JP7192509B2 - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element Download PDF

Info

Publication number
JP7192509B2
JP7192509B2 JP2019002641A JP2019002641A JP7192509B2 JP 7192509 B2 JP7192509 B2 JP 7192509B2 JP 2019002641 A JP2019002641 A JP 2019002641A JP 2019002641 A JP2019002641 A JP 2019002641A JP 7192509 B2 JP7192509 B2 JP 7192509B2
Authority
JP
Japan
Prior art keywords
layer
thermoelectric conversion
corrugated
slope
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019002641A
Other languages
Japanese (ja)
Other versions
JP2020113617A (en
Inventor
雄太 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2019002641A priority Critical patent/JP7192509B2/en
Publication of JP2020113617A publication Critical patent/JP2020113617A/en
Application granted granted Critical
Publication of JP7192509B2 publication Critical patent/JP7192509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、熱電変換素子に関する。 The present invention relates to thermoelectric conversion elements.

熱電変換素子は、熱エネルギーと電気エネルギーを相互に変換することができる素子である。熱電変換素子をその両端に温度差が生じる環境に設置することで、可動部を必要とせずに熱電変換素子から電力を取り出すことができる。例えば、排熱から電気エネルギーを生み出すことができる。そのため、熱電変換素子を用いた発電技術は、身の周りの未利用のエネルギーを回収して利用するエナジーハーベスティング技術として、大いに期待されている。 A thermoelectric conversion element is an element capable of mutually converting thermal energy and electrical energy. By installing the thermoelectric conversion element in an environment where a temperature difference occurs between both ends thereof, electric power can be extracted from the thermoelectric conversion element without requiring a movable part. For example, electrical energy can be produced from waste heat. Therefore, power generation technology using thermoelectric conversion elements is highly expected as an energy harvesting technology for recovering and utilizing unused energy around us.

熱電変換素子を、例えば、工業製品の生産設備に使用される電動機や排水管などの熱源に設置すれば、付帯する冷却ファンの電源として使用することができ、効率よくエネルギーを使用することが可能となる。また、分散型の自立電源として利用することができれば、大規模センサネットワーク、ウェアラブルエレクトロニクスなどの電源として用いることが可能となる。特に、有機物からなる熱電変換材料を用いた場合には、熱電変換層を印刷パターンで形成できるため、軽量化、低コスト化、大面積による高出力化が可能となる。この場合、熱電変換素子ユニットの平面性を保つため、温度差はユニットの基板に垂直な方向に与えるのが一般的である。 For example, if thermoelectric conversion elements are installed in heat sources such as electric motors and drain pipes used in production equipment for industrial products, they can be used as power sources for accompanying cooling fans, enabling efficient use of energy. becomes. Moreover, if it can be used as a distributed independent power source, it will be possible to use it as a power source for large-scale sensor networks, wearable electronics, and the like. In particular, when a thermoelectric conversion material made of an organic substance is used, the thermoelectric conversion layer can be formed in a printed pattern, which makes it possible to reduce the weight, reduce the cost, and increase the output due to the large area. In this case, in order to maintain the flatness of the thermoelectric conversion element unit, the temperature difference is generally applied in the direction perpendicular to the substrate of the unit.

特許文献1によると、電動機が高温になると、内部の永久磁石の温度が変化してしまい磁束が乱れ、電動機制御が不安定となる。その対策に、永久磁石の温度を推定して電動機を制御する構成が開示されている。
熱電変換層を印刷パターンとして有する熱電変換素子の一例として、特許文献2に開示された熱電発電素子が挙げられる。特許文献2の熱電変換素子(熱電発電素子)では、底部と頂部とが交互に繰り返された波形の基板(基材)に、印刷パターンからなる複数の熱電変換層(熱電変換単位)が形成され、複数の熱電変換層が直列接続されている。各熱電変換層は、基板の波形を構成する一つの凸部または凹部が有する一対の斜面の一方に形成され、他方には形成されていない。
According to Patent Document 1, when the temperature of the electric motor becomes high, the temperature of the internal permanent magnet changes, the magnetic flux is disturbed, and the electric motor control becomes unstable. As a countermeasure, a configuration is disclosed in which the temperature of the permanent magnet is estimated to control the electric motor.
As an example of a thermoelectric conversion element having a thermoelectric conversion layer as a printed pattern, there is a thermoelectric generation element disclosed in Patent Document 2. In the thermoelectric conversion element (thermoelectric power generation element) of Patent Document 2, a plurality of thermoelectric conversion layers (thermoelectric conversion units) made up of printed patterns are formed on a corrugated substrate (base material) in which bottom portions and top portions are alternately repeated. , a plurality of thermoelectric conversion layers are connected in series. Each thermoelectric conversion layer is formed on one of a pair of slopes of one projection or depression that constitutes the corrugation of the substrate, and is not formed on the other.

一方、エナジーハーベスティングの分野では電圧が重要であり、同じ発電量(電圧×電流)であっても、電圧が小さいと実用に耐えない。熱電変換モジュールの場合、2種類の異なる金属または半導体を接合して、両端に温度差を生じさせ起電力を生じさせる(ゼーベック効果)。これは、p型半導体とn型半導体を交互に組み合わせて使用することが一般的である。また、電圧はゼーベック係数×温度差×素子数で決まるが、ゼーベック係数は数10~数100μV/Kと小さい。よって、実用化のためには、モジュールの形状において、限られた高さで温度差を、限られた面積で素子数を、それぞれ増やす工夫が必要である。 On the other hand, voltage is important in the field of energy harvesting, and even if the amount of power generation is the same (voltage x current), if the voltage is too small, it will not be practical. In the case of a thermoelectric conversion module, two different kinds of metals or semiconductors are joined to generate a temperature difference between both ends to generate an electromotive force (Seebeck effect). It is common to alternately combine p-type semiconductors and n-type semiconductors. The voltage is determined by Seebeck coefficient x temperature difference x number of elements, but the Seebeck coefficient is as small as several tens to several hundred μV/K. Therefore, for practical use, it is necessary to devise ways to increase the temperature difference in a limited height and increase the number of elements in a limited area in the shape of the module.

特に、モジュールを構成する素子数(熱電変換単位の数)については、電子デバイスの形状として一般的な長方形のモジュールを考えると、熱電変換単位を列状に並べて、モジュールの端でジグザグに折り返すように直列接続させる構造が作りやすい。特許文献2の熱電変換素子は、この構造を有する。
特許文献2の熱電変換素子では、底部を吸熱側、頂部を放熱側とし、底部側と頂部側の温度差により発電が行われる。また、基板が波形に形成されていることで、吸熱側と放熱側との距離が大きくなる分、大きな温度差を得ることができる。これに対して、凹凸のない基板を有する熱電変換素子では、基板を水平に保持した状態では十分な温度差が得られない。
In particular, regarding the number of elements (the number of thermoelectric conversion units) that make up the module, considering that the module is generally rectangular in shape as an electronic device, the thermoelectric conversion units should be arranged in a row and folded back in a zigzag pattern at the edge of the module. It is easy to make a structure that connects in series to The thermoelectric conversion element of Patent Document 2 has this structure.
In the thermoelectric conversion element of Patent Document 2, the bottom is on the heat absorption side and the top is on the heat dissipation side, and electricity is generated by the temperature difference between the bottom side and the top side. Further, since the substrate is formed in a corrugated shape, the distance between the heat absorption side and the heat dissipation side is increased, so a large temperature difference can be obtained. On the other hand, in a thermoelectric conversion element having a substrate without unevenness, a sufficient temperature difference cannot be obtained when the substrate is held horizontally.

特許第6329887号公報Japanese Patent No. 6329887 国際公開2013/114854号パンフレットInternational publication 2013/114854 pamphlet

しかし、特許文献2の熱電素子では、熱電変換単位毎に、熱電変換単位の周囲に大気が触れる状態にすることができないため、放熱側である頂部を効果的に冷却するという点で改善の余地がある。
この発明の課題は、放熱側が効果的に冷却されて、高い発電性能が得られる熱電変換素子を提供することである。
However, in the thermoelectric element of Patent Document 2, since the surroundings of each thermoelectric conversion unit cannot be brought into contact with the atmosphere, there is room for improvement in terms of effectively cooling the top, which is the heat dissipation side. There is
An object of the present invention is to provide a thermoelectric conversion element in which the heat radiation side is effectively cooled and high power generation performance can be obtained.

上記課題を解決するために、この発明の第一態様は、下記の構成(1)~(3)を有する熱電変換素子を提供する。
(1)熱電変換単位が直列に複数形成されている基板を、隙間を介して並列に複数備えている。基板は、前記直列の方向に進む波形(凸凹の繰り返し)に形成されている。波形は一つの凸部または凹部が有する一対の斜面からなる。
(2)隣り合う基板において、波形を構成する凸部の頂点が前記直列の方向の異なる位置に存在する。
(3)熱電変換単位は、波形の一対の斜面に第一層および第二層を有し、これらの第一層および第二層は電気的に接続されている。前記第一層および前記第二層の少なくともいずれかは熱電変換材料からなる。隣り合う熱電変換単位の第一層と第二層とが電気的に接続されている。複数の基板は、それぞれ、前記直列の方向の両端に、第一層および第二層にそれぞれ電気的に接続された接続端子を有する。
In order to solve the above problems, a first aspect of the present invention provides a thermoelectric conversion element having the following configurations (1) to (3).
(1) A plurality of substrates on which a plurality of thermoelectric conversion units are formed in series are provided in parallel with a gap therebetween. The substrate is formed in a waveform (repetition of unevenness) that advances in the direction of the series. A corrugation consists of a pair of slanted surfaces of one convex or concave portion.
(2) In adjacent substrates, the apexes of the protrusions forming the waveform are present at different positions in the direction of the series.
(3) The thermoelectric conversion unit has a first layer and a second layer on a pair of wavy slopes, and these first and second layers are electrically connected. At least one of the first layer and the second layer is made of a thermoelectric conversion material. The first layer and the second layer of adjacent thermoelectric conversion units are electrically connected. Each of the substrates has connection terminals electrically connected to the first layer and the second layer at both ends in the series direction.

この発明の第二態様は、上記構成(1)(3)と下記の構成(4)を有する熱電変換素子を提供する。
(4)波形の一対の斜面の一方は他方よりも傾斜方向の寸法が大きい。
(5)隣り合う基板において、波形を構成する凸部の頂点が前記直列の方向の同じ位置に存在し、前記並列の方向で一方の斜面と他方の斜面が交互に存在する。
A second aspect of the present invention provides a thermoelectric conversion element having the above configurations (1) and (3) and the following configuration (4).
(4) One of the pair of wavy slopes is larger than the other in the slope direction.
(5) In adjacent substrates, the apexes of the convex portions forming the waveform are present at the same position in the series direction, and one slope and the other slope are alternately present in the parallel direction.

この発明の熱電変換素子によれば、放熱側が効果的に冷却されて、高い発電性能が得られることが期待できる。 According to the thermoelectric conversion element of the present invention, it can be expected that the heat radiation side is effectively cooled and high power generation performance is obtained.

