JP7186144B2 - Iron-based alloy member - Google Patents

Iron-based alloy member Download PDF

Info

Publication number
JP7186144B2
JP7186144B2 JP2019138624A JP2019138624A JP7186144B2 JP 7186144 B2 JP7186144 B2 JP 7186144B2 JP 2019138624 A JP2019138624 A JP 2019138624A JP 2019138624 A JP2019138624 A JP 2019138624A JP 7186144 B2 JP7186144 B2 JP 7186144B2
Authority
JP
Japan
Prior art keywords
iron
based alloy
mass
alloy member
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019138624A
Other languages
Japanese (ja)
Other versions
JP2021021115A (en
Inventor
英幸 志村
大介 神尾
Original Assignee
東洋刃物株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋刃物株式会社 filed Critical 東洋刃物株式会社
Priority to JP2019138624A priority Critical patent/JP7186144B2/en
Publication of JP2021021115A publication Critical patent/JP2021021115A/en
Application granted granted Critical
Publication of JP7186144B2 publication Critical patent/JP7186144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、鉄基合金部材に関する。 The present invention relates to an iron-based alloy member.

従来、硬度や靭性に優れ、耐摩耗性を有する工業用部材として、鉄(Fe)を主成分とした高速度工具鋼(ハイス)が広く使用されており、さらに改良も進められている。このような部材として、例えば、鋳造により製造され、マトリックス中に炭化物が網目状に存在する組織を有し、靭性を向上させたもの(例えば、特許文献1参照)や、粉末冶金法により製造され、粉末ハイスの機械的特性、特に靭性を著しく改善したもの(例えば、特許文献2参照)、HIP法により固化成形を行った後、熱間加工、焼入れ、焼戻しを行って、組織中の粗大炭化物と微細炭化物の面積率を制御することにより、優れた耐摩耗性および靭性を有するもの(例えば、特許文献3参照)、積層造形法により製造され、高い高温強度および熱伝導性能を有するもの(例えば、特許文献4参照)などがある。 Conventionally, high-speed tool steel (high speed steel) containing iron (Fe) as a main component has been widely used as an industrial member having excellent hardness and toughness and wear resistance, and further improvements are being made. As such a member, for example, a member manufactured by casting, having a structure in which carbides are present in a matrix in a network structure and having improved toughness (see, for example, Patent Document 1), or a member manufactured by a powder metallurgy method. , The mechanical properties of powdered high-speed steel, particularly toughness, are significantly improved (see, for example, Patent Document 2). and excellent wear resistance and toughness by controlling the area ratio of fine carbides (see, for example, Patent Document 3), and those manufactured by the additive manufacturing method and having high high-temperature strength and thermal conductivity performance (for example, , see Patent Document 4).

特開平8-41593号公報JP-A-8-41593 特許第2999655号公報Japanese Patent No. 2999655 特開2015-160957号公報JP 2015-160957 A 特開2015-209588号公報JP 2015-209588 A

特許文献1に記載の高速度工具鋼は、硬度がHRC(ロックウェル硬さ)66.3~69.5であり、超硬合金(HRC70以上)に近い優れた硬度を有しているが、炭化物の網目間隔が最小で29.9μmと比較的大きく、さらに網目および炭化物を小さくして、靭性を向上させることはできないという課題があった。また、特許文献2に記載の粉末ハイスは、シャルピー衝撃値が11~38J/cm2であり、例えば超硬合金(約3J/cm2)と比べて優れた靭性を有しているが、硬度がHRC62~64程度であると考えられ、超硬合金と比べてやや低いという課題があった。 The high-speed tool steel described in Patent Document 1 has a hardness of HRC (Rockwell hardness) of 66.3 to 69.5, and has an excellent hardness close to that of cemented carbide (HRC 70 or more), There is a problem that the minimum mesh spacing of carbides is relatively large, 29.9 μm, and that the toughness cannot be improved by further reducing the meshes and carbides. In addition, the powder HSS described in Patent Document 2 has a Charpy impact value of 11 to 38 J/cm 2 , and has superior toughness compared to, for example, cemented carbide (about 3 J/cm 2 ). is considered to be about HRC62 to 64, which is slightly lower than that of cemented carbide.

