JP7172803B2 - Optical device and optical transceiver using the same - Google Patents

Optical device and optical transceiver using the same Download PDF

Info

Publication number
JP7172803B2
JP7172803B2 JP2019067753A JP2019067753A JP7172803B2 JP 7172803 B2 JP7172803 B2 JP 7172803B2 JP 2019067753 A JP2019067753 A JP 2019067753A JP 2019067753 A JP2019067753 A JP 2019067753A JP 7172803 B2 JP7172803 B2 JP 7172803B2
Authority
JP
Japan
Prior art keywords
substrate
optical
reflecting member
optical device
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019067753A
Other languages
Japanese (ja)
Other versions
JP2020166166A (en
Inventor
孝知 伊藤
真悟 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2019067753A priority Critical patent/JP7172803B2/en
Publication of JP2020166166A publication Critical patent/JP2020166166A/en
Application granted granted Critical
Publication of JP7172803B2 publication Critical patent/JP7172803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光デバイス及びそれを用いた光送受信装置に関し、特に、光導波路や制御電極を形成した電気光学基板に反射部材を接合した光デバイス及びそれを用いた光送受信装置に関する。 The present invention relates to an optical device and an optical transmitter/receiver using the same, and more particularly to an optical device in which a reflecting member is bonded to an electro-optic substrate on which optical waveguides and control electrodes are formed, and an optical transmitter/receiver using the same.

光通信分野や光計測分野において、種々の光変調器などの光デバイスが多用されている。図1に示す従来の光デバイスでは、特許文献1に示す光変調器のように、平面視した形状が略長方形の電気光学基板1(基板1)に光導波路2や制御電極(不図示)が形成されており、略長方形の両短辺に光波の入力用及び出力用の2つの光ファイバ(31,32)が直接接続されている。符号4は基板1を収容する筐体である。 2. Description of the Related Art Optical devices such as various optical modulators are widely used in the fields of optical communication and optical measurement. In the conventional optical device shown in FIG. 1, like the optical modulator shown in Patent Document 1, an electro-optical substrate 1 (substrate 1) having a substantially rectangular shape in plan view has an optical waveguide 2 and a control electrode (not shown). Two optical fibers (31, 32) for light wave input and light wave output are directly connected to both short sides of a substantially rectangular shape. Reference numeral 4 denotes a housing that accommodates the substrate 1 .

図1のような光デバイスは、両端から光ファイバが導出されているため、デバイス自体のサイズが大きくなるだけでなく、光デバイスを光送受信装置などのユニットに組み込む際には、筐体4の外部の光ファイバ(31,32)を曲げて実装することが行われており、光デバイスの実装に係る面積が大きくなるという問題を生じている。 Since the optical device shown in FIG. 1 has optical fibers led out from both ends, not only does the size of the device itself increase, but when the optical device is incorporated into a unit such as an optical transmitter/receiver, the housing 4 The external optical fibers (31, 32) are bent for mounting, which causes a problem of increasing the mounting area of the optical device.

光デバイスの実装面積を削減するため、特許文献2では図2に示すように、光デバイスに接続される入力用又は出力用の光ファイバ(図2では入力用光ファイバ31)を、レンズ付きの光路変換素子(反射部材)50を使用して任意の角度、例えば90度に曲げる方法が提案されている。符号51は、光ファイバ31を光路変換素子50に直接接合するためのフェルールであり、符号52は、光導波路2から出射される複数の光波を偏波合成するための偏波合成手段である。 In order to reduce the mounting area of the optical device, as shown in FIG. 2, Patent Document 2 discloses that an input or output optical fiber (input optical fiber 31 in FIG. 2) connected to the optical device is replaced with a lens-equipped optical fiber. A method of bending at an arbitrary angle, for example, 90 degrees using an optical path changing element (reflecting member) 50 has been proposed. Reference numeral 51 denotes a ferrule for directly joining the optical fiber 31 to the optical path changing element 50, and reference numeral 52 denotes polarization combining means for polarization combining a plurality of light waves emitted from the optical waveguide 2. FIG.

また、特許文献3では図3に示すように、入力用光ファイバ31と出力用光ファイバ32を筐体4に対して同じ側壁に配置している。筐体内では2つのプリズム(R1,R2)を用いて光路を折り返す方法が提案されている。符号L1~L3は集光又はコリメート用のレンズであり、符号53は偏波合成手段を示している。 Further, in Patent Document 3, as shown in FIG. 3, the input optical fiber 31 and the output optical fiber 32 are arranged on the same side wall of the housing 4 . A method has been proposed in which two prisms (R1, R2) are used in the housing to turn back the optical path. Reference numerals L1 to L3 denote lenses for condensing or collimating, and reference numeral 53 denotes polarized wave synthesizing means.

図2のような光デバイスでは、レンズ付き光路変換素子50と角度や位置を正確に調整し、光ファイバ31の出射端部と光導波路2の入射端部21の光軸を合わせることが必要となる。しかしながら、この調整に係る作業は極めて煩雑であり、多くの労力と時間を必要とする。 In the optical device as shown in FIG. 2, it is necessary to accurately adjust the angle and position of the optical path changing element 50 with a lens, and to align the optical axes of the output end of the optical fiber 31 and the input end 21 of the optical waveguide 2 . Become. However, the work related to this adjustment is extremely complicated and requires a lot of labor and time.

しかも、筐体4内で基板1と光路変換素子50とを接着剤などで接合した場合、温度変化により発生する内部応力は、基板1と光路変換素子50との接合部分に集中しやすい。特に基板1と光路変換素子50とが異なる材料の場合は顕著である。このため当該内部応力が光導波路の端部に伝わり、結果的に光導波路の屈折率変化による偏波歪みの発生や、光軸のズレなどの不具合を生じる。 Moreover, when the substrate 1 and the optical path rotator 50 are bonded together in the housing 4 with an adhesive or the like, the internal stress generated by temperature change tends to concentrate on the junction between the substrate 1 and the optical path rotator 50 . This is particularly noticeable when the substrate 1 and the optical path rotator 50 are made of different materials. For this reason, the internal stress is transmitted to the end portion of the optical waveguide, resulting in problems such as polarization distortion due to a change in the refractive index of the optical waveguide and misalignment of the optical axis.

また、図3のような光デバイスでは、光路変換手段である2つのプリズム(R1,R2)の位置及び角度を正確に合わせる必要があり、多くの労力や時間を要する。しかも、反射面がプリズム毎に独立しており、各プリズムは筐体4に接着固定されているため、温度変化により光学部品の位置や角度が微妙に変化し、光損失変動なども発生し易くなる。 Further, in the optical device as shown in FIG. 3, it is necessary to accurately match the positions and angles of the two prisms (R1, R2), which are the optical path changing means, requiring much labor and time. Moreover, since each prism has an independent reflecting surface and each prism is adhesively fixed to the housing 4, the positions and angles of the optical components change slightly due to changes in temperature, and fluctuations in light loss are likely to occur. Become.

