JP7181533B2 - 生体計測システム及び方法 - Google Patents

生体計測システム及び方法 Download PDF

Info

Publication number
JP7181533B2
JP7181533B2 JP2019192398A JP2019192398A JP7181533B2 JP 7181533 B2 JP7181533 B2 JP 7181533B2 JP 2019192398 A JP2019192398 A JP 2019192398A JP 2019192398 A JP2019192398 A JP 2019192398A JP 7181533 B2 JP7181533 B2 JP 7181533B2
Authority
JP
Japan
Prior art keywords
pressure
reaction force
floor reaction
vector
force vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192398A
Other languages
English (en)
Other versions
JP2021065393A (ja
Inventor
彩子 西村
洋和 敦森
司 舟根
明彦 神鳥
泰明 中村
亜希子 小幡
佑人 小松
聖司 濱
敏夫 ▲辻▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Hitachi Ltd
Original Assignee
Hiroshima University NUC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Hitachi Ltd filed Critical Hiroshima University NUC
Priority to JP2019192398A priority Critical patent/JP7181533B2/ja
Priority to US17/074,345 priority patent/US11744486B2/en
Publication of JP2021065393A publication Critical patent/JP2021065393A/ja
Application granted granted Critical
Publication of JP7181533B2 publication Critical patent/JP7181533B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • A61B5/1128Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/02Crutches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5071Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2203/00Additional characteristics concerning the patient
    • A61H2203/04Position of the patient
    • A61H2203/0406Standing on the feet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/62Posture

