JP7177656B2 - Treatment method for wastewater containing harmful substances - Google Patents

Treatment method for wastewater containing harmful substances Download PDF

Info

Publication number
JP7177656B2
JP7177656B2 JP2018194576A JP2018194576A JP7177656B2 JP 7177656 B2 JP7177656 B2 JP 7177656B2 JP 2018194576 A JP2018194576 A JP 2018194576A JP 2018194576 A JP2018194576 A JP 2018194576A JP 7177656 B2 JP7177656 B2 JP 7177656B2
Authority
JP
Japan
Prior art keywords
treatment
boron
waste water
wastewater
hydroxyapatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018194576A
Other languages
Japanese (ja)
Other versions
JP2020062584A (en
JP2020062584A5 (en
Inventor
利司 小嶋
達夫 高野
草太 餘目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okutama Kogyo Co Ltd
Original Assignee
Okutama Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okutama Kogyo Co Ltd filed Critical Okutama Kogyo Co Ltd
Priority to JP2018194576A priority Critical patent/JP7177656B2/en
Priority to PCT/JP2019/034965 priority patent/WO2020079984A1/en
Priority to TW108135504A priority patent/TW202033454A/en
Publication of JP2020062584A publication Critical patent/JP2020062584A/en
Publication of JP2020062584A5 publication Critical patent/JP2020062584A5/ja
Application granted granted Critical
Publication of JP7177656B2 publication Critical patent/JP7177656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Description

本発明は、ホウ素や重金属等の複数の有害物質を含む排水を処理し、排水中の有害物質を除去する方法に関する。 The present invention relates to a method for treating wastewater containing multiple harmful substances such as boron and heavy metals, and removing the harmful substances in the wastewater.

薬品や薬剤等の製造工場、発電所、ごみ焼却場などから排出される排水には、ホウ素、フッ素、亜鉛等の重金属などの有害物質が含まれるため、環境への排出に際しては、所定の排出基準(環境省:一律排水基準或いは暫定排水基準)を満たすように、これら有害物質を除去する必要がある。有害物質を除去する処理技術としては、有害物質と処理剤との化学反応を利用する方法、それと硫酸アルミニウム等の無機凝集剤や有機凝集剤とを併用する方法、処理剤として吸着能を持つ多孔質粒子を利用する方法が知られている。 Wastewater discharged from chemical manufacturing plants, power plants, waste incinerators, etc. contains toxic substances such as boron, fluorine, zinc and other heavy metals. It is necessary to remove these harmful substances so as to meet the standards (Ministry of the Environment: Uniform Wastewater Standards or Temporary Wastewater Standards). Treatment techniques for removing harmful substances include methods that use chemical reactions between harmful substances and treatment agents, methods that use inorganic coagulants such as aluminum sulfate together with organic Methods are known that make use of granules.

また特許文献1には、ホウ素含有排水の処理方法として、リン酸またはリン酸塩とカルシウム化合物とアルカリ剤とを添加し、pH8以上の条件で反応させることで、効率よくホウ素を除去する方法が提案されている。この方法では、リン酸塩とカルシウム化合物とが反応して難溶性のリン酸塩が生成する過程で、生成する塩にホウ素を取り込むことで、1回の処理で、ホウ素に設定された10ppm以下の排出基準を満たすことができる。 Further, Patent Document 1 describes a method for treating boron-containing wastewater, in which phosphoric acid or a phosphate, a calcium compound, and an alkaline agent are added and reacted under conditions of pH 8 or higher to efficiently remove boron. Proposed. In this method, a phosphate and a calcium compound are reacted to form a sparingly soluble phosphate, and by incorporating boron into the salt that is produced, in one treatment, the amount of boron is set to 10 ppm or less. can meet the emission standards of

特開2007-144405号公報JP 2007-144405 A

特許文献1に開示される処理技術は、ホウ素含有排水に特化した処理方法であるが、実際にはホウ素のみならずフッ素や亜鉛等の重金属も複合的に含まれている排水も多く、これら複合的な有害物質を同時に処理する処理技術が望まれる。またホウ素を含めた有害物質の処理率(処理剤の投入量に対する有害物質除去率の割合)をさらに高めることが望まれる。 The treatment technology disclosed in Patent Document 1 is a treatment method specialized for boron-containing wastewater. A treatment technique that treats multiple harmful substances simultaneously is desired. In addition, it is desired to further increase the treatment rate of harmful substances including boron (ratio of removal rate of harmful substances to amount of treatment agent charged).

本発明は、ホウ素等の有害物質を含む排水に対し、少ない処理量で各有害物質が一律排水基準を満たすことが可能な処理方法を提供することを課題とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method for treating wastewater containing hazardous substances such as boron, with which each hazardous substance uniformly satisfies wastewater standards with a small treatment amount.

上記課題を解決すため、本発明者らは特許文献1の技術を基本としてさらに研究を進めた結果、カルシウム化合物と反応させる物質として、リン酸を用いることで、リン酸以外のリン酸塩を用いる場合とは細孔容積分布が全く異なる水酸化アパタイト(難溶性カルシウム塩)が生成し、それによってホウ素の取り込み量が大幅に増大し、処理率の大幅な向上を図ることが可能であること、またフッ素や重金属についても高い捕捉効果を有することを見出し、本発明に至ったものである。 In order to solve the above problems, the present inventors further studied based on the technology of Patent Document 1. As a result, by using phosphoric acid as a substance to be reacted with the calcium compound, phosphates other than phosphoric acid can be used. Hydroxylated apatite (sparingly soluble calcium salt) is generated with a completely different pore volume distribution than when it is used, which greatly increases the amount of boron uptake and can significantly improve the treatment rate. Furthermore, the inventors have found that it has a high scavenging effect for fluorine and heavy metals, leading to the present invention.

さらに反応の終了を電気伝導度の変化率で制御することにより、適切なタイミングで攪拌を止めて反応を終了させることができることを見出した。 Furthermore, the inventors have found that by controlling the termination of the reaction by the rate of change in electrical conductivity, the stirring can be stopped at an appropriate timing to terminate the reaction.

すなわち本発明の有害物質含有排水の処理方法は、ホウ素を含む排水を処理し、排水中に含まれる有害物質を除去する処理方法であって、前記排水に処理剤として消石灰及びリン酸を投入するステップ(1)、前記処理剤を排水中の前記有害物質と反応させるステップ(2)、及び、反応後に固液分離し、固相成分を除去するステップ(3)を含むことを特徴とする。 That is, the method for treating hazardous substance-containing wastewater of the present invention is a treatment method for treating wastewater containing boron and removing harmful substances contained in the wastewater, wherein slaked lime and phosphoric acid are added as treatment agents to the wastewater. It is characterized by including step (1), step (2) of reacting the treating agent with the hazardous substances in the waste water, and step (3) of solid-liquid separation after the reaction to remove solid phase components.

