膜チャンバPc1,Pc3内の全圧を0.6Paに維持して成膜速度を2nm/secとし、第1及び第3の各工程にて真空排気工程を行わない点(成膜工程のみを行う点)を除き、上記発明実験と同様の方法で積層構造体LSを得た。上記発明実験と同様の条件で引張試験を実施したところ、積層構造体LSの伸び量が倍以上となることが確認された。また、上記発明実験と同様に抵抗上昇率を求めたところ、比較実験2よりも更に悪い300%、900%であった。また、上記発明実験と同様に引張試験後の積層構造体LSの表面状態を観察したところ、クラックが発生して白色化していることが確認された。これらの結果より、本比較実験3で得られた積層構造体LSは上記比較実験1,2よりも弱い屈曲耐性を有することが判った。尚、本比較実験3で成膜された第1のチタン層L1のX線回折を測定したところ、(100)面での回折ピークは確認されず、(002)面での回折ピークのみが確認され、その(002)面での回折ピークの半値幅は0.8degであった。このような回折パターンを有する場合、図5(c)に示すように、小さい結晶粒Cgが膜厚方向に整列して結晶粒界Cfがその膜厚方向にのびるように繋がった結晶構造を有し、しかも、その結晶粒界Cfにチタン化合物Imが形成されていると推測される。 In Comparative Experiment 3, the total pressure in the film forming chambers Pc1 and Pc3 during the film formation in each of the first and third steps was maintained at 0.6 Pa and the film forming rate was set to 2 nm/sec. A laminated structure LS was obtained in the same manner as in the experiment of the invention, except that the evacuation step was not performed in each of the third steps (only the film formation step was performed). When a tensile test was performed under the same conditions as the above invention experiment, it was confirmed that the elongation amount of the laminated structure LS was more than doubled. In addition, when the rate of increase in resistance was obtained in the same manner as in the experiment of the invention, it was 300% and 900%, which is worse than that of the comparative experiment 2. Further, when the surface state of the laminated structure LS after the tensile test was observed in the same manner as in the above invention experiment, it was confirmed that cracks were generated and whitened. From these results, it was found that the laminated structure LS obtained in Comparative Experiment 3 had weaker bending resistance than Comparative Experiments 1 and 2 described above. When the X-ray diffraction of the first titanium layer L1 formed in Comparative Experiment 3 was measured, no diffraction peak on the (100) plane was confirmed, and only a diffraction peak on the (002) plane was confirmed. The half width of the diffraction peak on the (002) plane was 0.8 deg. When having such a diffraction pattern, as shown in FIG. 5(c), it has a crystal structure in which small crystal grains Cg are aligned in the film thickness direction and crystal grain boundaries Cf are connected so as to extend in the film thickness direction. Moreover, it is presumed that the titanium compound Im is formed at the grain boundaries Cf.

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、積層構造体LSとして第1のチタン層L1、アルミニウム層L2、第3のチタン層L3を積層したものを例に説明したが、第3のチタン層L3の上に更に窒化チタン層が積層されたものに対しても本発明を適用することができる。 Although the embodiments of the present invention have been described above, various modifications are possible without departing from the scope of the technical idea of the present invention. In the above-described embodiment, the laminated structure LS is described as an example in which the first titanium layer L1, the aluminum layer L2, and the third titanium layer L3 are laminated. The present invention can also be applied to laminated layers.

また、上記実施形態では、成膜チャンバPc1,Pc2,Pc3の間で基材Swをin-situで搬送し、真空雰囲気中で第1のチタン層L1、アルミニウム層L2、第2のチタン層L3を一貫して成膜する場合を例に説明したが、これに限定されず、第1及び第2のチタン層L1,L3とアルミニウム層L2とを異なるスパッタリング装置で実施する場合にも本発明は適用することができる。また、第1のチタン層L1と第2のチタン層L3とを同一の成膜チャンバで成膜してもよい。 Further, in the above embodiment, the substrate Sw is transferred in-situ among the film forming chambers Pc1, Pc2, and Pc3, and the first titanium layer L1, the aluminum layer L2, and the second titanium layer L3 are formed in a vacuum atmosphere. However, the present invention is not limited to this, and the present invention can also be applied to the case where the first and second titanium layers L1 and L3 and the aluminum layer L2 are formed by different sputtering apparatuses. can be applied. Also, the first titanium layer L1 and the second titanium layer L3 may be formed in the same film formation chamber.

LS…積層構造体、L1…第1のチタン層、L2…アルミニウム層、L3…第2のチタン層、Sw…基材、Pc1,Pc2,Pc3…成膜チャンバ(真空チャンバ)、2…ターゲット。 LS... Laminated structure, L1... First titanium layer, L2... Aluminum layer, L3... Second titanium layer, Sw... Base material, Pc1, Pc2, Pc3... Film formation chamber (vacuum chamber), 2... Target.

