JP2021021115A - Iron-based alloy member - Google Patents

Iron-based alloy member Download PDF

Info

Publication number
JP2021021115A
JP2021021115A JP2019138624A JP2019138624A JP2021021115A JP 2021021115 A JP2021021115 A JP 2021021115A JP 2019138624 A JP2019138624 A JP 2019138624A JP 2019138624 A JP2019138624 A JP 2019138624A JP 2021021115 A JP2021021115 A JP 2021021115A
Authority
JP
Japan
Prior art keywords
iron
based alloy
mass
alloy member
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019138624A
Other languages
Japanese (ja)
Other versions
JP7186144B2 (en
Inventor
英幸 志村
Hideyuki Shimura
英幸 志村
大介 神尾
Daisuke Kamio
大介 神尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Knife Co Ltd
Original Assignee
Toyo Knife Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Knife Co Ltd filed Critical Toyo Knife Co Ltd
Priority to JP2019138624A priority Critical patent/JP7186144B2/en
Publication of JP2021021115A publication Critical patent/JP2021021115A/en
Application granted granted Critical
Publication of JP7186144B2 publication Critical patent/JP7186144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

To provide an iron-based alloy member that has both of cemented carbide-level hardness and toughness of steel material.SOLUTION: The iron-based alloy member comprises an iron-based alloy that is made from an iron-based alloy powder comprising C: 2.5-5.0 mass%, Cr: 26-35 mass%, W:5-26 mass%, unavoidable impurities, with the balance being Fe, and is formed by laminate molding, in which 10 μm or less carbides are uniformly dispersed. The iron-based alloy powder may further comprise Mo of 13 mass% or less. In the iron-based alloy, preferably, the carbides are three-dimensionally connected like mesh.SELECTED DRAWING: Figure 1

Description

本発明は、鉄基合金部材に関する。 The present invention relates to an iron-based alloy member.

従来、硬度や靭性に優れ、耐摩耗性を有する工業用部材として、鉄(Fe)を主成分とした高速度工具鋼(ハイス)が広く使用されており、さらに改良も進められている。このような部材として、例えば、鋳造により製造され、マトリックス中に炭化物が網目状に存在する組織を有し、靭性を向上させたもの(例えば、特許文献1参照)や、粉末冶金法により製造され、粉末ハイスの機械的特性、特に靭性を著しく改善したもの(例えば、特許文献2参照)、HIP法により固化成形を行った後、熱間加工、焼入れ、焼戻しを行って、組織中の粗大炭化物と微細炭化物の面積率を制御することにより、優れた耐摩耗性および靭性を有するもの(例えば、特許文献3参照)、積層造形法により製造され、高い高温強度および熱伝導性能を有するもの(例えば、特許文献4参照)などがある。 Conventionally, high-speed tool steel (high-speed steel) containing iron (Fe) as a main component has been widely used as an industrial member having excellent hardness and toughness and wear resistance, and further improvement is being promoted. As such a member, for example, a member manufactured by casting, having a structure in which carbides are present in a network in a matrix and having improved toughness (see, for example, Patent Document 1), or manufactured by a powder metallurgy method. , The mechanical properties of powder metallurgy, especially toughness, have been significantly improved (see, for example, Patent Document 2). After solidification molding by the HIP method, hot working, quenching, and tempering are performed to coarse carbides in the structure. By controlling the area ratio of fine carbides and fine carbides, those having excellent wear resistance and toughness (see, for example, Patent Document 3), those manufactured by the laminated molding method, and having high high temperature strength and thermal conductivity (for example). , Patent Document 4) and the like.

特開平8−41593号公報Japanese Unexamined Patent Publication No. 8-41593 特許第2999655号公報Japanese Patent No. 2999655 特開2015−160957号公報JP-A-2015-160957 特開2015−209588号公報JP-A-2015-209588

特許文献1に記載の高速度工具鋼は、硬度がHRC(ロックウェル硬さ)66.3〜69.5であり、超硬合金(HRC70以上)に近い優れた硬度を有しているが、炭化物の網目間隔が最小で29.9μmと比較的大きく、さらに網目および炭化物を小さくして、靭性を向上させることはできないという課題があった。また、特許文献2に記載の粉末ハイスは、シャルピー衝撃値が11〜38J/cm2であり、例えば超硬合金(約3J/cm2)と比べて優れた靭性を有しているが、硬度がHRC62〜64程度であると考えられ、超硬合金と比べてやや低いという課題があった。 The high-speed tool steel described in Patent Document 1 has a hardness of HRC (Rockwell hardness) of 66.3 to 69.5, and has an excellent hardness close to that of cemented carbide (HRC70 or higher). There is a problem that the network spacing of the carbide is relatively large, 29.9 μm at the minimum, and the network and the carbide cannot be made smaller to improve the toughness. Also, the powder high speed steel according to Patent Document 2, the Charpy impact value is 11~38J / cm 2, for example, cemented carbide (about 3J / cm 2) as compared to have excellent toughness, but the hardness Is considered to be about HRC62 to 64, and there is a problem that it is slightly lower than that of cemented carbide.