第一実施形態の熱電変換素子を示す斜視図である。1 is a perspective view showing a thermoelectric conversion element of a first embodiment; FIG. 第一実施形態の熱電変換素子を示す平面図である。It is a top view which shows the thermoelectric conversion element of 1st embodiment. 第一実施形態の熱電変換素子を示す側面図である。It is a side view which shows the thermoelectric conversion element of 1st embodiment. 第一実施形態の熱電変換素子を製造する際に使用する帯状体を示す平面図である。FIG. 4 is a plan view showing a belt-shaped body used when manufacturing the thermoelectric conversion element of the first embodiment; 第一実施形態の熱電変換素子を製造する際に使用する板状体を示す平面図である。FIG. 3 is a plan view showing a plate-like body used when manufacturing the thermoelectric conversion element of the first embodiment; 図5のA-A断面図である。FIG. 6 is a cross-sectional view taken along the line AA of FIG. 5; 第二実施形態の熱電変換素子を示す斜視図である。FIG. 3 is a perspective view showing a thermoelectric conversion element of a second embodiment; 第二実施形態の熱電変換素子を示す平面図である。FIG. 4 is a plan view showing a thermoelectric conversion element of a second embodiment; 第二実施形態の熱電変換素子を示す側面図である。FIG. 4 is a side view showing the thermoelectric conversion element of the second embodiment; 第二および第三実施形態の熱電変換素子を製造する際に使用する帯状体を示す平面図である。FIG. 4 is a plan view showing a belt-shaped body used when manufacturing the thermoelectric conversion elements of the second and third embodiments; 第二および第三実施形態の熱電変換素子を製造する際に使用する板状体を示す平面図である。FIG. 4 is a plan view showing a plate-like body used when manufacturing the thermoelectric conversion elements of the second and third embodiments; 図11のA-A断面図である。FIG. 12 is a cross-sectional view taken along the line AA of FIG. 11; 第三実施形態の熱電変換素子を示す斜視図である。FIG. 11 is a perspective view showing a thermoelectric conversion element of a third embodiment; 第三実施形態の熱電変換素子を示す平面図である。FIG. 11 is a plan view showing a thermoelectric conversion element of a third embodiment; 第三実施形態の熱電変換素子を示す側面図である。FIG. 11 is a side view showing the thermoelectric conversion element of the third embodiment;

以下、この発明の実施形態について説明する。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この発明は以下に示す実施形態に限定されない。
[第一実施形態]
<構成>
図1~図3に示すように、この実施形態の熱電変換素子1は、五個の帯状の波形体101~105を有する。
波形体101~105は、それぞれ、帯状の波形基板2の上面に、五個の熱電変換単位10が形成されたものである。五個の波形体101~105は同じものである。波形基板2の波形は、帯状の長手方向に進む波形(凸凹凸の繰り返し)であり、五個の熱電変換単位10は、この長手方向に沿って直列に形成されている。
波形基板2は、長手方向両端に形成された平坦部21と、両平坦部の間に形成された連続する五個の凸部22を有する。五個の凸部22は形状および寸法が同じである。一つの凸部22は一対の斜面221,222からなり、隣り合う凸部22の第一の斜面221および第二の斜面222が凹部23を形成する。
Embodiments of the present invention will be described below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but the present invention is not limited to the embodiments shown below.
[First embodiment]
<Configuration>
As shown in FIGS. 1 to 3, the thermoelectric conversion element 1 of this embodiment has five strip-shaped corrugated bodies 101 to 105. FIG.
Each of the corrugated bodies 101 to 105 is formed by forming five thermoelectric conversion units 10 on the upper surface of the strip-shaped corrugated substrate 2 . The five corrugated bodies 101-105 are identical. The waveform of the corrugated substrate 2 is a belt-like longitudinal waveform (repetition of protrusions and depressions), and five thermoelectric conversion units 10 are formed in series along the longitudinal direction.
The corrugated substrate 2 has flat portions 21 formed at both ends in the longitudinal direction, and five continuous convex portions 22 formed between the flat portions. The five projections 22 have the same shape and size. One convex portion 22 is composed of a pair of slopes 221 and 222 , and the first slope 221 and the second slope 222 of the adjacent protrusions 22 form the recess 23 .

凸部22を構成する第一の斜面221と第二の斜面222は、支持板5に垂直な基準線に対して線対称の形状を有する。つまり、図3に示すように、第一の斜面221の基準線に対する角度θ1と第二の斜面222の基準線に対する角度θ2は同じである。
また、凹部23を構成する第一の斜面221と第二の斜面222についても、支持板5に垂直な基準線に対する第一の斜面221の角度θ3と、第二の斜面222の角度θ4とが同じである。また、θ1=θ2=θ3=θ4である。よって、第一の斜面221と第二の斜面222とで傾斜方向の寸法は同じである。
The first slope 221 and the second slope 222 that constitute the convex portion 22 have a line-symmetrical shape with respect to a reference line perpendicular to the support plate 5 . That is, as shown in FIG. 3, the angle θ1 of the first slope 221 with respect to the reference line and the angle θ2 of the second slope 222 with respect to the reference line are the same.
Further, regarding the first slope 221 and the second slope 222 that constitute the recess 23, the angle θ3 of the first slope 221 and the angle θ4 of the second slope 222 with respect to the reference line perpendicular to the support plate 5 are are the same. Also, θ1=θ2=θ3=θ4. Therefore, the first slope 221 and the second slope 222 have the same dimension in the direction of inclination.

図1および図2に示すように、熱電変換単位10は、導電率が異なる第一層31および第二層32と、第一層31および第二層32を接続する第一配線層41を有する。第一層31および第二層32は、波形基板2の一つの凸部22を構成する一対の斜面221,222の上面に、それぞれ形成されている。波形基板2の凸部22の最頂部には第一層31および第二層32が存在しない部分があり、その部分とこれに連続する第一層31および第二層32の端部の上面に第一配線層41が存在する。
第一層31は、p型導電性高分子(熱電変換材料)からなり、第二層32は銀ペーストの硬化物(導電性材料)からなる。第二層32としてn型導電性高分子(熱電変換材料)からなる層を設けてもよい。この実施形態では、n型導電性高分子の代替として銀ペーストの硬化物からなる第二層32を設けている。
As shown in FIGS. 1 and 2, the thermoelectric conversion unit 10 has a first layer 31 and a second layer 32 having different conductivities, and a first wiring layer 41 connecting the first layer 31 and the second layer 32. . The first layer 31 and the second layer 32 are respectively formed on the upper surfaces of a pair of slopes 221 and 222 forming one convex portion 22 of the corrugated substrate 2 . There is a portion where the first layer 31 and the second layer 32 do not exist in the topmost portion of the convex portion 22 of the corrugated substrate 2, and on the upper surface of the portion and the end portions of the first layer 31 and the second layer 32 continuing to this portion, A first wiring layer 41 is present.
The first layer 31 is made of a p-type conductive polymer (thermoelectric conversion material), and the second layer 32 is made of a cured silver paste (conductive material). A layer made of an n-type conductive polymer (thermoelectric conversion material) may be provided as the second layer 32 . In this embodiment, a second layer 32 made of a cured silver paste is provided as an alternative to the n-type conductive polymer.

五個の熱電変換単位10は、隣り合う熱電変換単位10の第一層31と第二層32の両方に渡って形成された第二配線層42により、直列に接続されている。第二配線層42も第一配線層41と同様に、基板2の凹部23の最底部には第一層31および第二層32が存在しない部分があり、その部分とこれに連続する第一層31および第二層32の端部の上面に第二配線層42が存在する。
波形体101~105の長手方向(直列の方向)の両端に、接続端子層43が形成されている。接続端子層43は波形基板2の平坦部21に直接形成され、接続端子層43に連続する第三配線層44が、第一層31および第二層32の上にそれぞれ形成されている。
第一配線層41、第二配線層42、接続端子層43、および第三配線層44は、銀ペーストの硬化物(導電性材料)からなる。
The five thermoelectric conversion units 10 are connected in series by the second wiring layer 42 formed over both the first layer 31 and the second layer 32 of the adjacent thermoelectric conversion units 10 . As with the first wiring layer 41, the second wiring layer 42 also has a portion where the first layer 31 and the second layer 32 do not exist at the bottommost portion of the concave portion 23 of the substrate 2, and the portion and the first wiring layer continuous therewith are formed. A second wiring layer 42 is present on the upper surface of the end portions of the layer 31 and the second layer 32 .
Connection terminal layers 43 are formed at both ends of the corrugated bodies 101 to 105 in the longitudinal direction (the direction of series). The connection terminal layer 43 is formed directly on the flat portion 21 of the corrugated substrate 2, and a third wiring layer 44 continuous with the connection terminal layer 43 is formed on the first layer 31 and the second layer 32, respectively.
The first wiring layer 41, the second wiring layer 42, the connection terminal layer 43, and the third wiring layer 44 are made of cured silver paste (conductive material).

図2は図1を上から見た図であり、図2に示すように、五個の波形体101~105は、長方形の支持板5の上面に、隙間6を介して並列に配置されている。そのため、支持板5を成す長方形の短辺は、波形体101~105の幅(並列の方向Pの寸法)の合計値よりも大きい。そして、隙間6の寸法tは波形体101~105の一つの幅W1よりも小さい。また、支持板5を成す長方形の長辺は、波形体101~105の長手方向寸法よりも大きい。以下においては、支持板5を成す長方形の短辺の寸法を支持板5の幅、長辺の寸法を支持板5の長さと称する。
なお、隙間6の存在により、隣り合う波形体101~105同士が接触して短絡することが防止できるとともに、隣り合う波形体101~105が隙間6を挟んで対向する面の冷却効果が得られる。
2 is a top view of FIG. 1. As shown in FIG. 2, five corrugated bodies 101 to 105 are arranged in parallel on the upper surface of a rectangular support plate 5 with gaps 6 interposed therebetween. there is Therefore, the short side of the rectangle forming the support plate 5 is larger than the total width of the corrugated bodies 101 to 105 (dimension in the parallel direction P). The dimension t of the gap 6 is smaller than the width W1 of one of the corrugated bodies 101-105. Further, the long sides of the rectangle forming the support plate 5 are larger than the longitudinal dimension of the corrugated bodies 101-105. Hereinafter, the dimension of the short side of the rectangle forming the support plate 5 is called the width of the support plate 5, and the dimension of the long side is called the length of the support plate 5. As shown in FIG.
Due to the presence of the gap 6, it is possible to prevent the adjacent corrugated bodies 101 to 105 from coming into contact with each other and to short-circuit each other. .

五個の波形体101~105のうち、支持板5の幅方向両端の波形体101,105と、幅方向中央部の波形体103は、各長手方向一端を支持板5の長さ方向一端に合わせて配置されている。波形体101と波形体103との間の波形体102、および波形体103と波形体105との間の波形体104は、各長手方向他端を支持板5の長さ方向他端に合わせて配置されている。また、波形体101,105,103は、第二層32が形成された端部を支持板5の長さ方向一端に向けて配置され、波形体102,104は、第二層32が形成された端部を支持板5の長さ方向他端に向けて配置されている。そして、波形体101~105の凹部23および平坦部21の下面が、支持板5の上面に固定されている(図1および図3参照)。 Of the five corrugated bodies 101 to 105, the corrugated bodies 101 and 105 at both ends in the width direction of the support plate 5 and the corrugated body 103 at the center in the width direction have one longitudinal end at one end in the length direction of the support plate 5. placed together. The corrugated body 102 between the corrugated body 101 and the corrugated body 103 and the corrugated body 104 between the corrugated body 103 and the corrugated body 105 are aligned with the other longitudinal end of the support plate 5 . are placed. The corrugated bodies 101, 105, and 103 are arranged with the end portion where the second layer 32 is formed facing one end in the length direction of the support plate 5, and the corrugated bodies 102 and 104 where the second layer 32 is formed. The end portion of the support plate 5 is directed toward the other lengthwise end of the support plate 5 . The bottom surfaces of the concave portions 23 and the flat portions 21 of the corrugated bodies 101 to 105 are fixed to the top surface of the support plate 5 (see FIGS. 1 and 3).

その結果、図1および図3に示すように、五個の波形体101~105において、隣り合う波形体101~105の波形は、位相がずれて逆になっている。つまり、隣り合う波形基板2において、波形を構成する凸部22の頂点が長手方向(直列の方向S)の異なる位置に存在している。
また、波形体101と波形体103と波形体105は波形の位相が同じであるが、波形体101と波形体103の間には波形体102がずれた位相で存在するため、両波形体101,103の間には、側面視で波形体102と斜面同士が重なる部分を除いて、波形体102の幅方向寸法に隙間6の寸法tの二倍を足した寸法の隙間が存在する。波形体103と波形体105についても同様に、両波形体103,105の間には、側面視で波形体104と斜面同士が重なる部分を除いて、波形体104の幅方向寸法に隙間6の寸法tの二倍を足した寸法の隙間が存在する。
As a result, as shown in FIGS. 1 and 3, in the five corrugated bodies 101-105, the corrugations of adjacent corrugated bodies 101-105 are out of phase and opposite to each other. That is, in adjacent corrugated substrates 2, the apexes of the convex portions 22 forming the corrugation are present at different positions in the longitudinal direction (the direction S of series).
In addition, although the corrugated body 101, the corrugated body 103, and the corrugated body 105 have the same waveform phase, the corrugated body 102 exists between the corrugated body 101 and the corrugated body 103 with a shifted phase. , 103, there is a gap whose dimension is the widthwise dimension of the corrugated body 102 plus twice the dimension t of the gap 6, except for the portion where the corrugated body 102 and the slopes overlap each other in a side view. Similarly, for the corrugated body 103 and the corrugated body 105, there is a gap 6 between the corrugated bodies 103 and 105 in the width direction of the corrugated body 104 except for the portion where the corrugated body 104 and the slopes overlap each other when viewed from the side. There is a gap whose size is two times the dimension t.

