JP7172902B2 - oxygen storage material - Google Patents

oxygen storage material Download PDF

Info

Publication number
JP7172902B2
JP7172902B2 JP2019138818A JP2019138818A JP7172902B2 JP 7172902 B2 JP7172902 B2 JP 7172902B2 JP 2019138818 A JP2019138818 A JP 2019138818A JP 2019138818 A JP2019138818 A JP 2019138818A JP 7172902 B2 JP7172902 B2 JP 7172902B2
Authority
JP
Japan
Prior art keywords
oxygen storage
storage material
composite oxide
storage capacity
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019138818A
Other languages
Japanese (ja)
Other versions
JP2021020171A (en
Inventor
卓郎 横谷
信之 岡田
伸子 大庭
晴司 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019138818A priority Critical patent/JP7172902B2/en
Publication of JP2021020171A publication Critical patent/JP2021020171A/en
Application granted granted Critical
Publication of JP7172902B2 publication Critical patent/JP7172902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本開示は、酸素吸蔵材に関する。 The present disclosure relates to oxygen storage materials.

自動車等のための内燃機関、例えば、ガソリンエンジン又はディーゼルエンジン等から排出される排ガス中には、例えば、一酸化炭素(CO)、炭化水素(HC)、及び窒素酸化物(NOx)等の成分が含まれている。 Exhaust gases emitted from internal combustion engines such as automobiles, such as gasoline or diesel engines, contain components such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx). It is included.

このため、一般的には、これらの成分を浄化するための排ガス浄化装置が内燃機関に取り付けられており、この排ガス浄化装置内に取り付けられた排ガス浄化触媒によってこれらの成分がほとんど浄化されている。 For this reason, in general, an exhaust gas purifying device for purifying these components is attached to the internal combustion engine, and most of these components are purified by an exhaust gas purifying catalyst attached in the exhaust gas purifying device. .

このような排ガス浄化触媒に含まれる酸素吸蔵材の例として、セリア系の酸素吸蔵材が知られている。セリアは、リーン雰囲気で酸素を吸蔵し、リッチ雰囲気で酸素を放出する酸素吸蔵能(OSC:Oxygen Storage Capacity)特性を有している。このため、セリア系の酸素吸蔵材を三元触媒等で好適に採用することができる。 A ceria-based oxygen storage material is known as an example of the oxygen storage material contained in such an exhaust gas purifying catalyst. Ceria has an oxygen storage capacity (OSC) characteristic of absorbing oxygen in a lean atmosphere and releasing oxygen in a rich atmosphere. Therefore, the ceria-based oxygen storage material can be suitably used in a three-way catalyst or the like.

例えば、特許文献1は、酸素吸蔵材として、セリア―ジルコニア複合酸化物を用いることを開示している。 For example, Patent Document 1 discloses using a ceria-zirconia composite oxide as an oxygen storage material.

特開平11-165067号公報JP-A-11-165067

排ガス浄化触媒の排ガス浄化性能を向上させる観点から、より酸素吸蔵能が高い酸素吸蔵材が求められている。特に、より低い温度域、例えば300℃以下の温度における酸素吸蔵能を有する酸素吸蔵材が求められている。 From the viewpoint of improving the exhaust gas purification performance of an exhaust gas purification catalyst, an oxygen storage material with a higher oxygen storage capacity is desired. In particular, there is a demand for an oxygen storage material having an oxygen storage capacity in a lower temperature range, for example, at a temperature of 300° C. or less.

本開示は、高い酸素吸蔵能、特に低い温度域において高い酸素吸蔵能を有する酸素吸蔵材を提供することを目的とする。 An object of the present disclosure is to provide an oxygen storage material having a high oxygen storage capacity, especially in a low temperature range.