また、特許文献3に記載の粉末高速度工具鋼は、耐摩耗性や耐チッピング性について比較により評価を行っており、具体的な硬度やシャルピー衝撃値等は不明であるが、炭素の含有量が1.8質量%と比較的少ないことから、硬度および靭性のうちの少なくともいずれか一方は、超硬合金と比べて劣っていると考えられるという課題があった。また、特許文献4に記載の金型用鋼は、硬度がHRC30〜57であり、超硬合金と比べてかなり低いという課題があった。 Further, the powdered high-speed tool steel described in Patent Document 3 has been evaluated by comparison in terms of wear resistance and chipping resistance, and although the specific hardness and Charpy impact value are unknown, the carbon content is unknown. Is relatively small at 1.8% by mass, so there is a problem that at least one of hardness and toughness is considered to be inferior to that of cemented carbide. Further, the mold steel described in Patent Document 4 has a hardness of HRC30 to 57, and has a problem that it is considerably lower than that of cemented carbide.

本発明は、このような課題に着目してなされたもので、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えた鉄基合金部材を提供することを目的とする。 The present invention has been made focusing on such a problem, and an object of the present invention is to provide an iron-based alloy member having hardness comparable to that of cemented carbide and toughness of a steel material.

上記目的を達成するために、本発明に係る鉄基合金部材は、C:2.5〜5.0質量%と、Cr:26〜35質量%と、W:5〜26質量%と、不可避不純物とを含み、残部がFeから成る鉄基合金粉末を材料とし、積層造形法を利用して形成された、10μm以下の炭化物が均一に分散された鉄基合金から成ることを特徴とする。 In order to achieve the above object, the iron-based alloy member according to the present invention inevitably contains C: 2.5 to 5.0% by mass, Cr: 26 to 35% by mass, and W: 5 to 26% by mass. It is characterized in that it is made of an iron-based alloy powder containing impurities and the balance of which is Fe, and is made of an iron-based alloy in which carbides of 10 μm or less are uniformly dispersed, which is formed by using a laminated molding method.

本発明に係る鉄基合金部材は、10μm以下の炭化物が均一に分散されているため、硬度をHRC70前後まで高くすることができ、超硬合金並みの高硬度を有している。このため、特に刃先などの薄く形成された部分の強度を高めることができる。積層造形法を利用して形成された積層造形体であるため、炭化物などの析出物を10μm以下まで容易に微細化して分散させることができ、硬度(耐摩耗性)を高めることができる。また、各組成をそれぞれの割合で配合することにより、鉄鋼材料の靭性を維持すると共に、さらに向上させることもできる。このように、本発明に係る鉄基合金部材は、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えることができる。 Since the iron-based alloy member according to the present invention has carbides of 10 μm or less uniformly dispersed, the hardness can be increased to around HRC70, and the hardness is as high as that of cemented carbide. Therefore, it is possible to increase the strength of a thinly formed portion such as a cutting edge. Since it is a layered model formed by using the additive manufacturing method, precipitates such as carbides can be easily refined to 10 μm or less and dispersed, and the hardness (wear resistance) can be increased. Further, by blending each composition in a respective ratio, the toughness of the steel material can be maintained and further improved. As described above, the iron-based alloy member according to the present invention can have hardness equivalent to that of cemented carbide and toughness of the steel material.

本発明に係る鉄基合金部材は、鉄基であるため、安価である。また、積層造形法を利用して形成されるため、鍛造、圧延等の機械加工や、原材料からの切り出し工程、生加工(内径孔加工)、焼入れ・焼き戻し等の複雑な製造工程が不要となり、容易かつ安価に製造することができる。また、本発明に係る鉄基合金部材は、積層造形法により、様々な形状・種類のものを製造することができ、多種少量生産を行うことができる。 Since the iron-based alloy member according to the present invention is iron-based, it is inexpensive. In addition, since it is formed using the laminated molding method, complicated manufacturing processes such as machining such as forging and rolling, cutting process from raw materials, raw processing (inner diameter hole processing), quenching and tempering are not required. , Can be manufactured easily and inexpensively. Further, the iron-based alloy member according to the present invention can be manufactured in various shapes and types by the additive manufacturing method, and can be produced in various small quantities.