さらに、図1および図2に示すように、隣り合う基板の接続端子層43が配線45で接続されて、全ての熱電変換単位10が全体で直列接続されている。直列接続の両端に存在する接続端子層43が外部端子431として機能し、外部配線46の一端が外部端子431に接続されて、他端が熱電変換素子1の外部に出ている。図3では配線45および外部配線46が省略されている。 Furthermore, as shown in FIGS. 1 and 2, connection terminal layers 43 of adjacent substrates are connected by wiring 45, and all thermoelectric conversion units 10 are connected in series as a whole. The connection terminal layers 43 present at both ends of the series connection function as external terminals 431 , one end of the external wiring 46 is connected to the external terminal 431 , and the other end is outside the thermoelectric conversion element 1 . In FIG. 3, wiring 45 and external wiring 46 are omitted.

<使用方法と作用効果>
この実施形態の熱電変換素子1を使用する際には、支持板5を例えば、電動機などの熱源(例えば、特許文献1の図3の電動機のハウジングの一部の平面部)の上に設置することにより、第一層31および第二層32の底部(凹部23側の部分)を高温にするとともに、第一層31および第二層32の頂部を冷却して低温にする。この冷却は、例えば、図3に示す熱電変換素子1の側面から、波形体101~105と支持板5との間に大気を流通させることにより行う。
<Method of use and effect>
When using the thermoelectric conversion element 1 of this embodiment, the support plate 5 is installed on a heat source such as an electric motor (for example, a flat portion of the housing of the electric motor in FIG. 3 of Patent Document 1). As a result, the bottom portions of the first layer 31 and the second layer 32 (portions on the concave portion 23 side) are raised to a high temperature, and the top portions of the first layer 31 and the second layer 32 are cooled to a low temperature. This cooling is performed, for example, by circulating air between the corrugated bodies 101 to 105 and the support plate 5 from the side surface of the thermoelectric conversion element 1 shown in FIG.

ここで、全ての波形体101~105の波形の位相が同じ(凸部22の頂点が直列の方向Sで一致している)場合には、隙間6が狭いと、冷却の際の大気は、支持板5の幅方向中央部に配置された波形体102~104の幅方向両端面、支持板5の幅方向一端部に配置された波形体101の内側(波形体102側)の端面、および他端部に配置された波形体105の内側(波形体104側)の端面には、ほとんど当たらない。つまり、通気による冷却効果が発揮されない。よって、全ての波形体101~105の冷却が不十分になって、各熱電変換単位10に生じる温度差が小さくなる。 Here, when the phases of the waveforms of all the corrugated bodies 101 to 105 are the same (the apexes of the convex portions 22 are aligned in the serial direction S), if the gap 6 is narrow, the atmosphere during cooling will Width direction end faces of the corrugated bodies 102 to 104 arranged at the width direction central part of the support plate 5, inner (corrugated body 102 side) end faces of the corrugated body 101 arranged at one width direction end part of the support plate 5, and It hardly hits the end face inside (on the side of the corrugated body 104) of the corrugated body 105 arranged at the other end. In other words, the cooling effect due to ventilation is not exhibited. Therefore, the cooling of all the corrugated bodies 101 to 105 becomes insufficient, and the temperature difference occurring in each thermoelectric conversion unit 10 becomes small.

これに対して、この実施形態の熱電変換素子1では、五個の波形体101~105の波形の位相が、隣同士で逆になっている(凸部22の頂点が直列の方向Sで異なる)ため、隙間6が狭くても、冷却の際の大気は、支持板5の幅方向中央部に配置された波形体102~104の幅方向両端面と、支持板5の幅方向両端部に配置された波形体101,105の内側の端面にも十分に当たる。よって、全ての波形体101~105が効率的に冷却されて、各熱電変換単位10に生じる温度差が大きくなる。
その結果、この実施形態の熱電変換素子1によれば、各熱電変換単位10に大きな温度差を生じさせて、高い発電性能を得ることができる。
On the other hand, in the thermoelectric conversion element 1 of this embodiment, the phases of the waveforms of the five corrugated bodies 101 to 105 are opposite to each other (the apexes of the convex parts 22 are different in the series direction S). ), even if the gap 6 is narrow, the air during cooling can flow through both widthwise end faces of the corrugated bodies 102 to 104 arranged in the widthwise central portion of the support plate 5 and both widthwise end portions of the support plate 5. The inner end faces of the arranged corrugated bodies 101, 105 are also sufficiently hit. Therefore, all the corrugated bodies 101 to 105 are efficiently cooled, and the temperature difference occurring in each thermoelectric conversion unit 10 increases.
As a result, according to the thermoelectric conversion element 1 of this embodiment, it is possible to generate a large temperature difference in each thermoelectric conversion unit 10 and obtain high power generation performance.

<製造方法>
この実施形態の熱電変換素子1は、以下に示す方法で製造することができる。
この方法では、図4に示す平板状の帯状体7を、波形に成形することで波形体101~105を作製している。そのために、先ず、図5に示す板状体70を作製する。
図5に示すように、板状体70の平面形状は長方形であって、この長方形の短辺の寸法(幅)W2が、五枚の波形体101~105の幅W1の合計値に相当する。図6に示すように、板状体70は、基板200、第一層310、第二層320、第一配線層410、第二配線層420、接続端子層430、および第三配線層440を有する。つまり、これらの基板200および各層は、波形体101~105の波形基板2および対応する各層(第一層31、第二層32、第一配線層41、第二配線層42、接続端子層43、第三配線層44)の幅W1の五倍で形成されている。
<Manufacturing method>
The thermoelectric conversion element 1 of this embodiment can be manufactured by the method shown below.
In this method, the wavy bodies 101 to 105 are produced by forming the flat strip 7 shown in FIG. 4 into a wavy shape. For this purpose, first, a plate-like body 70 shown in FIG. 5 is produced.
As shown in FIG. 5, the planar shape of the plate-like body 70 is a rectangle, and the dimension (width) W2 of the short side of this rectangle corresponds to the total value of the widths W1 of the five corrugated bodies 101-105. . As shown in FIG. 6, the plate-like body 70 includes a substrate 200, a first layer 310, a second layer 320, a first wiring layer 410, a second wiring layer 420, a connection terminal layer 430, and a third wiring layer 440. have. In other words, these substrates 200 and layers are the corrugated substrates 2 of the corrugated bodies 101 to 105 and the corresponding layers (first layer 31, second layer 32, first wiring layer 41, second wiring layer 42, connection terminal layer 43). , and the width W1 of the third wiring layer 44).

また、板状体70は、第一層310、第二層320、第一配線層410、および第二配線層420で構成された熱電変換単位100を、直列に五個有する。
板状体70を作製する際には、先ず、合成樹脂製の基板200の上面の五箇所に、p型導電性高分子を含むペーストを用いた印刷工程により、第一層310を長方形の平面形状で形成する。つまり、一つの熱電変換単位100に一つの第一層310を形成する。次に、一つの熱電変換単位100に一つの第二層320を、銀ペーストを用いた印刷工程により、第一層310の隣に、所定の隙間を開けて、第一層310と同じ平面形状および厚さで形成する。このようにして、基板200の上面に、五個の熱電変換単位100を構成する全ての第一層310および第二層320からなる熱電変換パターンが形成される。
Also, the plate-like body 70 has five thermoelectric conversion units 100 in series, each of which is composed of a first layer 310 , a second layer 320 , a first wiring layer 410 and a second wiring layer 420 .
When the plate-like body 70 is produced, first, the first layer 310 is formed into a rectangular plane by a printing process using a paste containing a p-type conductive polymer on five locations on the upper surface of the synthetic resin substrate 200. Form in shape. That is, one first layer 310 is formed in one thermoelectric conversion unit 100 . Next, one second layer 320 is formed on one thermoelectric conversion unit 100 by a printing process using silver paste, next to the first layer 310 with a predetermined gap, and the same planar shape as the first layer 310 and form in thickness. In this way, a thermoelectric conversion pattern consisting of all the first layers 310 and second layers 320 constituting the five thermoelectric conversion units 100 is formed on the upper surface of the substrate 200 .

次に、この熱電変換パターン上に、第一配線層410、第二配線層420、接続端子層430、および第三配線層440からなる導電層パターンを、銀ペーストを用いた印刷工程により形成する。図5および図6に示すように、第一配線層410および第二配線層420は、基板200上の第一層310と第二層320との隙間内と、この隙間に近い第一層310および第二層320の上の端部に連続して形成する。また、接続端子層430および第三配線層440は連続したパターンであって、接続端子層430は基板200の上に直接、第三配線層440は、図5の左端では第一層310の上に、右端では第二層320の上に形成する。 Next, a conductive layer pattern composed of the first wiring layer 410, the second wiring layer 420, the connection terminal layer 430, and the third wiring layer 440 is formed on the thermoelectric conversion pattern by a printing process using silver paste. . As shown in FIGS. 5 and 6, the first wiring layer 410 and the second wiring layer 420 are arranged in the gap between the first layer 310 and the second layer 320 on the substrate 200 and the first layer 310 near this gap. and the upper end of the second layer 320 are continuously formed. The connection terminal layer 430 and the third wiring layer 440 are continuous patterns. The connection terminal layer 430 is directly on the substrate 200, and the third wiring layer 440 is on the first layer 310 at the left end of FIG. 2, and is formed on the second layer 320 at the right end.

次に、板状体70を幅方向で五等分に切断して、五枚の帯状体7を得る。
次に、平板状の帯状体7を波形に成形することで波形体101~105を作製する。波形の成形は、波形に対応する雄部および雌部を有する金型を用意し、五分割された基板200の裏面側に雄部を表面側に雌部を押し当てて加熱しながら加圧する(加熱加圧成形を行う)。これにより、第一層31および第二層32と、五分割された基板200の第一層31および第二層32が形成されている部分を延伸変形させて、凸部22と凹部23を形成する。
次に、図1および図2に示す配置で、各波形体101~105の凹部23の下面および平坦部21の下面を、支持板5の上面に接着剤で固定する。
Next, the plate-shaped body 70 is cut into five equal parts in the width direction to obtain five belt-shaped bodies 7 .
Next, the wavy bodies 101 to 105 are produced by forming the flat belt-shaped body 7 into a wavy shape. To form the corrugation, a mold having male and female parts corresponding to the corrugation is prepared, and the male part is pressed against the back side of the substrate 200 divided into five parts, and the female part is pressed against the front side to heat and pressurize ( heat and pressure molding). As a result, the first layer 31 and the second layer 32, and the portion of the substrate 200 divided into five parts where the first layer 31 and the second layer 32 are formed are stretched and deformed to form the convex portion 22 and the concave portion 23. do.
Next, in the arrangement shown in FIGS. 1 and 2, the bottom surfaces of the recesses 23 and the bottom surfaces of the flat portions 21 of each corrugated body 101-105 are fixed to the top surface of the support plate 5 with an adhesive.

[第二実施形態]
<構成>
図7~図9に示すように、この実施形態の熱電変換素子1Aは、五個の帯状の波形体106~110を有する。
波形体106~110は、それぞれ、帯状の波形基板2Aの上面に、五個の熱電変換単位10Aが形成されたものである。五個の波形体106~110は同じものである。波形基板2Aの波形は、帯状の長手方向に進む波形(凸凹凸の繰り返し)であり、五個の熱電変換単位10Aは、この長手方向に沿って直列に形成されている。
[Second embodiment]
<Configuration>
As shown in FIGS. 7 to 9, the thermoelectric conversion element 1A of this embodiment has five strip-shaped corrugated bodies 106 to 110. FIG.
Each of the corrugated bodies 106 to 110 is formed by forming five thermoelectric conversion units 10A on the top surface of a strip-shaped corrugated substrate 2A. The five corrugations 106-110 are identical. The waveform of the corrugated substrate 2A is a belt-like longitudinal waveform (repetition of convex and concave portions), and the five thermoelectric conversion units 10A are formed in series along the longitudinal direction.