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Physiology (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Rehabilitation Therapy (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Rehabilitation Tools (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、歩行訓練を支援する生体計測の技術に関する。
医療・介護施設において、歩行訓練の際、療法士や介護士が患者の状態を観察し、バランスのかけ方の指示を行っている。しかし、言葉による指示は理解し難いため、バランスの状況を可視化し、歩行状況を簡単に認識可能なシステムが必要である。
足部バランス修正、及びに転倒予防を含めた健康維持、管理を実現する技術として特許文献1がある。特許文献1にはバランス修正に重要な母趾の機能、母趾球部の機能、及び小趾球部の機能を、踵部の圧変動から評価することで、バランス修正に必要な機能的で効果的な訓練を提供する技術が開示されている。
特開2012-176170号公報
上記特許文献1に記載された技術では、足のどの部分に圧力がかかっているかという足圧のバランスと***を表示することができるが、歩行の際に足圧がかかる方向を理解することが難しいという課題があった。また、歩行訓練の際に杖などを使用するが、杖などの器具に対して、バランスのかけ方を言葉で理解することは困難であった。
そこで、本発明は、足圧から床反力ベクトルを推定し、足の骨格方向を同時に表示することで、より安定した歩行の支援を提示可能とする生体計測システム及び方法を提供することを目的とする。
上記課題を解決するための生体計測システムの一つの形態は、被検体を撮影するカメラと、被検体の少なくとも一方の足裏の圧力値を検出する圧力情報収集部と、カメラにより撮影された被検体の骨格方向ベクトルを算出する骨格方向ベクトル算出部と、圧力情報収集部からの圧力に関する情報に基づき、床反力ベクトルを算出する床反力ベクトル算出部と、骨格方向ベクトル算出部により算出される骨格方向ベクトルと、床反力ベクトル算出部により算出される床反力ベクトルと、を重ねて表示する解析結果出力部と、を有する。
本発明により、歩行状態や姿勢の状態把握が効率化される。スタッフの負担が軽減されることにより、説明や指示をより短時間に行えるようになるという効果がある。
実施例1の生体計測システムの全体構成図である。 実施例1の情報処理部のハードウェアブロック図である。 実施例1の圧力情報収集部を構成する圧力センサ部を説明する図である。 実施例1の足の圧力重心座標の求め方を説明する図である。 実施例1の床反力ベクトルの算出原理を示した図である。 実施例1の骨格方向ベクトルの算出例を示した図である。 実施例1の生体計測システムで実行されるフローチャートを示す図である。 実施例1の判定部の動作を説明する図である。 実施例1の床反力ベクトルと骨格方向ベクトルの時系列変化を示した図である。 実施例1の被検体のバランスが崩れた状態の骨格と圧力値とを表示した図である。 実施例1の被検体のバランスが崩れた他の状態を表示した図である。 実施例2の杖を使用した場合の骨格と圧力値との表示例を示した図である。 実施例2の支持基底面の表示例を示した図である。 実施例3の4点支持の杖の圧力センサの配置を示した図である。 実施例4の足の圧力センサから歩行周期の算出例を示した図である。 実施例4、実施例5、実施例6の歩行周期、相、歩幅、歩隔、10メートル歩行時間、高次脳機能検査結果の表示例の図である。 実施例7の圧力重心から伸びる鉛直軸とひざ関節の水平距離の算出例の図である。
以下、図面を参照して本発明の実施形態を説明する。各実施例は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施することが可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
各種情報の例として、データベースは、「テーブル」、「リスト」、「キュー」等で構成され、各種情報はこれら以外のデータ構造で表現されてもよい。例えば、「XXテーブル」、「XXリスト」、「XXキュー」等の各種情報は、「XX情報」としてもよい。識別情報について説明する際に、「識別情報」、「識別子」、「名」、「ID」、「番号」等の表現を用いるが、これらについてはお互いに置換が可能である。
同一あるいは同様の機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。また、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
実施例において、プログラムを実行して行う処理について説明する場合がある。ここで、計算機は、プロセッサ(例えばCPU、GPU)によりプログラムを実行し、記憶資源(例えばメモリ)やインターフェースデバイス(例えば通信ポート)等を用いながら、プログラムで定められた処理を行う。そのため、プログラムを実行して行う処理の主体を、プロセッサとしてもよい。同様に、プログラムを実行して行う処理の主体が、プロセッサを有するコントローラ、装置、システム、計算機、ノードであってもよい。プログラムを実行して行う処理の主体は、演算部であれば良く、特定の処理を行う専用回路を含んでいてもよい。ここで、専用回路とは、例えばFPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)、CPLD(Complex Programmable Logic Device)等である。