しかも、光変調器などの光デバイスにおいては、複数のマッハツェンダー型光導波路を入れ子状に組み合わせた、所謂、ネスト型光導波路のように、光導波路の集積化が進んでおり、しかも光変調素子を構成する基板1のサイズをより小さくするため、基板1の短辺側端部から光変調器のマッハツェンダー干渉計部(以下MZ部)や、MZ部への入射前で単に光を分岐する分岐部などまでの距離も極めて短くなっている。このため、基板1の短辺側端部で発生する内部応力は、該端部に留まらず、MZ部や分岐部にまでその影響が及んでいる。 Moreover, in optical devices such as optical modulators, integration of optical waveguides is progressing, such as so-called nested optical waveguides in which a plurality of Mach-Zehnder optical waveguides are combined in a nested manner, and optical modulation elements are being developed. In order to further reduce the size of the substrate 1 constituting The distance to the bifurcation is also extremely short. Therefore, the internal stress generated at the edge of the short side of the substrate 1 affects not only the edge but also the MZ portion and the branch portion.

特開2004-125854号公報JP 2004-125854 A 特開2018-55017号公報JP 2018-55017 A 特開2018-72605号公報JP 2018-72605 A

本発明が解決しようとする課題は、上述したような問題を解決し、電気光学基板と反射部材とを接合した際でも、両者の接合部分に発生する内部応力の影響を抑制し、光損失等の変動の少ない光デバイスを提供することである。 The problem to be solved by the present invention is to solve the above-described problems, suppress the influence of internal stress generated in the joint portion between the electro-optical substrate and the reflecting member even when the two are joined together, and reduce optical loss and the like. To provide an optical device with little variation in .

上記課題を解決するため、本発明の光デバイスは、以下の技術的特徴を有する。
(1) 電気光学効果を有する基板と、該基板は、平面視した形状が対向する長辺と対向する短辺とを有する第1の面を備え、該第1の面上には、少なくとも一方の該短辺に接する入射用又は出射用の端部を有する光導波路と、該光導波路を伝搬する光波を制御するための制御電極とが形成され、該光導波路の該端部が配置される該短辺に沿って該基板上に配置される補強部材と、該光導波路の該端部に対向して該基板の外部に配置される反射部材とを有する光デバイスにおいて、該反射部材は、該光導波路に入射又は該光導波路から出射する光波を、該基板の長辺方向に対して折り返す方向に光路を変換して該基板の外部を伝搬するよう構成しており、さらに、該反射部材は、該短辺に位置する該基板の端面と該補強部材の端面に接合領域で接合され、該長辺の延伸方向から平面視した場合、該反射部材と該基板の端面とが接合される該接合領域の形状は、該短辺上における該光導波路の該端部の配置形状の中心点、又は該光導波路で該端部に近い分岐用又は合波用の分岐導波路部の配置形状の対称軸であり、該長辺と同じ方向に延びる該対称軸が該短辺と交差する点に対して短辺の延伸方向に対称となるよう設定されていることを特徴とする。
In order to solve the above problems, the optical device of the present invention has the following technical features.
(1) A substrate having an electro-optical effect and a first surface having long sides facing each other and short sides facing each other in a plan view of the substrate. and a control electrode for controlling the light wave propagating through the optical waveguide, wherein the end of the optical waveguide is disposed. In an optical device having a reinforcing member arranged on the substrate along the short side and a reflecting member arranged outside the substrate so as to face the end of the optical waveguide, the reflecting member comprises: A light wave incident on or emitted from the optical waveguide is converted into an optical path in a direction that is turned back with respect to the long side direction of the substrate, and is propagated outside the substrate; is joined to the end face of the substrate located on the short side and the end face of the reinforcing member in a joining region, and when viewed from the extending direction of the long side, the reflecting member and the end face of the substrate are joined. The shape of the junction region is the center point of the arrangement shape of the end of the optical waveguide on the short side, or the arrangement shape of the branch waveguide portion for branching or multiplexing near the end in the optical waveguide. and is set symmetrically in the extending direction of the short side with respect to the point where the axis of symmetry extending in the same direction as the long side intersects the short side.

(2) 上記(1)に記載の光デバイスにおいて、該長辺の延伸方向から平面視した場合、該反射部材と該基板又は該補強部材との接合部分では、該接合領域を取り囲む該反射部材の外周面の少なくとも一部と、該接合領域を取り囲む該基板又は該補強部材の外周面の少なくとも一部とは、連続した面となるように設定されていることを特徴とする。 (2) In the optical device according to (1) above, the reflecting member surrounds the bonding region at the bonding portion between the reflecting member and the substrate or the reinforcing member when viewed from above in the extending direction of the long side. and at least a portion of the outer peripheral surface of the substrate or the reinforcing member surrounding the joint region are set to form a continuous surface.

(3) 上記(1)に記載の光デバイスにおいて、該反射部材の接合領域の面積が、該基板の端面と該補強部材の端面とが形成する端面領域の面積より小さいことを特徴とする。 (3) In the optical device described in (1) above, the area of the junction region of the reflecting member is smaller than the area of the end face region formed by the end face of the substrate and the end face of the reinforcing member.

(4) 上記(1)乃至(3)に記載の光デバイスにおいて、該反射部材は少なくとも2つの反射面を有し、該光導波路に入射又は該光導波路から出射する光波を、該基板の長辺方向に対して折り返す方向に光路を変換するよう構成されていることを特徴とする。 (4) In the optical device described in (1) to (3) above, the reflecting member has at least two reflecting surfaces, and a light wave entering or exiting the optical waveguide is It is characterized in that it is configured to change the optical path in the direction of turning back with respect to the side direction.

(5) 上記(4)に記載の光デバイスにおいて、該光導波路から出射された後に該反射部材で折り返された光路、または該光導波路に入射される光路であって該反射部材で折り返される前の光路は、該基板の第1の面が形成する平面よりも上方を通過するよう設定されていることを特徴とする。 (5) In the optical device described in (4) above, an optical path that is turned back by the reflecting member after being emitted from the optical waveguide, or an optical path that is incident on the optical waveguide and before being turned back by the reflecting member is set to pass above a plane formed by the first surface of the substrate.