波形基板2Aは、長手方向両端に形成された平坦部21と、両平坦部の間に形成された連続する五個の凸部22Aを有する。五個の凸部22Aは形状および寸法が同じである。一つの凸部22Aは一対の斜面221A,222Aからなり、隣り合う凸部22Aの斜面221Aおよび斜面222Aが凹部23Aを形成する。
凸部22Aを構成する第一の斜面221Aと第二の斜面222Aは、支持板5に垂直な基準線に対して非対称の形状を有する。つまり、図9に示すように、第一の斜面221Aの基準線に対する角度θ1と第二の斜面222Aの基準線に対する角度θ2は異なり、θ1はθ2より小さい。この例では、θ1は約14.5°であり、θ2は約55°である。
The corrugated substrate 2A has flat portions 21 formed at both ends in the longitudinal direction, and five continuous convex portions 22A formed between the flat portions. The five projections 22A have the same shape and size. One convex portion 22A is composed of a pair of slopes 221A and 222A, and the slopes 221A and 222A of the adjacent protrusions 22A form the recess 23A.
The first slope 221A and the second slope 222A that constitute the convex portion 22A have an asymmetrical shape with respect to the reference line perpendicular to the support plate 5 . That is, as shown in FIG. 9, the angle θ1 of the first slope 221A with respect to the reference line and the angle θ2 of the second slope 222A with respect to the reference line are different, and θ1 is smaller than θ2. In this example, θ1 is about 14.5° and θ2 is about 55°.

また、凹部23Aを構成する第一の斜面221Aと第二の斜面222Aについても、支持板5に垂直な基準線に対する第一の斜面221Aの角度θ3と、第二の斜面222Aの角度θ4とが異なり、θ3はθ4より小さい。この例では、θ3は約14.5°であり、θ4は約55°である。つまり、θ1=θ3<θ2=θ4である。よって、第一の斜面221Aと第二の斜面222Aとで傾斜方向の寸法が異なり、第一の斜面221Aよりも第二の斜面222Aの方が傾斜方向の寸法が大きい。
なお、θ1~θ4の別の例として、θ1=θ3=5°とθ2=θ4=25°の組合せが挙げられる。凸部22Aの頂部は、製造工程で平板状の帯状体7Aを曲げる際に破損しないための丸みを有する。
Further, regarding the first slope 221A and the second slope 222A that constitute the recess 23A, the angle θ3 of the first slope 221A and the angle θ4 of the second slope 222A with respect to the reference line perpendicular to the support plate 5 are Unlike, θ3 is less than θ4. In this example, θ3 is about 14.5° and θ4 is about 55°. That is, θ1=θ3<θ2=θ4. Therefore, the first slope 221A and the second slope 222A have different dimensions in the inclination direction, and the second slope 222A has a larger dimension in the inclination direction than the first slope 221A.
Another example of θ1 to θ4 is a combination of θ1=θ3=5° and θ2=θ4=25°. The tops of the projections 22A are rounded so as not to be damaged when the flat strip 7A is bent in the manufacturing process.

図7および図8に示すように、熱電変換単位10Aは、導電率が異なる第一層31Aおよび第二層32Aと、第一層31Aおよび第二層32Aを接続する第一配線層41Aを有する。第一層31Aおよび第二層32Aは、波形基板2Aの一つの凸部22Aを構成する一対の斜面221A,222Aの上面に、それぞれ形成されている。波形基板2Aの凸部22Aの最頂部には第一層31Aおよび第二層32Aが存在しない部分があり、その部分とこれに連続する第一層31Aおよび第二層32Aの端部の上面に第一配線層41Aが存在する。 As shown in FIGS. 7 and 8, the thermoelectric conversion unit 10A has a first layer 31A and a second layer 32A having different conductivities, and a first wiring layer 41A connecting the first layer 31A and the second layer 32A. . The first layer 31A and the second layer 32A are respectively formed on the upper surfaces of a pair of slopes 221A and 222A forming one convex portion 22A of the corrugated substrate 2A. There is a portion where the first layer 31A and the second layer 32A do not exist at the highest portion of the convex portion 22A of the corrugated substrate 2A, and on the upper surface of the portion and the end portions of the first layer 31A and the second layer 32A connected to this portion A first wiring layer 41A is present.

第一層31Aは、p型導電性高分子(熱電変換材料)からなり、第二層32Aは銀ペーストの硬化物(導電性材料)からなる。第二層32Aとしてn型導電性高分子(熱電変換材料)からなる層を設けてもよい。この実施形態では、n型導電性高分子の代替として銀ペーストの硬化物からなる第二層32Aを設けている。つまり、傾斜方向の寸法が大きい第二の斜面222A上の第二層32Aは、傾斜方向の寸法が小さい第一の斜面221A上の第一層31Aよりも、導電率の高い材料で形成されている。 The first layer 31A is made of a p-type conductive polymer (thermoelectric conversion material), and the second layer 32A is made of a cured silver paste (conductive material). A layer made of an n-type conductive polymer (thermoelectric conversion material) may be provided as the second layer 32A. In this embodiment, a second layer 32A made of a cured silver paste is provided as an alternative to the n-type conductive polymer. In other words, the second layer 32A on the second slope 222A with a larger dimension in the direction of inclination is made of a material with higher conductivity than the first layer 31A on the first slope 221A with a smaller dimension in the direction of inclination. there is

五個の熱電変換単位10Aは、隣り合う熱電変換単位10Aの第一層31Aと第二層32Aの両方に渡って形成された第二配線層42Aにより、直列に接続されている。第二配線層42Aも第一配線層41Aと同様に、波形基板2Aの凹部23Aの最底部には第一層31Aおよび第二層32Aが存在しない部分があり、その部分とこれに連続する第一層31Aおよび第二層32Aの端部の上面に第二配線層42Aが存在する。
波形体106~110の長手方向(直列接続の方向)の両端に、接続端子層43が形成されている。接続端子層43は波形基板2Aの平坦部21に直接形成され、接続端子層43に連続する第三配線層44Aが、第一層31Aおよび第二層32Aの上にそれぞれ形成されている。
第一配線層41A、第二配線層42A、接続端子層43、および第三配線層44Aは、銀ペーストの硬化物(導電性材料)からなる。
The five thermoelectric conversion units 10A are connected in series by a second wiring layer 42A formed over both the first layer 31A and the second layer 32A of the adjacent thermoelectric conversion units 10A. Similarly to the first wiring layer 41A, the second wiring layer 42A also has a portion where the first layer 31A and the second layer 32A do not exist at the bottommost portion of the concave portion 23A of the corrugated substrate 2A. A second wiring layer 42A exists on the upper surface of the end of the first layer 31A and the second layer 32A.
Connection terminal layers 43 are formed at both ends of the corrugated bodies 106 to 110 in the longitudinal direction (direction of series connection). The connection terminal layer 43 is formed directly on the flat portion 21 of the corrugated substrate 2A, and a third wiring layer 44A continuous with the connection terminal layer 43 is formed on the first layer 31A and the second layer 32A, respectively.
The first wiring layer 41A, the second wiring layer 42A, the connection terminal layer 43, and the third wiring layer 44A are made of cured silver paste (conductive material).

図8は図7を上から見た図であり、図8に示すように、五個の波形体106~110は、長方形の支持板5の上面に、隙間6を介して並列に配置されている。そのため、支持板5を成す長方形の短辺は、波形体106~110の幅(並列の方向の寸法)の合計値よりも大きい。そして、隙間6の寸法tは波形体106~110の一つの幅よりも小さい。また、支持板5を成す長方形の長辺は、波形体106~110の長手方向寸法と同じである。以下においては、支持板5を成す長方形の短辺の寸法を支持板5の幅、長辺の寸法を支持板5の長さと称する。
なお、隙間6の存在により、隣り合う波形体106~110同士が接触して短絡することが防止できるとともに、隣り合う波形体106~110が隙間6を挟んで対向する面の冷却効果が得られる。
FIG. 8 is a top view of FIG. 7. As shown in FIG. 8, five corrugated bodies 106 to 110 are arranged in parallel on the upper surface of the rectangular support plate 5 with gaps 6 interposed therebetween. there is Therefore, the short side of the rectangle forming the support plate 5 is larger than the total width (dimension in the parallel direction) of the corrugated bodies 106-110. The dimension t of the gap 6 is smaller than the width of one of the corrugated bodies 106-110. The long sides of the rectangle forming the support plate 5 are the same as the longitudinal dimension of the corrugated bodies 106-110. Hereinafter, the dimension of the short side of the rectangle forming the support plate 5 is called the width of the support plate 5, and the dimension of the long side is called the length of the support plate 5. As shown in FIG.
Due to the presence of the gap 6, it is possible to prevent the adjacent corrugated bodies 106 to 110 from coming into contact with each other and to short-circuit each other. .

五個の波形体106~110のうち、支持板5の幅方向両端の波形体106,110と、幅方向中央部の波形体108は、各長手方向一端を支持板5の長さ方向一端に合わせて配置されている。波形体106と波形体108との間の波形体107、および波形体108と波形体110との間の波形体109は、各長手方向他端を支持板5の長さ方向他端に合わせて配置されている。また、波形体106,110,108は、第二層32Aが形成された端部を支持板5の長さ方向一端に向けて配置され、波形体107,109は、第二層32Aが形成された端部を支持板5の長さ方向他端に向けて配置されている。そして、波形体106~110の凹部23Aおよび平坦部21の下面が、支持板5の上面に固定されている(図7および図9参照)。 Of the five corrugated bodies 106 to 110, the corrugated bodies 106 and 110 at both ends in the width direction of the support plate 5 and the corrugated body 108 at the center in the width direction have one longitudinal end at one end in the length direction of the support plate 5. placed together. The corrugated body 107 between the corrugated body 106 and the corrugated body 108 and the corrugated body 109 between the corrugated body 108 and the corrugated body 110 are aligned with the other longitudinal end of the support plate 5 in the longitudinal direction. are placed. The corrugated bodies 106, 110, and 108 are arranged with the end portion where the second layer 32A is formed facing one end in the length direction of the support plate 5, and the corrugated bodies 107 and 109 are arranged where the second layer 32A is formed. The end portion of the support plate 5 is directed toward the other lengthwise end of the support plate 5 . The bottom surfaces of the concave portions 23A and the flat portions 21 of the corrugated bodies 106 to 110 are fixed to the top surface of the support plate 5 (see FIGS. 7 and 9).

その結果、図7および図9に示すように、隣り合う波形基板2Aにおいて、波形を構成する凸部22Aの頂点は長手方向(直列の方向S)の同じ位置に存在し、幅方向(並列の方向P)で第一の斜面(一方の斜面)221Aと第二の斜面(他方の斜面)222Aが交互に存在している。
また、波形体106と波形体108との間には、側面視で波形体107と斜面同士および凸部22Aの頂部同士が重なる部分を除いて、波形体107の幅方向寸法に隙間6の寸法tの二倍を足した寸法の隙間が存在する。波形体108と波形体110についても同様に、両波形体108,110の間には、側面視で波形体109と斜面同士および凸部22Aの頂部が重なる部分を除いて、波形体109の幅方向寸法に隙間6の寸法tの二倍を足した寸法の隙間が存在する。
As a result, as shown in FIGS. 7 and 9, in the adjacent corrugated substrates 2A, the apexes of the convex portions 22A forming the corrugations are present at the same position in the longitudinal direction (serial direction S) and in the width direction (parallel direction S). A first slope (one slope) 221A and a second slope (the other slope) 222A alternate in the direction P).
Between the corrugated body 106 and the corrugated body 108, except for the portions where the corrugated body 107 and the slopes overlap with each other and the tops of the convex portions 22A overlap each other in a side view, the dimension of the gap 6 is equal to the width dimension of the corrugated body 107. There is a gap whose size is two times t. Likewise for the corrugated body 108 and the corrugated body 110, there is a width of the corrugated body 109 between the corrugated bodies 108 and 110 except for the portions where the corrugated body 109 and the slopes and the tops of the convex portions 22A overlap when viewed from the side. There is a gap whose dimension is the directional dimension plus twice the dimension t of the gap 6 .