本発明の処理方法では、ステップ(2)において、消石灰とリン酸との反応によって水酸化アパタイトが生成する過程で、ホウ素が取り込まれ、特定の細孔径範囲における細孔容積が大きい水酸化アパタイトが生成する。またこの水酸化アパタイトにホウ素とそれ以外の有害物質が吸着される。これにより従来の沈殿法や吸着法による有害物質除去に比べ、効率よく排水中の有害物質を除去することができる。 In the treatment method of the present invention, in the step (2), boron is incorporated in the process of producing hydroxyapatite by the reaction of slaked lime and phosphoric acid, and hydroxyapatite having a large pore volume in a specific pore size range is formed. Generate. In addition, boron and other harmful substances are adsorbed on this hydroxylated apatite. This makes it possible to remove harmful substances in wastewater more efficiently than conventional methods of removing harmful substances by precipitation or adsorption.

実施例1及び比較例2の水酸化アパタイトの細孔容積分布を示す図。4 is a diagram showing the pore volume distribution of hydroxyapatite of Example 1 and Comparative Example 2. FIG. 反応中の電気伝導度の変化を示すグラフ。Graph showing change in electrical conductivity during reaction. 処理装置の概要を示す図。The figure which shows the outline|summary of a processing apparatus. 実施例1~3の水酸化アパタイトの細孔容積分布を示す図。FIG. 3 is a diagram showing the pore volume distribution of hydroxyapatite of Examples 1 to 3; 比較例1~3の水酸化アパタイトの細孔容積分布を示す図。FIG. 3 is a diagram showing the pore volume distribution of hydroxyapatite of Comparative Examples 1 to 3; (a)、(b)は、それぞれ、実施例1及び比較例2で生成した水酸化アパタイトのXRD測定結果を示す図。4(a) and 4(b) are diagrams showing XRD measurement results of hydroxyapatite produced in Example 1 and Comparative Example 2, respectively. 実施例1及び比較例2の水酸化アパタイトの粒度分布を示す図。2 is a diagram showing the particle size distribution of hydroxyapatite of Example 1 and Comparative Example 2. FIG. 実施例5及び比較例4の細孔容積分布を示す図。FIG. 10 is a diagram showing pore volume distributions of Example 5 and Comparative Example 4;

以下、本発明の処理方法の実施形態について説明する。
本発明の処理方法が対象とする排水は、ホウ素を含有する排水であり、さらにフッ素、及び、亜鉛、砒素、セレン、溶解性鉄、溶解性マンガン、銅、鉛、六価クロムの重金属イオン或いは錯体を含んでいてもよい。
本発明の有害物質の処理方法は、このような排水に対し処理剤を投入するステップ(1)、反応ステップ(2)、固液分離ステップ(3)からなり、さらに固液分離後の固相成分を再利用するステップを含んでもよい。
An embodiment of the processing method of the present invention will be described below.
Wastewater to be treated by the treatment method of the present invention is wastewater containing boron, and fluorine and heavy metal ions such as zinc, arsenic, selenium, soluble iron, soluble manganese, copper, lead, and hexavalent chromium, or It may contain a complex.
The method for treating hazardous substances of the present invention comprises a step (1) of adding a treating agent to such wastewater, a reaction step (2), and a solid-liquid separation step (3). A step of recycling the components may be included.

まず、ステップ(1)において排水中に投入する処理剤について説明する。本発明の処理方法では、処理剤は消石灰及びリン酸を含み、必要に応じてカルシウム化合物及びアルカリ剤が用いられる。 First, the treatment agent to be introduced into the wastewater in step (1) will be described. In the treatment method of the present invention, the treatment agent contains slaked lime and phosphoric acid, and if necessary, a calcium compound and an alkali agent are used.

消石灰及び必要に応じて添加されるカルシウム化合物は、リン酸イオンと反応し、水酸化アパタイトを生成する材料である。消石灰としては、生石灰を消化して得られる消石灰スラリーや粉末状の消石灰を用いることができる。カルシウム化合物としては、塩化カルシウムや、炭酸カルシウム、酸化カルシウム(生石灰)を用いることができ、例えば、酸を含む廃液(廃酸)を処理する際に生成する炭酸カルシウムや塩化カルシウムを用いることができる。 Slaked lime and optional calcium compounds are materials that react with phosphate ions to form hydroxyapatite. As the slaked lime, slaked lime slurry or powdery slaked lime obtained by digesting quicklime can be used. As the calcium compound, calcium chloride, calcium carbonate, and calcium oxide (quicklime) can be used. For example, calcium carbonate and calcium chloride generated when treating acid-containing waste liquid (waste acid) can be used. .

なお排水中に、消石灰とカルシウム化合物の両方を投入する場合には、消石灰はカルシウム源としてのみならず、処理液のpH調整剤として機能する。アルカリ剤は、消石灰のみでは所望のpHに達成しない場合にpH調整剤の補助剤として添加される。アルカリ剤として具体的には水酸化ナトリウムや水酸化カリウムが用いられる。 When both slaked lime and a calcium compound are added to the wastewater, the slaked lime functions not only as a calcium source but also as a pH adjuster for the treatment liquid. Alkali agents are added as adjuvants for pH adjusters when the desired pH cannot be achieved with slaked lime alone. Specifically, sodium hydroxide or potassium hydroxide is used as the alkaline agent.

リン酸は、オルトリン酸と呼ばれるリン酸のほか、二リン酸等の無水物も使用することができる。後述するが、水酸化アパタイトを生成する材料として、リン酸を用いることにより、リン酸塩を用いた場合とは性状の異なる水酸化アパタイトが生成され、ホウ素等有害物質の捕捉率(処理率)が大幅に向上する。 Phosphoric acid can be phosphoric acid called orthophosphoric acid, or anhydrides such as diphosphoric acid. As will be described later, by using phosphoric acid as a material for generating hydroxyapatite, hydroxyapatite having different properties from the case of using phosphate is generated, and the capture rate (treatment rate) of harmful substances such as boron is increased. significantly improved.

消石灰とリン酸との割合(カルシウム化合物を加える場合には、消石灰とカルシウム化合物を合計したカルシウム量とリン酸との割合)は、反応温度によっても異なるが、Ca/P(モル比)で1.8以上、好ましくは2以上である。反応温度が常温より高い条件(例えば50度)では、Ca/P比を1.8以上とすることで、ホウ素に代表される有害物質を一律基準以下まで低下させることができる。またCa/P比を2以上とすることで、常温であっても確実に一律基準以下とすることができる。なおCa/P比の上限は、特に限定されないが、反応後の汚泥量を低減するために4以下、好ましくは3以下とする。 The ratio of slaked lime and phosphoric acid (when adding a calcium compound, the ratio of the total calcium amount of slaked lime and calcium compound and phosphoric acid) varies depending on the reaction temperature, but Ca / P (molar ratio) is 1 .8 or more, preferably 2 or more. Under conditions where the reaction temperature is higher than room temperature (for example, 50° C.), by setting the Ca/P ratio to 1.8 or higher, harmful substances represented by boron can be reduced to below the uniform standard. Further, by setting the Ca/P ratio to 2 or more, it is possible to ensure that the Ca/P ratio is uniformly below the standard even at room temperature. Although the upper limit of the Ca/P ratio is not particularly limited, it should be 4 or less, preferably 3 or less in order to reduce the amount of sludge after the reaction.