(6) 上記(1)乃至(5)のいずれかに記載の光デバイスにおいて、該基板と該反射部材は筐体内に収容され、該筐体に対して、該基板は固定されるが、該反射部材は固定されていないことを特徴とする。 (6) In the optical device according to any one of (1) to (5) above, the substrate and the reflecting member are accommodated in a housing, and the substrate is fixed to the housing. The reflecting member is characterized in that it is not fixed.

(7) 上記(1)乃至(6)のいずれかに記載の光デバイスにおいて、該基板と該反射部材及び中継基板は筐体内に収容され、該制御電極の高周波信号を入力する電気信号入力部が、該基板に対して該反射部材が配置された側の筐体側壁に配置され、該高周波信号は、該中継基板に形成された中継線路を介して、該電気信号入力部から該基板の長辺側に設けられた該制御電極の入力部に伝送されていることを特徴とする。 (7) In the optical device according to any one of (1) to (6) above, the substrate, the reflecting member, and the relay substrate are accommodated in a housing, and an electric signal input section for inputting a high frequency signal of the control electrode. is arranged on the side wall of the housing on the side where the reflecting member is arranged with respect to the substrate, and the high-frequency signal is transmitted from the electrical signal input section to the substrate via a relay line formed on the relay substrate. The signal is transmitted to the input portion of the control electrode provided on the long side.

(8)上記(1)乃至(7)のいずれかに記載の光デバイスは光変調器であり、さらに光受信器を備えたことを特徴とする光送受信装置である。 (8) The optical device according to any one of (1) to (7) above is an optical modulator, and is an optical transmitting/receiving apparatus further comprising an optical receiver.

本発明は、電気光学効果を有する基板と、該基板は、平面視した形状が対向する長辺と対向する短辺とを有する第1の面を備え、該第1の面上には、少なくとも一方の該短辺に接する入射用又は出射用の端部を有する光導波路と、該光導波路を伝搬する光波を制御するための制御電極とが形成され、該光導波路の該端部が配置される該短辺に沿って該基板上に配置される補強部材と、該光導波路の該端部に対向して該基板の外部に配置される反射部材とを有する光デバイスにおいて、該反射部材は、該光導波路に入射又は該光導波路から出射する光波を、該基板の長辺方向に対して折り返す方向に光路を変換して該基板の外部を伝搬するよう構成しており、さらに、該反射部材は、該短辺に位置する該基板の端面と該補強部材の端面に接合領域で接合され、該長辺の延伸方向から平面視した場合、該反射部材と該基板の端面とが接合される該接合領域の形状は、該短辺上における該光導波路の該端部の配置形状の中心点、又は該光導波路で該端部に近い分岐用又は合波用の分岐導波路部の配置形状の対称軸であり、該長辺と同じ方向に延びる該対称軸が該短辺と交差する点に対して短辺の延伸方向に対称となるよう設定されているため、以下のような効果が期待できる。
基板と反射部材との接合部に発生する内部応力が、基板端部の光導波路の配置の中心点に対して対称に分布することとなるため、該光導波路端部における光導波路に伝わる内部応力が光導波路端部に対して左右均等となり、光波の偏波の変化が抑制され変調光の品質劣化を低減することができる。
また、光導波路のMZ部や分岐部に達する内部応力に対しても、MZ部や分岐部を構成する分岐導波路部の配置形状の対称軸に対して略対称に分布することとなるため、変調光の品質の劣化等を抑制することが可能となる。
The present invention includes a substrate having an electro-optic effect, and a first surface having a long side facing each other and a short side facing each other in a plan view of the substrate. An optical waveguide having an input or output end contacting one of the short sides, and a control electrode for controlling a light wave propagating through the optical waveguide are formed, and the end of the optical waveguide is disposed. and a reflective member arranged outside the substrate facing the end of the optical waveguide, wherein the reflective member is a light wave incident on the optical waveguide or emitted from the optical waveguide is converted into a direction in which the light wave is turned back with respect to the long side direction of the substrate, and is propagated outside the substrate; A member is joined to an end face of the substrate located on the short side and an end face of the reinforcing member in a joint region, and when viewed from above in the extending direction of the long side, the reflecting member and the end face of the substrate are joined. The shape of the junction region is the center point of the arrangement shape of the end portion of the optical waveguide on the short side, or the arrangement of the branch waveguide portion for branching or multiplexing near the end portion of the optical waveguide. It is the axis of symmetry of the shape, and is set so as to be symmetrical in the extending direction of the short side with respect to the point where the axis of symmetry extending in the same direction as the long side intersects the short side. can be expected.
Since the internal stress generated at the junction between the substrate and the reflecting member is distributed symmetrically with respect to the center point of the arrangement of the optical waveguide at the edge of the substrate, the internal stress transmitted to the optical waveguide at the edge of the optical waveguide becomes equal to the left and right with respect to the end of the optical waveguide, the change in the polarization of the light wave is suppressed, and the quality deterioration of the modulated light can be reduced.
Also, the internal stress reaching the MZ portion and the branching portion of the optical waveguide is distributed substantially symmetrically with respect to the symmetrical axis of the arrangement shape of the branching waveguide portion that constitutes the MZ portion and the branching portion. It becomes possible to suppress the deterioration of the quality of the modulated light.