本発明に係る鉄基合金部材は、Cが2.5質量%より少ないとき、Crが26質量%より少ないとき、および、Wが5質量%より少ないときの、少なくともいずれか1つのときには、超硬合金並みの硬度が得られなくなる。また、Cが5.0質量%より多いとき、Crが35質量%より多いとき、および、Wが26質量%より多いときの、少なくともいずれか1つのときには、脆くなって崩れてしまい、構造物として成り立たない。本発明に係る鉄基合金部材で、前記炭化物は、CrおよびWの炭化物であることが好ましい。また、不可避不純物は、例えば、Si、Mn、N、Ni、Ti、Co、Nb、V、Ta、Moなどである。 The iron-based alloy member according to the present invention is super when C is less than 2.5% by mass, Cr is less than 26% by mass, and W is less than 5% by mass, at least one of them. Hardness comparable to that of hard alloy cannot be obtained. Further, when C is more than 5.0% by mass, Cr is more than 35% by mass, and W is more than 26% by mass, at least one of them, the structure becomes brittle and collapses. Does not hold as. In the iron-based alloy member according to the present invention, the carbide is preferably a carbide of Cr and W. The unavoidable impurities are, for example, Si, Mn, N, Ni, Ti, Co, Nb, V, Ta, Mo and the like.

本発明に係る鉄基合金部材で、前記鉄基合金粉末は、さらにMoを13質量%以下で含んでいてもよい。この場合にも、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えることができる。Moが13質量%より多いときには、脆くなって崩れてしまい、構造物として成り立たない。また、前記炭化物は、Cr、WおよびMoの炭化物であることが好ましい。 In the iron-based alloy member according to the present invention, the iron-based alloy powder may further contain Mo in an amount of 13% by mass or less. In this case as well, it is possible to have the hardness equivalent to that of cemented carbide and the toughness of the steel material. When Mo is more than 13% by mass, it becomes brittle and collapses, and it cannot be formed as a structure. Further, the carbide is preferably a carbide of Cr, W and Mo.

本発明に係る鉄基合金部材で、前記鉄基合金は、前記炭化物が立体的に網目状に繋がっていることが好ましい。この場合、積層造形法を利用して、電子ビームまたはレーザービームを照射して鉄基合金粉末を焼結溶解し、ニアネットシェイプに成形して仕上げ加工することにより形成することができる。また、炭化物が立体的に網目状に繋がっているため、特に靭性を向上させることができる。 In the iron-based alloy member according to the present invention, it is preferable that the carbides are three-dimensionally connected in a network in the iron-based alloy. In this case, it can be formed by irradiating an electron beam or a laser beam to sinter-melt the iron-based alloy powder, forming it into a near-net shape, and finishing it by using the additive manufacturing method. Further, since the carbides are three-dimensionally connected in a mesh pattern, the toughness can be particularly improved.

本発明に係る鉄基合金部材は、機械部品などの工業用部材等、硬度および靭性を必要とする多様な用途の部材として用いることができる。本発明に係る鉄基合金部材は、超硬合金並みの優れた硬度および鉄鋼材料の靭性を有し、耐摩耗性も高いため、特に刃物として利用されると効果的である。この場合、刃先の強度が高く、刃先が割れたり欠けたりしにくい。 The iron-based alloy member according to the present invention can be used as a member for various purposes requiring hardness and toughness, such as an industrial member such as a mechanical part. The iron-based alloy member according to the present invention has excellent hardness comparable to that of cemented carbide, toughness of steel material, and high wear resistance, and is therefore particularly effective when used as a cutting tool. In this case, the strength of the cutting edge is high, and the cutting edge is unlikely to crack or chip.

本発明によれば、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えた鉄基合金部材を提供することができる。 According to the present invention, it is possible to provide an iron-based alloy member having hardness comparable to that of cemented carbide and toughness of a steel material.

本発明の実施の形態の鉄基合金部材に対応する試験試料1の、(a)水平断面、(b)垂直断面の電子顕微鏡写真である。It is an electron micrograph of (a) a horizontal cross section and (b) a vertical cross section of the test sample 1 corresponding to the iron-based alloy member of the embodiment of the present invention. 本発明の実施の形態の鉄基合金部材に対応する試験試料2の、(a)水平断面、(b)垂直断面の電子顕微鏡写真である。It is an electron micrograph of (a) a horizontal cross section and (b) a vertical cross section of the test sample 2 corresponding to the iron-based alloy member of the embodiment of the present invention. 本発明の実施の形態の鉄基合金部材に対応する試験試料3の、(a)水平断面、(b)垂直断面の電子顕微鏡写真である。It is an electron micrograph of (a) a horizontal cross section and (b) a vertical cross section of the test sample 3 corresponding to the iron-based alloy member of the embodiment of the present invention. (a)図1に示す試験試料1と同じ成分を有する鋳造材の比較試料1、(b)図2に示す試験試料2と同じ成分を有する鋳造材の比較試料2、(c)図3に示す試験試料3と同じ成分を有する鋳造材の比較試料3の断面の電子顕微鏡写真である。(A) Comparative sample 1 of a casting material having the same composition as the test sample 1 shown in FIG. 1, (b) Comparative sample 2 of a casting material having the same composition as the test sample 2 shown in FIG. 2, (c) FIG. 3 is an electron micrograph of a cross section of a comparative sample 3 of a casting material having the same components as the test sample 3 shown. 図1〜図3に示す試験試料1〜3の、立体的に網目状に繋がった炭化物のイメージを示す斜視図である。It is a perspective view which shows the image of the carbides connected in a three-dimensional network of the test samples 1 to 3 shown in FIGS. 1 to 3.