排水中に含まれるホウ素に対するリン酸の量は、P/B(モル比)で3以上、好ましくは4以上とする。これにより排水中のホウ素濃度に関わりなく、一律基準以下とすることができる。P/B比の上限は、特に限定されないが、本発明の処理方法によれば、P/B比7以下で高い処理率を達成できる。 The amount of phosphoric acid to boron contained in the waste water should be 3 or more, preferably 4 or more in terms of P/B (molar ratio). As a result, regardless of the boron concentration in the waste water, it is possible to keep the concentration below the uniform standard. Although the upper limit of the P/B ratio is not particularly limited, according to the treatment method of the present invention, a high treatment rate can be achieved at a P/B ratio of 7 or less.

次にステップ(2)とその反応条件(処理条件)について説明する。
本発明の処理は、主に二つの処理メカニズムにより進行する。一つは、消石灰とリン酸による反応によって水酸化アパタイトを生成する過程で、水酸化アパタイト中にホウ素等有害物質を取り込む(包含プロセス)。もう一つは、生成した水酸化アパタイト表面に有害物質を吸着させる(吸着プロセス)。
Next, step (2) and its reaction conditions (processing conditions) will be described.
The processing of the present invention proceeds primarily through two processing mechanisms. One is the incorporation process of harmful substances such as boron into hydroxyapatite in the process of producing hydroxyapatite by the reaction of slaked lime and phosphoric acid (inclusion process). The other is to adsorb harmful substances on the surface of the generated hydroxyapatite (adsorption process).

この最初の包含プロセスで生成される水酸化アパタイトは、リン酸に代えてリン酸塩を用いたときに生成する水酸化アパタイトとは細孔分布が全く異なり、リン酸塩を用いた場合の分布がブロードであるのに対し、シャープな分布を示し、所定の細孔径(ピーク)における細孔容積が約2倍である。図1に、ホウ素存在下でリン酸及びリン酸塩をそれぞれ用いて生成した水酸化アパタイトの細孔容積分布を示す。本発明のステップ(2)で生成する水酸化アパタイトの細孔径のピークは、反応条件(反応温度、攪拌速度、有害物質濃度)によっても異なるが10~100nmの範囲にあり、ピーク細孔径の細孔容積が1.5cm/g以上である。このように限られた範囲の細孔容積が増大することで、ホウ素の取り込み量が増大するものと推定できる。 The hydroxyapatite produced in this first inclusion process has a completely different pore size distribution than the hydroxyapatite produced when phosphate is used instead of phosphoric acid, and the pore size distribution when phosphate is used is broad, it shows a sharp distribution, and the pore volume at a given pore diameter (peak) is about twice as large. FIG. 1 shows the pore volume distribution of hydroxyapatite produced using phosphoric acid and phosphate respectively in the presence of boron. The pore diameter peak of the hydroxyapatite produced in step (2) of the present invention is in the range of 10 to 100 nm, depending on the reaction conditions (reaction temperature, stirring speed, concentration of harmful substances). Pore volume is 1.5 cm 3 /g or more. It can be assumed that the increase in the pore volume in such a limited range increases the amount of boron uptake.

ステップ(2)では、包含プロセスが有害物質の吸着プロセスより優位に(例えば90%程度の割合で)進み、上述したホウ素の取り込みがほぼ完了した状態で、それを補う形で吸着プロセスが進行すると考えられる。吸着プロセスでは、成長過程や成長後の水酸化アパタイト粒子の表面に有害物質とそれらがカルシウム等と反応して生成した生成物が物理的に結合する。一般的に、吸着は粒子の比表面積と相関がある。上記水酸化アパタイトの比表面積(BET法)は、約150m/g以上と大きいので、吸着効果も高く、高い有害物質除去効果が得られる。なお、吸着プロセスを経た後にも、処理剤は有害物質を吸着する能力が残されており、後述する反応汚泥の再利用が可能になる。 In step (2), the inclusion process proceeds predominantly (for example, at a rate of about 90%) than the harmful substance adsorption process, and with the above-described boron uptake almost complete, the adsorption process proceeds in a manner that compensates for it. Conceivable. In the adsorption process, the harmful substances and the products produced by their reaction with calcium etc. are physically bound to the surface of the hydroxyapatite particles during or after growth. Adsorption generally correlates with the specific surface area of the particles. Since the hydroxyapatite has a large specific surface area (BET method) of about 150 m 3 /g or more, it has a high adsorption effect and a high harmful substance removal effect. Even after the adsorption process, the treatment agent still retains the ability to adsorb harmful substances, making it possible to reuse the reaction sludge, which will be described later.

ステップ(2)における反応は、排水の電気伝導度により処理を管理し、伝導度が安定した時点を終了時点とする。電気伝導度は、図2に示すように、材料の投入後、急上昇するが、反応が進むにつれて最大値を経た後、低下し所定の値に収束する。この曲線は、pH、温度や攪拌条件などの処理条件によっても異なるが、傾向は共通している。従って、電気伝導度を管理することで、ステップ(2)の処理の終了を的確に管理することができる。電気伝導度の値は、対象となる排水や投入する処理剤の濃度によって異なるが電気伝導度の変化率が数十%程度に達したときに終了する。 The reaction in step (2) is controlled by the electric conductivity of the waste water, and the end point is when the conductivity stabilizes. As shown in FIG. 2, the electrical conductivity rapidly increases after the material is added, but as the reaction progresses, it reaches a maximum value, then decreases and converges to a predetermined value. Although this curve differs depending on processing conditions such as pH, temperature and stirring conditions, the tendency is common. Therefore, by controlling the electrical conductivity, it is possible to accurately control the end of the process of step (2). The value of electrical conductivity varies depending on the target waste water and the concentration of the treatment agent to be put in, but it ends when the rate of change in electrical conductivity reaches about several tens of percent.