Claims (4)

第1のチタン層と、アルミニウム層と、第2のチタン層とを順次積層した積層構造体において、
第1及び第2の各チタン層は、X線回折測定によるミラー指数における(002)面及び(100)面に回析ピークを持つ結晶構造を有し、(002)面での回折ピークの半値幅が1.0deg以下、(100)面での回折ピークの半値幅が0.6deg以下であることを特徴とする積層構造体。
In a laminated structure in which a first titanium layer, an aluminum layer, and a second titanium layer are sequentially laminated,
Each of the first and second titanium layers has a crystal structure with diffraction peaks in the (002) plane and the (100) plane in the Miller index measured by X-ray diffraction, and half of the diffraction peak in the (002) plane A laminated structure having a value width of 1.0 deg or less and a diffraction peak half width of 0.6 deg or less on the (100) plane.
前記アルミニウム層は、X線回折測定によるミラー指数における(111)面に回析ピークを持つ結晶構造を有することを特徴とする請求項1記載の積層構造体。 2. The laminated structure according to claim 1, wherein said aluminum layer has a crystal structure having a diffraction peak in the (111) plane in the Miller index measured by X-ray diffraction. 第1のチタン層と、アルミニウム層と、第2のチタン層とを順次積層した積層構造体の製造方法において、
スパッタリング法により、基材上に第1のチタン層を成膜する第1工程と、第1のチタン層の上にアルミニウム層を成膜する第2工程と、アルミニウム層の上に第2のチタン層を成膜する第3工程とを含み、
第1及び第3の各工程は、窒素ガスの分圧が3.0×10-4Pa以下、酸素ガスの分圧が9.0×10-5Pa以下、水蒸気ガスの分圧が8.0×10-4Pa以下、水素ガスの分圧が5.0×10-5Pa以下に夫々達するまで、チタン製のターゲットと基材とが配置された真空チャンバ内を真空排気する真空排気工程と、真空チャンバ内の全圧が0.2Pa~0.5Paの範囲内に維持されるように希ガスを導入し、チタン製のターゲットに所定電力を投入して3nm/sec~5nm/secの範囲内の成膜速度で第1及び第2の各チタン層を成膜する成膜工程と、を更に含むことを特徴とする積層構造体の製造方法。
In a method for manufacturing a laminated structure in which a first titanium layer, an aluminum layer, and a second titanium layer are sequentially laminated,
A first step of forming a first titanium layer on a substrate by a sputtering method, a second step of forming an aluminum layer on the first titanium layer, and a second titanium layer on the aluminum layer a third step of depositing a layer;
In each of the first and third steps, the partial pressure of nitrogen gas is 3.0×10 −4 Pa or less, the partial pressure of oxygen gas is 9.0×10 −5 Pa or less, and the partial pressure of steam gas is 8.0×10 −5 Pa or less. Evacuation step of evacuating the vacuum chamber in which the titanium target and the substrate are arranged until the partial pressure of hydrogen gas reaches 0×10 −4 Pa or less and the hydrogen gas partial pressure reaches 5.0×10 −5 Pa or less, respectively. Then, a rare gas is introduced so that the total pressure in the vacuum chamber is maintained within the range of 0.2 Pa to 0.5 Pa, and a predetermined power is applied to the titanium target to achieve 3 nm/sec to 5 nm/sec. and a film forming step of forming the first and second titanium layers at a film forming rate within a range.
前記第2工程は、アルミニウム製のターゲットと基材とが配置された真空チャンバ内の全圧が0.2Pa~0.5Paの範囲内に維持されるように希ガスを導入し、アルミニウム製のターゲットに所定電力を投入して7nm/sec~10nm/secの範囲内の成膜速度でアルミニウム層を成膜する成膜工程を更に含むことを特徴とする請求項3記載の積層構造体の製造方法。 In the second step, a rare gas is introduced so that the total pressure in the vacuum chamber in which the aluminum target and the substrate are arranged is maintained within a range of 0.2 Pa to 0.5 Pa, and the aluminum 4. The manufacturing of the laminated structure according to claim 3, further comprising a film forming step of applying a predetermined power to the target and forming the aluminum layer at a film forming rate within a range of 7 nm/sec to 10 nm/sec. Method.
JP2022550351A 2020-09-16 2021-06-11 LAMINATED STRUCTURE AND METHOD FOR MANUFACTURING LAMINATED STRUCTURE Active JP7196372B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020155773 2020-09-16
JP2020155773 2020-09-16
PCT/JP2021/022329 WO2022059277A1 (en) 2020-09-16 2021-06-11 Laminated structure, and method for manufacturing laminated structure

Publications (2)