さらに、図7および図8に示すように、隣り合う基板の接続端子層43が配線45で接続されて、全ての熱電変換単位10Aが全体で直列接続されている。直列接続の両端となる接続端子層43が外部端子431として機能し、外部配線46の一端が外部端子431に接続されて、他端が熱電変換素子1Aの外部に出ている。図9では配線45および外部配線46が省略されている。 Furthermore, as shown in FIGS. 7 and 8, connection terminal layers 43 of adjacent substrates are connected by wiring 45, and all thermoelectric conversion units 10A are connected in series as a whole. The connection terminal layers 43, which are both ends of the series connection, function as external terminals 431, one end of the external wiring 46 is connected to the external terminal 431, and the other end is outside the thermoelectric conversion element 1A. In FIG. 9, wiring 45 and external wiring 46 are omitted.

<使用方法と作用効果>
この実施形態の熱電変換素子1Aを使用する際には、支持板5を例えば、電動機などの熱源(例えば、特許文献1の図3の電動機のハウジングの一部の平面部)の上に設置することにより、第一層31Aおよび第二層32Aの底部(凹部23A側の部分)を高温にするとともに、第一層31Aおよび第二層32Aの頂部を冷却して低温にする。この冷却は、例えば、図9に示す熱電変換素子1の側面から、波形体106~110と支持板5との間に大気を流通させることにより行う。
<Method of use and effect>
When using the thermoelectric conversion element 1A of this embodiment, the support plate 5 is installed on a heat source such as an electric motor (for example, a flat portion of a part of the housing of the electric motor in FIG. 3 of Patent Document 1). As a result, the bottom portions of the first layer 31A and the second layer 32A (the portion on the side of the concave portion 23A) are raised to a high temperature, and the top portions of the first layer 31A and the second layer 32A are cooled to a low temperature. This cooling is performed, for example, by circulating air between the corrugated bodies 106 to 110 and the support plate 5 from the side surface of the thermoelectric conversion element 1 shown in FIG.

ここで、全ての波形体106~110がそれぞれ有する非対称の凸部22Aが、隣り合う波形体106~110で同じ向きに揃えられている(凸部の頂点が直列の方向Sで一致しているだけでなく、並列の方向Pで第一の斜面221Aおよび第二の斜面222Aが全て同じ位置に存在する)場合には、隙間6が狭いと、冷却の際の大気は、支持板5の幅方向中央部に配置された波形体106~110の幅方向両端面、支持板5の幅方向一端部に配置された波形体106の内側(波形体107側)の端面、および他端部に配置された波形体110の内側(波形体109側)の端面には、ほとんど当たらない。つまり、通気による冷却効果が発揮されない。よって、全ての波形体106~110の冷却が不十分になって、各熱電変換単位10Aに生じる温度差が小さくなる。 Here, the asymmetric convex portions 22A of all the corrugated bodies 106 to 110, respectively, are aligned in the same direction in the adjacent corrugated bodies 106 to 110 (the apexes of the convex portions are aligned in the serial direction S). In addition, when the first slope 221A and the second slope 222A are all present at the same position in the parallel direction P), if the gap 6 is narrow, the atmosphere during cooling will not reach the width of the support plate 5. Arranged on both width direction end faces of the corrugated bodies 106 to 110 arranged in the direction central part, the inner end face (corrugated body 107 side) of the corrugated body 106 arranged at one width direction end part of the support plate 5, and the other end part The inner end face (on the side of the corrugated body 109) of the corrugated body 110 that has been formed is hardly hit. In other words, the cooling effect due to ventilation is not exhibited. Therefore, cooling of all corrugated bodies 106 to 110 becomes insufficient, and the temperature difference occurring in each thermoelectric conversion unit 10A becomes small.

これに対して、この実施形態の熱電変換素子1Aでは、全ての波形体106~110がそれぞれ有する非対称の凸部22Aの頂点は、直列の方向Sで同じではあるが、第一の斜面221Aおよび第二の斜面222Aが並列の方向Pで交互に存在するため、隙間6が狭くても、冷却の際の大気は、支持板5の幅方向中央部に配置された波形体107~109の幅方向両端面と、支持板5の幅方向両端部に配置された波形体106,110の内側の端面にも十分に当たる。よって、全ての波形体106~110が効率的に冷却されて、各熱電変換単位10Aに生じる温度差が大きくなる。
その結果、この実施形態の熱電変換素子1Aによれば、各熱電変換単位10Aに大きな温度差を生じさせて、高い発電性能を得ることができる。
On the other hand, in the thermoelectric conversion element 1A of this embodiment, the apexes of the asymmetric convex portions 22A of all the corrugated bodies 106 to 110 are the same in the serial direction S, but the first slopes 221A and Since the second inclined planes 222A are alternately arranged in the parallel direction P, even if the gap 6 is narrow, the air during cooling can penetrate the width of the corrugated bodies 107 to 109 arranged in the widthwise central portion of the support plate 5. Both end faces in the direction and inner end faces of the corrugated bodies 106 and 110 arranged at both end portions in the width direction of the support plate 5 are sufficiently hit. Therefore, all the corrugated bodies 106 to 110 are efficiently cooled, and the temperature difference generated in each thermoelectric conversion unit 10A is increased.
As a result, according to the thermoelectric conversion element 1A of this embodiment, it is possible to generate a large temperature difference in each thermoelectric conversion unit 10A and obtain high power generation performance.

さらに、第二実施形態の熱電変換素子1Aでは、導電率の低い材料で形成された第一層31Aの第一の斜面221Aに沿った長さが、導電率の高い材料で形成された第二層32Aの第二の斜面222Aに沿った長さより短いため、第一層31と第二層32が同じ長さの斜面に形成されている第一実施形態の熱電変換素子1よりも、発熱量を多くすることができる。これは、凸部22,22Aの直列の方向Sの寸法が同じ場合、第二実施形態の熱電変換素子1Aの方が第一実施形態の熱電変換素子1よりも第一層31,31Aの第一の斜面221,221Aに沿った長さが短くなることで、抵抗が小さくなり、第二実施形態の熱電変換素子1Aの方が第一実施形態の熱電変換素子1よりも第二層32,32Aの第二の斜面222,222Aに沿った長さは長くなるが、これに伴う抵抗の上昇量は僅かなためである。 Furthermore, in the thermoelectric conversion element 1A of the second embodiment, the length along the first slope 221A of the first layer 31A formed of a material with low conductivity is the second layer formed of a material with high conductivity. Since the length along the second slope 222A of the layer 32A is shorter than the thermoelectric conversion element 1 of the first embodiment in which the first layer 31 and the second layer 32 are formed on slopes of the same length, the amount of heat generated is can be increased. This is because the thermoelectric conversion element 1A of the second embodiment has a higher number of the first layers 31 and 31A than the thermoelectric conversion element 1 of the first embodiment when the dimensions in the series direction S of the convex portions 22 and 22A are the same. As the length along one slope 221, 221A becomes shorter, the resistance becomes smaller, and the thermoelectric conversion element 1A of the second embodiment has the second layer 32, This is because although the length of 32A along the second slopes 222 and 222A is longer, the amount of increase in resistance associated with this is slight.

なお、この実施形態の熱電変換素子1Aでは、波形基板2Aの幅方向(図8のP方向)に形成されている熱電変換単位10Aの数は一つであるが、波形基板2Aの幅方向に隙間を開けて複数の熱電変換単位10Aが形成されていてもよい。
また、この実施形態の熱電変換素子1Aは、五個の熱電変換単位10Aが直列に接続された五個の波状体106~110を有するため、25個の熱電変換単位が直列に接続された状態になっている。これに対して、例えば、一つの波状体の直列の数を14個、並列に配置する波状体の数を10個とすることで、140個の熱電変換単位が直列に接続された熱電変換素子を得ることができる。
In addition, in the thermoelectric conversion element 1A of this embodiment, the number of thermoelectric conversion units 10A formed in the width direction of the corrugated substrate 2A (the P direction in FIG. 8) is one, but in the width direction of the corrugated substrate 2A A plurality of thermoelectric conversion units 10A may be formed with gaps between them.
In addition, since the thermoelectric conversion element 1A of this embodiment has five corrugated bodies 106 to 110 in which five thermoelectric conversion units 10A are connected in series, a state in which 25 thermoelectric conversion units are connected in series It has become. On the other hand, for example, by setting the number of one corrugated body in series to 14 and the number of corrugated bodies to be arranged in parallel to 10, a thermoelectric conversion element in which 140 thermoelectric conversion units are connected in series. can be obtained.

一方、非対称の凸部22Aが、隣り合う波形体106~110で同じ向きに揃えられている点のみが熱電変換素子1Aとは異なる熱電変換素子は、上述のような効率的な冷却効果は得られないが、第一層31Aの斜面に沿った長さが第二層32Aの斜面に沿った長さより短いことで発熱量を多くできる効果は得られる。 On the other hand, the thermoelectric conversion element, which differs from the thermoelectric conversion element 1A only in that the asymmetric convex portions 22A are aligned in the same direction on the adjacent corrugated bodies 106 to 110, can obtain the efficient cooling effect as described above. However, since the length along the slope of the first layer 31A is shorter than the length along the slope of the second layer 32A, the effect of increasing the amount of heat generated can be obtained.

<製造方法>
この実施形態の熱電変換素子1Aは、以下に示す方法で製造することができる。
この方法では、図10に示す平板状の帯状体7Aを、波形に成形することで波形体106~110を作製している。そのために、先ず、図11に示す板状体70Aを作製する。
図11に示すように、板状体70Aの平面形状は長方形であって、この長方形の短辺の寸法(幅)W2が、五枚の波形体106~110の幅W1の合計値に相当する。図12に示すように、板状体70Aは、基板200、第一層310A、第二層320A、第一配線層410A、第二配線層420A、接続端子層430、および第三配線層440を有する。つまり、これらの基板200および各層は、波形体106~110の波形基板2Aおよび対応する各層(第一層31A、第二層32A、第一配線層41A、第二配線層42A、接続端子層43、第三配線層44A)の幅W1の五倍で形成されている。
<Manufacturing method>
The thermoelectric conversion element 1A of this embodiment can be manufactured by the method shown below.
In this method, the wavy bodies 106 to 110 are produced by forming the flat strip 7A shown in FIG. 10 into a wavy shape. For this purpose, first, a plate-like body 70A shown in FIG. 11 is produced.
As shown in FIG. 11, the planar shape of the plate-like body 70A is a rectangle, and the dimension (width) W2 of the short sides of this rectangle corresponds to the total value of the widths W1 of the five corrugated bodies 106-110. . As shown in FIG. 12, the plate-like body 70A includes a substrate 200, a first layer 310A, a second layer 320A, a first wiring layer 410A, a second wiring layer 420A, a connection terminal layer 430, and a third wiring layer 440. have. In other words, these substrates 200 and layers are the corrugated substrate 2A of corrugated bodies 106 to 110 and corresponding layers (first layer 31A, second layer 32A, first wiring layer 41A, second wiring layer 42A, connection terminal layer 43 , and the width W1 of the third wiring layer 44A).

また、板状体70Aは、第一層310A、第二層320A、第一配線層410A、および第二配線層420Aで構成された熱電変換単位100Aを、直列に五個有する。
板状体70Aを作製する際には、先ず、合成樹脂製の基板200の上面の五箇所に、p型導電性高分子を含むペーストを用いた印刷工程により第一層310Aを長方形の平面形状で形成する。つまり、一つの熱電変換単位100Aに一つの第一層310Aを形成する。次に、一つの熱電変換単位100Aに一つの第二層320Aを、銀ペーストを用いた印刷工程により、第一層310Aの隣に、所定の隙間を開けて、第一層310Aと同じ平面形状および厚さで形成する。このようにして、基板200の上面に、五個の熱電変換単位100Aを構成する全ての第一層310Aおよび第二層320Aからなる熱電変換パターンが形成される。
Moreover, the plate-like body 70A has five thermoelectric conversion units 100A in series, which are composed of a first layer 310A, a second layer 320A, a first wiring layer 410A, and a second wiring layer 420A.
When manufacturing the plate-like body 70A, first, the first layer 310A is formed into a rectangular planar shape by a printing process using a paste containing a p-type conductive polymer at five locations on the upper surface of the synthetic resin substrate 200. form with That is, one first layer 310A is formed in one thermoelectric conversion unit 100A. Next, one second layer 320A is applied to one thermoelectric conversion unit 100A by a printing process using silver paste, next to the first layer 310A with a predetermined gap, and the same planar shape as the first layer 310A and form in thickness. In this way, a thermoelectric conversion pattern consisting of all the first layers 310A and the second layers 320A constituting the five thermoelectric conversion units 100A is formed on the upper surface of the substrate 200. FIG.