処理時の排水のpHは、材料投入時点で、好ましくは10.0以上、より好ましくは12.0以上とする。高pHで反応させることにより、上述した細孔分布を持つ水酸化アパタイトの生成を促進することができ、それにより処理能力を高めることができる。なお、本発明の処理方法では、処理剤として消石灰を用いているので、材料投入時のpHはアルカリサイドとなるが、さらに消石灰量を調整することで、pHを10.0以上とすることができる。なおpH調整剤として、消石灰の代わりに、或いは消石灰に加えて、NaOH等のアルカリ剤を加えてもよい。 The pH of wastewater during treatment is preferably 10.0 or higher, more preferably 12.0 or higher, at the time of material addition. By reacting at a high pH, it is possible to promote the formation of hydroxyapatite having the above-mentioned pore size distribution, thereby increasing the treatment capacity. In the treatment method of the present invention, since slaked lime is used as a treatment agent, the pH at the time of material addition is on the alkaline side, but by further adjusting the amount of slaked lime, the pH can be set to 10.0 or more. can. As a pH adjuster, an alkaline agent such as NaOH may be added instead of or in addition to slaked lime.

処理温度は、特に限定されないが、常温より高いほうが、処理速度が高くなる。ただし30℃以上では処理速度はほとんど変化しないので、30℃以上であればよい。 The treatment temperature is not particularly limited, but the higher the temperature, the higher the treatment speed. However, since the processing rate hardly changes at 30° C. or higher, the temperature should be 30° C. or higher.

処理は材料を攪拌しながら反応を進める。攪拌速度は、攪拌周速(スターラの回転数)が速いほど処理速度は短くなるが、処理率には影響がない。従って攪拌速度は、特に限定されないが、5000~15000rpm程度とすることで、5分程度の攪拌時間で処理を行うことができる。 The treatment proceeds with the reaction while stirring the materials. As for the stirring speed, the faster the peripheral stirring speed (rotational speed of the stirrer), the shorter the processing speed, but there is no effect on the processing rate. Therefore, the stirring speed is not particularly limited, but by setting it to about 5000 to 15000 rpm, the treatment can be performed in about 5 minutes of stirring time.

電気伝導度が安定したならば、反応を終了し、公知の手法で固液分離する。すなわち、ステップ(3)では、反応槽の反応液(汚泥を含む)を沈殿槽に移した後、汚泥回分式、横流式、或いは上向流式など汚泥分離法で汚泥と上澄み液とを分離する。上澄み液は、pH12程度のアルカリ性液であるので、酸中和用の薬剤としてもよいし、本発明の有害物質処理方法のpH調整剤として再利用してもよい。上澄み分離後の汚泥は、遠心分離、フィルタープレス、ベルトプレス、スクリュープレス、多重円盤型脱水機など公知の脱水機で脱水する。脱水後の汚泥は、最終的に廃棄されるが、水酸化アパタイトや未反応のリン酸やカルシウム化合物を多く含んでおり、前述したように、有害物質吸着性を有しているので、本発明の有害物質処理方法の処理剤として再利用することも可能である。なお汚泥の有害物質除去能は、処理対象である排水中の有害物質含有量にもよるが、未使用の処理剤の約70%と見込まれる。 When the electrical conductivity is stabilized, the reaction is terminated and solid-liquid separation is performed by a known technique. That is, in step (3), after the reaction liquid (including sludge) in the reaction tank is transferred to the sedimentation tank, the sludge and the supernatant liquid are separated by a sludge separation method such as a sludge batch method, a cross-flow method, or an upward flow method. do. Since the supernatant liquid is an alkaline liquid having a pH of about 12, it may be used as an acid neutralization agent or may be reused as a pH adjuster in the hazardous substance disposal method of the present invention. The sludge after supernatant separation is dewatered by a known dehydrator such as a centrifugal separator, a filter press, a belt press, a screw press, and a multi-disc dehydrator. The sludge after dehydration is finally discarded, but it contains a large amount of hydroxylated apatite, unreacted phosphoric acid and calcium compounds, and as described above, has the ability to adsorb harmful substances. It is also possible to reuse it as a treatment agent for the hazardous substance treatment method. The ability of sludge to remove harmful substances depends on the amount of harmful substances contained in the waste water to be treated, but is expected to be about 70% of that of the unused treatment agent.

図3に、処理済みの汚泥を採用する場合の装置構成の概念図を示す。図では、上澄み液と汚泥の両方を再利用している場合を示しているが、いずれか一方だけでもよい。汚泥を再利用する場合、汚泥のみを処理剤として投入してもよいし、新たな処理剤(消石灰+リン酸)と併用してもよい。処理後の汚泥を再利用することで、最終処分される汚泥の量を低減することができるとともに、新たに投入する処理剤の使用量も低減することができる。なお上澄みとなるアルカリ性液については、反応に投入されるpH調整剤の全部をそのアルカリ性液に置き換えることも可能である。 FIG. 3 shows a conceptual diagram of an apparatus configuration when treated sludge is used. Although the figure shows a case where both the supernatant liquid and the sludge are reused, only one of them may be reused. When the sludge is reused, the sludge alone may be used as a treatment agent, or may be used in combination with a new treatment agent (slaked lime + phosphoric acid). By reusing the sludge after treatment, it is possible to reduce the amount of sludge to be finally disposed of, and also to reduce the amount of newly added treatment agent used. As for the supernatant alkaline liquid, it is also possible to replace all of the pH adjusters introduced into the reaction with the alkaline liquid.

本発明の有害物質処理方法によれば、特定の水酸化アパタイトが生成する条件で処理を行うことにより、少ない処理剤の使用量で、処理率を大幅に向上することができる。またホウ素のみならず、重金属等他の有害物質が共存する排水についても、一度の処理でこれら有害物質を効率よく除去することができる。 According to the hazardous substance treatment method of the present invention, the treatment is performed under the conditions under which the specific hydroxylated apatite is generated, so that the treatment rate can be greatly improved with a small amount of the treatment agent used. Moreover, not only boron but also other harmful substances such as heavy metals coexist in waste water, and these harmful substances can be efficiently removed by one-time treatment.

以下、本発明の有害物質含有排水の処理方法の実施例を説明する。 Examples of the method for treating hazardous substance-containing wastewater according to the present invention are described below.

<実施例1>
模擬排水として、ホウ素濃度100mg/Lの排水試料を用意した。この排水試料250mL(温度20℃)をホモジナイザー(プライミクス社製)に入れ、消石灰(奥多摩工業社製、超特選消石灰)2.49g、リン酸(関東化学社製、特級:85%)1.77gを添加し、回転数1500rpmで攪拌しながら反応を行い、電気伝導度が一定(約5.5ms)になったところで処理を終了した。反応系の処理温度は25℃、処理時間(攪拌時間)は約25分であった。なお処理剤におけるCa/P比は2.2、処理系におけるP/B比は6.6である。
<Example 1>
A waste water sample having a boron concentration of 100 mg/L was prepared as a simulated waste water. 250 mL of this waste water sample (temperature 20 ° C.) is placed in a homogenizer (manufactured by Primix), slaked lime (manufactured by Okutama Kogyo Co., Ltd., super special slaked lime) 2.49 g, phosphoric acid (manufactured by Kanto Chemical Co., Ltd., special grade: 85%) 1.77 g was added, and the reaction was carried out while stirring at a rotation speed of 1500 rpm, and the treatment was terminated when the electrical conductivity became constant (about 5.5 ms). The treatment temperature of the reaction system was 25° C., and the treatment time (stirring time) was about 25 minutes. The Ca/P ratio in the treatment agent was 2.2, and the P/B ratio in the treatment system was 6.6.