本開示者は、以下の手段により上記課題を達成することができることを見出した:
《態様1》
Cu及びNbの複合酸化物である、酸素吸蔵材。
《態様2》
前記複合酸化物が、CuNb又はCuNbである、態様1に記載の酸素吸蔵材。
《態様3》
前記複合酸化物が単相である、態様1又は2に記載の酸素吸蔵材。
《態様4》
300℃において、800.0μmol/g以上の酸素吸蔵量を有する、態様1~3のいずれか一つに記載の酸素吸蔵材。
《態様5》
触媒金属が担持されている、態様1~4のいずれか一つに記載の酸素吸蔵材。
《態様6》
前記触媒金属の前記酸素吸蔵材に対する割合が0質量%超5質量%以下である、態様5に記載の酸素吸蔵材。
《態様7》
前記触媒金属が、Pt、Pd、又はRhである、態様5又は6に記載の酸素吸蔵材。
The present discloser has found that the above objects can be achieved by the following means:
<<Aspect 1>>
An oxygen storage material which is a composite oxide of Cu and Nb.
<<Aspect 2>>
The oxygen storage material according to aspect 1 , wherein the composite oxide is Cu3Nb2O8 or CuNb2O6 .
<<Aspect 3>>
The oxygen storage material according to aspect 1 or 2, wherein the composite oxide is a single phase.
<<Aspect 4>>
The oxygen storage material according to any one of aspects 1 to 3, which has an oxygen storage capacity of 800.0 μmol/g or more at 300°C.
<<Aspect 5>>
The oxygen storage material according to any one of aspects 1 to 4, wherein a catalyst metal is supported.
<<Aspect 6>>
The oxygen storage material according to aspect 5, wherein the ratio of the catalyst metal to the oxygen storage material is more than 0% by mass and 5% by mass or less.
<<Aspect 7>>
7. The oxygen storage material according to aspect 5 or 6, wherein the catalytic metal is Pt, Pd, or Rh.

本開示によれば、高い酸素吸蔵能、特に低い温度域において高い酸素吸蔵能を有する酸素吸蔵材を提供することができる。 According to the present disclosure, it is possible to provide an oxygen storage material having a high oxygen storage capacity, especially in a low temperature range.

図1は、実施例1及び2、並びに比較例1~3の酸素吸蔵材の酸素吸蔵能の測定における温度プロファイルを示す図である。FIG. 1 is a diagram showing temperature profiles in measurement of the oxygen storage capacity of the oxygen storage materials of Examples 1 and 2 and Comparative Examples 1-3. 図2は、実施例1及び2、並びに比較例1~3の酸素吸蔵材の酸素吸蔵能の評価結果を示すグラフである。FIG. 2 is a graph showing the evaluation results of the oxygen storage capacity of the oxygen storage materials of Examples 1 and 2 and Comparative Examples 1-3. 図3は、実施例1の酸素吸蔵材のX線回折の測定結果を示すグラフである。3 is a graph showing the measurement results of X-ray diffraction of the oxygen storage material of Example 1. FIG. 図4は、実施例2の酸素吸蔵材のX線回折の測定結果を示すグラフである。4 is a graph showing the measurement results of X-ray diffraction of the oxygen storage material of Example 2. FIG.

以下、本開示の実施の形態について詳述する。なお、本開示は、以下の実施の形態に限定されるのではなく、開示の本旨の範囲内で種々変形して実施できる。 Hereinafter, embodiments of the present disclosure will be described in detail. It should be noted that the present disclosure is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the disclosure.

本開示の酸素吸蔵材は、Cu及びNbの複合酸化物である。 The oxygen storage material of the present disclosure is a composite oxide of Cu and Nb.