次に、この熱電変換パターン上に、第一配線層410A、第二配線層420A、接続端子層430、および第三配線層440からなる導電層パターンを、銀ペーストを用いた印刷工程により形成する。図11および図12に示すように、第一配線層410Aおよび第二配線層420Aは、基板200上の第一層310Aと第二層320Aとの隙間内と、この隙間に近い第一層310Aおよび第二層320Aの上の端部に連続して形成する。また、接続端子層430および第三配線層440は連続したパターンであって、接続端子層430は基板200の上に直接、第三配線層440は、図11の左端では第一層310Aの上に、右端では第二層320Aの上に形成する。 Next, a conductive layer pattern composed of the first wiring layer 410A, the second wiring layer 420A, the connection terminal layer 430, and the third wiring layer 440 is formed on the thermoelectric conversion pattern by a printing process using silver paste. . As shown in FIGS. 11 and 12, the first wiring layer 410A and the second wiring layer 420A are arranged in the gap between the first layer 310A and the second layer 320A on the substrate 200 and the first layer 310A near the gap. and the upper end of the second layer 320A. The connection terminal layer 430 and the third wiring layer 440 are continuous patterns. Second, the right end is formed on the second layer 320A.

次に、板状体70Aを幅方向で五等分に切断して、五枚の帯状体7を得る。
次に、平板状の帯状体7Aを波形に成形することで波形体106~110を作製する。波形の成形は、波形に対応する雄部および雌部を有する金型を用意し、五分割された基板200の裏面側に雄部を表面側に雌部を押し当てて加熱しながら加圧する(加熱加圧成形を行う)。これにより、第一層31Aおよび第二層32Aと、五分割された基板200の第一層31Aおよび第二層32Aが形成されている部分を延伸変形させて、凸部22Aと凹部23Aを形成する。
次に、図7および図8に示す配置で、各波形体106~110の凹部23Aの下面および平坦部21の下面を、支持板5の上面に接着剤で固定する。
Next, the plate-shaped body 70A is cut into five equal parts in the width direction to obtain five belt-shaped bodies 7. As shown in FIG.
Next, corrugated bodies 106 to 110 are produced by corrugating the plate-like belt-shaped body 7A. To form the corrugation, a mold having male and female parts corresponding to the corrugation is prepared, and the male part is pressed against the back side of the substrate 200 divided into five parts, and the female part is pressed against the front side to heat and pressurize ( heat and pressure molding). As a result, the first layer 31A and the second layer 32A, and the portion of the substrate 200 divided into five parts where the first layer 31A and the second layer 32A are formed are stretched and deformed to form the convex portion 22A and the concave portion 23A. do.
Next, in the arrangement shown in FIGS. 7 and 8, the bottom surfaces of the concave portions 23A and the bottom surfaces of the flat portions 21 of each corrugated body 106-110 are fixed to the top surface of the support plate 5 with an adhesive.

[第三実施形態]
<構成>
図13~図15に示すように、この実施形態の熱電変換素子1Bは、五個の帯状の波形体106~110を有する。
波形体106~110は、それぞれ、帯状の波形基板2Aの上面に、五個の熱電変換単位10Aが形成されたものである。五個の波形体106~110は同じものである。波形基板2Aの波形は、帯状の長手方向に進む波形(凸凹凸の繰り返し)であり、五個の熱電変換単位10Aは、この長手方向に沿って直列に形成されている。
[Third embodiment]
<Configuration>
As shown in FIGS. 13 to 15, the thermoelectric conversion element 1B of this embodiment has five strip-shaped corrugated bodies 106 to 110. FIG.
Each of the corrugated bodies 106 to 110 is formed by forming five thermoelectric conversion units 10A on the top surface of a strip-shaped corrugated substrate 2A. The five corrugations 106-110 are identical. The waveform of the corrugated substrate 2A is a belt-like longitudinal waveform (repetition of convex and concave portions), and the five thermoelectric conversion units 10A are formed in series along the longitudinal direction.

波形基板2Aは、長手方向両端に形成された平坦部21と、両平坦部の間に形成された連続する五個の凸部22Aを有する。五個の凸部22Aは形状および寸法が同じである。一つの凸部22Aは一対の斜面221A,222Aからなり、隣り合う凸部22Aの第一の斜面221Aおよび第二の斜面222Aが凹部23Aを形成する。
凸部22Aを構成する第一の斜面221Aと第二の斜面222Aは、支持板5に垂直な基準線に対して非対称の形状を有する。つまり、図15に示すように、第一の斜面221Aの基準線に対する角度θ1と第二の斜面222Aの基準線に対する角度θ2は異なり、θ1はθ2より小さい。この例では、θ1は約14.5°であり、θ2は約55°である。
The corrugated substrate 2A has flat portions 21 formed at both ends in the longitudinal direction, and five continuous convex portions 22A formed between the flat portions. The five projections 22A have the same shape and size. One convex portion 22A consists of a pair of slopes 221A and 222A, and the first slope 221A and the second slope 222A of the adjacent protrusions 22A form the recess 23A.
The first slope 221A and the second slope 222A that constitute the convex portion 22A have an asymmetrical shape with respect to the reference line perpendicular to the support plate 5 . That is, as shown in FIG. 15, the angle .theta.1 of the first slope 221A with respect to the reference line and the angle .theta.2 of the second slope 222A with respect to the reference line are different, and .theta.1 is smaller than .theta.2. In this example, θ1 is about 14.5° and θ2 is about 55°.

また、凹部23Aを構成する第一の斜面221Aと第二の斜面222Aについても、支持板5に垂直な基準線に対する第一の斜面221Aの角度θ3と、第二の斜面222Aの角度θ4とが異なり、θ3はθ4より小さい。この例では、θ3は約14.5°であり、θ4は約55°である。つまり、θ1=θ3<θ2=θ4である。よって、第一の斜面221Aと第二の斜面222Aとで傾斜方向の寸法が異なり、第一の斜面221Aよりも第二の斜面222Aの方が傾斜方向の寸法が大きい。
なお、θ1~θ4の別の例として、θ1=θ3=5°とθ2=θ4=25°の組合せが挙げられる。凸部22Aの頂部は、製造工程で平板状の帯状体7Aを曲げる際に破損しないための丸みを有する。
Further, regarding the first slope 221A and the second slope 222A that constitute the recess 23A, the angle θ3 of the first slope 221A and the angle θ4 of the second slope 222A with respect to the reference line perpendicular to the support plate 5 are Unlike, θ3 is less than θ4. In this example, θ3 is about 14.5° and θ4 is about 55°. That is, θ1=θ3<θ2=θ4. Therefore, the first slope 221A and the second slope 222A have different dimensions in the inclination direction, and the second slope 222A has a larger dimension in the inclination direction than the first slope 221A.
Another example of θ1 to θ4 is a combination of θ1=θ3=5° and θ2=θ4=25°. The tops of the projections 22A are rounded so as not to be damaged when the flat strip 7A is bent in the manufacturing process.

図13および図14に示すように、熱電変換単位10Aは、導電率が異なる第一層31Aおよび第二層32Aと、第一層31Aおよび第二層32Aを接続する第一配線層41を有する。第一層31Aおよび第二層32Aは、波形基板2Aの一つの凸部22Aを構成する一対の斜面221A,222Aの上面に、それぞれ形成されている。波形基板2Aの凸部22Aの最頂部には第一層31Aおよび第二層32Aが存在しない部分があり、その部分とこれに連続する第一層31Aおよび第二層32Aの端部の上面に第一配線層41が存在する。 As shown in FIGS. 13 and 14, the thermoelectric conversion unit 10A has a first layer 31A and a second layer 32A having different conductivities, and a first wiring layer 41 connecting the first layer 31A and the second layer 32A. . The first layer 31A and the second layer 32A are respectively formed on the upper surfaces of a pair of slopes 221A and 222A forming one convex portion 22A of the corrugated substrate 2A. There is a portion where the first layer 31A and the second layer 32A do not exist at the highest portion of the convex portion 22A of the corrugated substrate 2A, and on the upper surface of the portion and the end portions of the first layer 31A and the second layer 32A connected to this portion A first wiring layer 41 is present.

第一層31Aは、p型導電性高分子(熱電変換材料)からなり、第二層32Aは銀ペーストの硬化物(導電性材料)からなる。第二層32Aとしてn型導電性高分子(熱電変換材料)からなる層を設けてもよい。この実施形態では、n型導電性高分子の代替として銀ペーストの硬化物からなる第二層32Aを設けている。つまり、傾斜方向の寸法が大きい第二の斜面222A上の第二層32Aは、傾斜方向の寸法が小さい第一の斜面221A上の第一層31Aよりも、導電率の高い材料で形成されている。 The first layer 31A is made of a p-type conductive polymer (thermoelectric conversion material), and the second layer 32A is made of a cured silver paste (conductive material). A layer made of an n-type conductive polymer (thermoelectric conversion material) may be provided as the second layer 32A. In this embodiment, a second layer 32A made of a cured silver paste is provided as an alternative to the n-type conductive polymer. In other words, the second layer 32A on the second slope 222A with a larger dimension in the direction of inclination is made of a material with higher conductivity than the first layer 31A on the first slope 221A with a smaller dimension in the direction of inclination. there is

五個の熱電変換単位10Aは、隣り合う熱電変換単位10Aの第一層31Aと第二層32Aの両方に渡って形成された第二配線層42により、直列に接続されている。第二配線層42も第一配線層41と同様に、波形基板2Aの凹部23Aの最底部には第一層31Aおよび第二層32Aが存在しない部分があり、その部分とこれに連続する第一層31Aおよび第二層32Aの端部の上面に第二配線層42が存在する。
波形体106~110の長手方向(直列接続の方向)の両端に、接続端子層43が形成されている。接続端子層43は波形基板2Aの平坦部21に直接形成され、接続端子層43に連続する第三配線層44Aが、第一層31おAよび第二層32Aの上にそれぞれ形成されている。
第一配線層41A、第二配線層42A、接続端子層43、および第三配線層44Aは、銀ペーストの硬化物(導電性材料)からなる。
The five thermoelectric conversion units 10A are connected in series by a second wiring layer 42 formed over both the first layer 31A and the second layer 32A of the adjacent thermoelectric conversion units 10A. Similarly to the first wiring layer 41, the second wiring layer 42 also has a portion where the first layer 31A and the second layer 32A do not exist at the bottommost portion of the concave portion 23A of the corrugated substrate 2A. A second wiring layer 42 exists on the upper surface of the end of the first layer 31A and the second layer 32A.
Connection terminal layers 43 are formed at both ends of the corrugated bodies 106 to 110 in the longitudinal direction (direction of series connection). The connection terminal layer 43 is formed directly on the flat portion 21 of the corrugated substrate 2A, and a third wiring layer 44A continuous with the connection terminal layer 43 is formed on the first layer 31A and the second layer 32A, respectively. .
The first wiring layer 41A, the second wiring layer 42A, the connection terminal layer 43, and the third wiring layer 44A are made of cured silver paste (conductive material).

図14は図13を上から見た図であり、図14に示すように、五個の波形体106~110は、長方形の支持板5の上面に、隙間6を介して並列に配置されている。そのため、支持板5を成す長方形の短辺は、波形体106~110の幅(並列の方向の寸法)の合計値よりも大きい。そして、隙間6の寸法tは波形体106~110の一つの幅よりも小さい。また、支持板5を成す長方形の長辺は、波形体106~110の長手方向寸法と同じである。以下においては、支持板5を成す長方形の短辺の寸法を支持板5の幅、長辺の寸法を支持板5の長さと称する。 14 is a top view of FIG. 13. As shown in FIG. 14, five corrugated bodies 106 to 110 are arranged in parallel on the upper surface of a rectangular support plate 5 with gaps 6 between them. there is Therefore, the short side of the rectangle forming the support plate 5 is larger than the total width (dimension in the parallel direction) of the corrugated bodies 106-110. The dimension t of the gap 6 is smaller than the width of one of the corrugated bodies 106-110. The long sides of the rectangle forming the support plate 5 are the same as the longitudinal dimension of the corrugated bodies 106-110. Hereinafter, the dimension of the short side of the rectangle forming the support plate 5 is called the width of the support plate 5, and the dimension of the long side is called the length of the support plate 5. As shown in FIG.