以下、実施例等に基づいて、本発明の実施の形態について説明する。
本発明の実施の形態の鉄基合金部材は、C:2.5〜5.0質量%と、Cr:26〜35質量%と、W:5〜26質量%と、不可避不純物とを含み、残部がFeから成る鉄基合金粉末を材料とし、積層造形法を利用して形成されている。本発明の実施の形態の鉄基合金部材は、積層造形体であり、10μm以下の炭化物が均一に分散された鉄基合金から成っている。なお、不可避不純物は、例えば、Si、Mn、N、Ni、Ti、Co、Nb、V、Ta、Moなどである。
Hereinafter, embodiments of the present invention will be described based on examples and the like.
The iron-based alloy member according to the embodiment of the present invention contains C: 2.5 to 5.0% by mass, Cr: 26 to 35% by mass, W: 5 to 26% by mass, and unavoidable impurities. The balance is made of an iron-based alloy powder composed of Fe as a material, and is formed by using a laminated molding method. The iron-based alloy member according to the embodiment of the present invention is a laminated model, and is made of an iron-based alloy in which carbides of 10 μm or less are uniformly dispersed. The unavoidable impurities are, for example, Si, Mn, N, Ni, Ti, Co, Nb, V, Ta, Mo and the like.

本発明の実施の形態の鉄基合金部材は、10μm以下の炭化物が均一に分散されているため、硬度をHRC70前後まで高くすることができ、超硬合金並みの高硬度を有している。このため、特に刃先などの薄く形成された部分の強度を高めることができる。積層造形法を利用して形成された積層造形体であるため、炭化物などの析出物を10μm以下まで容易に微細化して分散させることができ、硬度(耐摩耗性)を高めることができる。また、各組成をそれぞれの割合で配合することにより、鉄鋼材料の靭性を維持すると共に、さらに向上させることもできる。このように、本発明の実施の形態の鉄基合金部材は、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えることができる。 Since the iron-based alloy member according to the embodiment of the present invention has carbides of 10 μm or less uniformly dispersed, the hardness can be increased to around HRC70, and the hardness is as high as that of cemented carbide. Therefore, it is possible to increase the strength of a thinly formed portion such as a cutting edge. Since it is a layered model formed by using the additive manufacturing method, precipitates such as carbides can be easily refined to 10 μm or less and dispersed, and the hardness (wear resistance) can be increased. Further, by blending each composition in a respective ratio, the toughness of the steel material can be maintained and further improved. As described above, the iron-based alloy member according to the embodiment of the present invention can have hardness equivalent to that of cemented carbide and toughness of the steel material.

本発明の実施の形態の鉄基合金部材は、鉄基であるため、安価である。また、積層造形法を利用して形成されるため、鍛造、圧延等の機械加工や、原材料からの切り出し工程、生加工(内径孔加工)、焼入れ・焼き戻し等の複雑な製造工程が不要となり、容易かつ安価に製造することができる。また、本発明の実施の形態の鉄基合金部材は、積層造形法により、様々な形状・種類のものを製造することができ、多種少量生産を行うことができる。 Since the iron-based alloy member according to the embodiment of the present invention is an iron-based member, it is inexpensive. In addition, since it is formed using the laminated molding method, complicated manufacturing processes such as machining such as forging and rolling, cutting process from raw materials, raw processing (inner diameter hole processing), quenching and tempering are not required. , Can be manufactured easily and inexpensively. Further, the iron-based alloy member according to the embodiment of the present invention can be manufactured in various shapes and types by the additive manufacturing method, and can be produced in various small quantities.

なお、本発明の実施の形態の鉄基合金部材で、鉄基合金粉末は、不可避不純物としてではなく、Moを13質量%以下で含んでいてもよい。この場合にも、超硬合金並みの硬度および鉄鋼材料の靭性を兼ね備えることができる。 In the iron-based alloy member according to the embodiment of the present invention, the iron-based alloy powder may contain Mo in an amount of 13% by mass or less, not as an unavoidable impurity. In this case as well, it is possible to have the hardness equivalent to that of cemented carbide and the toughness of the steel material.