プログラムは、プログラムソースから計算機にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバまたは計算機が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源を含み、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、実施例において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。
図1は、実施例の歩行支援に用いる生体計測システムの全体構成図である。
情報処置装置1は、圧力情報収集部2から圧力に関する情報を受信し、カメラ3から被検体の画像情報を受信する。情報解析部11は、圧力情報収集部2から入力される、圧力に関する情報に基づいて、被検体の床反力ベクトルを求める。床反力ベクトルの代わりに、圧力重心位置を求めても良い。さらに、情報解析部11は、カメラ3によって取得された被検体の画像が入力され、被検体の画像から被検体の骨格を検出する。情報解析部11は、圧力情報収集部2から受信した圧力に関する情報から求めた床反力ベクトルの情報と、カメラ3から取得した被検体の画像から検出した被検体の骨格の情報の同期をとり、床反力ベクトルと被検体の骨格の時系列変化を解析結果出力部4に出力する。
情報処理装置1は、通信I/F、処理部(以後、CPU)、メモリ、記憶装置、を備えるコンピュータである。詳細は、図2で説明する。
圧力情報収集部2は、例えば、被検体である人の足の裏、もしくは靴のインソールもしくは中敷き部に設けられた圧力センサ部からの圧力情報を収集し、情報処理装置1に出力する。詳細は、図3A等により説明する。ここでは、フォースセンサや他の力覚センサを用いてもよい。
カメラ3は、1台若しくは複数台のカメラであり、被検体を撮影し、撮影した映像を情報処置装置1に出力する。例えば、2台のカメラを用い、1台のカメラを被検体の前或いは後ろに設置し、もう一台のカメラを被検体の左もしくは右方向に設置することで、被検体を3次元空間で把握することができる。
解析結果出力部4は、例えば、表示装置により構成され、ユーザに対して、情報処理装置1の解析結果を出力する。
図2は、生体計測システムの情報処置装置1のハードウェア構成の例を示す図である。情報処置装置1は、1つまたは複数のコンピュータ(電子計算機)で構成される。情報処置装置1のハードウェアの各構成要素は、単数でも複数でも構わない。情報処置装置1は、例えば、処理部となるCPU15、外部装置と通信する通信部として動作する通信I/F18、記憶装置19、メモリ16などで構成される。
CPU15は、処理部として動作し、通信I/F18を経由して、圧力情報収集部2、カメラ3から情報を入力する。記憶装置19は、CPU15で実行されるプログラムを格納する他、被検体の計測結果を格納するデータベースを保持しても良い。通信I/F18は、圧力情報収集部2、カメラ3から情報を入力することの他、解析結果出力部4に情報処置装置1の解析結果を出力する。
処理部は、演算装置や制御装置であればよく、例えばCPU(Central Processing Unit)やGPU(Graphics Processing Unit)といったプロセッサで構成されてもよいし、特定の処理を行う専用回路を含んでいてもよい。ここで、専用回路とは、例えばFPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)、CPLD(Complex Programmable Logic Device)等である。
入力装置12は、例えば外部装置からデータを受け付けるインターフェースやマウスやキーボードなどであってもよい。
メモリ16は、記憶装置19に格納されるプログラムや、CPU15で処理するデータを格納する。メモリ16は、例えば、DRAMやSDRAMで構成される。
記憶装置19は、例えば、HDDやSSD等の不揮発性のメモリによって構成され、各種プログラムの他、圧力情報や骨格情報が記憶されている。各種プログラムとして、圧力情報収集部2から入力される、圧力に関する情報に基づいて被検体の床反力ベクトル算出する床反力ベクトル算出プログラムと、カメラ3によって取得された被検体の画像が入力され、入力された被検体の画像から、被検体の骨格を検出し、検出された骨格から骨格方向ベクトルを算出する骨格方向ベクトル算出プログラムと、が格納される。
以下、説明を理解しやすくするため、床反力ベクトル算出プログラムと骨格方向ベクトル算出プログラムを、CPU204が実行することによって実現される機能を、それぞれ床反力ベクトル算出部111、骨格方向ベクトル算出部112と呼んで説明する。
CPU15、メモリ16、通信I/F18、入力装置12、記憶装置19は、バス13によって互いに接続されている。
ネットワーク5は、有線ネットワークでも、無線アクセスポイントを介して接続される無線ネットワークでもよい。情報処置装置1は、圧力情報収集部2、カメラ3、解析結果出力部4とネットワーク5を介して接続されても良い。
図3Aは、実施例1の圧力情報収集部を構成する圧力センサ部を説明する図である。圧力情報収集部2は、例えば、被検体である人が装着する靴の下敷きに複数のセンサを備えたもので構成される。圧力情報収集部2は、複数のセンサにより圧力値を取得する。例えば、図3Aでは、圧力センサ部には8つのセンサが設けられ、左足の足裏の圧力を測定する。各センサには、それぞれ識別子がL1からL8まで付されると共に、各センサが設置されている位置を特定する座標が与えられている。
例えば、L1のセンサの座標が(Xl1 Yl1)、L2のセンサの座標が(Xl2 Yl2)のように、8つのそれぞれのセンサに対して座標が与えられる。
各センサによって測定される圧力値は、Ml1、 Ml2 ・・・ Ml8として出力される。