なお、隙間6の存在により、隣り合う波形体106~110同士が接触して短絡することが防止できるとともに、隣り合う波形体106~110が隙間6を挟んで対向する面の冷却効果が得られる。
五個の波形体106~110は、各長手方向両端を支持板5の長さ方向両端に合わせて配置されている。また、波形体106,108,110は、第二層32Aが形成された端部を支持板5の長さ方向一端に向けて配置され、波形体107,109は、第二層32Aが形成された端部を支持板5の長さ方向他端に向けて配置されている。そして、波形体106~110の凹部23Aおよび平坦部21の下面が、支持板5の上面に固定されている(図13および図15参照)。
Due to the presence of the gap 6, it is possible to prevent the adjacent corrugated bodies 106 to 110 from coming into contact with each other and to short-circuit each other. .
The five corrugated bodies 106 to 110 are arranged with their longitudinal ends aligned with the longitudinal ends of the support plate 5 . The corrugated bodies 106, 108, and 110 are arranged with the end portion where the second layer 32A is formed facing one end in the length direction of the support plate 5, and the corrugated bodies 107 and 109 are arranged where the second layer 32A is formed. The end portion of the support plate 5 is directed toward the other lengthwise end of the support plate 5 . The bottom surfaces of the concave portions 23A and the flat portions 21 of the corrugated bodies 106 to 110 are fixed to the top surface of the support plate 5 (see FIGS. 13 and 15).

その結果、図13および図15に示すように、波形体106~110がそれぞれ有する非対称の凸部22Aが、隣り合う波形体106~110で逆向きになっている。つまり、隣り合う波形基板2Aにおいて、波形を構成する凸部22Aの頂点が長手方向(直列の方向S)の異なる位置に存在している。
また、波形体106と波形体108との間には、側面視で波形体107と斜面同士および凹部23Aの底部同士が重なる部分を除いて、波形体107の幅方向寸法に隙間6の寸法tの二倍を足した寸法の隙間が存在する。波形体108と波形体110についても同様に、両波形体108,110の間には、側面視で波形体109と斜面同士および凹部23Aの底部が重なる部分を除いて、波形体109の幅方向寸法に隙間6の寸法tの二倍を足した寸法の隙間が存在する。
As a result, as shown in FIGS. 13 and 15, the asymmetric protrusions 22A of corrugations 106-110 are opposite in adjacent corrugations 106-110. That is, in adjacent corrugated substrates 2A, the apexes of the convex portions 22A forming the corrugations are present at different positions in the longitudinal direction (serial direction S).
Between the corrugated body 106 and the corrugated body 108, except for the portions where the corrugated body 107 and the slopes and the bottoms of the recesses 23A overlap in side view, the width dimension of the corrugated body 107 is equal to the dimension t of the gap 6. There is a gap with a dimension that is twice as large as Similarly, with regard to the corrugated body 108 and the corrugated body 110, there is a widthwise direction of the corrugated body 109 between the corrugated bodies 108 and 110 except for the portion where the corrugated body 109 overlaps with the slope and the bottom of the recess 23A overlaps when viewed from the side. There is a gap whose size is equal to twice the dimension t of gap 6 .

さらに、図13および図14に示すように、隣り合う基板の接続端子層43が配線45で接続されて、全ての熱電変換単位10Aが全体で直列接続されている。直列接続の両端となる接続端子層43が外部端子431として機能し、外部配線46の一端が外部端子431に接続されて、他端が熱電変換素子1Bの外部に出ている。図9では配線45および外部配線46が省略されている。 Furthermore, as shown in FIGS. 13 and 14, connection terminal layers 43 of adjacent substrates are connected by wiring 45, and all thermoelectric conversion units 10A are connected in series as a whole. The connection terminal layers 43 at both ends of the series connection function as external terminals 431, one end of the external wiring 46 is connected to the external terminal 431, and the other end is outside the thermoelectric conversion element 1B. In FIG. 9, wiring 45 and external wiring 46 are omitted.

<使用方法と作用効果>
この実施形態の熱電変換素子1Bを使用する際には、支持板5を例えば、電動機などの熱源(例えば、特許文献1の図3の電動機のハウジングの一部の平面部)の上に設置することにより、第一層31Aおよび第二層32Aの底部(凹部23A側の部分)を高温にするとともに、第一層31Aおよび第二層32Aの頂部を冷却して低温にする。この冷却は、例えば、図9に示す熱電変換素子1の側面から、波形体106~110と支持板5との間に大気を流通させることにより行う。
<Method of use and effect>
When using the thermoelectric conversion element 1B of this embodiment, the support plate 5 is installed on a heat source such as an electric motor (for example, a flat portion of the housing of the electric motor in FIG. 3 of Patent Document 1). As a result, the bottom portions of the first layer 31A and the second layer 32A (the portion on the side of the concave portion 23A) are raised to a high temperature, and the top portions of the first layer 31A and the second layer 32A are cooled to a low temperature. This cooling is performed, for example, by circulating air between the corrugated bodies 106 to 110 and the support plate 5 from the side surface of the thermoelectric conversion element 1 shown in FIG.

ここで、全ての波形体106~110がそれぞれ有する非対称の凸部22Aが、隣り合う波形体106~110で同じ向きに揃えられている(凸部22Aの頂点が直列の方向Sで一致しているとともに、並列の方向Pで第一の斜面221Aおよび第二の斜面222Aが全て同じ位置に存在する)場合には、隙間6が狭いと、冷却の際の大気は、支持板5の幅方向中央部に配置された波形体106~110の幅方向両端面、支持板5の幅方向一端部に配置された波形体106の内側(波形体107側)の端面、および他端部に配置された波形体110の内側(波形体109側)の端面には、ほとんど当たらない。つまり、通気による冷却効果が発揮されない。よって、全ての波形体106~110の冷却が不十分になって、各熱電変換単位10Aに生じる温度差が小さくなる。 Here, the asymmetric convex portions 22A of all the corrugated bodies 106 to 110, respectively, are aligned in the same direction in the adjacent corrugated bodies 106 to 110 (the apexes of the convex portions 22A are aligned in the serial direction S). and the first slope 221A and the second slope 222A are all located at the same position in the parallel direction P), if the gap 6 is narrow, the atmosphere during cooling will flow in the width direction of the support plate 5. Width direction end faces of the corrugated bodies 106 to 110 arranged in the central part, inner (corrugated body 107 side) end faces of the corrugated bodies 106 arranged at one width direction end part of the support plate 5, and arranged at the other end part The end surface of the corrugated body 110 on the inner side (on the corrugated body 109 side) hardly hits. In other words, the cooling effect due to ventilation is not exhibited. Therefore, cooling of all corrugated bodies 106 to 110 becomes insufficient, and the temperature difference occurring in each thermoelectric conversion unit 10A becomes small.

これに対して、この実施形態の熱電変換素子1Bでは、全ての波形体106~110がそれぞれ有する非対称の凸部22Aが、隣同士で逆になっている(凸部22Aの頂点が直列の方向Sで異なる)ため、隙間6が狭くても、冷却の際の大気は、支持板5の幅方向中央部に配置された波形体107~109の幅方向両端面と、支持板5の幅方向両端部に配置された波形体106,110の内側の端面にも十分に当たる。よって、全ての波形体106~110が効率的に冷却されて、各熱電変換単位10Bに生じる温度差が大きくなる。 On the other hand, in the thermoelectric conversion element 1B of this embodiment, the asymmetric convex portions 22A of all the corrugated bodies 106 to 110 are opposite to each other (the apexes of the convex portions 22A are arranged in series). S), even if the gap 6 is narrow, the atmosphere at the time of cooling is exposed to both widthwise end surfaces of the corrugated bodies 107 to 109 arranged in the widthwise central portion of the support plate 5 and the widthwise direction of the support plate 5. The inner end faces of the corrugated bodies 106, 110 arranged at both ends are also sufficiently hit. Therefore, all the corrugated bodies 106 to 110 are efficiently cooled, and the temperature difference generated in each thermoelectric conversion unit 10B is increased.

その結果、この実施形態の熱電変換素子1Bによれば、各熱電変換単位10Aに大きな温度差を生じさせて、高い発電性能を得ることができる。
また、第三実施形態の熱電変換素子1Bは、支持板5の上面の長さ方向全体に波形体106~110が存在しているのに対して、第一実施形態の熱電変換素子1では、支持板5の上面の長さ方向の一部に波形体101~105が存在していない部分がある。つまり、第三実施形態の熱電変換素子1Bは第一実施形態の熱電変換素子1よりも、支持板5の上面の利用効率が高いため、小型化の点で有利である。
As a result, according to the thermoelectric conversion element 1B of this embodiment, it is possible to generate a large temperature difference in each thermoelectric conversion unit 10A and obtain high power generation performance.
Further, in the thermoelectric conversion element 1B of the third embodiment, the corrugated bodies 106 to 110 are present over the entire upper surface of the support plate 5 in the length direction, whereas in the thermoelectric conversion element 1 of the first embodiment, A part of the upper surface of the support plate 5 in the longitudinal direction has a portion where the corrugated bodies 101 to 105 do not exist. That is, the thermoelectric conversion element 1B of the third embodiment has a higher utilization efficiency of the upper surface of the support plate 5 than the thermoelectric conversion element 1 of the first embodiment, and is therefore advantageous in miniaturization.

さらに、第三実施形態の熱電変換素子1Bでは、導電率の低い材料で形成された第一層31Aの第一の斜面221Aに沿った長さが、導電率の高い材料で形成された第二層32Aの第二の斜面222Aに沿った長さより短いため、第一層31と第二層32が同じ長さの斜面に形成されている第一実施形態の熱電変換素子1よりも、発熱量を多くすることができる。これは、凸部22,22Aの直列の方向Sの寸法が同じ場合、第三実施形態の熱電変換素子1Bの方が第一実施形態の熱電変換素子1よりも第一層31,31Aの第一の斜面221,221Aに沿った長さが短くなることで、抵抗が小さくなり、第三実施形態の熱電変換素子1Bの方が第一実施形態の熱電変換素子1よりも第二層32,32Aの第二の斜面222,222Aに沿った長さは長くなるが、これに伴う抵抗の上昇量は僅かなためである。 Furthermore, in the thermoelectric conversion element 1B of the third embodiment, the length along the first slope 221A of the first layer 31A formed of a material with low conductivity is the second Since the length along the second slope 222A of the layer 32A is shorter than the thermoelectric conversion element 1 of the first embodiment in which the first layer 31 and the second layer 32 are formed on slopes of the same length, the amount of heat generated is can be increased. This is because the thermoelectric conversion element 1B of the third embodiment has a higher number of the first layers 31 and 31A than the thermoelectric conversion element 1 of the first embodiment when the projections 22 and 22A have the same dimension in the series direction S. Since the length along one of the slopes 221 and 221A is shortened, the resistance is reduced, and the thermoelectric conversion element 1B of the third embodiment has the second layers 32, 32 and 32 more than the thermoelectric conversion element 1 of the first embodiment. This is because although the length of 32A along the second slopes 222 and 222A is longer, the amount of increase in resistance associated with this is slight.