また、特許文献3に記載の粉末高速度工具鋼は、耐摩耗性や耐チッピング性について比較により評価を行っており、具体的な硬度やシャルピー衝撃値等は不明であるが、炭素の含有量が1.8質量%と比較的少ないことから、硬度および靭性のうちの少なくともいずれか一方は、超硬合金と比べて劣っていると考えられるという課題があった。また、特許文献4に記載の金型用鋼は、硬度がHRC30~57であり、超硬合金と比べてかなり低いという課題があった。 In addition, the powdered high-speed tool steel described in Patent Document 3 is evaluated by comparison for wear resistance and chipping resistance, and although specific hardness, Charpy impact value, etc. are unknown, the carbon content is relatively small at 1.8% by mass, there is a problem that at least one of hardness and toughness is considered to be inferior to cemented carbide. Moreover, the mold steel described in Patent Document 4 has a hardness of HRC 30 to 57, which is considerably lower than cemented carbide.

本発明は、このような課題に着目してなされたもので、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えた鉄基合金部材を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an iron-based alloy member having both the hardness of cemented carbide and the toughness of steel material.

上記目的を達成するために、本発明に係る鉄基合金部材は、C:2.5~5.0質量%と、Cr:26~35質量%と、W:5~26質量%と、不可避不純物とを含み、残部がFeから成る積層造形体であり径、幅または長さが10μm以下の炭化物が網目状に繋がって分散された鉄基合金から成り、前記炭化物は、CrおよびWの炭化物であることを特徴とする。
In order to achieve the above object, the iron-based alloy member according to the present invention contains C: 2.5 to 5.0% by mass, Cr: 26 to 35% by mass, W: 5 to 26% by mass, and inevitably An iron-based alloy in which carbides having a diameter, width or length of 10 μm or less are connected and dispersed in a network , and the carbides are composed of Cr and W carbide .

本発明に係る鉄基合金部材は、10μm以下の炭化物が分散されているため、硬度をHRC70前後まで高くすることができ、超硬合金並みの高硬度を有している。このため、特に刃先などの薄く形成された部分の強度を高めることができる。積層造形法を利用して形成された積層造形体であるため、炭化物などの析出物を10μm以下まで容易に微細化して分散させることができ、硬度(耐摩耗性)を高めることができる。また、各組成をそれぞれの割合で配合することにより、鉄鋼材料の靭性を維持すると共に、さらに向上させることもできる。このように、本発明に係る鉄基合金部材は、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えることができる。
Since carbides of 10 μm or less are dispersed in the iron-based alloy member according to the present invention, the hardness can be increased to about HRC70, which is as high as cemented carbide. Therefore, the strength of thinly formed portions such as the edge of the blade can be particularly increased. Since it is a laminate-molded body formed using the laminate molding method, precipitates such as carbides can be easily refined to 10 μm or less and dispersed, and hardness (wear resistance) can be increased. Moreover, by blending each composition in its own ratio, it is possible to maintain and further improve the toughness of the steel material. In this way, the iron-based alloy member according to the present invention can have both hardness comparable to cemented carbide and toughness comparable to steel materials.

本発明に係る鉄基合金部材は、鉄基であるため、安価である。また、積層造形法を利用して形成されるため、鍛造、圧延等の機械加工や、原材料からの切り出し工程、生加工(内径孔加工)、焼入れ・焼き戻し等の複雑な製造工程が不要となり、容易かつ安価に製造することができる。また、本発明に係る鉄基合金部材は、積層造形法により、様々な形状・種類のものを製造することができ、多種少量生産を行うことができる。 Since the iron-based alloy member according to the present invention is iron-based, it is inexpensive. In addition, since it is formed using the additive manufacturing method, there is no need for complicated manufacturing processes such as machining such as forging and rolling, cutting from raw materials, raw processing (inner diameter hole processing), quenching and tempering. , can be easily and inexpensively manufactured. In addition, the iron-based alloy member according to the present invention can be manufactured in various shapes and types by the additive manufacturing method, and can be produced in small quantities of various types.