図3Aの圧力センサ部は、被検体である人の左足用の圧力センサ部を示したが、右足用の圧力センサ部は、識別子R1からR8を有する8つのセンサで右足の足裏の圧力値を取得する。左足同様、R1のセンサの座標が(XR1 YR1)、R2のセンサの座標が(XR2 YR2)のように、8つのそれぞれのセンサに対して座標が与えられる。左足用の各センサによって測定される圧力値は、MR1、 MR2 ・・・ MR8として出力される。
図3Bは、足(左足)の圧力重心の座標の求め方を示している。数1によって、x軸の足の圧力重心の座標が算出され、数2によってy軸の足の圧力重心の座標が算出される。床反力ベクトル算出部111は、各圧力センサの座標値と、各圧力センサによって計測される圧力値から、数1及び数2により圧力重心を算出する。x軸、y軸は、水平面上に設けられた座標である。実施例1では、足(左足)の圧力重心のことを第1の圧力重心と呼ぶことがある。
図4は、実施例1の床反力ベクトルの算出原理を示した図である。図4の左側に、圧力重心42と、足裏重心43と、圧力重心42と足裏重心43の距離44と、8つのセンサによって検出された圧力値の合計から求まる圧力ベクトル41を示している。足裏重心43は、足の大きさに応じて画一的に求まる重心である。図4は、圧力重心42が足裏重心43より、つま先側にあり、つま先だけに力がかかった状態を示している。
図4の右側に床反力ベクトルの算出原理を示している。足裏重心43と第1の圧力重心42の距離から求まる重心ベクトル45と、第1の圧力重心42と圧力値の合計値から求まる圧力ベクトル41の二つのベクトルを加算して、床反力ベクトル46を求める。
情報処理装置1は、圧力情報収集部2から、左右のそれぞれの足の圧力情報を受信し、左右のそれぞれの床反力ベクトル46を求め、時系列情報として床反力ベクトル値141として、記憶装置19に格納しても良い。
図5は、カメラ3によって取得された被検体である人の骨格による骨格方向ベクトルの算出例を示した図である。骨格方向ベクトル算出部112は、例えば、OpenPose等の骨格検出アルゴリズムを利用することで実現される。OpenPoseは、コンピュータビジョンに関する国際学会CVPR2017でCMU(カーネギーメロン大学)が発表した、keypoint(特徴点)の検出とkeypoint同士の関係の推定を行う技術である。OpenPoseによって、カメラ3で撮影された画像から算出される骨格51を利用して、被検体である人の下肢骨格の方向ベクトルを骨格方向ベクトル52として算出する。尚、ここではOpenPoseに限らず、別の骨格検出アルゴリズムを利用してもよい。
図6は、実施例1の生体計測システムで実行されるフローチャートを示す図である。
処理が開始されると、ステップS601で、情報解析部11の床反力ベクトル算出部111は、圧力情報収集部2から歩行を実施した被検者の圧力情報を取得する。また、骨格方向ベクトル算出部112は、カメラ3で撮影された被検体の映像を取得する。
ステップS602で、骨格方向ベクトル算出部112は、カメラ3によって、被検者の歩行の様子が撮影された映像から、被検者の骨格を検出し、下肢骨格の骨格方向ベクトルを算出する。骨格方向ベクトルの算出方法は、図5で説明した通りである。
ステップS603で、床反力ベクトル算出部111は、圧力情報収集部2から受信した圧力に関する情報に基づき、床反力ベクトルを算出する。床反力ベクトルの算出方法は、図3A、図3B、図4で説明した通りである。尚、ステップS602とステップS603の順番は逆であっても良い。
ステップS604で、情報解析部11の判定部113は、骨格方向ベクトルと床反力ベクトルとの差分を用いて、被検体の安定性を判定する。判定の詳細は、図7を用いて説明する。
ステップS605で、情報解析部11は、被検体の状態の判定結果を解析結果とし、解析結果の時系列変化を、解析結果出力部4に出力する。解析結果出力部4では、骨格方向ベクトル算出部112により算出される骨格方向ベクトルと、床反力ベクトル算出部111により算出される床反力ベクトルと、を重ねて表示する。また、解析結果出力部4に、図7で示すように、骨格方向ベクトル52と床反力ベクトル46に加え、骨格方向ベクトル52と床反力ベクトル46の差分71を重ねて表示する。ここで、例えば骨格表示とともに鉛直軸を重ねて表示しても良い。これにより、例えば脚部骨格、もしくは体幹が、鉛直軸に対してどの程度傾いているのかを明確に示すことができる。これを被検体に視覚的にフィードバックすることは、自身の姿勢認識を助け、自発的な姿勢修正に効果がある。
図7に、図6のステップS604の判定部113の動作について説明する。
被検体10を、2台のカメラにより、前後、左右の両方向から撮影すると、3次元方向に骨格方向ベクトル52を把握することができる。判定部113は、床反力ベクトル算出部111と骨格方向ベクトル算出部112の出力に対し、時間的同期をとる。これは、カメラにより撮影された映像と、圧力情報収集部2により検出された圧力に関する情報とを、時間的に揃え、同一時刻で比較するためである。測定値14に、床反力ベクトル値141や骨格方向ベクトル値142を格納する際に、タイムスタンプ情報と共に格納し、判定部113が同一のタイムスタンプを有する床反力ベクトル値141と骨格方向ベクトル値142を、読み出すようにしても良い。
判定部113は、同一時刻の、骨格方向ベクトルと床反力ベクトル46とを、通信I/F18を介して、解析結果出力部4に出力する。図7は、解析結果出力部4の出力例を示す。図7に示された通り、同期された骨格方向ベクトル52と、床反力ベクトル46とを重ねて表示させ、両者のズレ71を把握する。このズレ71は、3次元空間における骨格方向ベクトル52と、床反力ベクトル46との角度差で表すことができる。