従来の光デバイス(入出力用光ファイバを直線状に配置)を示す図である。1 is a diagram showing a conventional optical device (input/output optical fibers are arranged in a straight line); FIG. 従来の光デバイス(入出力用光ファイバを直角に配置)を示す図である。1 is a diagram showing a conventional optical device (input/output optical fibers are arranged at right angles); FIG. 従来の光デバイス(入出力用光ファイバを折り返して配置)を示す図である。FIG. 10 is a diagram showing a conventional optical device (with an input/output optical fiber folded back); 本発明の光デバイスに係る第1実施例を説明する図である。1A and 1B are diagrams for explaining a first embodiment of an optical device according to the present invention; FIG. 本発明の光デバイスにおける基板と反射部材との接合状況を説明する図である。It is a figure explaining the joining condition of the board|substrate and reflection member in the optical device of this invention. 本発明の光デバイスの基板と反射部材との接合を説明する平面図である。FIG. 4 is a plan view for explaining bonding between a substrate and a reflecting member of the optical device of the present invention; 図6の光デバイスの一点鎖線X-X’における断面図である。7 is a cross-sectional view of the optical device of FIG. 6 along the dashed-dotted line X-X'; FIG. 図6の光デバイスの一点鎖線Y-Y’における断面図である。7 is a cross-sectional view of the optical device of FIG. 6 along the dashed-dotted line YY'; FIG. 図8に係る応用例(その1)を示す図である。FIG. 9 is a diagram showing an application example (part 1) according to FIG. 8; 図8に係る応用例(その2)を示す図である。FIG. 9 is a diagram showing an application example (part 2) according to FIG. 8; 光導波路の端部等が基板の短辺方向の中心からずれた場合を説明する図である。It is a figure explaining the case where the edge part of an optical waveguide, etc. deviate from the center of the short side direction of a board|substrate. 図11の光デバイスの一点鎖線Y-Y’における断面図である。12 is a cross-sectional view of the optical device of FIG. 11 taken along the dashed-dotted line Y-Y'; FIG. 反射部材の他の形状(その1)を説明する図である。It is a figure explaining other shapes (the 1) of a reflecting member. 図13の基板と反射部材との接合状況を説明する図である。14A and 14B are diagrams for explaining the state of bonding between the substrate and the reflecting member in FIG. 13; 図13に用いた反射部材に目印を設けた例を説明する図である。It is a figure explaining the example which provided the mark in the reflecting member used in FIG. 反射部材の他の形状(その2)を説明する図である。It is a figure explaining the other shape (2) of a reflecting member. 図16に用いた反射部材の切り欠きを説明する図である。FIG. 17 is a diagram for explaining cutouts of the reflecting member used in FIG. 16; 本発明の光デバイスに係る第2実施例を説明する図である。FIG. 10 is a diagram for explaining a second embodiment of the optical device of the present invention; 図18の光デバイスの一点鎖線X-X’における断面図である。19 is a cross-sectional view of the optical device of FIG. 18 along the dashed-dotted line X-X'; FIG. 図18の光デバイスの一点鎖線Y-Y’における断面図である。19 is a cross-sectional view of the optical device of FIG. 18 taken along the dashed-dotted line Y-Y'; FIG. 図20に係る応用例(その1)を示す図である。FIG. 21 is a diagram showing an application example (part 1) according to FIG. 20; 図20に係る応用例(その2)を示す図である。FIG. 21 is a diagram showing an application example (part 2) according to FIG. 20; 本発明の光デバイスに係る第3実施例を説明する図である。FIG. 10 is a diagram for explaining a third embodiment of the optical device of the present invention; 図23に用いた反射部材の切り欠きを説明する図である。It is a figure explaining the notch of the reflecting member used for FIG. 本発明の光デバイスに係る第4実施例を説明する図である。It is a figure explaining the 4th Example based on the optical device of this invention. 本発明の光デバイスに係る第5実施例を説明する図である。It is a figure explaining the 5th Example based on the optical device of this invention. 本発明の光デバイスに係る第6実施例を説明する図である。It is a figure explaining the 6th Example based on the optical device of this invention.

以下、本発明の光デバイスについて、好適例を用いて詳細に説明する。
本発明の光デバイスは、図4及び5に示すように、電気光学効果を有する基板1と、該基板は、平面視した形状が対向する長辺と対向する短辺とを有する第1の面を備え、該第1の面上には、少なくとも一方の該短辺に接する入射用又は出射用の端部を有する光導波路2と、該光導波路を伝搬する光波を制御するための制御電極(不図示)とが形成され、該光導波路の該端部が配置される該短辺に沿って該基板上に配置される補強部材10と、該光導波路の該端部に対向して該基板の外部に配置される反射部材Rとを有する光デバイスにおいて、該反射部材Rは、該短辺に位置する該基板の端面と該補強部材の端面に接合領域で接合され、該長辺の延伸方向から平面視した場合、該反射部材と該基板の端面とが接合される該接合領域の形状は、該短辺上における該光導波路の該端部の配置形状の中心点C1、又は該光導波路で該端部に近い分岐用又は合波用の分岐導波路部の配置形状の対称軸であり、該長辺と同じ方向に延びる該対称軸が該短辺と交差する点C2に対して短辺の延伸方向に対称となるよう設定されていることを特徴とする。
Hereinafter, the optical device of the present invention will be described in detail using preferred examples.
As shown in FIGS. 4 and 5, the optical device of the present invention comprises a substrate 1 having an electro-optical effect, and a first surface having a long side facing each other and a short side facing each other in plan view. and, on the first surface, an optical waveguide 2 having an input or output end contacting at least one of the short sides, and a control electrode ( (not shown) are formed, a reinforcing member 10 is arranged on the substrate along the short side on which the end of the optical waveguide is arranged, and the substrate is opposed to the end of the optical waveguide. , the reflecting member R is joined to the end face of the substrate located on the short side and the end face of the reinforcing member at a joint region, and the long side extends When viewed in plan from the direction, the shape of the bonding region where the reflecting member and the end surface of the substrate are bonded is the center point C1 of the arrangement shape of the end portion of the optical waveguide on the short side, or the optical waveguide. With respect to the point C2, which is the symmetrical axis of the arrangement shape of the branching waveguide portion for branching or multiplexing near the end of the waveguide, and where the symmetrical axis extending in the same direction as the long side intersects the short side It is characterized by being set so as to be symmetrical in the extending direction of the short sides.

本発明の光デバイスで使用する電気光学効果を有する基板1としては、ニオブ酸リチウム(LN)やタンタル酸リチウム、ジルコン酸チタン酸ランタン(PLZT)などの結晶材料や、InPなどの半導体基板、EOポリマー材料などを用いることができる。光導波路の形成方法としては、例えば、ニオブ酸リチウム基板(LN基板)上にチタン(Ti)などの高屈折率物質を熱拡散する方法やプロトン交換法などにより形成される。また、基板1に凹凸を形成してリッジ型導波路を形成することも可能である。 The substrate 1 having an electro-optical effect used in the optical device of the present invention includes crystal materials such as lithium niobate (LN), lithium tantalate, and lanthanum zirconate titanate (PLZT), semiconductor substrates such as InP, and EO. A polymer material or the like can be used. The optical waveguide is formed by, for example, a method of thermally diffusing a high refractive index substance such as titanium (Ti) on a lithium niobate substrate (LN substrate), a proton exchange method, or the like. It is also possible to form a ridge-type waveguide by forming unevenness on the substrate 1 .

制御電極には、光導波路に変調信号による電界を印加する変調電極や、DCバイアス電圧による電界を印加するDC電極がある。これら制御電極は、基板表面に、Ti・Auの電極パターンを形成し、金メッキ方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層を設けることも可能である。 The control electrode includes a modulation electrode that applies an electric field based on a modulation signal to the optical waveguide, and a DC electrode that applies an electric field based on a DC bias voltage. These control electrodes can be formed by forming an electrode pattern of Ti and Au on the surface of the substrate and using a method such as gold plating. Furthermore, it is also possible to provide a buffer layer such as dielectric SiO 2 on the surface of the substrate after forming the optical waveguide, if necessary.