なお、この実施形態の熱電変換素子1Bでは、波形基板2Aの幅方向(図14のP方向)に形成されている熱電変換単位10Aの数は一つであるが、波形基板2Aの幅方向に隙間を開けて複数の熱電変換単位10Aが形成されていてもよい。
また、この実施形態の熱電変換素子1Bは、五個の熱電変換単位10Aが直列に接続された五個の波状体106~110を有するため、25個の熱電変換単位が直列に接続された状態になっている。これに対して、例えば、一つの波状体の直列の数を14個、並列に配置する波状体の数を10個とすることで、140個の熱電変換単位が直列に接続された熱電変換素子を得ることができる。
In the thermoelectric conversion element 1B of this embodiment, the number of thermoelectric conversion units 10A formed in the width direction of the corrugated substrate 2A (the P direction in FIG. 14) is one, but the number of thermoelectric conversion units 10A formed in the width direction of the corrugated substrate 2A A plurality of thermoelectric conversion units 10A may be formed with gaps between them.
In addition, since the thermoelectric conversion element 1B of this embodiment has five corrugated bodies 106 to 110 in which five thermoelectric conversion units 10A are connected in series, a state in which 25 thermoelectric conversion units are connected in series It has become. On the other hand, for example, by setting the number of one corrugated body in series to 14 and the number of corrugated bodies to be arranged in parallel to 10, a thermoelectric conversion element in which 140 thermoelectric conversion units are connected in series. can be obtained.

一方、非対称の凸部22Aが、隣り合う波形体106~110で同じ向きに揃えられている点のみが熱電変換素子1Aとは異なる熱電変換素子は、上述のような効率的な冷却効果は得られないが、第一層31Aの第一の斜面221Aに沿った長さが第二層32Aの第二の斜面222Aに沿った長さより短いことで発熱量を多くできる効果は得られる。 On the other hand, the thermoelectric conversion element, which differs from the thermoelectric conversion element 1A only in that the asymmetric convex portions 22A are aligned in the same direction on the adjacent corrugated bodies 106 to 110, can obtain the efficient cooling effect as described above. However, since the length of the first layer 31A along the first slope 221A is shorter than the length of the second layer 32A along the second slope 222A, the effect of increasing the amount of heat generated can be obtained.

<製造方法>
この実施形態の熱電変換素子1Bは、以下に示す方法で製造することができる。
第二実施形態の熱電変換素子1Aと同じ方法で波形体106~110を作製した後、図13および図14に示す配置で、各波形体106~110の凹部23Aの下面および平坦部21の下面を、支持板5の上面に接着剤で固定する。
<Manufacturing method>
The thermoelectric conversion element 1B of this embodiment can be manufactured by the method shown below.
After producing the corrugated bodies 106 to 110 by the same method as the thermoelectric conversion element 1A of the second embodiment, the lower surfaces of the concave portions 23A and the lower surfaces of the flat portions 21 of the corrugated bodies 106 to 110 are arranged in the arrangement shown in FIGS. is fixed to the upper surface of the support plate 5 with an adhesive.

1 熱電変換素子
1A 熱電変換素子
1B 熱電変換素子
10 熱電変換単位
10A 熱電変換単位
101 波形体
102 波形体
103 波形体
104 波形体
105 波形体
106 波形体
107 波形体
108 波形体
109 波形体
110 波形体
2,2A 波形基板
21 平坦部
22,22A 凸部
221,221A 第一の斜面(一方の斜面)
222,222A 第二の斜面(他方の斜面)
23,23A 凹部
31,31A 第一層
32,31A 第二層
41,41A 第一配線層
42,42A 第二配線層
43 接続端子層
431 外部端子
44,44A 第三配線層
45 配線
46 外部配線
5 支持板
6 隙間
S 直列の方向
P 並列の方向
1 thermoelectric conversion element 1A thermoelectric conversion element 1B thermoelectric conversion element 10 thermoelectric conversion unit 10A thermoelectric conversion unit 101 corrugated body 102 corrugated body 103 corrugated body 104 corrugated body 105 corrugated body 106 corrugated body 107 corrugated body 108 corrugated body 109 corrugated body 110 corrugated body 2, 2A corrugated substrate 21 flat portion 22, 22A convex portion 221, 221A first slope (one slope)
222, 222A second slope (other slope)
23,23A recess 31,31A first layer 32,31A second layer 41,41A first wiring layer 42,42A second wiring layer 43 connection terminal layer 431 external terminal 44,44A third wiring layer 45 wiring 46 external wiring 5 Support plate 6 Gap S Direction of series P Direction of parallel

Claims (6)

熱電変換単位が直列に複数形成されている基板を、隙間を介して並列に複数備え、
前記基板は、前記直列の方向に進む波形に形成され、前記波形は一つの凸部または凹部が有する一対の斜面からなり、
隣り合う前記基板において、前記波形を構成する凸部の頂点が前記直列の方向の異なる位置に存在し、
前記熱電変換単位は、前記一対の斜面に形成された第一層および第二層を有し、前記第一層および前記第二層の少なくともいずれかは熱電変換材料からなり、前記第一層および前記第二層は電気的に接続され、
隣り合う前記熱電変換単位の前記第一層と前記第二層とが電気的に接続され、
複数の前記基板は、それぞれ、前記直列の方向の両端に、前記第一層および前記第二層にそれぞれ電気的に接続された接続端子を有する熱電変換素子。
A plurality of substrates on which a plurality of thermoelectric conversion units are formed in series are provided in parallel with a gap therebetween,
the substrate is formed in a wave shape that advances in the series direction, and the wave shape consists of a pair of sloping surfaces of one convex or concave portion;
In the adjacent substrates, apexes of the convex portions forming the waveform are present at different positions in the direction of the series,
The thermoelectric conversion unit has a first layer and a second layer formed on the pair of slopes, at least one of the first layer and the second layer is made of a thermoelectric conversion material, and the first layer and the second layer is electrically connected;
the first layer and the second layer of the adjacent thermoelectric conversion units are electrically connected,
The plurality of substrates each have a connection terminal electrically connected to the first layer and the second layer at both ends in the series direction.
熱電変換単位が直列に複数形成されている基板を、隙間を介して並列に複数備え、
前記基板は、前記直列の方向に進む波形に形成され、前記波形は一つの凸部または凹部が有する一対の斜面からなり、前記一対の斜面の一方は他方よりも傾斜方向の寸法が大きく、
隣り合う前記基板において、前記波形を構成する凸部の頂点が前記直列の方向の同じ位置に存在し、前記並列の方向で前記一方の斜面と前記他方の斜面が交互に存在し、
前記熱電変換単位は、前記一対の斜面に形成された第一層および第二層を有し、前記第一層および前記第二層の少なくともいずれかは熱電変換材料からなり、前記第一層および前記第二層は電気的に接続され、
隣り合う前記熱電変換単位の前記第一層と前記第二層とが電気的に接続され、
複数の前記基板は、それぞれ、前記直列の方向の両端に、前記第一層および前記第二層にそれぞれ電気的に接続された接続端子を有する熱電変換素子。
A plurality of substrates on which a plurality of thermoelectric conversion units are formed in series are provided in parallel with a gap therebetween,
The substrate is formed in a wave shape that advances in the series direction, and the wave shape is composed of a pair of slopes of one convex or concave portion, one of the pair of slopes having a larger dimension in the direction of inclination than the other;
In the adjacent substrates, the apexes of the protrusions forming the waveform are present at the same position in the series direction, and the one slope and the other slope are alternately present in the parallel direction,
The thermoelectric conversion unit has a first layer and a second layer formed on the pair of slopes, at least one of the first layer and the second layer is made of a thermoelectric conversion material, and the first layer and the second layer is electrically connected;
the first layer and the second layer of the adjacent thermoelectric conversion units are electrically connected,
The plurality of substrates each have a connection terminal electrically connected to the first layer and the second layer at both ends in the series direction.
前記一対の斜面の一方は他方よりも傾斜方向の寸法が大きい請求項1記載の熱電変換素子。 2. The thermoelectric conversion element according to claim 1, wherein one of said pair of slopes has a larger dimension in the direction of slope than the other. 前記第一層および前記第二層のうち前記一方の斜面に形成されている層は、前記他方の斜面に形成されている層よりも導電率の高い材料で形成されている請求項2または3記載の熱電変換素子。 4. A layer formed on said one slope of said first layer and said second layer is formed of a material having a higher conductivity than a layer formed on said other slope. The thermoelectric conversion element described. 前記隙間は、前記基板の前記並列の方向の寸法以下である請求項1~4のいずれか一項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 4, wherein the gap is equal to or smaller than the dimension of the substrates in the parallel direction. 複数の前記基板は、一面上に固定され、
隣り合う前記基板の前記接続端子同士の接続により、全ての前記熱電変換単位が全体で直列接続され、前記直列接続の両端に存在する前記接続端子が外部端子として機能する請求項1~5のいずれか一項に記載の熱電変換素子。
The plurality of substrates are fixed on one surface,
6. The connection terminals of the adjacent substrates are connected together so that all the thermoelectric conversion units are connected in series, and the connection terminals at both ends of the series connection function as external terminals. or the thermoelectric conversion element according to claim 1.
JP2019002641A 2019-01-10 2019-01-10 Thermoelectric conversion element Active JP7192509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019002641A JP7192509B2 (en) 2019-01-10 2019-01-10 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019002641A JP7192509B2 (en) 2019-01-10 2019-01-10 Thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2020113617A JP2020113617A (en) 2020-07-27
JP7192509B2 true JP7192509B2 (en) 2022-12-20

Family

ID=71667219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019002641A Active JP7192509B2 (en) 2019-01-10 2019-01-10 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP7192509B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281666A (en) 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device
JP2011216803A (en) 2010-04-02 2011-10-27 Tdk Corp Thermoelectric module
WO2015166595A1 (en) 2014-05-01 2015-11-05 三菱電機株式会社 Thermoelectric conversion device and method for manufacturing thermoelectric conversion device
JP2016207933A (en) 2015-04-27 2016-12-08 日本精工株式会社 Thermoelectric transducer and manufacturing method thereof
JP2017092437A (en) 2015-11-04 2017-05-25 大日本印刷株式会社 Mounting structure for thermoelectric conversion module and thermoelectric conversion module
JP2018067567A (en) 2016-10-17 2018-04-26 日本精工株式会社 Thermoelectric transducer and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180091197A (en) * 2017-02-06 2018-08-16 엘지이노텍 주식회사 Thermo electric device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281666A (en) 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device
JP2011216803A (en) 2010-04-02 2011-10-27 Tdk Corp Thermoelectric module
WO2015166595A1 (en) 2014-05-01 2015-11-05 三菱電機株式会社 Thermoelectric conversion device and method for manufacturing thermoelectric conversion device
JP2016207933A (en) 2015-04-27 2016-12-08 日本精工株式会社 Thermoelectric transducer and manufacturing method thereof
JP2017092437A (en) 2015-11-04 2017-05-25 大日本印刷株式会社 Mounting structure for thermoelectric conversion module and thermoelectric conversion module
JP2018067567A (en) 2016-10-17 2018-04-26 日本精工株式会社 Thermoelectric transducer and manufacturing method thereof

Also Published As

Publication number Publication date
JP2020113617A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
JP3447915B2 (en) Thermoelectric element and thermoelectric element module using the same
US11075331B2 (en) Thermoelectric device having circuitry with structural rigidity
JP4581802B2 (en) Thermoelectric converter
WO1999010937A1 (en) Thermoelectric device
JP4297060B2 (en) Thermoelectric converter
JPWO2005117154A1 (en) High density integrated thin layer thermoelectric module and hybrid power generation system
KR20150134335A (en) Thermoelectric conversion element
JP2011035305A (en) Heat exchanger
JP2016072579A (en) Thermoelectric conversion module
JP6058353B2 (en) Semiconductor device
JP7192509B2 (en) Thermoelectric conversion element
JP2007202103A5 (en)
JP2006156818A (en) Thermoelectric conversion device and its manufacturing method
JP7055113B2 (en) Thermoelectric module and its manufacturing method
CN109841725B (en) Thermoelectric module board and thermoelectric module assembly comprising same
JP4626263B2 (en) Thermoelectric conversion device and method for manufacturing the thermoelectric conversion device
JP3404841B2 (en) Thermoelectric converter
CN108039384B (en) Solar power generation device
JP4182719B2 (en) Thermoelectric generator
JP6856361B2 (en) Laminated thermoelectric conversion device and heat dissipation structure
KR20110136619A (en) Thermoelectric module having hetero-type thermoelectric elements
JP2006287066A (en) Thermoelectric conversion apparatus and method of manufacturing the apparatus
CA2936500A1 (en) Thermoelectric conversion module
JP2016025325A (en) Thermoelectric conversion module
WO2023120127A1 (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7192509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150