処理後、吸引ろ過し、ろ液中のホウ素濃度をICP発光分光分析装置(堀場製作所、JY2000 ULTRACE)で測定したところ、5.58mg/L(処理率94.42%)であり、一律排出基準10mg/Lを満たしていた。 After the treatment, suction filtration was performed, and the boron concentration in the filtrate was measured with an ICP emission spectrometer (Horiba, JY2000 ULTRACE) and found to be 5.58 mg / L (treatment rate 94.42%), which is a uniform discharge standard. 10 mg/L was met.

<実施例2>
反応系の処理温度を50℃とした以外は、実施例1と同様にして、実施例1と同じ模擬排水を処理した。処理後のろ液中のホウ素濃度はICP測定の結果、2.02mg/L(処理)であった。
<Example 2>
The same simulated waste water as in Example 1 was treated in the same manner as in Example 1, except that the treatment temperature of the reaction system was 50°C. The boron concentration in the treated filtrate was 2.02 mg/L (treated) as a result of ICP measurement.

<実施例3>
模擬排水として、ホウ素濃度30mg/Lの排水を使用し、処理剤(消石灰+リン酸)の使用量を実施例1の使用量の約1/3にし(P/B比=7.0)、それ以外は実施例1と同じ模擬排水を処理した。処理後のろ液中のホウ素濃度はICP測定の結果、4.54mg/Lであった。
<Example 3>
As the simulated waste water, waste water with a boron concentration of 30 mg / L is used, and the amount of the treatment agent (slaked lime + phosphoric acid) is about 1/3 of the amount used in Example 1 (P / B ratio = 7.0), Other than that, the same simulated waste water as in Example 1 was treated. The boron concentration in the filtrate after treatment was 4.54 mg/L as a result of ICP measurement.

<比較例1>
実施例1と同じ模擬排水を用い、処理剤として、リン酸の代わりにリン酸二水素ナトリウム(WAKO社製)4.9gを用いた以外は実施例1と同様の方法で処理したところ、処理後のろ液中のホウ素濃度はICP測定の結果、53.37mg/Lであった。なお、比較例1の処理剤におけるCa/P比は2.2、P/B比は33.9である。
<Comparative Example 1>
The same simulated waste water as in Example 1 was used, and the treatment was performed in the same manner as in Example 1 except that 4.9 g of sodium dihydrogen phosphate (manufactured by WAKO) was used instead of phosphoric acid as a treatment agent. The boron concentration in the post-filtrate was 53.37 mg/L as a result of ICP measurement. The Ca/P ratio in the treatment agent of Comparative Example 1 was 2.2, and the P/B ratio was 33.9.

<比較例2>
実施例1と同じ模擬排水を用い、処理剤として、Ca/P比及びP/B比がそれぞれ実施例1と同じ(Ca/P2.2、P/B比6.6)になるように、塩化カルシウム(WAKO社)2.47g、比較例1と同様のリン酸二水素ナトリウム1.84g、及びアルカリ(消石灰)1.25gを用いて、実施例1と同様の方法で処理を行った。処理後のろ液中のホウ素濃度はICP測定の結果、27.66mg/Lであった。
<Comparative Example 2>
Using the same simulated waste water as in Example 1, as a treatment agent, Ca / P ratio and P / B ratio are the same as in Example 1 (Ca / P 2.2, P / B ratio 6.6), Treatment was performed in the same manner as in Example 1 using 2.47 g of calcium chloride (WAKO), 1.84 g of sodium dihydrogen phosphate as in Comparative Example 1, and 1.25 g of alkali (slaked lime). The boron concentration in the filtrate after treatment was 27.66 mg/L as a result of ICP measurement.

<比較例3>
実施例1と同じ模擬排水を用い、処理剤として、塩化カルシウム(WAKO社)2.47g、比較例1と同様のリン酸二水素ナトリウム1.84g、及びアルカリ(消石灰)1.25gを用い、P/B比を21.0にして、実施例1と同様の方法で処理を行った。処理後のろ液中のホウ素濃度はICP測定の結果、2.23mg/Lであった。
<Comparative Example 3>
Using the same simulated waste water as in Example 1, using 2.47 g of calcium chloride (WAKO) as a treatment agent, 1.84 g of sodium dihydrogen phosphate as in Comparative Example 1, and 1.25 g of alkali (slaked lime), Processing was carried out in the same manner as in Example 1 with a P/B ratio of 21.0. The boron concentration in the filtrate after treatment was 2.23 mg/L as a result of ICP measurement.

実施例1~3及び比較例1~3の処理後の汚泥から分離した水酸化アパタイトについて、その細孔分布、比表面積(m/g)をそれぞれBJH法、BET法で測定した。実施例1~3の細孔分布を図4に、比較例1~3の細孔分布を図5に示す。また、次式により処理率を算出するとともに、処理率当たりの処理剤添加量を算出した。結果を表1に示す。
処理率(%)=([模擬排水のホウ素濃度]-[ろ液中のホウ素濃度])
×100/[模擬排水のホウ素濃度]
The pore distribution and specific surface area (m 2 /g) of the hydroxyapatite separated from the treated sludges of Examples 1 to 3 and Comparative Examples 1 to 3 were measured by the BJH method and the BET method, respectively. The pore distributions of Examples 1-3 are shown in FIG. 4, and the pore distributions of Comparative Examples 1-3 are shown in FIG. In addition, the treatment rate was calculated from the following formula, and the amount of the treatment agent to be added per treatment rate was calculated. Table 1 shows the results.
Treatment rate (%) = ([boron concentration in simulated wastewater] - [boron concentration in filtrate])
× 100 / [boron concentration in simulated waste water]

Figure 0007177656000001
Figure 0007177656000001

表1に示す結果からわかるように、実施例1~3の処理方法では、少ない処理剤添加量で、高い処理率が得られることがわかる。一方、リン酸をリン酸塩に置き換えただけの比較例1では、処理率は実施例方法の1/2以下であった。また、リン酸塩を用いた場合には、P/B比を同じ条件にしても(比較例2)、処理率は73%未満であり、処理率を実施例と同レベルまで高めるには(比較例3)、実施例の3倍以上の処理剤を必要とした。 As can be seen from the results shown in Table 1, in the treatment methods of Examples 1 to 3, a high treatment rate can be obtained with a small amount of treatment agent added. On the other hand, in Comparative Example 1 in which phosphoric acid was simply replaced with phosphate, the treatment rate was less than 1/2 of that in the example method. Further, when a phosphate was used, even under the same P/B ratio conditions (Comparative Example 2), the treatment rate was less than 73%. Comparative Example 3) required more than three times as much processing agent as in Examples.