本発明に係る鉄基合金部材は、Cが2.5質量%より少ないとき、Crが26質量%より少ないとき、および、Wが5質量%より少ないときの、少なくともいずれか1つのときには、超硬合金並みの硬度が得られなくなる。また、Cが5.0質量%より多いとき、Crが35質量%より多いとき、および、Wが26質量%より多いときの、少なくともいずれか1つのときには、脆くなって崩れてしまい、構造物として成り立たない。本発明に係る鉄基合金部材で、不可避不純物は、例えば、Si、Mn、N、Ni、Ti、Co、Nb、V、Ta、Moなどである。
In the iron-based alloy member according to the present invention, when at least one of C is less than 2.5% by mass, Cr is less than 26% by mass, and W is less than 5% by mass, Hardness equivalent to that of hard alloys cannot be obtained. In addition, when C is more than 5.0% by mass, when Cr is more than 35% by mass, and when W is more than 26% by mass, the structure becomes brittle and collapses. does not work as In the iron-based alloy member according to the present invention, unavoidable impurities include, for example, Si, Mn, N, Ni, Ti, Co, Nb, V, Ta, and Mo.

本発明に係る鉄基合金部材は、さらにMoを13質量%以下で含み、前記炭化物は、Cr、WおよびMoの炭化物であり、シャルピー衝撃値が14~15J/cm 、および、ロックウェル硬度が67~71.8HRCであってもよい。この場合にも、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えることができる。Moが13質量%より多いときには、脆くなって崩れてしまい、構造物として成り立たない。
The iron-based alloy member according to the present invention further contains Mo at 13% by mass or less, the carbide is a carbide of Cr, W and Mo, and has a Charpy impact value of 14 to 15 J/cm 2 and a Rockwell The hardness may be 67-71.8 HRC . In this case as well, it is possible to have both the hardness of cemented carbide and the toughness of steel material. When Mo is more than 13% by mass, the material becomes brittle and collapses, failing to form a structure.

本発明に係る鉄基合金部材で、前記鉄基合金は、前記炭化物が立体的に網目状に繋がっていることが好ましい。この場合、積層造形法を利用して、電子ビームまたはレーザービームを照射して鉄基合金粉末を焼結溶解し、ニアネットシェイプに成形して仕上げ加工することにより形成することができる。また、炭化物が立体的に網目状に繋がっているため、特に靭性を向上させることができる。 In the iron-based alloy member according to the present invention, it is preferable that the carbides of the iron-based alloy are connected three-dimensionally in a network. In this case, it can be formed by sintering and melting the iron-based alloy powder by irradiating it with an electron beam or a laser beam, forming it into a near-net shape, and finishing it by using an additive manufacturing method. In addition, since the carbides are connected three-dimensionally in a network, it is possible to improve the toughness in particular.

本発明に係る鉄基合金部材は、機械部品などの工業用部材等、硬度および靭性を必要とする多様な用途の部材として用いることができる。本発明に係る鉄基合金部材は、超硬合金並みの優れた硬度および鉄鋼材料の靭性を有し、耐摩耗性も高いため、特に刃物として利用されると効果的である。この場合、刃先の強度が高く、刃先が割れたり欠けたりしにくい。 The iron-based alloy member according to the present invention can be used as a member for various applications requiring hardness and toughness, such as industrial members such as machine parts. INDUSTRIAL APPLICABILITY The iron-based alloy member according to the present invention has excellent hardness comparable to that of cemented carbide, toughness of steel materials, and high wear resistance. In this case, the strength of the cutting edge is high, and the cutting edge is less likely to crack or chip.

本発明によれば、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えた鉄基合金部材を提供することができる。 According to the present invention, it is possible to provide an iron-based alloy member having both hardness comparable to cemented carbide and toughness comparable to steel materials.

本発明の実施の形態の鉄基合金部材に対応する試験試料1の、(a)水平断面、(b)垂直断面の電子顕微鏡写真である。FIG. 2 is electron micrographs of (a) a horizontal section and (b) a vertical section of a test sample 1 corresponding to an iron-based alloy member according to an embodiment of the present invention; 本発明の実施の形態の鉄基合金部材に対応する試験試料2の、(a)水平断面、(b)垂直断面の電子顕微鏡写真である。3A and 3B are electron micrographs of (a) a horizontal section and (b) a vertical section of a test sample 2 corresponding to an iron-based alloy member according to an embodiment of the present invention; 本発明の実施の形態の鉄基合金部材に対応する試験試料3の、(a)水平断面、(b)垂直断面の電子顕微鏡写真である。3 is electron micrographs of (a) a horizontal section and (b) a vertical section of a test sample 3 corresponding to an iron-based alloy member according to an embodiment of the present invention. (a)図1に示す試験試料1と同じ成分を有する鋳造材の比較試料1、(b)図2に示す試験試料2と同じ成分を有する鋳造材の比較試料2、(c)図3に示す試験試料3と同じ成分を有する鋳造材の比較試料3の断面の電子顕微鏡写真である。(a) Comparative sample 1 of cast material having the same composition as test sample 1 shown in FIG. 1, (b) Comparative sample 2 of cast material having the same composition as test sample 2 shown in FIG. 3 is an electron micrograph of a cross-section of comparative sample 3 of cast material having the same composition as test sample 3 shown. 図1~図3に示す試験試料1~3の、立体的に網目状に繋がった炭化物のイメージを示す斜視図である。FIG. 4 is a perspective view showing an image of charcoal that is three-dimensionally connected in the form of a mesh in test samples 1 to 3 shown in FIGS. 1 to 3. FIG.