従来の排ガス浄化触媒における酸素吸蔵材として用いられてきたセリア-ジルコニア複合酸化物は、パイロクロア相またはκ相を有しており、高温条件下において高い酸素貯蔵能を有している。しかしながら、セリウムはセリウム1個に対して酸素原子を0.5個吸蔵することができるが、一方で、セリア-ジルコニア複合酸化物のセリウムとジルコニウムの組成比は1:1であり、セリア-ジルコニア複合酸化物は、既にその材料自身が持つセリウムの9割以上が酸素吸蔵能を発現しており、すなわち、既に理論限界程の酸素吸蔵能を示しており、酸素吸蔵量において増大の余地が見込まれない。 Ceria-zirconia composite oxide, which has been used as an oxygen storage material in conventional exhaust gas purifying catalysts, has a pyrochlore phase or a κ phase and has a high oxygen storage capacity under high temperature conditions. However, cerium can occlude 0.5 oxygen atoms per cerium, while the composition ratio of cerium and zirconium in the ceria-zirconia composite oxide is 1:1. In composite oxides, more than 90% of the cerium contained in the material itself already exhibits oxygen storage capacity. can't

また、セリア-ジルコニア複合酸化物の酸化物構造内の酸素を出し入れするための活性エネルギーが高いため、低温域、例えば300℃以下の低温においては十分に酸素を吸蔵することが出来ない。 In addition, since the active energy for taking in and out oxygen in the oxide structure of the ceria-zirconia composite oxide is high, it is not possible to sufficiently occlude oxygen in a low temperature range, for example, a low temperature of 300° C. or less.

本開示者らは、Cu及びNbの複合酸化物を酸素吸蔵材として用いることにより、高い酸素吸蔵能、特に低い温度域において高い酸素吸蔵能が得られることを見出した。 The present inventors have found that by using a composite oxide of Cu and Nb as an oxygen storage material, a high oxygen storage capacity, especially in a low temperature range, can be obtained.

本開示の酸素吸蔵材は、例えば300℃において、800.0μmol/g以上の酸素吸蔵量を有していることができる。ここで、酸素吸蔵量は、酸素吸蔵材が吸蔵することができる酸素原子の量(μmol)を酸素吸蔵材の質量(g)で除した値である。 The oxygen storage material of the present disclosure can have an oxygen storage capacity of 800.0 μmol/g or more at 300° C., for example. Here, the oxygen storage capacity is a value obtained by dividing the amount (μmol) of oxygen atoms that the oxygen storage material can store by the mass (g) of the oxygen storage material.

本開示の酸素吸蔵材の300℃における酸素吸蔵量は、800.0μmol/g以上、850.0μmol/g以上、又は900.0μmol/g以上であってよく、1000.0μmol/g以下、950.0μmol/g以下、又は900.0μmol/g以下であってよい。 The oxygen storage capacity at 300° C. of the oxygen storage material of the present disclosure may be 800.0 μmol/g or more, 850.0 μmol/g or more, or 900.0 μmol/g or more, and may be 1000.0 μmol/g or less, 950.0 μmol/g or more. It may be 0 μmol/g or less, or 900.0 μmol/g or less.

〈複合酸化物〉
Cu及びNbの複合酸化物は、Cu及びNbを含有しており、酸素吸蔵能を有するものであれば特に限定されないが、例えばCuNb又はCuNbであることが好ましい。
<Composite oxide>
The composite oxide of Cu and Nb contains Cu and Nb and is not particularly limited as long as it has an oxygen storage capacity .

複合酸化物がCuNbである場合、低温域、例えば300℃付近において高い酸素吸蔵能を有すると共に、高温域、例えば500℃付近又は700℃付近においても高い酸素吸蔵能を有する。また、複合酸化物がCuNbである場合、低温域、例えば300℃付近において特に高い酸素吸蔵能を有する。 When the composite oxide is Cu 3 Nb 2 O 8 , it has a high oxygen storage capacity in a low temperature range, for example around 300°C, and also has a high oxygen storage capacity in a high temperature range, for example around 500°C or 700°C. Moreover, when the composite oxide is CuNb 2 O 6 , it has a particularly high oxygen storage capacity in a low temperature range, for example, around 300°C.

Cu及びNbの複合酸化物は、単相であってよい。
〈触媒金属〉
The composite oxide of Cu and Nb may be single-phase.
<Catalyst metal>

本開示の酸素吸蔵材は、触媒金属が担持されていることができる。 The oxygen storage material of the present disclosure can carry a catalytic metal.