図4は本発明の光デバイスの一例を示す平面図である。図4の光デバイスでは、入力用光ファイバ31と出力用光ファイバ32とは筐体4の同じ側壁から筐体内に導入され、筐体内で折り返し光路を形成している。光ファイバ31からの出射光は、集光レンズLにより、基板1に形成された光導波路2の入射端部に集光されている。また、折り返し光路を形成するため、反射部材Rを設けている。基板1の短辺側の端部には、基板上に補強部材10が接合固定され、さらに、基板1と補強部材10の同一端面に反射部材Rが接着剤で接合されている。以下では補強部材10を利用する例を中心に説明するが、補強部材が無い場合であっても、本発明の基本的な考え方が適用できることは、言うまでもない。また、光路の向き(光波の伝搬方向)は図4と逆の方向としてもよい。 FIG. 4 is a plan view showing an example of the optical device of the present invention. In the optical device of FIG. 4, the input optical fiber 31 and the output optical fiber 32 are introduced into the housing from the same side wall of the housing 4, forming a folded optical path within the housing. Emitted light from the optical fiber 31 is condensed by a condensing lens L onto the incident end of the optical waveguide 2 formed on the substrate 1 . Also, a reflecting member R is provided to form a folded optical path. A reinforcing member 10 is bonded and fixed onto the substrate 1 at the end of the short side of the substrate 1, and a reflecting member R is bonded to the same end surface of the substrate 1 and the reinforcing member 10 with an adhesive. An example using the reinforcing member 10 will be mainly described below, but it goes without saying that the basic idea of the present invention can be applied even if there is no reinforcing member. Also, the direction of the optical path (propagation direction of the light wave) may be opposite to that in FIG.

図4における反射部材Rは、2つの反射面を形成したものであるが、反射面の数は、2つに限定されるものではなく、3つ以上又は1つであっても良い。なお、複数の反射面を有する反射部材を用いることで、個々の反射面を別個の反射部材で形成する場合と比較し、温度変化に起因する光損失変動を低減することが可能となる。
また、2つ又はそれ以上の反射面を有する反射部材は1つのプリズムで形成してもよいし、もしくは1つの反射面を持つ2つ又はそれ以上のプリズムを筐体とは別に用意された共通の固定部材に固定配置したものを用いてもよい。これにより、光軸の角度ズレへの許容度が増すことが可能となる。
さらに、図2の従来例に示すように、反射部材Rは、反射面の一部にレンズ機能を付加することも可能である。
Although the reflecting member R in FIG. 4 has two reflecting surfaces, the number of reflecting surfaces is not limited to two, and may be three or more or one. By using a reflecting member having a plurality of reflecting surfaces, it is possible to reduce optical loss fluctuations caused by temperature changes, compared to the case where each reflecting surface is formed by a separate reflecting member.
Also, the reflecting member having two or more reflecting surfaces may be formed by one prism, or two or more prisms each having one reflecting surface may be provided separately from the housing. may be fixedly arranged on the fixing member. This makes it possible to increase the tolerance for angular misalignment of the optical axis.
Furthermore, as shown in the conventional example of FIG. 2, the reflecting member R can have a lens function added to a part of the reflecting surface.

図5は、基板1と反射部材Rとの接合部分を拡大して示したものである。図5では、光導波路2の配置等を見易くするため、補強部材の図示を省略している。点線Aの部分は、基板1と反射部材Rとを光学接着剤等で接合する部分を示している。本発明では、基板(補強部材)と反射部材とが互いに接合している点線Aの領域を「接合部分」と称している。点線Aの部分では、接合領域内で接着剤が硬化収縮することにより内部応力が発生する。また、接合領域の外周付近にも接着剤がはみ出し、その接着剤が硬化収縮することにより内部応力が発生することとなる。内部応力は、接合面に露出した光導波路2の入射端部に加わり、光導波路の屈折率変化(偏波の歪みや偏光状態の変化など)を発生させる。これにより消光比や変調効率が劣化し変調光の品質の劣化が生じる。
また、複数の光導波路の端部が接合面に露出している場合(例えば、図27参照)には、光導波路毎の屈折率の変化が異なるため光導波路間の相対的な偏波状態が大きく異なり更なる変調光の品質の劣化を発生する可能性がある。
FIG. 5 is an enlarged view of the joint portion between the substrate 1 and the reflecting member R. As shown in FIG. In FIG. 5, illustration of reinforcing members is omitted in order to make the arrangement of the optical waveguide 2 and the like easier to see. A portion indicated by a dotted line A indicates a portion where the substrate 1 and the reflecting member R are bonded with an optical adhesive or the like. In the present invention, the area indicated by the dotted line A where the substrate (reinforcing member) and the reflecting member are joined together is called a "joint portion". In the portion indicated by the dotted line A, internal stress is generated due to curing shrinkage of the adhesive within the joint region. In addition, the adhesive protrudes near the outer periphery of the joint region, and internal stress is generated due to curing shrinkage of the adhesive. The internal stress is applied to the incident end of the optical waveguide 2 exposed at the joint surface, and causes a change in the refractive index of the optical waveguide (distortion of polarized waves, change in polarization state, etc.). As a result, the extinction ratio and modulation efficiency are degraded, and the quality of modulated light is degraded.
In addition, when the end portions of a plurality of optical waveguides are exposed to the joint surface (see, for example, FIG. 27), the relative polarization state between the optical waveguides changes because the change in the refractive index differs for each optical waveguide. significantly different and may cause further modulated light quality degradation.

また、近年の光変調器などでは、光デバイスの小型化に関するニーズを反映して、図5のように、基板1の短辺端部の近くに配置される、光導波路のMZ部の分岐部や合波部、あるいは光導波路のY字型分岐部やY字型合波部などの分岐導波路部と、該短辺端部との距離Sが小さくなっている。なお、「Y字型分岐部」の一例としては、ネスト型導波路の最初の分岐部や、DP-QPSK変調器のようにX偏波用MZ部とY偏波用MZ部への入射前で単にX偏波用とY偏波用に光を分岐する分岐部などが該当する。このため、接合部分Aではみ出した接着剤による内部応力は、分岐導波路部まで到達する可能性がある。このため、分岐導波路部に対してアンバランスな内部応力が加わると、分岐比が非対称となったり、変調部毎に異なった位相差が発生し、変調信号の歪みなどの悪影響を生じる。このような悪影響は、基板が複数のMZ部からなる変調部を備え、複数の変調信号で異なった変調を行っている場合には、特に顕著となる。 In recent years, optical modulators and the like reflect the need for miniaturization of optical devices. As shown in FIG. The distance S between the short side end portion and the branching waveguide portion such as the optical waveguide or the multiplexing portion, or the Y-shaped branching portion or the Y-shaped multiplexing portion of the optical waveguide is reduced. An example of the "Y-shaped branching section" is the first branching section of a nested waveguide, or before incidence on the MZ section for X-polarized waves and the MZ section for Y-polarized waves like a DP-QPSK modulator. and a branching unit that simply branches light into X-polarized waves and Y-polarized waves. Therefore, the internal stress due to the adhesive protruding from the joint A may reach the branch waveguide portion. Therefore, if an unbalanced internal stress is applied to the branch waveguide portion, the branching ratio becomes asymmetrical, or a different phase difference occurs in each modulation portion, causing adverse effects such as distortion of the modulated signal. Such an adverse effect is particularly pronounced when the substrate has a modulating section composed of a plurality of MZ sections and different modulation is performed with a plurality of modulating signals.