これらの結果から、消石灰とリン酸との組み合わせによって、リン酸塩を用いた場合には予想できない処理効果の向上が得られることがわかった。 These results show that the combination of slaked lime and phosphoric acid provides an improvement in treatment effect that is not expected when phosphate is used.

また実施例1及び比較例2で生成した水酸化アパタイトのXRD測定結果を図6(a)、(b)に、粒度分布を図7に示す。図6(a)、(b)に示すように、リン酸を用いた場合にもリン酸塩を用いた場合にも、水酸化アパタイトのピークが観察され、水酸化アパタイトが生成していることが確認された。また図7に示すように、実施例1及び比較例2で生成している水酸化アパタイト粒子の粒度分布は、いずれもほぼ10μm~100μmに分布している。しかし、細孔分布を見ると、両者は著しく異なり、図1に示したように、リン酸から生成した水酸化アパタイトはシャープな特性を示し、所定の狭い範囲における細孔容積が、リン酸塩から生成した水酸化アパタイトの2倍程度になっている。両者の有害物質処理能力の差は、このような細孔分布の違いによって生じたものと推定される。このような細孔分布の違いは、図4及び図5に示すように、実施例1~3と比較例1~3で同様であることが確認された。 6(a) and 6(b) show the XRD measurement results of the hydroxyapatite produced in Example 1 and Comparative Example 2, and the particle size distribution is shown in FIG. As shown in FIGS. 6(a) and 6(b), a peak of hydroxyapatite was observed both when phosphoric acid was used and when phosphate was used, indicating that hydroxyapatite was generated. was confirmed. Further, as shown in FIG. 7, the particle size distribution of the hydroxyapatite particles produced in Example 1 and Comparative Example 2 are both approximately 10 μm to 100 μm. However, the pore distributions of the two are significantly different. As shown in FIG. It is about twice as much as the hydroxylated apatite generated from It is presumed that the difference in toxic substance treatment capacity between the two is caused by such a difference in pore distribution. As shown in FIGS. 4 and 5, it was confirmed that the difference in pore size distribution was similar between Examples 1-3 and Comparative Examples 1-3.

<実施例4>
本発明の処理方法では汚泥自体が処理能力を維持していると考えられるため、汚泥を再利用した場合の処理率について検討した。
まず1回目の処理として、実施例1と同様に、ホウ素濃度100mg/Lの排水試料250mLに、消石灰2.49g及びリン酸1.50gを投入し、反応を行った。
<Example 4>
In the treatment method of the present invention, it is considered that the sludge itself maintains the treatment capacity, so the treatment rate when the sludge is reused was examined.
First, as in Example 1, 2.49 g of slaked lime and 1.50 g of phosphoric acid were added to 250 mL of a waste water sample having a boron concentration of 100 mg/L, and a reaction was performed.

ついで2回目の処理として、1回目と同様の排水250mLに、1回目の処理剤の約1/2の消石灰及びリン酸(消石灰1.13g、リン酸0.68g)に、1回目の処理後に上澄みを除去した後の汚泥全量(約3g)を加えたものを処理剤として投入し、反応を行った。 Then, as the second treatment, 250 mL of the same waste water as the first treatment was added to about 1/2 of the first treatment agent slaked lime and phosphoric acid (slaked lime 1.13 g, phosphoric acid 0.68 g), after the first treatment The total amount of sludge after removing the supernatant (about 3 g) was added as a treating agent, and the reaction was carried out.

さらに3回目の処理として、1回目と同様の排水250mLに、消石灰1.83g、リン酸1.10gと、2回目の処理後に上澄みを除去した後の汚泥の半分量(1.78g)を加えたものを処理剤として投入し、反応を行った。
1回目~3回目のいずれにおいても、反応温度は25℃とし、攪拌時間は約25分であった。
Furthermore, as the third treatment, 1.83 g of slaked lime, 1.10 g of phosphoric acid, and half the amount (1.78 g) of the sludge after removing the supernatant after the second treatment were added to 250 mL of the same wastewater as the first treatment. was added as a treating agent, and the reaction was carried out.
In each of the first to third times, the reaction temperature was 25° C. and the stirring time was about 25 minutes.

1回目~3回目の処理後の処理後のろ液中のホウ素濃度をICP測定した結果と汚泥量を表2に示す。 Table 2 shows the results of ICP measurement of the boron concentration in the filtrate after the first to third treatments and the amount of sludge.

Figure 0007177656000002
Figure 0007177656000002

表2の結果からわかるように、処理後の汚泥を処理剤として繰り返し使用した場合にも、高い処理率で処理できることがわかった。また、このように汚泥を繰り返し使用することにより、汚泥発生量を大幅に減らすことができる。例えば、3回の処理の発生汚泥量は、合計10.79gであるが、本実施例のように1回目の汚泥を全量再利用し、2回目の汚泥量の半分を再利用した場合、最終的な汚泥量は、6.1gであり、約半分に減量することができた。 As can be seen from the results in Table 2, even when the sludge after treatment was repeatedly used as a treatment agent, it was found that treatment was possible with a high treatment rate. In addition, by repeatedly using sludge in this manner, the amount of sludge generated can be greatly reduced. For example, the total amount of sludge generated in three treatments is 10.79 g. The typical amount of sludge was 6.1 g, which could be reduced to about half.

<実施例5>
模擬排水として、亜鉛濃度100mg/L、ホウ素濃度100mg/L、5%NH水10mLを含む排水(NH濃度:2000mg/L)を用意した。NH水は、亜鉛を錯体とするために加えたものである。この模擬排水250mLに、実施例1と同様の処理剤(消石灰:2.49g、リン酸:1.50g)を投入し、実施例1と同様に処理を行った。P/B比は6.6、Ca/P比は2.2、NH/P比は1.9である。
<Example 5>
Wastewater containing 100 mg/L of zinc concentration, 100 mg/L of boron concentration, and 10 mL of 5% NH 3 water (NH 3 concentration: 2000 mg/L) was prepared as simulated waste water. NH3 water was added to complex the zinc. The same treatment agent (slaked lime: 2.49 g, phosphoric acid: 1.50 g) as in Example 1 was added to 250 mL of this simulated waste water, and treatment was performed in the same manner as in Example 1. The P/B ratio is 6.6, the Ca/P ratio is 2.2 and the NH3 /P ratio is 1.9.

<比較例4>
実施例5と同じ模擬排水を用いて、消石灰1.58g、塩化カルシウム3.13g、及びリン酸二水素ナトリウム3.02gを処理剤として用いて、実施例1と同様に処理を行った。P/B比は8.4、Ca/P比は2.2、NH/P比は1.5である。
<Comparative Example 4>
Using the same simulated waste water as in Example 5, the same treatment as in Example 1 was performed using 1.58 g of slaked lime, 3.13 g of calcium chloride, and 3.02 g of sodium dihydrogen phosphate as treating agents. The P/B ratio is 8.4, the Ca/P ratio is 2.2 and the NH3 /P ratio is 1.5.