触媒金属の酸素吸蔵材に対する割合は、0質量%超5質量%以下であってよい。触媒金属の酸素吸蔵材に対する割合は、0質量%超、1質量%以上、又は2質量%以上であってよく、5質量%以下、4質量%以下、又は3質量%以下であってよい。 The ratio of the catalyst metal to the oxygen storage material may be more than 0% by mass and 5% by mass or less. The ratio of the catalyst metal to the oxygen storage material may be more than 0% by mass, 1% by mass or more, or 2% by mass or more, and may be 5% by mass or less, 4% by mass or less, or 3% by mass or less.

触媒金属は、例えば貴金属又は貴金属と他の金属との合金を挙げることができる。貴金属としては、例えばPt、Pd、又はRhを挙げることができるが、これらに限定されない。 Catalyst metals can include, for example, noble metals or alloys of noble metals with other metals. Noble metals may include, but are not limited to, Pt, Pd, or Rh, for example.

〈製造方法〉
本開示の酸素吸蔵材は、Cu及びNbの複合酸化物を得ることができる任意の方法によって製造することができる。
<Production method>
The oxygen storage material of the present disclosure can be produced by any method capable of obtaining a composite oxide of Cu and Nb.

本開示の酸素吸蔵材は、例えばCu酸化物、例えばCuOと、Nb酸化物、例えばNbとを混合して焼成することによって得ることができるが、この方法に限定されない。 The oxygen storage material of the present disclosure can be obtained, for example, by mixing a Cu oxide such as Cu 2 O and a Nb oxide such as Nb 2 O 5 and firing the mixture, but is not limited to this method.

本開示の酸素吸蔵材に触媒金属を担持する方法は、酸素吸蔵材に触媒金属を担持させることができる任意の方法によって行うことができる。このような方法としては、例えば含浸法によって触媒金属を酸素吸蔵材に担持させることができるが、この方法に限定されない。 The method of supporting the catalyst metal on the oxygen storage material of the present disclosure can be carried out by any method capable of supporting the catalyst metal on the oxygen storage material. As such a method, the catalyst metal can be supported on the oxygen storage material by, for example, an impregnation method, but the method is not limited to this method.

《実施例1》
CuOとNbとをモル比が3:2になるように秤量してメノウ乳鉢に入れ、1時間磨砕混合した。その後、冷間等方圧加圧法を用いて196kNで圧粉してペレットを得た。このペレットを800℃で36時間空気焼成し、続けて950℃で40時間空気焼成して、複合酸化物のペレットを得た。得られた複合酸化物をメノウ乳鉢で磨砕したのち、少量の水に懸濁し、この複合酸化物に対してPdの量が1質量%となるように硝酸パラジウム硝酸溶液を滴下し、十分に撹拌した後120℃で蒸発乾固させた。その後、400℃で2時間水素還元することにより、Pd粒子が担持されている酸素吸蔵材を得た。
<<Example 1>>
Cu 2 O and Nb 2 O 5 were weighed so that the molar ratio was 3:2, placed in an agate mortar, and ground and mixed for 1 hour. After that, it was compacted at 196 kN using a cold isostatic pressing method to obtain pellets. The pellets were air-fired at 800° C. for 36 hours and then air-fired at 950° C. for 40 hours to obtain composite oxide pellets. After grinding the obtained composite oxide with an agate mortar, it is suspended in a small amount of water, and a palladium nitrate nitric acid solution is added dropwise so that the amount of Pd is 1% by mass with respect to the composite oxide. After stirring it was evaporated to dryness at 120°C. After that, hydrogen reduction was performed at 400° C. for 2 hours to obtain an oxygen storage material carrying Pd particles.

なお、この酸素吸蔵材は、酸素吸蔵材としてのCuNbに金属触媒としてのPdが担持された構成を有していた。 This oxygen storage material had a structure in which Pd was supported as a metal catalyst on Cu 3 Nb 2 O 8 as the oxygen storage material.