以下、実施例等に基づいて、本発明の実施の形態について説明する。
本発明の実施の形態の鉄基合金部材は、C:2.5~5.0質量%と、Cr:26~35質量%と、W:5~26質量%と、不可避不純物とを含み、残部がFeから成る鉄基合金粉末を材料とし、積層造形法を利用して形成されている。本発明の実施の形態の鉄基合金部材は、積層造形体であり、10μm以下の炭化物が均一に分散された鉄基合金から成っている。なお、不可避不純物は、例えば、Si、Mn、N、Ni、Ti、Co、Nb、V、Ta、Moなどである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described based on examples and the like.
The iron-based alloy member of the embodiment of the present invention contains C: 2.5 to 5.0% by mass, Cr: 26 to 35% by mass, W: 5 to 26% by mass, and inevitable impurities, An iron-based alloy powder, the balance of which is Fe, is used as a material, and is formed using a layered manufacturing method. An iron-based alloy member according to an embodiment of the present invention is a laminate-molded body, and is made of an iron-based alloy in which carbides of 10 μm or less are uniformly dispersed. Incidentally, the unavoidable impurities are, for example, Si, Mn, N, Ni, Ti, Co, Nb, V, Ta, Mo and the like.

本発明の実施の形態の鉄基合金部材は、10μm以下の炭化物が均一に分散されているため、硬度をHRC70前後まで高くすることができ、超硬合金並みの高硬度を有している。このため、特に刃先などの薄く形成された部分の強度を高めることができる。積層造形法を利用して形成された積層造形体であるため、炭化物などの析出物を10μm以下まで容易に微細化して分散させることができ、硬度(耐摩耗性)を高めることができる。また、各組成をそれぞれの割合で配合することにより、鉄鋼材料の靭性を維持すると共に、さらに向上させることもできる。このように、本発明の実施の形態の鉄基合金部材は、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えることができる。 In the iron-based alloy member of the embodiment of the present invention, carbides of 10 μm or less are uniformly dispersed, so that the hardness can be increased to about HRC70, which is as high as that of cemented carbide. Therefore, the strength of thinly formed portions such as the edge of the blade can be particularly increased. Since it is a laminate-molded body formed using the laminate molding method, precipitates such as carbides can be easily refined to 10 μm or less and dispersed, and hardness (wear resistance) can be increased. Moreover, by blending each composition in its own ratio, it is possible to maintain and further improve the toughness of the steel material. In this way, the iron-based alloy member of the embodiment of the present invention can have hardness comparable to that of cemented carbide and toughness of steel material.

本発明の実施の形態の鉄基合金部材は、鉄基であるため、安価である。また、積層造形法を利用して形成されるため、鍛造、圧延等の機械加工や、原材料からの切り出し工程、生加工(内径孔加工)、焼入れ・焼き戻し等の複雑な製造工程が不要となり、容易かつ安価に製造することができる。また、本発明の実施の形態の鉄基合金部材は、積層造形法により、様々な形状・種類のものを製造することができ、多種少量生産を行うことができる。 Since the iron-based alloy member of the embodiment of the present invention is iron-based, it is inexpensive. In addition, since it is formed using the additive manufacturing method, there is no need for complicated manufacturing processes such as machining such as forging and rolling, cutting from raw materials, raw processing (inner diameter hole processing), quenching and tempering. , can be easily and inexpensively manufactured. In addition, the iron-based alloy member of the embodiment of the present invention can be manufactured in various shapes and types by the additive manufacturing method, and can be produced in small quantities of various types.