図8は、実施例1の床反力ベクトルと骨格方向ベクトルの時系列変化を示した図である。図8に示すように、判定部113から出力される、同期された床反力ベクトル値141と、骨格方向ベクトル値142と、の時系列変化が示される。図8において、骨格方向ベクトル値の時系列変化52t、床反力ベクトル値の時系列変化46t、ズレの時系列変化71tで示される。尚、この時系列変化は、判定部から、通信I/F18を経由し、解析結果表示部4によって表示される。これにより、ユーザは、ズレの大きいタイミング(時間t1)を理解することができる。尚、カメラ3からの映像を記憶装置19に格納し、判定部113により、床反力ベクトル算出部111と骨格方向ベクトル算出部112の出力と格納された映像との同期をとれば、時間t1の映像を解析結果出力部4に出力することができる。ユーザは骨格方向ベクトルと床反力ベクトルのズレの大きなタイミングを映像によっても確認することができる。
図3Aから図8は、被検体の片足である左足について、説明したが、被検体の右足についても同様に床反力ベクトルと骨格方向ベクトルとを表示させることができる。また、床反力ベクトルと骨格方向ベクトルのズレを重ねて解析結果出力部4により表示することができる。
その場合、圧力情報収集部2は、左右両足の足裏に図3Aのような複数の圧力センサを設置し、被検体の両足の足裏の圧力値を検出する。
床反力ベクトル算出部111は、被検体の左右それぞれの足裏の圧力に関する情報から、左右の足の床反力ベクトルを、左足床反力ベクトルと右足床反力ベクトルとして算出する。
解析結果出力部は、骨格方向ベクトル算出部112により算出される左足骨格方向ベクトルと、左足床反力ベクトルとを重ねて表示する。また、解析結果出力部は、骨格方向ベクトル算出部112により算出される右足骨格方向ベクトルと右足床反力ベクトルとを重ねて表示する。
判定部113は、左足骨格方向ベクトルと左足床反力ベクトルとのズレより、左足の安定性を判定する。また、判定部113は、右足骨格方向ベクトルと右足床反力ベクトルとのズレより、右足の安定性を判定する。
図9は、実施例1の被検体のバランスが崩れた状態の骨格と圧力値とを表示した図である。図8に示した表示により、ユーザは、時間t1が、最も骨格方向ベクトル52と床反力ベクトル46とのズレが大きいタイミングであることを理解できる。時間t1を特定する情報が入力されると、判定部113が時刻t1における、骨格方向ベクトルを骨格方向ベクトル値142から読み出し、床反力ベクトルを床反力ベクトル値141から読み出し、解析結果出力部4に出力する。解析結果出力部4は、図9のように、ズレ71が大きいタイミングの時間t1の被検体の骨格と、圧力値バランスや圧力重心42と、を同時に表示する。
これにより、ユーザは、ズレ71の大きくなったタイミングの姿勢や圧力重心を容易に理解できるため、容易に正しい姿勢に正すことができる。
図10は、実施例1の被検体のバランスが崩れた他の状態を表示した図である。骨格方向ベクトル算出部112は、カメラ3からの映像を解析し、被検体の上肢の傾きを算出し、解析結果出力部4に出力する。
解析結果出力部4は、骨格方向ベクトルと、床反力ベクトルと、上肢の傾きを同時に表示する。上肢の右腰の関節位置1101と左腰の関節位置1102を結んだ中心位置1103と首を結んだ上肢の傾きを示す線1104と骨格中心1105の鉛直軸を補助線とし、両方を表示することで、骨格が前傾しているか後傾しているか、また左右への傾きを表示でき、ユーザに対して、ズレが生じている原因を容易に理解させることができる。
図11は、実施例2の杖を使用した場合の骨格と圧力値との表示例を示した図である。実施例1は、被検体10が杖無しで歩行訓練する形態に対し、実施例2は、図11の左側に示すように、被検体10が杖121を用いて歩行訓練する形態である。
実施例2では、図1の圧力情報収集部2は、図3Aに示した足裏の圧力センサ部に加え、杖121を支える手圧力センサ122と、杖が地面に接地する位置に杖圧力センサ123と、を備える。手圧力センサ122と杖圧力センサ123が追加され、追加されたセンサによる圧力に関する情報を処理する点を除いて、実施例1と同様である。
各圧力センサによって検出される圧力分布は、情報解析部11によって、解析結果出力部4に出力され、図11の右側のように表示される。手の圧力センサは、右手の圧力センサによる右手圧力分布122a、左手の圧力センサによる左手圧力分布122bにより示され、杖と足裏の圧力分布が杖-足裏圧力分布123aとして示される。
図12は、実施例2の支持基底面の表示例を示した図である。図12では、解析結果出力部4が表示する支持基底面125と被検体の圧力分布の関係を示している。
記憶装置19には、杖を有する場合の支持基底面125を格納しておき、支持基底面125を解析結果出力部4に表示する。
判定部113は、杖と足裏の圧力値とから第2の圧力重心126を求め、第2の圧力重心が支持計底面内にあるかによって被検体の安定性を判定する。第2の圧力重心は、図3Aで説明した足の圧力重心に、杖の圧力と座標を加えて、圧力重心座標を求める。
判定部113は、支持基底面125から被検体の重心が外れた際に、転倒予知アラームを、解析結果出力部4に出力する。尚、支持基底面125とは、被検体の重心がその範囲内にあるときは安定し、転倒の危険が少ない領域を表したものである。
尚、実施例2においても、足裏の圧力センサ部からの圧力に関する情報に基づく、床反力ベクトルと被検体の骨格方向ベクトルとを解析結果出力部4に重ねて表示しても良い。
以上、実施例2によると、杖を要する被検体の歩行訓練を効果的にサポートすることができる。
図13は、実施例3の4点支持の杖の圧力センサの配置を示した図である。4本の支持軸の地面接地面には、4つの杖圧力センサ133a、133b、133c、133dがそれぞれ設けられている。