《実施例2》
CuOとNbとをモル比が1:2になるように秤量したことを除いて、実施例1と同様にして、Pd粒子が担持されている酸素吸蔵材を得た。
<<Example 2>>
An oxygen storage material supporting Pd particles was obtained in the same manner as in Example 1, except that Cu 2 O and Nb 2 O 5 were weighed so that the molar ratio was 1:2.

なお、この酸素吸蔵材は、酸素吸蔵材としてのCuNbに金属触媒としてのPdが担持された構成を有していた。 This oxygen storage material had a structure in which Pd was supported as a metal catalyst on CuNb 2 O 6 as the oxygen storage material.

《比較例1》
硝酸セリウムとオキシ硝酸ジルコニルとのモル比が1:1となるように水溶液を調製し、硝酸セリウムに対し6当量のクエン酸を加え、ホットスターラーにて攪拌しながら100℃以上で加熱して、溶液を乾固させた。その後、電気炉にて120℃で8時間以上加熱し、得られた固体をメノウ乳鉢で十分に磨砕し、アルミナルツボに入れて700℃で3時間空気焼成した。焼成後の粉末を、水素流下1200℃で24時間還元し、複合酸化物としてのCeZrを得た。得られた複合酸化物をメノウ乳鉢で磨砕したのち、少量の水に懸濁し、この複合酸化物に対してPdの量が1質量%となるように硝酸パラジウム硝酸溶液を滴下し、十分に撹拌した後120℃で蒸発乾固させた。その後、400℃で2時間水素還元することにより、Pd粒子が担持されている酸素吸蔵材を得た。
<<Comparative example 1>>
An aqueous solution was prepared so that the molar ratio of cerium nitrate and zirconyl oxynitrate was 1:1, 6 equivalents of citric acid was added to the cerium nitrate, and the mixture was heated at 100°C or higher while stirring with a hot stirrer. The solution was allowed to dry. After that, the mixture was heated in an electric furnace at 120° C. for 8 hours or longer, and the obtained solid was thoroughly ground in an agate mortar, placed in an alumina crucible, and calcined in air at 700° C. for 3 hours. The fired powder was reduced under flowing hydrogen at 1200° C. for 24 hours to obtain Ce 2 Zr 2 O 7 as a composite oxide. After grinding the obtained composite oxide with an agate mortar, it is suspended in a small amount of water, and a palladium nitrate nitric acid solution is added dropwise so that the amount of Pd is 1% by mass with respect to the composite oxide. After stirring it was evaporated to dryness at 120°C. After that, hydrogen reduction was performed at 400° C. for 2 hours to obtain an oxygen storage material carrying Pd particles.

なお、この酸素吸蔵材は、酸素吸蔵材としてのCeZrに金属触媒としてのPdが担持された構成を有していた。 This oxygen storage material had a structure in which Pd was supported as a metal catalyst on Ce 2 Zr 2 O 7 as the oxygen storage material.

《比較例2》
市販のCuOを少量の水に懸濁し、CuOに対してPdの量が1質量%となるように硝酸パラジウム硝酸溶液を滴下し、十分に撹拌した後120℃で蒸発乾固させた。その後、400℃で2時間水素還元することにより、Pd粒子が担持されている酸素吸蔵材を得た。
<<Comparative Example 2>>
Commercially available Cu 2 O was suspended in a small amount of water, a palladium nitrate nitric acid solution was added dropwise so that the amount of Pd was 1% by mass with respect to Cu 2 O, and the mixture was thoroughly stirred and then evaporated to dryness at 120°C. rice field. After that, hydrogen reduction was performed at 400° C. for 2 hours to obtain an oxygen storage material carrying Pd particles.

なお、この酸素吸蔵材は、酸素吸蔵材としてのCuOに金属触媒としてのPdが担持された構成を有していた。 This oxygen storage material had a structure in which Pd as a metal catalyst was supported on Cu 2 O as an oxygen storage material.