Publication Number Publication Date
JPWO2022059277A1 JPWO2022059277A1 (en) 2022-03-24
JP7196372B2 true JP7196372B2 (en) 2022-12-26

Family

ID=80776754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022550351A Active JP7196372B2 (en) 2020-09-16 2021-06-11 LAMINATED STRUCTURE AND METHOD FOR MANUFACTURING LAMINATED STRUCTURE

Country Status (5)

Country Link
JP (1) JP7196372B2 (en)
KR (1) KR20220142473A (en)
CN (1) CN116056884B (en)
TW (1) TWI808439B (en)
WO (1) WO2022059277A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264719B2 (en) 2003-09-10 2009-05-20 丸大食品株式会社 Food container
JP2012164940A (en) 2011-02-09 2012-08-30 Rohm Co Ltd Semiconductor device and manufacturing method of the same
JP2015177105A (en) 2014-03-17 2015-10-05 株式会社ジャパンディスプレイ Display device and method of manufacturing display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053668B2 (en) * 1990-07-05 2000-06-19 旭硝子株式会社 Heat shielding film
JP2805663B2 (en) * 1991-02-19 1998-09-30 ソニー株式会社 Wiring formation method
TW335504B (en) * 1996-07-09 1998-07-01 Applied Materials Inc A method for providing full-face high density plasma deposition
JPH10223632A (en) * 1997-02-04 1998-08-21 Nippon Steel Corp Semiconductor device
JP3177208B2 (en) * 1998-02-06 2001-06-18 株式会社ジャパンエナジー High purity titanium sputtering target
JP3643563B2 (en) * 2002-02-18 2005-04-27 株式会社東芝 Semiconductor integrated circuit device and manufacturing method thereof
CN1823425A (en) * 2003-07-10 2006-08-23 松下电器产业株式会社 Organic thin-film transistor and process for fabricating the same, active matrix type display employing it and radio identification tag
CN102791475B (en) * 2010-03-02 2016-01-20 住友金属矿山株式会社 Lamilated body and manufacture method thereof and use its function element
KR102377388B1 (en) * 2016-07-07 2022-03-21 가부시키가이샤 몰디노 Hard coating, hard-coated tool, and their production methods
JP6871301B2 (en) * 2019-04-26 2021-05-12 株式会社東芝 Sputtering target, titanium nitride film manufacturing method, and semiconductor device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264719B2 (en) 2003-09-10 2009-05-20 丸大食品株式会社 Food container
JP2012164940A (en) 2011-02-09 2012-08-30 Rohm Co Ltd Semiconductor device and manufacturing method of the same
JP2015177105A (en) 2014-03-17 2015-10-05 株式会社ジャパンディスプレイ Display device and method of manufacturing display device

Also Published As

Publication number Publication date
JPWO2022059277A1 (en) 2022-03-24
CN116056884B (en) 2024-05-31
TWI808439B (en) 2023-07-11
WO2022059277A1 (en) 2022-03-24
CN116056884A (en) 2023-05-02
KR20220142473A (en) 2022-10-21
TW202216436A (en) 2022-05-01

Similar Documents

Publication Publication Date Title
US9938616B2 (en) Physical vapor deposition of low-stress nitrogen-doped tungsten films
US9779958B2 (en) Method of, and apparatus for, forming hard mask
JP5901762B2 (en) Hard mask manufacturing method
TW200815618A (en) Silicon thin-film and method of forming silicon thin-film
US20040137158A1 (en) Method for preparing a noble metal surface
KR102205227B1 (en) Boron-based film forming method and boron-based film apparatus
JP7196372B2 (en) LAMINATED STRUCTURE AND METHOD FOR MANUFACTURING LAMINATED STRUCTURE
TWI489531B (en) Manufacture method and electrode structure of electronic parts
US10988838B2 (en) Color film and method of forming the same
CN107710391B (en) Method for etching multilayer film
JPH11335815A (en) Substrate with transparent conductive film and deposition apparatus
US20150235855A1 (en) Metal Deposition with Reduced Stress
TWI837198B (en) Deposition process for piezoelectric coatings
WO2017199468A1 (en) Method for forming internal stress control film
Peng et al. Microstructure and blue photoluminescence of hydrogenated silicon carbonitride thin films
JP7517911B2 (en) Film forming method and sputtering apparatus
JP4734864B2 (en) Sputtering method
CN114892129A (en) Method for manufacturing a layer for display manufacturing using water vapor and apparatus of said method
JP2000235968A (en) Dry etching device and dry etching method using the same
JPH04284665A (en) Semiconductor device and manufacture thereof
JP2009019240A5 (en)
JPH0430527A (en) Manufacture of semiconductor device
JPH11172429A (en) Production of supersmooth film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221214

R150 Certificate of patent or registration of utility model

Ref document number: 7196372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150