接合部分Aにおける上述した不具合を解消するため、本発明の光デバイスでは、反射部材Rと基板1の端面とが接合される接合領域の形状は、該基板1の上面(第1の面)の短辺(図5の点a1と点a2を結ぶ線は、該短辺の一部となる)上において、接合面に露出している光導波路の端部の配置形状の中心点C1に対して、該短辺の延伸方向に対称となるよう設定している。 In order to solve the above-described problems at the joint portion A, in the optical device of the present invention, the shape of the joint region where the reflecting member R and the end surface of the substrate 1 are joined is the shape of the upper surface (first surface) of the substrate 1. On the short side (the line connecting the points a1 and a2 in FIG. 5 is part of the short side), the center point C1 of the arrangement shape of the end portion of the optical waveguide exposed to the joint surface , are set so as to be symmetrical in the extending direction of the short side.

また、該接合領域の形状は、該短辺上において、平面視した際の基板1の長辺と同じ方向に延びる対称軸(光導波路の端部に近い分岐用又は合波用の分岐導波路部の配置形状の対称軸。図5の二点鎖線参照)が該短辺と交差する点C2に対して、該短辺の延伸方向に対称となるよう設定しても良い。 In addition, the shape of the junction region is such that, on the short side, the axis of symmetry extending in the same direction as the long side of the substrate 1 in plan view (the branch waveguide for branching or combining near the end of the optical waveguide) It may be set so as to be symmetrical in the extending direction of the short side with respect to the point C2 where the axis of symmetry of the arrangement shape of the part (see the two-dot chain line in FIG. 5) intersects the short side.

上述した中心点C1と交点C2が一致している場合は、対称の基準となる点は同一点となるが、図5のように両者の位置が異なる場合には、光導波路の端部に加わる内部応力と、MZ部や分岐部の分岐導波路部に加わる内部応力のいずれを重視するかによって、中心点C1または交点C2のどちらかの基準点を選択することが可能である。 When the center point C1 and the intersection point C2 are coincident with each other, the reference point for symmetry is the same point. Either the center point C1 or the intersection point C2 can be selected as the reference point depending on whether the internal stress or the internal stress applied to the MZ portion or the branch waveguide portion of the branch portion is to be emphasized.

このように設定すると、点C1又はC2に対して内部応力を対称に分布させることが可能となり、光導波路の端部やMZ部や分岐部の分岐導波路部に対する内部応力のアンバランスを解消することが可能となる。その結果、接着剤の硬化時や硬化後の環境温度の変動時における光導波路の端部での屈折率変化(偏波の歪みなど)や分岐導波路部へのアンバランスな応力による光デバイスの変調特性の劣化などを抑制することができる。 By setting in this way, it is possible to distribute the internal stress symmetrically with respect to the point C1 or C2, and to eliminate the imbalance of the internal stress with respect to the end portion of the optical waveguide, the MZ portion, and the branch waveguide portion of the branch portion. becomes possible. As a result, changes in the refractive index (polarization distortion, etc.) at the end of the optical waveguide when the adhesive is cured or when the environmental temperature fluctuates after curing, and unbalanced stress on the branched waveguide section can lead to damage to the optical device. Degradation of modulation characteristics can be suppressed.

分岐導波路部については、ネスト型光導波路やDP-QPSK変調器の光導波路では、複数段の分岐導波路部が設けられている。本発明では、基板の短辺側に最も近い分岐導波路部に着目し、対称軸を設定している。
ただし、ネスト型光導波路や多波長用変調器(MZ部間で使用波長が異なる)のように複数のMZ部が並列に配置されている場合には、上記接合領域の短辺方向の中心は複数のMZ部の配置形状の対称軸上に配置してもよい。
また、ネスト型光導波路のように基板の短辺側の近くに親MZ部の分岐部が配置されている場合には、上記接合領域の短辺方向の中心は光導波路端部に対し最も近傍の親MZ部の対称軸上に配置してもよい。
これにより複数のMZ部に影響する応力は上記対称軸に対してほぼ対称となるため変調特性劣化の偏りを小さくすることができる。
As for the branch waveguide section, a plurality of stages of branch waveguide sections are provided in a nested optical waveguide or an optical waveguide of a DP-QPSK modulator. In the present invention, the axis of symmetry is set by focusing on the branched waveguide portion closest to the short side of the substrate.
However, when a plurality of MZ portions are arranged in parallel as in a nested optical waveguide or a multi-wavelength modulator (using different wavelengths between MZ portions), the center of the junction region in the short side direction is A plurality of MZ portions may be arranged on the symmetrical axis of the arrangement shape.
When the branching portion of the parent MZ portion is arranged near the short side of the substrate like a nested optical waveguide, the center of the junction region in the short side direction is closest to the end of the optical waveguide. may be placed on the axis of symmetry of the parent MZ portion of the
As a result, the stress that affects the plurality of MZ portions becomes substantially symmetrical with respect to the axis of symmetry, so that uneven modulation characteristic deterioration can be reduced.

基板1や反射部材Rは、図4に示すように、筐体4内に収容されている。筐体内では、基板1は筐体4に固定されるが、反射部材Rは筐体4に固定されていない。このため筐体内の温度が変化した場合でも、反射部材Rを筐体4に固定した場合と比較してその固定部から生じる応力がなくなるため、反射部材Rを介して基板1に加わる応力源を減少することができる。 The substrate 1 and the reflecting member R are accommodated in the housing 4 as shown in FIG. Inside the housing, the substrate 1 is fixed to the housing 4 , but the reflecting member R is not fixed to the housing 4 . Therefore, even if the temperature inside the housing changes, the stress generated from the fixing portion is eliminated compared to the case where the reflecting member R is fixed to the housing 4, so that the stress source applied to the substrate 1 via the reflecting member R can be reduced. can be reduced.