《比較例3》
市販のNbを少量の水に懸濁し、CuOに対してPdの量が1質量%となるように硝酸パラジウム硝酸溶液を滴下し、十分に撹拌した後120℃で蒸発乾固させた。その後、400℃で2時間水素還元することにより、Pd粒子が担持されている酸素吸蔵材を得た。
<<Comparative Example 3>>
Commercially available Nb 2 O 5 was suspended in a small amount of water, a palladium nitrate nitric acid solution was added dropwise so that the amount of Pd in Cu 2 O was 1% by mass, and the mixture was thoroughly stirred and then evaporated to dryness at 120°C. let me After that, hydrogen reduction was performed at 400° C. for 2 hours to obtain an oxygen storage material carrying Pd particles.

なお、この酸素吸蔵材は、酸素吸蔵材としてのNbに金属触媒としてのPdが担持された構成を有していた。 This oxygen storage material had a structure in which Pd was supported as a metal catalyst on Nb 2 O 5 as the oxygen storage material.

《試験1:酸素吸蔵能の評価》
〈試験方法〉
固定床流通式反応装置を用いて酸素吸蔵能を評価した。
<<Test 1: Evaluation of oxygen storage capacity>>
<Test method>
The oxygen storage capacity was evaluated using a fixed bed flow reactor.

実施例1及び2、並びに比較例1~3の酸素吸蔵材を冷間等方圧加圧法にて196kNで圧粉した後、ふるいを用いてペレット化し、そのペレットを2g用いて評価を行った。 The oxygen storage materials of Examples 1 and 2 and Comparative Examples 1 to 3 were compacted at 196 kN by a cold isostatic pressing method, pelletized using a sieve, and evaluated using 2 g of the pellets. .

前処理として、酸素5%/窒素95%の混合ガスを300℃で5分間、10L/minで流通させた。その後、図1に示す温度プロファイルに従って300℃、500℃、及び700℃で酸素貯蔵能測定を行った。 As a pretreatment, a mixed gas of 5% oxygen/95% nitrogen was passed at 300° C. for 5 minutes at 10 L/min. After that, the oxygen storage capacity was measured at 300°C, 500°C, and 700°C according to the temperature profile shown in FIG.

なお、流速は常に10L/minで2分間1%酸素→30秒窒素置換→2分間2%COのサイクルを各温度で6回繰り返し、COを流通させているときに検出されるCOの量(μmol)をサイクルの2,3,4、5回目で積算して4で割り、更にサンプル量2gで割った値を酸素貯蔵量(μmol/g)とした。 The flow rate was always 10 L/min and the cycle of 1% oxygen for 2 minutes → 30 seconds nitrogen replacement → 2% CO for 2 minutes was repeated 6 times at each temperature, and the amount of CO 2 detected when CO was flowing. (μmol) was integrated at the 2nd, 3rd, 4th, and 5th cycles, divided by 4, and further divided by the sample amount of 2 g to obtain the oxygen storage amount (μmol/g).

〈試験結果〉
実施例1及び2、並びに比較例1~3の酸素吸蔵材の構成及び酸素吸蔵能の評価を、表1及び図2に示した。
<Test results>
The structures of the oxygen storage materials of Examples 1 and 2 and Comparative Examples 1 to 3 and the evaluation of the oxygen storage capacity are shown in Table 1 and FIG.

Figure 0007172902000001
Figure 0007172902000001

表1及び図2に示すように、CuとNbとを含有している複合酸化物を酸素吸蔵材として用いた実施例1及び2では、300℃においてそれぞれ酸素吸蔵量が874.0μmol/g及び947.0μmol/gであり、高い酸素吸蔵量を有していた。 As shown in Table 1 and FIG. 2, in Examples 1 and 2 in which the composite oxide containing Cu and Nb was used as the oxygen storage material, the oxygen storage capacity at 300° C. was 874.0 μmol/g and 874.0 μmol/g, respectively. It was 947.0 μmol/g and had a high oxygen storage capacity.