実施例3では、4つのセンサにより、図3Aの8つの足裏センサのように、杖の床反力ベクトル(杖床反力ベクトル)を算出することができる。つまり、図4の足裏重心43は、杖の4点支持の中心点である杖重心となり、4つの圧力のセンサの値は、図3Aの圧力値Ml1等の値に相当し、4つの圧力センサの値と4つの圧力センサの座標とにより杖圧力重心を求める。杖重心と杖圧力重心の距離から杖重心ベクトルを算出し、杖圧力重心と4つの圧力センサの合計値より杖圧力ベクトルとを算出する。そして、杖重心ベクトルと杖圧力ベクトルの二つのベクトルを加算した値を杖床反力ベクトルとして算出する。
尚、実施例3においても、足裏の圧力センサ部からの圧力に関する情報に基づく、床反力ベクトルと被検体の骨格方向ベクトルとを解析結果出力部4に重ねて表示しても良い。
また、杖121の杖方向ベクトルと杖床反力ベクトルとを、解析結果出力部4に重ねて表示しても良い。
杖を使った歩行訓練は、重度の障害を有する被検体において、重要なステップとなることから、実施例3によると、重度の障害を有する被検体の歩行訓練に効果がある。さらに、医療・介護スタッフへ迅速に被検体の状態を提示することができるという効果がある。
以上の通り、本発明は、足圧から床反力ベクトルを推定し、足の骨格方向を同時に表示することで、より安定した歩行の支援を提示可能とする生体計測システム及び方法を提供することができる。
また、歩行訓練の際に杖などを使用するが、杖などの器具に対して、バランスのかけ方を容易に理解することが可能となる。
実施例4では、各圧力センサの値から求められた圧力重心42の位置及びその時系列情報から、歩行周期を推定し、提示可能とする。歩行周期とは、例えば同側の足の初期接地から次の初期接地までの時間によって定義付けられるものである。例えば、踵部に設置される圧力センサの出力の時系列変化を解析し、圧力がかかり始める時間の間隔を計算することで、簡易的に算出することもできる。さらに、歩行周期を細分化することもできる。例えば、1992 年にランチョロスアミーゴス国立リハビリテーションセンターが発表した歩行分析の定義によれば、初期接地(Initial Contact;以下,IC)、荷重応答期(Lording Response;以下,LR):IC から対側爪先離地まで、立脚中期(Mid Stance;以下,MSt):対側爪先離地から対側下腿下垂位まで、立脚終期(Terminal Stance;以下,TSt):対側下腿下垂位から対側IC まで、前遊脚期(Pre Swing;以下,PSw):対側IC から観測肢爪先離地まで、遊脚初期(Initial Swing;以下,ISw):観測肢爪先離地から両下腿の交差まで、遊脚中期(Mid Swing;以下,MSw):両下腿交差から下腿下垂位まで、遊脚終期(Terminal Swing;以下,TSw):下腿下垂位からIC までの8つのカテゴリーに分類するものである。
図14は、実施例4の歩行周期の各相に分類する場合の、足の圧力の例を示す。両足の圧力の有無や爪先や踵などの圧力のかかる部位を認識し、歩行周期の相(カテゴリー)を推定する。
判定部113は、圧力重心の座標より歩行周期と相を算出し、解析結果出力部4に出力する。解析結果出力部4は、骨格方向ベクトル算出部112により算出される左足骨格方向ベクトルと、左足床反力ベクトルとを重ねて表示し、骨格方向ベクトル算出部112により算出される右足骨格方向ベクトルと右足床反力ベクトルと、歩行周期を重ねて表示する。
骨格を検出するカメラの情報を用いて、歩幅、歩隔を推定し、提示可能とする。また、歩幅から10メートル歩行における歩行時間も提示可能とする。
高次脳機能のデータ(脳機能を計測するための簡易検査等の結果)や歩行状態のモニタリング(リハビリの効果判定)のために筋電のデータを入力し、解析結果と組み合わせて、歩行に関連する情報も同時に提示可能とする。
判定部113は、外部装置から高次脳機能と、筋電データと、歩行シミュレーション動画を受信する。解析結果出力部4は、骨格方向ベクトルと、床反力ベクトルと、外部装置からのデータを同時に表示する。
実施例6では、歩行の見本となる歩行シミュレーション動画1201と、実施例4、実施例5の情報1202を解析結果出力部4で同時に提示可能とする。
図15は、実施例4の歩行周期:3秒、歩行周期の相:Mst、歩幅:50cm、歩隔:10cm、10m歩行時間:15秒、実施例5の高次脳機能スコア1:20、高次脳機能スコア2:15を表示した例である。
判定部113は、骨格方向ベクトル算出部112と圧力情報収集部2からの情報に基づき、被検体の歩行周期と、相と、歩幅と、歩隔と、10メートル歩行時間を算出する。解析結果出力部4は、歩行周期と、相と、歩幅と、歩隔、10メートル歩行時間を表示する。
実施例7では、圧力重心42位置から延びる鉛直軸と骨格と足底圧の同時に表示可能とする。
骨格方向ベクトル算出部112は、カメラ3によって撮影された被検体の骨格から被検体のひざ関節位置を算出する。判定部113は、圧力重心42からの鉛直軸とひざ関節の水平距離1302を計算して解析結果表示部4に出力する。解析結果出力部4は、骨格方向ベクトル52と、床反力ベクトル46と、ひざ関節の水平距離1302を重ねて表示する。
実施例7では、圧力重心42位置から延びる鉛直軸とひざの高さにおけるひざ関節との水平距離を解析結果出力部4で同時に表示可能とする。
図16は、実施例7のひざ関節の水平距離を表示した例である。ひざ関節は、骨格方向ベクトル算出部112により算出することができる。圧力重心42から延びる鉛直軸1301とひざ関節の水平距離1302を提示することで、安定した歩行のためのひざの屈曲・伸展の状況を容易に理解させることができる。
1:情報処理装置
2:圧力情報収集部
3:カメラ
4:解析結果出力部
11:情報解析部
13:バス
15:CPU
16:メモリ
18:通信I/F
111:床反力ベクトル算出部
112:骨格方向ベクトル算出部
113:判定部