なお、本発明の実施の形態の鉄基合金部材で、鉄基合金粉末は、不可避不純物としてではなく、Moを13質量%以下で含んでいてもよい。この場合にも、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えることができる。 In addition, in the iron-based alloy member of the embodiment of the present invention, the iron-based alloy powder may contain Mo at 13% by mass or less, not as an unavoidable impurity. In this case as well, it is possible to have both the hardness of cemented carbide and the toughness of steel material.

積層造形法を利用して鉄基合金部材を製造し、シャルピー衝撃値およびロックウェル硬度(HRC)の測定、ならびに、電子顕微鏡による組織観察を行った。まず、積層造形用の粉末試料1として、Cr:27質量%、Mo:12質量%、W:6質量%、Fe:残部を含む鉄基合金組成物に、炭素を3質量%添加した原料を真空溶解し、アトマイズにより、鉄基合金粉末を作製した。これらの粉末の粒径は、アトマイズ条件と、メッシュ篩とを調整することで、1μmから200μmとした。 An iron-based alloy member was manufactured using the additive manufacturing method, and the Charpy impact value and Rockwell hardness (HRC) were measured, and the structure was observed with an electron microscope. First, as a powder sample 1 for additive manufacturing, a raw material obtained by adding 3% by mass of carbon to an iron-based alloy composition containing Cr: 27% by mass, Mo: 12% by mass, W: 6% by mass, and Fe: the balance. An iron-based alloy powder was produced by vacuum melting and atomization. The particle size of these powders was adjusted from 1 μm to 200 μm by adjusting the atomization conditions and the mesh sieve.

また、積層造形用の粉末試料2として、Cr:27質量%、Mo:6質量%、W:14質量%、Fe:残部を含む鉄基合金組成物に、炭素を3質量%添加した原料を真空溶解し、アトマイズにより、鉄基合金粉末を作製した。これらの粉末の粒径は、アトマイズ条件と、メッシュ篩とを調整することで、1μmから200μmとした。 Further, as a powder sample 2 for additive manufacturing, a raw material obtained by adding 3% by mass of carbon to an iron-based alloy composition containing Cr: 27% by mass, Mo: 6% by mass, W: 14% by mass, and the balance of Fe. An iron-based alloy powder was produced by vacuum melting and atomization. The particle size of these powders was adjusted from 1 μm to 200 μm by adjusting the atomization conditions and the mesh sieve.

また、積層造形用の粉末試料3として、Cr:27質量%、W:22質量%、Fe:残部を含む鉄基合金組成物に、炭素を3質量%添加した原料を真空溶解し、アトマイズにより、鉄基合金粉末を作製した。これらの粉末の粒径は、アトマイズ条件と、メッシュ篩とを調整することで、1μmから200μmとした。 Further, as a powder sample 3 for additive manufacturing, a raw material obtained by adding 3% by mass of carbon to an iron-based alloy composition containing 27% by mass of Cr, 22% by mass of W, and the balance of Fe was vacuum-melted and atomized. , an iron-based alloy powder was produced. The particle size of these powders was adjusted from 1 μm to 200 μm by adjusting the atomization conditions and the mesh sieve.

次に、粉末試料1~3を材料として、積層造形法を利用して、それぞれ積層造形体の試験試料1~3を作製した。積層造形法では、電子ビームを用い、さらに仕上げ加工を行って、一辺が10mmの立方体形状の試験試料1~3を作製した。なお、使用した電子ビーム積層造形(EBM)装置は、Arcam EBM A2X system(Arcam AB, Molndal, Sweden)である。なお、ここでは、積層造形に電子ビームを用いたが、レーザービームを用いても同様に試料を作製することができる。 Next, using the powder samples 1 to 3 as materials, the additive manufacturing method was used to prepare test samples 1 to 3 of laminate models, respectively. In the additive manufacturing method, an electron beam was used and finishing was performed to produce cubic test samples 1 to 3 each having a side of 10 mm. The electron beam additive manufacturing (EBM) apparatus used is Arcam EBM A2X system (Arcam AB, Molndal, Sweden). Note that although an electron beam is used for layered manufacturing here, a sample can be similarly manufactured using a laser beam.