これに対して、CeZrを酸素吸蔵材として用いた比較例1では、300℃において酸素吸蔵量が0.0であり、酸素吸蔵能を全く有していなかった。 On the other hand, in Comparative Example 1 using Ce 2 Zr 2 O 7 as the oxygen storage material, the oxygen storage capacity at 300° C. was 0.0, indicating no oxygen storage capacity at all.

また、Cu又はNbの一方のみの酸化物を酸素吸蔵材として用いた比較例2及び3では、300℃においてそれぞれ酸素吸蔵量が695.0μmol/g及び31.7μmol/gであり、一定の酸素吸蔵能は有していたが、実施例1及び2と比較して小さかった。 In addition, in Comparative Examples 2 and 3 in which only one of Cu and Nb oxides was used as the oxygen storage material, the oxygen storage capacities at 300° C. were 695.0 μmol/g and 31.7 μmol/g, respectively. Although it had an occlusive capacity, it was small compared to Examples 1 and 2.

このように、実施例1及び2の結果は、比較例2及び3の単なる足し合わせより高い酸素吸蔵能を示しているため、CuとNbとが複合酸化物を形成していることによって、高い酸素吸蔵能が発現したと考えられる。 Thus, the results of Examples 1 and 2 show a higher oxygen storage capacity than the simple addition of Comparative Examples 2 and 3. It is considered that the oxygen storage capacity was expressed.

《試験2:X線回折試験》
〈試験方法〉
X線源にCuKα(λ=1.5418Å)を用い、ステップ幅10~40°、0.02°/0.3sec、管電圧50kV、管電流300mAで、実施例1及び2の酸素吸蔵材を測定した。
<<Test 2: X-ray diffraction test>>
<Test method>
CuKα (λ = 1.5418 Å) was used as the X-ray source, the step width was 10 to 40°, 0.02°/0.3 sec, the tube voltage was 50 kV, and the tube current was 300 mA. It was measured.

〈試験結果〉
実施例1の酸素吸蔵材のX線回折の測定結果を図3に、実施例2の酸素吸蔵材のX線回折の測定結果を図4に、それぞれ示した。
<Test results>
The results of X-ray diffraction measurement of the oxygen storage material of Example 1 are shown in FIG. 3, and the results of X-ray diffraction measurement of the oxygen storage material of Example 2 are shown in FIG.

図3及び図4における回折パターンは、それぞれ単相のCuNb及びCuNbが得られていることを示している。 The diffraction patterns in FIGS. 3 and 4 show that single-phase Cu 3 Nb 2 O 8 and CuNb 2 O 6 are obtained, respectively.

Claims (6)

CuNb又はCuNbである、酸素吸蔵材。 An oxygen storage material which is Cu3Nb2O8 or CuNb2O6 . 前記Cu Nb 又はCuNb が単相である、請求項1に記載の酸素吸蔵材。 2. The oxygen storage material according to claim 1 , wherein said Cu3Nb2O8 or CuNb2O6 is single - phase . 300℃において、800.0μmol/g以上の酸素吸蔵量を有する、請求項1又は2に記載の酸素吸蔵材。 3. The oxygen storage material according to claim 1, which has an oxygen storage capacity of 800.0 μmol/g or more at 300°C. 触媒金属が担持されている、請求項1~3のいずれか一項に記載の酸素吸蔵材。 4. The oxygen storage material according to any one of claims 1 to 3, which supports a catalyst metal. 前記触媒金属の前記酸素吸蔵材に対する割合が0質量%超5質量%以下である、請求項4に記載の酸素吸蔵材。 5. The oxygen storage material according to claim 4, wherein the ratio of said catalyst metal to said oxygen storage material is more than 0% by mass and 5% by mass or less. 前記触媒金属が、Pt、Pd、又はRhである、請求項4又は5に記載の酸素吸蔵材。 6. The oxygen storage material according to claim 4, wherein said catalyst metal is Pt, Pd, or Rh.
JP2019138818A 2019-07-29 2019-07-29 oxygen storage material Active JP7172902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019138818A JP7172902B2 (en) 2019-07-29 2019-07-29 oxygen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138818A JP7172902B2 (en) 2019-07-29 2019-07-29 oxygen storage material