Claims (16)

  1. 被検体を撮影するカメラと、
    前記被検体の少なくとも一方の足裏の圧力値を検出する圧力情報収集部と、
    前記カメラにより撮影された前記被検体の骨格方向ベクトルを算出する骨格方向ベクトル算出部と、
    前記圧力情報収集部からの圧力に関する情報に基づき、床反力ベクトルを算出する床反力ベクトル算出部と、
    前記骨格方向ベクトル算出部により算出される前記骨格方向ベクトルと、前記床反力ベクトル算出部により算出される前記床反力ベクトルと、を重ねて表示する解析結果出力部と、を有することを特徴とする生体計測システム。
  2. 請求項1に記載の生体計測システムにおいて、
    前記骨格方向ベクトル算出部により算出される前記骨格方向ベクトルと、前記床反力ベクトル算出部により算出される前記床反力ベクトルとの差分を算出する判定部を有し、
    前記解析結果出力部は、前記骨格方向ベクトルと前記床反力ベクトルに加え、前記判定部により算出される前記骨格方向ベクトルと前記床反力ベクトルの差分を重ねて表示することを特徴とする生体計測システム。
  3. 請求項2に記載の生体計測システムにおいて、
    前記圧力情報収集部は、前記被検体の足裏から圧力値を検出する複数の圧力センサを含み、
    前記床反力ベクトル算出部は、
    前記複数の圧力センサの値から前記被検体の第1の圧力重心を算出し、
    前記第1の圧力重心と前記被検体の足裏重心との距離から重心ベクトルを算出し、
    前記第1の圧力重心と前記複数の圧力センサの圧力値の合計値から求まる圧力ベクトルを算出し、
    前記重心ベクトルと前記圧力ベクトルを加算することで前記床反力ベクトルを算出することを特徴とする生体計測システム。
  4. 請求項3に記載の生体計測システムにおいて、
    前記複数の圧力センサの各々は、設置されている位置を特定する座標値を有し、
    前記床反力ベクトル算出部は、前記複数の圧力センサの座標値と前記複数の圧力センサにより計測される圧力値により、前記第1の圧力重心の座標を算出することを特徴とする生体計測システム。
  5. 請求項2に記載の生体計測システムにおいて、
    前記判定部は、前記床反力ベクトルと前記骨格方向ベクトルとを時間的に同期させて前記解析結果出力部に出力し、
    前記解析結果出力部は、前記床反力ベクトルと前記骨格方向ベクトルの時系列変化を表示することを特徴とする生体計測システム。
  6. 請求項5に記載の生体計測システムにおいて、
    前記圧力情報収集部は、前記被検体の両足の足裏の圧力値を検出し、
    前記床反力ベクトル算出部は、前記被検体の左右それぞれの足裏の圧力に関する情報から、左右の足の床反力ベクトルを、左足床反力ベクトルと右足床反力ベクトルとして算出し、
    前記解析結果出力部は、前記骨格方向ベクトル算出部により算出される左足骨格方向ベクトルと、前記左足床反力ベクトルとを重ねて表示し、前記骨格方向ベクトル算出部により算出される右足骨格方向ベクトルと前記右足床反力ベクトルとを重ねて表示することを特徴とする生体計測システム。
  7. 請求項6に記載の生体計測システムにおいて、
    前記判定部は、
    前記左足骨格方向ベクトルと前記左足床反力ベクトルとのズレより、左足の安定性を判定し、
    前記右足骨格方向ベクトルと前記右足床反力ベクトルとのズレより、右足の安定性を判定することを特徴とする生体計測システム。
  8. 請求項3に記載の生体計測システムにおいて、
    前記圧力情報収集部は、杖の先端に設けられた杖圧力センサを有し、
    前記複数の圧力センサと前記杖圧力センサの圧力値に基づく杖-足裏圧力分布と、前記被検体の支持基底面とを重ねて表示することを特徴とする生体計測システム。
  9. 請求項8に記載の生体計測システムにおいて、
    前記判定部は、前記杖と前記足裏の圧力値とから第2の圧力重心を求め、前記第2の圧力重心が前記支持基底面内にあるかによって前記被検体の安定性を判定することを特徴とする生体計測システム。
  10. 請求項8に記載の生体計測システムにおいて、
    前記杖は、4点支持の杖であり、
    前記杖圧力センサは、前記4点支持の各々に設けられ、
    前記床反力ベクトル算出部は、
    前記4点支持の各々に設けられた4つの杖圧力センサの値と前記4つの杖圧力センサの座標とにより杖圧力重心を求め、
    前記杖の杖重心と前記杖圧力重心の距離から杖重心ベクトルを算出し、
    前記杖圧力重心と前記4つの杖圧力センサの合計値より杖圧力ベクトルとを算出し、
    前記杖重心ベクトルと前記杖圧力ベクトルの二つのベクトルを加算した値を杖床反力ベクトルとして算出することを特徴とする生体計測システム。
  11. カメラにより被検体を撮影し、
    圧力情報収集部により、前記被検体の少なくとも一方の足裏の圧力値を検出し、
    処理部により、
    前記カメラにより撮影された前記被検体の骨格方向ベクトルを算出し、
    前記圧力情報収集部からの圧力に関する情報に基づき、床反力ベクトルを算出し、
    前記骨格方向ベクトルと前記床反力ベクトルとの差分を算出し、
    前記骨格方向ベクトルと、前記床反力ベクトルと、前記骨格方向ベクトルと前記床反力ベクトルとの差分を、解析結果表示部に重ねて表示することを特徴とする生体計測方法。
  12. 請求項4に記載の生体計測システムにおいて、
    前記床反力ベクトル算出部は、前記被検体の左右それぞれの足裏の圧力に関する情報から、左右の足の床反力ベクトルを、左足床反力ベクトルと右足床反力ベクトルとして算出し、
    前記判定部は、前記第1の圧力重心の座標より歩行周期と相を算出し、
    前記解析結果出力部は、前記骨格方向ベクトル算出部により算出される左足骨格方向ベクトルと、前記左足床反力ベクトルとを重ねて表示し、前記骨格方向ベクトル算出部により算出される右足骨格方向ベクトルと前記右足床反力ベクトルと、前記歩行周期を重ねて表示することを特徴とする生体計測システム。
  13. 請求項12に記載の生体計測システムにおいて、
    前記判定部は、前記骨格方向ベクトル算出部と前記圧力情報収集部からの情報に基づき、前記被検体の前記歩行周期と、相と、歩幅と、歩隔と、10メートル歩行時間を算出し、
    前記解析結果出力部は、前記歩行周期と、前記相と、前記歩幅と、前記歩隔、前記10メートル歩行時間を表示することを特徴とする生体計測システム。
  14. 請求項6に記載の生体計測システムにおいて、
    前記判定部は、外部装置から高次脳機能と、筋電データと、歩行シミュレーション動画を受信し、前記解析結果出力部に出力し、
    前記解析結果出力部は、前記骨格方向ベクトルと、前記床反力ベクトルと、前記外部装置からのデータを同時に表示することを特徴とする生体計測システム。
  15. 請求項6に記載の生体計測システムにおいて、
    前記骨格方向ベクトル算出部は、前記被検体の上肢の傾きを算出し、
    前記解析結果出力部は、前記骨格方向ベクトルと、前記床反力ベクトルと、前記上肢の傾きを同時に表示することを特徴とする生体計測システム。
  16. 請求項6に記載の生体計測システムにおいて、
    前記骨格方向ベクトル算出部は、前記被検体のひざ関節の位置を算出し、
    前記判定部は、圧力重心からの鉛直軸と前記ひざ関節の水平距離を計算して前記解析結果出力部に出力し、
    前記解析結果出力部は、前記骨格方向ベクトルと、前記床反力ベクトルと、前記ひざ関節の水平距離を重ねて表示することを特徴とする生体計測システム。
JP2019192398A 2019-10-23 2019-10-23 生体計測システム及び方法 Active JP7181533B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019192398A JP7181533B2 (ja) 2019-10-23 2019-10-23 生体計測システム及び方法
US17/074,345 US11744486B2 (en) 2019-10-23 2020-10-19 Biometric system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192398A JP7181533B2 (ja) 2019-10-23 2019-10-23 生体計測システム及び方法