積層造形法を利用して鉄基合金部材を製造し、シャルピー衝撃値およびロックウェル硬度(HRC)の測定、ならびに、電子顕微鏡による組織観察を行った。まず、積層造形用の粉末試料1として、Cr:27質量%、Mo:12質量%、W:6質量%、Fe:残部を含む鉄基合金組成物に、炭素を3質量%添加した原料を真空溶解し、アトマイズにより、鉄基合金粉末を作製した。これらの粉末の粒径は、アトマイズ条件と、メッシュ篩とを調整することで、1μmから200μmとした。 An iron-based alloy member was manufactured using the laminated molding method, and the Charpy impact value and Rockwell hardness (HRC) were measured and the structure was observed with an electron microscope. First, as a powder sample 1 for laminated molding, a raw material in which 3% by mass of carbon is added to an iron-based alloy composition containing Cr: 27% by mass, Mo: 12% by mass, W: 6% by mass, and Fe: balance is added. An iron-based alloy powder was prepared by melting in a vacuum and atomizing. The particle size of these powders was adjusted from 1 μm to 200 μm by adjusting the atomizing conditions and the mesh sieve.

また、積層造形用の粉末試料2として、Cr:27質量%、Mo:6質量%、W:14質量%、Fe:残部を含む鉄基合金組成物に、炭素を3質量%添加した原料を真空溶解し、アトマイズにより、鉄基合金粉末を作製した。これらの粉末の粒径は、アトマイズ条件と、メッシュ篩とを調整することで、1μmから200μmとした。 Further, as the powder sample 2 for laminated molding, a raw material in which 3% by mass of carbon is added to an iron-based alloy composition containing Cr: 27% by mass, Mo: 6% by mass, W: 14% by mass, and Fe: the balance is used. An iron-based alloy powder was prepared by melting in a vacuum and atomizing. The particle size of these powders was adjusted from 1 μm to 200 μm by adjusting the atomizing conditions and the mesh sieve.

また、積層造形用の粉末試料3として、Cr:27質量%、W:22質量%、Fe:残部を含む鉄基合金組成物に、炭素を3質量%添加した原料を真空溶解し、アトマイズにより、鉄基合金粉末を作製した。これらの粉末の粒径は、アトマイズ条件と、メッシュ篩とを調整することで、1μmから200μmとした。 Further, as the powder sample 3 for laminated molding, a raw material in which 3% by mass of carbon was added to an iron-based alloy composition containing Cr: 27% by mass, W: 22% by mass, and Fe: the balance was vacuum-dissolved and atomized. , Iron-based alloy powder was prepared. The particle size of these powders was adjusted from 1 μm to 200 μm by adjusting the atomizing conditions and the mesh sieve.

次に、粉末試料1〜3を材料として、積層造形法を利用して、それぞれ積層造形体の試験試料1〜3を作製した。積層造形法では、電子ビームを用い、さらに仕上げ加工を行って、一辺が10mmの立方体形状の試験試料1〜3を作製した。なお、使用した電子ビーム積層造形(EBM)装置は、Arcam EBM A2X system(Arcam AB, Molndal, Sweden)である。なお、ここでは、積層造形に電子ビームを用いたが、レーザービームを用いても同様に試料を作製することができる。 Next, using the powder samples 1 to 3 as a material, test samples 1 to 3 of the layered model were prepared by using the additive manufacturing method. In the additive manufacturing method, an electron beam was used and further finishing was performed to prepare cubic test samples 1 to 3 having a side of 10 mm. The electron beam laminated modeling (EBM) device used is the Arcam EBM A2X system (Arcam AB, Molndal, Sweden). Although an electron beam is used for the laminated molding here, a sample can be similarly prepared by using a laser beam.

また、比較試料1〜3として、それぞれ積層造形用の粉末試料1〜3の原料と同じ組成の原料を真空溶解し、その溶湯を金型に鋳込んで、一辺が10mmの立方体形状のインゴット(鋳造材)を作製した。作製した試験試料1〜3および比較試料1〜3の組成を、表1に示す。 Further, as comparative samples 1 to 3, a raw material having the same composition as the raw materials of powder samples 1 to 3 for laminated molding is vacuum-melted, and the molten metal is cast into a mold to form a cube-shaped ingot having a side of 10 mm. Casting material) was produced. The compositions of the prepared test samples 1 to 3 and the comparative samples 1 to 3 are shown in Table 1.