また、特に筐体4と反射部材Rの線膨張率が異なる場合には、温度変化により反射部材Rが伸縮した場合でも、反射部材Rが筐体4に固定されていないため、伸縮による内部応力が基板1に加わることを抑制することが可能となる。このため筐体4内の温度が変化した場合でも、光デバイスの変調特性の劣化などを抑制することができる。 In particular, when the linear expansion coefficients of the housing 4 and the reflecting member R are different, even if the reflecting member R expands and contracts due to temperature changes, the reflecting member R is not fixed to the housing 4, so the internal stress due to expansion and contraction can be suppressed from being applied to the substrate 1. Therefore, even if the temperature inside the housing 4 changes, deterioration of the modulation characteristics of the optical device can be suppressed.

さらに、集光レンズLを収容するレンズ鏡筒を反射部材Rに接合し、該レンズ鏡筒を筐体4の所定位置に固定することで、基板1とレンズ鏡筒の両者で反射部材Rを支持するよう構成することも可能である。
また筐体4内の温度変化時における変調特性の劣化抑制の観点から、該レンズ鏡筒及び反射部材Rを筐体4に固定しない構成は該筐体4から該レンズ鏡筒及び反射部材Rへの応力の影響をなくすことができるためより好適である。
なお、集光レンズLとしては屈折率分布型(GRIN)レンズを用いることもできる。特に光ファイバの外径に近い外径を有する小型の屈折率分布型レンズは軽量なため、集光レンズLを筐体4に固定せず反射部材Rのみに固定する場合により好適である。
屈折率分布型レンズはレンズ鏡筒を用いずに光ファイバと融着して固定してもよいし、レンズ鏡筒を用いて光ファイバと固定してもよい。
Furthermore, by joining a lens barrel containing the condenser lens L to the reflecting member R and fixing the lens barrel at a predetermined position in the housing 4, the reflecting member R is formed by both the substrate 1 and the lens barrel. It can also be configured to support.
Further, from the viewpoint of suppressing deterioration of modulation characteristics when the temperature inside the housing 4 changes, a configuration in which the lens barrel and the reflecting member R are not fixed to the housing 4 is arranged from the housing 4 to the lens barrel and the reflecting member R. This is more preferable because it can eliminate the influence of the stress of
As the condensing lens L, a gradient index (GRIN) lens can also be used. In particular, a small graded refractive index lens having an outer diameter close to the outer diameter of the optical fiber is lightweight, and is more suitable when the condenser lens L is fixed only to the reflecting member R without being fixed to the housing 4 .
The gradient index lens may be fused and fixed to the optical fiber without using a lens barrel, or may be fixed to the optical fiber using a lens barrel.

以下に、基板1や補強部材10と反射部材Rとの接合領域の形状について、詳細に説明する。図6は、図4の光デバイスにおける基板1、補強部材10及び反射部材Rを抜き出して示した平面図である。
ただし、図4では、基板1に形成された光導波路2の端部(基板1の左端側の端部)の位置が、基板1の短辺の中央とほぼ一致しているのに対し、図6では、光導波路2の端部の位置C1が、基板1の短辺の中央と一致していない点で異なっている。
また、図7は図6の一点鎖線X-X’における断面図、図8は図6の一点鎖線Y-Y’における断面図を各々示す。図6乃至8では、光導波路2の端部C1を基準点として接合領域の形状を設定している。
The shape of the bonding region between the substrate 1 or the reinforcing member 10 and the reflecting member R will be described in detail below. FIG. 6 is a plan view showing the substrate 1, the reinforcing member 10 and the reflecting member R extracted from the optical device of FIG.
However, in FIG. 4, the position of the end of the optical waveguide 2 formed on the substrate 1 (the end on the left end side of the substrate 1) is substantially aligned with the center of the short side of the substrate 1. 6 is different in that the position C1 of the end of the optical waveguide 2 does not coincide with the center of the short side of the substrate 1 .
7 is a cross-sectional view taken along the dashed-dotted line XX' in FIG. 6, and FIG. 8 is a cross-sectional view taken along the dashed-dotted line YY' in FIG. 6 to 8, the shape of the junction region is set with the end C1 of the optical waveguide 2 as a reference point.

図8の例では、反射部材Rの厚み(図面の縦方向の厚み)は、基板1の厚みと補強部材10の厚みを合わせたものと一致している。このため、反射部材Rの上面は補強部材10の上面と連続した同一平面を形成している。また、反射部材Rの下面は、基板1の下面と連続した同一平面を形成している。このように、図8では、反射部材Rの2つの辺に沿って連続した面を形成している。 In the example of FIG. 8, the thickness of the reflecting member R (the thickness in the vertical direction of the drawing) matches the sum of the thickness of the substrate 1 and the thickness of the reinforcing member 10 . Therefore, the upper surface of the reflecting member R and the upper surface of the reinforcing member 10 form a continuous flush plane. In addition, the bottom surface of the reflecting member R forms a continuous flush plane with the bottom surface of the substrate 1 . Thus, in FIG. 8, the two sides of the reflecting member R form continuous surfaces.

このように、反射部材Rと基板1又は補強部材10との接合部分では、該反射部材の該接合領域(斜線部分)を取り囲む外周面の少なくとも一部と、該基板又は該補強部材の該接合領域を取り囲む外周面の少なくとも一部とは、連続した面となるように設定している。このような連続した面を設けることにより、接合部分ではみ出した接着剤を拭き取り易くなる。はみ出した接着剤を拭き取ることは、接着剤の硬化収縮による内部応力の発生を、より少なくすることに繋がる。 As described above, at the joint portion between the reflecting member R and the substrate 1 or the reinforcing member 10, at least a portion of the outer peripheral surface surrounding the joint region (shaded portion) of the reflecting member and the joint between the substrate or the reinforcing member At least a part of the outer peripheral surface surrounding the area is set to be a continuous surface. By providing such a continuous surface, it becomes easier to wipe off the adhesive protruding from the joining portion. Wiping off the protruding adhesive leads to less generation of internal stress due to cure shrinkage of the adhesive.

また連続した面を形成するよう設計することは、反射部材Rと基板1又は補強部材10との位置合わせを、各部材の辺を基準に行うことができ、組み立て作業の容易化にも寄与する。 Further, the design to form a continuous surface enables the positioning of the reflecting member R and the substrate 1 or the reinforcing member 10 with reference to the sides of each member, which contributes to the simplification of the assembly work. .