Publications (2)

Publication Number Publication Date
JP2021020171A JP2021020171A (en) 2021-02-18
JP7172902B2 true JP7172902B2 (en) 2022-11-16

Family

ID=74574593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138818A Active JP7172902B2 (en) 2019-07-29 2019-07-29 oxygen storage material

Country Status (1)

Country Link
JP (1) JP7172902B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174167A (en) 2010-02-01 2011-09-08 Ryukoku Univ Oxide film, method for producing the same, target, and method for producing oxide sintered compact
JP2016540641A (en) 2013-10-16 2016-12-28 クリーン ディーゼル テクノロジーズ インコーポレーテッドClean Diesel Technologies, Inc. OSM heat-stable composition containing no rare earth metal
JP2017502824A (en) 2013-11-29 2017-01-26 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Oxygen storage material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138102A (en) * 1987-11-25 1989-05-31 Mitsubishi Electric Corp Oxygen gas storage apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174167A (en) 2010-02-01 2011-09-08 Ryukoku Univ Oxide film, method for producing the same, target, and method for producing oxide sintered compact
JP2016540641A (en) 2013-10-16 2016-12-28 クリーン ディーゼル テクノロジーズ インコーポレーテッドClean Diesel Technologies, Inc. OSM heat-stable composition containing no rare earth metal
JP2017502824A (en) 2013-11-29 2017-01-26 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Oxygen storage material

Also Published As

Publication number Publication date
JP2021020171A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP4852035B2 (en) Nitrogen oxide storage catalyst made from nitrogen oxide storage material
JP5864443B2 (en) Exhaust gas purification catalyst
EP2683467A1 (en) Exhaust gas purification catalyst
JP5286746B2 (en) PM oxidation catalyst
US8357626B2 (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JP6087784B2 (en) Oxygen storage / release material and exhaust gas purification catalyst containing the same
Tanaka et al. Improvement in oxygen storage capacity
CN103874543B (en) Exhaust gas purifying catalyst and exhaust gas purifying catalyst constituting body
JP6501778B2 (en) Use of mixed oxides as oxygen storage components
JP7172902B2 (en) oxygen storage material
JP2010030823A (en) Compound oxide and catalyst containing the compound oxide for cleaning exhaust gas
JP2008212833A (en) Composite oxide for exhaust gas purifying catalyst and exhaust gas purifying catalyst containing this composite oxide
EP2155365B1 (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JP2010119969A (en) Compound oxide catalyst, diesel particulate filter using the same and method for producing the catalyst
JP5190797B2 (en) Composite oxide catalyst, diesel particulate filter using the same, and method for producing composite oxide catalyst
WO2019194187A1 (en) Material for exhaust gas purification catalyst, catalyst composition for exhaust gas purification, and exhaust gas purification catalyst
JP7420087B2 (en) Exhaust gas purification system
JP7136070B2 (en) Exhaust gas purification system
JP7238211B2 (en) Particles for exhaust gas purification catalyst
JP6468026B2 (en) Exhaust gas purification catalyst
Rohart et al. High OSC CeO2/ZrO2 Mixed Oxides Used as Preferred Metal Carriers for Advanced Catalysts
JP2019188389A (en) Nitrogen oxide occlusion material and exhaust purification method
JP2021109127A (en) Oxygen occlusion material
JP2012052469A (en) NOx ABSORBING-DISCHARGING MATERIAL, EXHAUST EMISSION CONTROL CATALYST AND EXHAUST EMISSION CONTROL SYSTEM
JPH09141102A (en) Oxide catalyst material for removing nitrogen oxide and removal of nitrogen oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R151 Written notification of patent or utility model registration

Ref document number: 7172902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151