試験試料1〜3および比較試料1〜3について、シャルピー衝撃値およびロックウェル硬度(HRC)の測定を行った。シャルピー衝撃値は、JIS Z 2242:2018の試験方法により測定を行った。それらの測定結果を、表1に示す。なお、比較試料1〜3は、脆くて崩れやすい状態であり、構造物として成り立たず、シャルピー衝撃値および硬度の測定を行うことはできなかった。 Charpy impact value and Rockwell hardness (HRC) were measured for test samples 1 to 3 and comparative samples 1 to 3. The Charpy impact value was measured by the test method of JIS Z 2242: 2018. The measurement results are shown in Table 1. The comparative samples 1 to 3 were in a brittle and easily collapsed state, did not form as a structure, and the Charpy impact value and hardness could not be measured.

表1に示すように、試験試料1の硬度がHRC67、試験試料2および3の硬度がHRC71.8であり、超硬合金並みの硬度であることが確認された。また、表1に示すように、試験試料1〜3のシャルピー衝撃値は、14〜15J/cm2であった。刃物用鉄鋼材のひとつであるSUS440Cのシャルピー衝撃値を測定したところ、6J/cmであった。このことから、試験試料1〜3は、SUS440Cを大幅に上回るシャルピー衝撃値であり、優れた靭性を有し、刃物用素材として十分に使用できることが確認された。 As shown in Table 1, the hardness of the test sample 1 was HRC67, and the hardness of the test samples 2 and 3 was HRC71.8, which were confirmed to be comparable to those of the cemented carbide. Further, as shown in Table 1, the Charpy impact values of the test samples 1 to 3 were 14 to 15 J / cm 2 . When the Charpy impact value of SUS440C, which is one of the steel materials for cutting tools, was measured, it was 6 J / cm 2 . From this, it was confirmed that the test samples 1 to 3 had a Charpy impact value significantly higher than that of SUS440C, had excellent toughness, and could be sufficiently used as a material for cutting tools.

次に、試験試料1〜3について、積層造形の際の積層面に沿った水平断面、および、積層方向に沿った垂直断面に対して、電子顕微鏡による組織観察を行った。水平断面および垂直断面は、それぞれ一辺10mmの立方体形状を成す試験試料1〜3の中心を通る断面とした。試験試料1の水平断面および垂直断面の電子顕微鏡写真を、それぞれ図1(a)および(b)に、試験試料2の水平断面および垂直断面の電子顕微鏡写真を、それぞれ図2(a)および(b)に、試験試料3の水平断面および垂直断面の電子顕微鏡写真を、それぞれ図3(a)および(b)に示す。また、比較試料1〜3についても、断面の電子顕微鏡写真による組織観察を行った。比較試料1〜3の断面の電子顕微鏡写真を、図4(a)〜(c)に示す。 Next, with respect to the test samples 1 to 3, the microstructure was observed with an electron microscope on the horizontal cross section along the laminated surface and the vertical cross section along the laminated direction during the laminated molding. The horizontal cross section and the vertical cross section were taken to pass through the centers of the test samples 1 to 3 having a cubic shape with a side of 10 mm, respectively. Electron micrographs of the horizontal and vertical cross sections of the test sample 1 are shown in FIGS. 1 (a) and 1 (b), respectively, and electron micrographs of the horizontal and vertical cross sections of the test sample 2 are shown in FIGS. In b), electron micrographs of a horizontal cross section and a vertical cross section of the test sample 3 are shown in FIGS. 3 (a) and 3 (b), respectively. In addition, the structures of Comparative Samples 1 to 3 were also observed by electron micrographs of cross sections. Electron micrographs of cross sections of Comparative Samples 1 to 3 are shown in FIGS. 4 (a) to 4 (c).

図1〜3に示すように、試験試料1〜3は、いずれも組織中に析出物として炭化物(図中の「A」の部分;網目状に浮き出て見える部分)が微細化して形成されているのが確認された。また、これらの微細な炭化物は、径や幅や長さが10μm以下であり、Feのマトリックス(図中の「B」の部分)中にほぼ均一に分散されていることも確認された。これらの炭化物は主に、図1および図2ではCr、WおよびMoの炭化物であり、図3ではCrおよびWの炭化物である。 As shown in FIGS. 1 to 3, in each of the test samples 1 to 3, carbides (part "A" in the figure; a part that appears to stand out in a mesh shape) are formed as fine particles in the structure as precipitates. It was confirmed that there was. It was also confirmed that these fine carbides had a diameter, width and length of 10 μm or less, and were almost uniformly dispersed in the Fe matrix (the portion “B” in the figure). These carbides are mainly the carbides of Cr, W and Mo in FIGS. 1 and 2, and the carbides of Cr and W in FIG.

さらに、これらの炭化物は、水平断面および垂直断面のどちらにも、10μm以下の幅で網目状にネットワーク化されて微細分散していることから、図5に示すように、炭化物は立体的に網目状に繋がって強く結びついて存在しているといえる。 Further, since these carbides are networked and finely dispersed in a mesh shape with a width of 10 μm or less on both the horizontal cross section and the vertical cross section, the carbides are three-dimensionally meshed as shown in FIG. It can be said that they are connected in a shape and strongly connected.