また、比較試料1~3として、それぞれ積層造形用の粉末試料1~3の原料と同じ組成の原料を真空溶解し、その溶湯を金型に鋳込んで、一辺が10mmの立方体形状のインゴット(鋳造材)を作製した。作製した試験試料1~3および比較試料1~3の組成を、表1に示す。 In addition, as comparative samples 1 to 3, a raw material having the same composition as that of the powder samples 1 to 3 for additive manufacturing was melted in a vacuum, and the molten metal was cast into a mold to obtain a cubic ingot having a side of 10 mm ( A casting material) was produced. The compositions of Test Samples 1 to 3 and Comparative Samples 1 to 3 prepared are shown in Table 1.

Figure 0007186144000001
Figure 0007186144000001

試験試料1~3および比較試料1~3について、シャルピー衝撃値およびロックウェル硬度(HRC)の測定を行った。シャルピー衝撃値は、JIS Z 2242:2018の試験方法により測定を行った。それらの測定結果を、表1に示す。なお、比較試料1~3は、脆くて崩れやすい状態であり、構造物として成り立たず、シャルピー衝撃値および硬度の測定を行うことはできなかった。 Test samples 1-3 and comparative samples 1-3 were measured for Charpy impact value and Rockwell hardness (HRC). The Charpy impact value was measured according to the test method of JIS Z 2242:2018. Table 1 shows the measurement results thereof. Incidentally, Comparative Samples 1 to 3 were in a brittle and easily crumbling state, did not form a structure, and could not be measured for Charpy impact value and hardness.

表1に示すように、試験試料1の硬度がHRC67、試験試料2および3の硬度がHRC71.8であり、超硬合金並みの硬度であることが確認された。また、表1に示すように、試験試料1~3のシャルピー衝撃値は、14~15J/cm2であった。刃物用鉄鋼材のひとつであるSUS440Cのシャルピー衝撃値を測定したところ、6J/cmであった。このことから、試験試料1~3は、SUS440Cを大幅に上回るシャルピー衝撃値であり、優れた靭性を有し、刃物用素材として十分に使用できることが確認された。 As shown in Table 1, the hardness of test sample 1 was HRC 67, and the hardness of test samples 2 and 3 was HRC 71.8. Also, as shown in Table 1, the Charpy impact values of test samples 1 to 3 were 14 to 15 J/cm 2 . The Charpy impact value of SUS440C, which is one of steel materials for cutlery, was measured to be 6 J/cm 2 . From this, it was confirmed that Test Samples 1 to 3 had a Charpy impact value significantly exceeding that of SUS440C, had excellent toughness, and could be sufficiently used as a material for cutlery.

次に、試験試料1~3について、積層造形の際の積層面に沿った水平断面、および、積層方向に沿った垂直断面に対して、電子顕微鏡による組織観察を行った。水平断面および垂直断面は、それぞれ一辺10mmの立方体形状を成す試験試料1~3の中心を通る断面とした。試験試料1の水平断面および垂直断面の電子顕微鏡写真を、それぞれ図1(a)および(b)に、試験試料2の水平断面および垂直断面の電子顕微鏡写真を、それぞれ図2(a)および(b)に、試験試料3の水平断面および垂直断面の電子顕微鏡写真を、それぞれ図3(a)および(b)に示す。また、比較試料1~3についても、断面の電子顕微鏡写真による組織観察を行った。比較試料1~3の断面の電子顕微鏡写真を、図4(a)~(c)に示す。 Next, for test samples 1 to 3, structural observation was performed with an electron microscope on a horizontal cross section along the lamination surface during lamination manufacturing and a vertical cross section along the lamination direction. The horizontal cross section and the vertical cross section were cross sections passing through the centers of the test samples 1 to 3 each having a cubic shape of 10 mm on each side. Electron micrographs of horizontal and vertical sections of test sample 1 are shown in FIGS. 1(a) and (b), respectively, and electron micrographs of horizontal and vertical sections of test sample 2 are shown in FIGS. b) Electron micrographs of horizontal and vertical sections of test sample 3 are shown in FIGS. 3(a) and 3(b), respectively. Also, the structures of the comparative samples 1 to 3 were observed by electron micrographs of cross sections. Electron micrographs of cross sections of Comparative Samples 1 to 3 are shown in FIGS. 4(a) to 4(c).