Publications (2)

Publication Number Publication Date
JP2021065393A JP2021065393A (ja) 2021-04-30
JP7181533B2 true JP7181533B2 (ja) 2022-12-01

Family

ID=75585151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192398A Active JP7181533B2 (ja) 2019-10-23 2019-10-23 生体計測システム及び方法

Country Status (2)

Country Link
US (1) US11744486B2 (ja)
JP (1) JP7181533B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210121100A1 (en) * 2019-10-23 2021-04-29 Hiroshima University Biometric system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501439B2 (ja) 2021-04-28 2024-06-18 トヨタ自動車株式会社 歩行訓練システム、その制御方法、及び、制御プログラム
KR102669531B1 (ko) * 2021-12-10 2024-05-29 한국체육대학교 산학협력단 마찰력 정량화 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125959A1 (ja) 2010-04-02 2011-10-13 美津濃株式会社 シューズのソール構造体
JP2011220908A (ja) 2010-04-13 2011-11-04 Anima Corp 床反力計測システム及び方法
JP2012161402A (ja) 2011-02-04 2012-08-30 Osaka Prefecture Univ 運動特性評価システムおよび運動特性評価方法
JP2012176170A (ja) 2011-02-28 2012-09-13 Sendan Gakuen 足部バランス評価装置及び訓練器及び訓練方法
JP2016150193A (ja) 2015-02-19 2016-08-22 高知県公立大学法人 運動解析装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231527B1 (en) * 1995-09-29 2001-05-15 Nicholas Sol Method and apparatus for biomechanical correction of gait and posture
JP2760484B2 (ja) * 1995-12-19 1998-05-28 アニマ株式会社 床反力計測装置
JP4291093B2 (ja) * 2003-09-11 2009-07-08 本田技研工業株式会社 2足歩行移動体の関節モーメント推定方法
US9149222B1 (en) * 2008-08-29 2015-10-06 Engineering Acoustics, Inc Enhanced system and method for assessment of disequilibrium, balance and motion disorders
JP2015061579A (ja) * 2013-07-01 2015-04-02 株式会社東芝 動作情報処理装置
DE102014006690A1 (de) * 2014-05-09 2015-11-12 Otto Bock Healthcare Gmbh Verfahren zur Feststellung der Ausrichtung eines Systems und Anzeigesystem
JP2017029516A (ja) * 2015-08-04 2017-02-09 セイコーエプソン株式会社 ゴルフスイング解析装置
TWI615129B (zh) * 2016-02-19 2018-02-21 財團法人資訊工業策進會 步態分析系統及方法
JP6757070B2 (ja) * 2017-12-06 2020-09-16 アニマ株式会社 関節モーメントの解析装置及び方法
JP7181533B2 (ja) * 2019-10-23 2022-12-01 国立大学法人広島大学 生体計測システム及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125959A1 (ja) 2010-04-02 2011-10-13 美津濃株式会社 シューズのソール構造体
JP2011220908A (ja) 2010-04-13 2011-11-04 Anima Corp 床反力計測システム及び方法
JP2012161402A (ja) 2011-02-04 2012-08-30 Osaka Prefecture Univ 運動特性評価システムおよび運動特性評価方法
JP2012176170A (ja) 2011-02-28 2012-09-13 Sendan Gakuen 足部バランス評価装置及び訓練器及び訓練方法
JP2016150193A (ja) 2015-02-19 2016-08-22 高知県公立大学法人 運動解析装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210121100A1 (en) * 2019-10-23 2021-04-29 Hiroshima University Biometric system and method
US11744486B2 (en) * 2019-10-23 2023-09-05 Hiroshima University Biometric system and method

Also Published As

Publication number Publication date
JP2021065393A (ja) 2021-04-30
US20210121100A1 (en) 2021-04-29
US11744486B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
JP7181533B2 (ja) 生体計測システム及び方法
US10813573B2 (en) Biomechanical analysis and validation system and method
JP6649323B2 (ja) 歩行解析システム及び方法
US20200375503A1 (en) Lower limb muscle strength evaluation method, non-transitory computer-readable recording medium storing lower limb muscle strength evaluation program, lower limb muscle strength evaluation device, and lower limb muscle strength evaluation system
KR20170019984A (ko) 걸음유형분석장치 및 걸음유형분석방법
Diaz-Monterrosas et al. A brief review on the validity and reliability of Microsoft Kinect sensors for functional assessment applications
KR20210031178A (ko) 스마트 인솔을 통한 보행 데이터 분석 시스템
KR20190104085A (ko) 자세 측정에 기반한 걸음 제안 방법 및 그 시스템
JP5912807B2 (ja) 荷重計測システム
US20240049987A1 (en) Gait measurement system, gait measurement method, and program recording medium
KR20190008519A (ko) 보행 프로파일러 시스템 및 방법
KR20220047425A (ko) 발 특성 정보 및 균형 특성 정보를 이용한 노인성 질환 예측 방법 및 시스템
WO2023127013A1 (ja) 静的バランス推定装置、静的バランス推定システム、静的バランス推定方法、および記録媒体
US20240108251A1 (en) Calculation device, calculation method, and program recording medium
US20240108249A1 (en) Detection device, detection method, and program recording medium
WO2018159731A1 (ja) 歩行分析システム
Bemal et al. Kinect v2 accuracy as a body segment measuring tool
US20240130691A1 (en) Measurement device, measurement system, measurement method, and recording medium
Ishii et al. Shoe-type device to estimate body balance focusing on the relationship between CoM and BoS estimated from CoP
Jin et al. Wearable Trip-Risk Monitoring System based on Plantar Information
Pochappan et al. Mobile clinical gait analysis using orient specks
WO2022244222A1 (ja) 推定装置、推定システム、推定方法、および記録媒体
Gilberto et al. How to evaluate the postural balance in a more efficient and less expensive way?
US20240122531A1 (en) Index value estimation device, estimation system, index value estimation method, and recording medium
Kapula et al. A Low-Cost Approach of Plantar Pressure Measurement for Mobility Assistance in Paraplegia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221109

R150 Certificate of patent or registration of utility model

Ref document number: 7181533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150