<比較例5>
処理剤の量を、消石灰2.09g、塩化カルシウム4.15g、及びリン酸二水素ナトリウム4.00gとした以外は比較例4と同様に処理を行った(P/B比:11.1、Ca/P比:3.3)。
<Comparative Example 5>
The treatment was carried out in the same manner as in Comparative Example 4 except that the amount of the treating agent was changed to 2.09 g of slaked lime, 4.15 g of calcium chloride, and 4.00 g of sodium dihydrogen phosphate (P/B ratio: 11.1, Ca/P ratio: 3.3).

実施例5及び比較例4の細孔分布をBJH法により計測した結果を図8に示す。図8に示すように、実施例5で生成した水酸化アパタイトは、実施例1等の水酸化アパタイトと同様に、細孔径10~100nmの間の特定の細孔径においてシャープなピークが見られたが、比較例4の細孔分布は比較的なだらかであった。 FIG. 8 shows the results of measuring the pore size distributions of Example 5 and Comparative Example 4 by the BJH method. As shown in FIG. 8, the hydroxyapatite produced in Example 5, like the hydroxyapatite of Example 1, exhibited a sharp peak at a specific pore size between 10 and 100 nm. However, the pore distribution of Comparative Example 4 was relatively gentle.

また実施例5及び比較例4,5の処理後のろ液について、ホウ素、亜鉛(アンミン錯体)の濃度を分析した。また処理後の汚泥から分離した水酸化アパタイトについて、BET比表面積を測定した。これらの結果を、発生した汚泥量ともに表3に示す。 Further, the filtrates after the treatment in Example 5 and Comparative Examples 4 and 5 were analyzed for boron and zinc (ammine complex) concentrations. Also, the BET specific surface area was measured for the hydroxyapatite separated from the treated sludge. These results are shown in Table 3 together with the amount of generated sludge.

Figure 0007177656000003
Figure 0007177656000003

表3に示す結果からもわかるように、リン酸と消石灰とを用いた実施例5では、ホウ素及び亜鉛ともに、高い処理率で処理を行うことができた。ホウ素と亜鉛が共存する排水では、リン酸塩を用いた比較例4、5では亜鉛の処理率が高いもののホウ素の処理率が低く、処理剤の使用量を増加してP/B比やCa/P比を大きくすれば処理率を高められることが示されたものの、発生する汚泥量も多かった。 As can be seen from the results shown in Table 3, in Example 5 using phosphoric acid and slaked lime, both boron and zinc could be treated at high treatment rates. In the wastewater in which boron and zinc coexist, in Comparative Examples 4 and 5 using phosphate, the treatment rate of zinc is high but the treatment rate of boron is low. Although it was shown that the treatment rate could be increased by increasing the /P ratio, the amount of generated sludge was also large.

以上の実施例から、本発明の排水処理方法によれば、リン酸塩を用いる場合に比べ、少ない処理剤使用量及び汚泥量で、ホウ素の処理率を飛躍的に向上できることが確認された。またホウ素以外の有害物質を含む排水においても、ホウ素処理率が低下することなく、ホウ素とそれ以外の有害物質に対し高い処理率を達成できることが確認された。 From the above examples, it was confirmed that the wastewater treatment method of the present invention can dramatically improve the boron treatment rate with a smaller amount of treatment agent and less amount of sludge than when phosphate is used. It was also confirmed that even in waste water containing harmful substances other than boron, a high treatment rate for boron and other harmful substances can be achieved without lowering the boron treatment rate.

また本発明の排水処理方法によれば、処理後の汚泥自体がホウ素等有害物質に対し高い吸着能を有しているため、処理剤としての再利用が可能であり、さらに汚泥発生量を低減することができる。 In addition, according to the wastewater treatment method of the present invention, since the sludge itself after treatment has a high adsorption capacity for harmful substances such as boron, it can be reused as a treatment agent, further reducing the amount of sludge generated. can do.

Claims (5)

ホウ素を含む排水を処理し、排水中に含まれる有害物質を除去する処理方法であって、
前記排水に処理剤として消石灰及びリン酸を投入するステップ(1)、
前記処理剤を排水中の前記有害物質と反応させるステップ(2)、及び
反応後に固液分離し、固相成分を除去するステップ(3)を含み、
前記ステップ(1)において、リン酸の投入量を、リンPとホウ素Bとのモル比(P/B)で3以上7以下とするとともに、前記処理剤投入時の排水のpHを10.0以上とし、
前記ステップ(2)において、細孔径10~100nmに細孔容積のピークを有し、当該ピークにおける細孔容積が1cm/g以上の水酸化アパタイトを生成し、その際、当該水酸化アパタイトに有害物質を包含させるとともに、当該水酸化アパタイトに有害物質を吸着させることを特徴とする有害物質含有排水の処理方法。
A treatment method for treating wastewater containing boron and removing harmful substances contained in the wastewater,
step (1) of adding slaked lime and phosphoric acid as treatment agents to the waste water;
including a step (2) of reacting the treating agent with the hazardous substances in the wastewater, and a step (3) of solid-liquid separation after the reaction to remove solid phase components,
In step (1), the amount of phosphoric acid added is set to 3 or more and 7 or less in terms of the molar ratio (P/B) of phosphorus P and boron B, and the pH of the waste water when the treatment agent is added is 10.0. and above,
In the step (2), a hydroxyapatite having a pore volume peak at a pore diameter of 10 to 100 nm and a pore volume at the peak of 1 cm 3 /g or more is generated, and at that time, the hydroxyapatite A method for treating hazardous substance-containing wastewater, characterized by including the hazardous substance and allowing the hydroxyapatite to adsorb the hazardous substance.
請求項記載の処理方法であって、
前記ステップ(1)において、前記処理剤として、さらにカルシウム化合物を添加することを特徴とする有害物質含有排水の処理方法。
The processing method according to claim 1 ,
A method for treating hazardous substance-containing wastewater, wherein in step (1), a calcium compound is further added as the treating agent.
請求項1又は2に記載の処理方法であって、
前記排水は、ホウ素の他にフッ素及び重金属の少なくとも一方を含むことを特徴とする処理方法。
The processing method according to claim 1 or 2 ,
A treatment method, wherein the waste water contains at least one of fluorine and heavy metals in addition to boron.
請求項1ないしのいずれか一項に記載の処理方法であって、
前記ステップ(2)は、前記排水の電気伝導度が所定の値あるいは電気伝導度の変化率が所定の値に達したときに反応を終了することを特徴とする処理方法。
The processing method according to any one of claims 1 to 3 ,
In the step (2), the reaction is terminated when the electrical conductivity of the waste water reaches a predetermined value or the rate of change of the electrical conductivity reaches a predetermined value.
請求項1ないしのいずれか一項に記載の処理方法であって、
前記ステップ(1)は、前記ステップ(3)において固液分離後の固相成分を、排水中に投入するステップ(1-1)をさらに含むことを特徴とする処理方法。
The processing method according to any one of claims 1 to 4 ,
The treatment method, wherein the step (1) further includes a step (1-1) of introducing the solid-phase component after the solid-liquid separation in the step (3) into the waste water.
JP2018194576A 2018-10-15 2018-10-15 Treatment method for wastewater containing harmful substances Active JP7177656B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018194576A JP7177656B2 (en) 2018-10-15 2018-10-15 Treatment method for wastewater containing harmful substances
PCT/JP2019/034965 WO2020079984A1 (en) 2018-10-15 2019-09-05 Method for treating wastewater containing harmful substances
TW108135504A TW202033454A (en) 2018-10-15 2019-10-01 Method for treating wastewater containing harmful substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018194576A JP7177656B2 (en) 2018-10-15 2018-10-15 Treatment method for wastewater containing harmful substances