図1~3に示すように、試験試料1~3は、いずれも組織中に析出物として炭化物(図中の「A」の部分;網目状に浮き出て見える部分)が微細化して形成されているのが確認された。また、これらの微細な炭化物は、径や幅や長さが10μm以下であり、Feのマトリックス(図中の「B」の部分)中にほぼ均一に分散されていることも確認された。これらの炭化物は主に、図1および図2ではCr、WおよびMoの炭化物であり、図3ではCrおよびWの炭化物である。 As shown in FIGS. 1 to 3, in all of test samples 1 to 3, carbides (part "A" in the figure; part that appears to stand out like a mesh) are finely formed as precipitates in the structure. confirmed to be there. It was also confirmed that these fine carbides had diameters, widths, and lengths of 10 μm or less, and were almost uniformly dispersed in the Fe matrix (“B” portion in the figure). These carbides are mainly those of Cr, W and Mo in FIGS. 1 and 2 and those of Cr and W in FIG.

さらに、これらの炭化物は、水平断面および垂直断面のどちらにも、10μm以下の幅で網目状にネットワーク化されて微細分散していることから、図5に示すように、炭化物は立体的に網目状に繋がって強く結びついて存在しているといえる。 Furthermore, these carbides are finely dispersed in a network with a width of 10 μm or less in both horizontal and vertical cross sections. It can be said that they exist in a strongly connected manner.

表1に示す硬度およびシャルピー衝撃値の結果、並びに、図1~3に示す組織観察の結果から、本発明の実施の形態の鉄基合金部材は、摺動部品(ベアリング、ガイドレール等)や刃物などの機械部品として製作したとき、耐摩耗性や、刃先などの薄く形成された部分の強度(靭性)を高めることができ、長寿命を得ることができると共に、割れたり欠けたりしにくくなるといえる。 From the hardness and Charpy impact value results shown in Table 1 and the structure observation results shown in FIGS. When manufactured as a machine part such as a knife, it can increase the wear resistance and the strength (toughness) of thinly formed parts such as the cutting edge, and as well as being able to obtain a long life, it is difficult to crack or chip. I can say.

これに対し、比較試料1~3の鋳造材は、図4(a)~(c)に示すように、炭化物(図中の「A」の部分)が組織中で粗大化して偏析していることが確認された。なお、図中の「B」の部分は、マトリックスである。比較試料1~3の鋳造材は、脆くて崩れやすい状態のため、構造物としては成り立たず、シャルピー衝撃値を測定することができなかった。これらのことから、同じ成分であっても、鋳造材では靭性は得られず、機械部品として使用することは不可能であるといえる。
On the other hand, in the cast materials of Comparative Samples 1 to 3, as shown in FIGS. It was confirmed. In addition, the part of "B" in a figure is a matrix. Since the cast materials of Comparative Samples 1 to 3 were in a brittle and easily crumbling state, they could not be used as structures, and the Charpy impact values could not be measured. From these facts, it can be said that even if the components are the same, cast materials cannot obtain toughness and cannot be used as machine parts.

Claims (4)

C:2.5~5.0質量%と、Cr:26~35質量%と、W:5~26質量%と、不可避不純物とを含み、残部がFeから成る積層造形体であり
径、幅または長さが10μm以下の炭化物が、網目状に繋がって分散された鉄基合金から成り、
前記炭化物は、CrおよびWの炭化物であることを
特徴とする鉄基合金部材。
C: 2.5 to 5.0% by mass, Cr: 26 to 35% by mass, W: 5 to 26% by mass, and unavoidable impurities, the balance being a layered product made of Fe,
Made of an iron-based alloy in which carbides with a diameter, width or length of 10 μm or less are connected and dispersed in a network ,
An iron-based alloy member , wherein the carbides are carbides of Cr and W.
さらにMoを13質量%以下で含み、
前記炭化物は、Cr、WおよびMoの炭化物であり、
シャルピー衝撃値が14~15J/cm 、および、ロックウェル硬度が67~71.8HRCであることを
特徴とする請求項1記載の鉄基合金部材。
Furthermore, containing Mo at 13% by mass or less,
the carbides are carbides of Cr, W and Mo;
2. The iron-based alloy member according to claim 1, having a Charpy impact value of 14 to 15 J/cm 2 and a Rockwell hardness of 67 to 71.8 HRC .
前記鉄基合金は、前記炭化物が立体的に繋がっていることを特徴とする請求項1または2記載の鉄基合金部材。 3. The iron-based alloy member according to claim 1, wherein said carbides are connected three- dimensionally in said iron-based alloy. 刃物から成ることを特徴とする請求項1乃至のいずれか1項に記載の鉄基合金部材。
4. The iron-based alloy member according to any one of claims 1 to 3 , characterized by comprising a blade.
JP2019138624A 2019-07-29 2019-07-29 Iron-based alloy member Active JP7186144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019138624A JP7186144B2 (en) 2019-07-29 2019-07-29 Iron-based alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138624A JP7186144B2 (en) 2019-07-29 2019-07-29 Iron-based alloy member