表1に示す硬度およびシャルピー衝撃値の結果、並びに、図1〜3に示す組織観察の結果から、本発明の実施の形態の鉄基合金部材は、摺動部品(ベアリング、ガイドレール等)や刃物などの機械部品として製作したとき、耐摩耗性や、刃先などの薄く形成された部分の強度(靭性)を高めることができ、長寿命を得ることができると共に、割れたり欠けたりしにくくなるといえる。 From the results of the hardness and Charpy impact value shown in Table 1 and the results of the microstructure observation shown in FIGS. 1 to 3, the iron-based alloy member according to the embodiment of the present invention includes sliding parts (bearings, guide rails, etc.) and When manufactured as a mechanical part such as a blade, it is possible to increase the wear resistance and the strength (toughness) of thinly formed parts such as the cutting edge, obtain a long life, and prevent cracking or chipping. I can say.

これに対し、比較試料1〜3の鋳造材は、図4(a)〜(c)に示すように、炭化物(図中の「A」の部分)が組織中で粗大化して偏析していることが確認された。なお、図中の「B」の部分は、マトリックスである。比較試料1〜3の鋳造材は、脆くて崩れやすい状態のため、構造物としては成り立たず、シャルピー衝撃値を測定することができなかった。これらのことから、同じ成分であっても、鋳造材では靭性は得られず、機械部品として使用することは不可能であるといえる。
On the other hand, in the cast materials of Comparative Samples 1 to 3, as shown in FIGS. 4 (a) to 4 (c), carbides (part "A" in the figure) are coarsened in the structure and segregated. It was confirmed that. The part "B" in the figure is a matrix. Since the cast materials of Comparative Samples 1 to 3 were brittle and easily collapsed, they could not be formed as a structure and the Charpy impact value could not be measured. From these facts, it can be said that even if the components are the same, toughness cannot be obtained with the cast material and it is impossible to use it as a mechanical part.

Claims (6)

C:2.5〜5.0質量%と、Cr:26〜35質量%と、W:5〜26質量%と、不可避不純物とを含み、残部がFeから成る鉄基合金粉末を材料とし、積層造形法を利用して形成された、10μm以下の炭化物が均一に分散された鉄基合金から成ることを特徴とする鉄基合金部材。 The material is an iron-based alloy powder containing C: 2.5 to 5.0% by mass, Cr: 26 to 35% by mass, W: 5 to 26% by mass, and unavoidable impurities, and the balance is Fe. An iron-based alloy member formed by using a laminated molding method and comprising an iron-based alloy in which carbides of 10 μm or less are uniformly dispersed. 前記炭化物は、CrおよびWの炭化物であることを特徴とする請求項1記載の鉄基合金部材。 The iron-based alloy member according to claim 1, wherein the carbide is a carbide of Cr and W. 前記鉄基合金粉末は、さらにMoを13質量%以下で含むことを特徴とする請求項1記載の鉄基合金部材。 The iron-based alloy member according to claim 1, wherein the iron-based alloy powder further contains Mo in an amount of 13% by mass or less. 前記炭化物は、Cr、WおよびMoの炭化物であることを特徴とする請求項3記載の鉄基合金部材。 The iron-based alloy member according to claim 3, wherein the carbide is a carbide of Cr, W, and Mo. 前記鉄基合金は、前記炭化物が立体的に網目状に繋がっていることを特徴とする請求項1乃至4のいずれか1項に記載の鉄基合金部材。 The iron-based alloy member according to any one of claims 1 to 4, wherein the iron-based alloy is characterized in that the carbides are three-dimensionally connected in a network shape. 刃物から成ることを特徴とする請求項1乃至5のいずれか1項に記載の鉄基合金部材。
The iron-based alloy member according to any one of claims 1 to 5, wherein the iron-based alloy member is made of a blade.
JP2019138624A 2019-07-29 2019-07-29 Iron-based alloy member Active JP7186144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019138624A JP7186144B2 (en) 2019-07-29 2019-07-29 Iron-based alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138624A JP7186144B2 (en) 2019-07-29 2019-07-29 Iron-based alloy member

Publications (2)

Publication Number Publication Date
JP2021021115A true JP2021021115A (en) 2021-02-18
JP7186144B2 JP7186144B2 (en) 2022-12-08

Family

ID=74573650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138624A Active JP7186144B2 (en) 2019-07-29 2019-07-29 Iron-based alloy member

Country Status (1)