Publications (3)

Publication Number Publication Date
JP2020062584A JP2020062584A (en) 2020-04-23
JP2020062584A5 JP2020062584A5 (en) 2021-09-24
JP7177656B2 true JP7177656B2 (en) 2022-11-24

Family

ID=70284530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018194576A Active JP7177656B2 (en) 2018-10-15 2018-10-15 Treatment method for wastewater containing harmful substances

Country Status (3)

Country Link
JP (1) JP7177656B2 (en)
TW (1) TW202033454A (en)
WO (1) WO2020079984A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370093A (en) 2001-01-26 2002-12-24 Shimonoseki Mitsui Chemicals Inc High-degree treatment method for fluorine compound- containing liquid
JP2005279468A (en) 2004-03-30 2005-10-13 Japan Science & Technology Agency Method for insolubilizing/separating boron dissolved in water, method for detoxifying boron-dissolved waste water and method for recovering boron resource
JP2007144405A (en) 2005-10-27 2007-06-14 Okutama Kogyo Co Ltd Method for treating boron-containing waste water and agent therefor
JP2009011876A (en) 2007-06-29 2009-01-22 Japan Organo Co Ltd Crystallization reactor and crystallization reaction method
JP2009233568A (en) 2008-03-27 2009-10-15 Kurita Water Ind Ltd Method and apparatus for treating fluorine-containing water
JP2010172853A (en) 2009-01-30 2010-08-12 Kurita Water Ind Ltd Boron-containing water treatment method
WO2014162623A1 (en) 2013-10-01 2014-10-09 吉澤石灰工業株式会社 Insolubilizing material for hazardous substances, and treatment method using same
JP2014223569A (en) 2013-05-15 2014-12-04 邦夫 石川 Method for removing elements from aqueous solution, and method for storing removed elements
JP2018065125A (en) 2016-10-18 2018-04-26 国立大学法人九州大学 Treatment method of boron containing water

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343977A (en) * 1993-06-04 1994-12-20 Mitsui Toatsu Chem Inc Treatment process for waste water
JP3091126B2 (en) * 1996-01-22 2000-09-25 東洋電化工業株式会社 Adsorbent for heavy metals

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370093A (en) 2001-01-26 2002-12-24 Shimonoseki Mitsui Chemicals Inc High-degree treatment method for fluorine compound- containing liquid
JP2005279468A (en) 2004-03-30 2005-10-13 Japan Science & Technology Agency Method for insolubilizing/separating boron dissolved in water, method for detoxifying boron-dissolved waste water and method for recovering boron resource
JP2007144405A (en) 2005-10-27 2007-06-14 Okutama Kogyo Co Ltd Method for treating boron-containing waste water and agent therefor
JP2009011876A (en) 2007-06-29 2009-01-22 Japan Organo Co Ltd Crystallization reactor and crystallization reaction method
JP2009233568A (en) 2008-03-27 2009-10-15 Kurita Water Ind Ltd Method and apparatus for treating fluorine-containing water
JP2010172853A (en) 2009-01-30 2010-08-12 Kurita Water Ind Ltd Boron-containing water treatment method
JP2014223569A (en) 2013-05-15 2014-12-04 邦夫 石川 Method for removing elements from aqueous solution, and method for storing removed elements
WO2014162623A1 (en) 2013-10-01 2014-10-09 吉澤石灰工業株式会社 Insolubilizing material for hazardous substances, and treatment method using same
JP2018065125A (en) 2016-10-18 2018-04-26 国立大学法人九州大学 Treatment method of boron containing water

Also Published As

Publication number Publication date
WO2020079984A1 (en) 2020-04-23
JP2020062584A (en) 2020-04-23
TW202033454A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
US20200330955A1 (en) Process for producing a calcium phosphate reactant, reactant obtained and use thereof in the purification of liquid effluents
CN102328984A (en) Processing method of waste water in phosphorus chemical industry
WO2011132770A1 (en) Agent for eliminating heavy metal ions and phosphate ions in wastewater, and method for eliminating heavy metal ions and phosphate ions using same
JP6935924B2 (en) Wastewater and sludge treatment system containing high concentration of suspended solids
WO2018168558A1 (en) Water treatment method, magnesium agent for water treatment, and method for producing magnesium agent for water treatment
JP5607787B1 (en) Acid wastewater treatment method
JP2006255499A (en) Fluorine-containing wastewater treatment method and apparatus
JP7177656B2 (en) Treatment method for wastewater containing harmful substances
Ashekuzzaman et al. Improving the removal of phosphate in secondary effluent of domestic wastewater treatment plant
JP7477994B2 (en) Waste liquid treatment method
JP2023025362A (en) Harmful substance treatment agent and method for treating harmful substance-containing waste water
JP2012213673A (en) Condensed water laminar hydroxide like absorbent produced from acid wastewater and method for making the same
JP2021186777A (en) Insolubilization method of fluorine and/or arsenic contained in mud or sand
JP2005028272A (en) Phosphorus-component adsorbent and method for wastewater treatment by using the adsorbent
JP7043850B2 (en) Boron removal method
JP6008455B1 (en) How to handle hazardous substances
JP6484782B2 (en) Wastewater treatment method
JP7477995B2 (en) Waste liquid treatment method
JP2014184370A (en) Method for treating fluorine-containing effluent
WO2017017833A1 (en) Fluorine-containing wastewater treatment method and device therefor
KR102369230B1 (en) Adsorbent manufacturing method, adsorbent and treatment method
JP5158520B2 (en) Treatment method for wastewater containing heavy metals
JP2022036515A (en) Treatment method for water containing selenic acid ions
JPH08224587A (en) Treatment of waste water containing phosphate
JP4894139B2 (en) Method and apparatus for treating phosphoric acid-containing liquid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7177656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150