Publications (2)

Publication Number Publication Date
JP2021021115A JP2021021115A (en) 2021-02-18
JP7186144B2 true JP7186144B2 (en) 2022-12-08

Family

ID=74573650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138624A Active JP7186144B2 (en) 2019-07-29 2019-07-29 Iron-based alloy member

Country Status (1)

Country Link
JP (1) JP7186144B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235012B (en) * 2021-04-25 2021-12-17 四川大学 High-toughness Fe-based alloy shielding material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533593A (en) 2000-05-16 2003-11-11 プロエングコ ツーリング アクティエボラーグ Iron-based alloy containing chromium-tungsten composite carbide and method for producing the same
JP2016166387A (en) 2015-03-09 2016-09-15 山陽特殊製鋼株式会社 HARD POWDER FOR Fe-BASED SINTER AND Fe-BASED SINTERED BODY EXCELLENT IN ABRASION RESISTANCE USING THE SAME

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452046A (en) * 1987-08-21 1989-02-28 Mitsubishi Metal Corp Carbide dispersed type fe-base sintered alloy for sliding member having excellent wear resistance
JPH06172915A (en) * 1992-05-01 1994-06-21 Kuroki Kogyosho:Kk Wear resistant alloy powder, wear resistant composite member using the same and production thereof
JPH08120397A (en) * 1994-10-17 1996-05-14 Mitsubishi Heavy Ind Ltd Wear resistant thermal spraying material
JPH1053802A (en) * 1996-08-09 1998-02-24 Daido Steel Co Ltd High carbon iron-base alloy powder
JPH1161361A (en) * 1997-08-13 1999-03-05 Mitsubishi Heavy Ind Ltd Heat resistant and wear resistant material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533593A (en) 2000-05-16 2003-11-11 プロエングコ ツーリング アクティエボラーグ Iron-based alloy containing chromium-tungsten composite carbide and method for producing the same
JP2016166387A (en) 2015-03-09 2016-09-15 山陽特殊製鋼株式会社 HARD POWDER FOR Fe-BASED SINTER AND Fe-BASED SINTERED BODY EXCELLENT IN ABRASION RESISTANCE USING THE SAME

Also Published As

Publication number Publication date
JP2021021115A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP2022133306A (en) Steel suitable for plastic moulding tools
WO2019220917A1 (en) Additively manufactured hot work tool, method for manufacturing same, and metal powder for additively manufactured hot work tool
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
CN104032153B (en) A kind of manufacture method of high tough crystallite hard alloy
US20230203625A1 (en) Metal material composition for additively manufactured parts
JP2010523355A (en) tool
JP5305206B2 (en) Cemented carbide and carbide tools
KR101893172B1 (en) Metal Powder for 3D Metal Printer and Shear Mold Using the same
RU2437951C2 (en) Steel for cold treatment of metals
JP7186144B2 (en) Iron-based alloy member
JP6710484B2 (en) Powder high speed tool steel
US11091821B2 (en) Copper-based alloy
JP2893886B2 (en) Composite hard alloy material
JP6667264B2 (en) Manufacturing method of high-rigidity iron-based sintered alloy
JP7036413B2 (en) Co-based alloy powder for electron beam laminated modeling
JP2010167492A (en) Component for machine structure and method for producing the same
JP6875682B2 (en) Machine parts
JP6306393B2 (en) Machine parts
JP2022049161A (en) Mechanical component
JP2021535282A (en) Modified high speed steel particles, powder metallurgy methods using them, and sintered parts obtained from them.
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
KR102356521B1 (en) Uniform steel alloys and tools
JP5446290B2 (en) Manufacturing method for machine structural parts
JP2893887B2 (en) Composite hard alloy material
JP6312120B2 (en) Powdered high speed tool steel and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7186144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150