Country Link
JP (1) JP7186144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235012A (en) * 2021-04-25 2021-08-10 四川大学 High-toughness Fe-based alloy shielding material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452046A (en) * 1987-08-21 1989-02-28 Mitsubishi Metal Corp Carbide dispersed type fe-base sintered alloy for sliding member having excellent wear resistance
JPH06172915A (en) * 1992-05-01 1994-06-21 Kuroki Kogyosho:Kk Wear resistant alloy powder, wear resistant composite member using the same and production thereof
JPH08120397A (en) * 1994-10-17 1996-05-14 Mitsubishi Heavy Ind Ltd Wear resistant thermal spraying material
JPH1053802A (en) * 1996-08-09 1998-02-24 Daido Steel Co Ltd High carbon iron-base alloy powder
JPH1161361A (en) * 1997-08-13 1999-03-05 Mitsubishi Heavy Ind Ltd Heat resistant and wear resistant material
JP2003533593A (en) * 2000-05-16 2003-11-11 プロエングコ ツーリング アクティエボラーグ Iron-based alloy containing chromium-tungsten composite carbide and method for producing the same
JP2016166387A (en) * 2015-03-09 2016-09-15 山陽特殊製鋼株式会社 HARD POWDER FOR Fe-BASED SINTER AND Fe-BASED SINTERED BODY EXCELLENT IN ABRASION RESISTANCE USING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452046A (en) * 1987-08-21 1989-02-28 Mitsubishi Metal Corp Carbide dispersed type fe-base sintered alloy for sliding member having excellent wear resistance
JPH06172915A (en) * 1992-05-01 1994-06-21 Kuroki Kogyosho:Kk Wear resistant alloy powder, wear resistant composite member using the same and production thereof
JPH08120397A (en) * 1994-10-17 1996-05-14 Mitsubishi Heavy Ind Ltd Wear resistant thermal spraying material
JPH1053802A (en) * 1996-08-09 1998-02-24 Daido Steel Co Ltd High carbon iron-base alloy powder
JPH1161361A (en) * 1997-08-13 1999-03-05 Mitsubishi Heavy Ind Ltd Heat resistant and wear resistant material
JP2003533593A (en) * 2000-05-16 2003-11-11 プロエングコ ツーリング アクティエボラーグ Iron-based alloy containing chromium-tungsten composite carbide and method for producing the same
JP2016166387A (en) * 2015-03-09 2016-09-15 山陽特殊製鋼株式会社 HARD POWDER FOR Fe-BASED SINTER AND Fe-BASED SINTERED BODY EXCELLENT IN ABRASION RESISTANCE USING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235012A (en) * 2021-04-25 2021-08-10 四川大学 High-toughness Fe-based alloy shielding material and preparation method thereof
CN113235012B (en) * 2021-04-25 2021-12-17 四川大学 High-toughness Fe-based alloy shielding material and preparation method thereof

Also Published As

Publication number Publication date
JP7186144B2 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
TWI675923B (en) A wear resistant alloy
JP7160689B2 (en) Steel suitable for plastic molds
WO2019220917A1 (en) Additively manufactured hot work tool, method for manufacturing same, and metal powder for additively manufactured hot work tool
US10272497B2 (en) Cladded articles and methods of making the same
US20170129015A1 (en) Methods of making metal matrix composite and alloy articles
CN104032153B (en) A kind of manufacture method of high tough crystallite hard alloy
US20230203625A1 (en) Metal material composition for additively manufactured parts
KR20150133661A (en) Method of manufacturing a ferrous alloy article using powder metallurgy processing
Ravi et al. Microstructural evolution and wear behavior of carbon added CoCrFeMnNi multi-component alloy fabricated by mechanical alloying and spark plasma sintering
RU2437951C2 (en) Steel for cold treatment of metals
KR101893172B1 (en) Metal Powder for 3D Metal Printer and Shear Mold Using the same
JP7186144B2 (en) Iron-based alloy member
EP3903971A1 (en) Auto-tempering steels for additive manufacturing
JP6866964B1 (en) Products with Ni-based alloys, Ni-based alloy powders, Ni-based alloy members, and Ni-based alloy members.
JP6710484B2 (en) Powder high speed tool steel
JP6198062B2 (en) Co-based alloy powder
JP7036413B2 (en) Co-based alloy powder for electron beam laminated modeling
JP6875682B2 (en) Machine parts
JP5590496B2 (en) Mold with excellent high-temperature strength and surface finish characteristics and method for producing the same
JP6537342B2 (en) High-speed nitrided powder tool steel with excellent hardness, toughness and wear resistance
JP2022049161A (en) Mechanical component
JP6306393B2 (en) Machine parts
JP2022144437A (en) Fe-based alloy and metal powder
JP2021535282A (en) Modified high speed steel particles, powder metallurgy methods using them, and sintered parts obtained from them.
JP6942434B2 (en) Manufacturing method of high-density iron-based sintered material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7186144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150