図9は、図8よりも反射部材の厚みd(図面の縦方向)を薄くした場合の例である。この場合は反射部材Rの一面(ここでは反射部材Rの下面)は、基板1の一面(ここでは基板1の下面)と連続した面を形成している。 FIG. 9 shows an example in which the thickness d (vertical direction of the drawing) of the reflecting member is made thinner than that in FIG. In this case, one surface of the reflecting member R (here, the bottom surface of the reflecting member R) forms a continuous surface with one surface of the substrate 1 (here, the bottom surface of the substrate 1).

図10は、図8よりも反射部材Rの厚みdを厚くした場合の例である。この場合も反射部材Rの下面は基板1の一面と一致している。よって、1つの辺に沿って連続した面を形成している。 FIG. 10 shows an example in which the thickness d of the reflecting member R is made thicker than that in FIG. Also in this case, the lower surface of the reflecting member R is aligned with one surface of the substrate 1. As shown in FIG. Therefore, a continuous surface is formed along one side.

図8乃至10のいずれにおいても、接合領域(斜線部分)の形状は、基板1の上面(第1の面)の短辺(図面の基板1と補強部材10との境界線)上において、光導波路2の中心点に対して対称となるように設定されている。当然、短辺の延伸方向に対する対称の基準点を、光導波路の端部に近い分岐導波路部の対称軸が短辺と交差する点に設定することも可能である。 In any of FIGS. 8 to 10, the shape of the joint region (shaded portion) is such that the light guides on the short side of the upper surface (first surface) of the substrate 1 (the boundary line between the substrate 1 and the reinforcing member 10 in the drawings). It is set so as to be symmetrical with respect to the center point of the wave path 2 . Of course, it is also possible to set the reference point of symmetry with respect to the extending direction of the short side at the point where the axis of symmetry of the branch waveguide section near the end of the optical waveguide crosses the short side.

図6では、基板1に形成された光導波路2の端部(基板1の左端側の端部)の位置が、基板1の該短辺の中央から外れる例を示した。本発明は、このような基板に限らず、図1の従来例に示すように、光導波路の端部の位置や上述した対称軸と短辺とが交差する点の位置が、基板1の該短辺の中央に位置するものも採用できることは、言うまでもない。 6 shows an example in which the end of the optical waveguide 2 formed on the substrate 1 (the end on the left end side of the substrate 1) is out of the center of the short side of the substrate 1. FIG. The present invention is not limited to such a substrate, and as shown in the conventional example of FIG. Needless to say, the one positioned at the center of the short side can also be adopted.

図11は、基板1に形成された光導波路2の分岐部の対称軸(二点鎖線)が、基板1の短辺の中央から外れている例を示している。図12は、図11の一点鎖線Y-Y’における断面図である。 FIG. 11 shows an example in which the axis of symmetry (double-dot chain line) of the branched portion of the optical waveguide 2 formed on the substrate 1 is off the center of the short side of the substrate 1 . 12 is a cross-sectional view taken along the dashed-dotted line Y-Y' in FIG. 11. FIG.

図11及び12においては、接合領域(図12の斜線部分)の形状は、基板1の短辺の延伸方向(図面の左右方向)の中央に、上述した対称軸(二点鎖線)と短辺との交点(C2)が配置されている。当然、上記接合領域の形状を、光導波路の端部(C1)が当該短辺の延伸方向の中央に位置するよう構成することも可能である。 In FIGS. 11 and 12, the shape of the bonding region (hatched area in FIG. 12) is such that the above-mentioned axis of symmetry (double-dot chain line) and the short side and the intersection point (C2) is arranged. Of course, it is also possible to configure the shape of the junction region so that the end (C1) of the optical waveguide is positioned at the center in the extending direction of the short side.

また、図11に示すように光導波路の端部の位置(C1)や上述した対称軸と短辺とが交差する点の位置(C2)が基板1の該短辺の中央から短辺方向にずれている基板1を採用する場合は、反射部材Rを前記交差する点等の位置のずれている方向にシフトして配置されるため、反射部材Rの幅wを狭くすることができ、結果として反射部材Rの全体のサイズもコンパクト化することが可能となる。 Also, as shown in FIG. 11, the position (C1) of the end of the optical waveguide and the position (C2) of the point where the axis of symmetry and the short side intersect with each other extend from the center of the short side of the substrate 1 in the direction of the short side. When the offset substrate 1 is employed, the reflecting member R is shifted in the direction of the position of the crossing point or the like, so that the width w of the reflecting member R can be narrowed. As a result, the overall size of the reflecting member R can be made compact.

図13乃至15は、反射部材の他の形状(その1)を説明する図である。反射部材Rの接合領域(図14の斜線部分)が、基板1の端面と補強部材10の端面とが形成する端面領域の範囲内に収まるように、該反射部材Rの接合領域の面積が該端面領域の面積より小さくなるように設定されている。図13の反射部材Rの場合には、接着剤が接合領域の周囲にはみ出すが、接合領域の面積が小さくなるため、接着剤の硬化収縮や硬化後の環境温度の変化による内部応力の影響を少なくすることが可能となる。 13 to 15 are diagrams illustrating another shape (part 1) of the reflecting member. The area of the bonding region of the reflecting member R is adjusted so that the bonding region of the reflecting member R (the shaded area in FIG. 14) falls within the range of the end face region formed by the end face of the substrate 1 and the end face of the reinforcing member 10. It is set to be smaller than the area of the end face region. In the case of the reflecting member R shown in FIG. 13, the adhesive protrudes around the bonding area, but the area of the bonding area is small. can be reduced.

図13の反射部材Rの他の特徴として、反射部材による折り返し光路が、光導波路を光波が伝搬する方向と平行ではなく、角度θだけ広がるように構成していることである。このような構成は、図6の反射部材Rでも採用することができる。この構成により、反射部材Rのサイズを大きくすることなく反射部材R付近にコリメータレンズや偏光子などの光学部品を実装するスペースを確保することができる。 Another feature of the reflecting member R in FIG. 13 is that the optical path returned by the reflecting member is not parallel to the direction in which the light wave propagates through the optical waveguide, but spreads by an angle θ. Such a configuration can also be employed in the reflecting member R of FIG. With this configuration, it is possible to secure a space for mounting optical components such as a collimator lens and a polarizer in the vicinity of the reflecting member R without increasing the size of the reflecting member R.

反射部材Rは、図15に示すように接合領域の長さT1よりも、T1を除く全体の長さ(基板1と接合しない領域の長さ)T2の方が長くなる場合が多い、このような非対称性を有する形状の反射部材では、接合時の位置決めがより難しくなる。このため、図15に示すように符号7のようなケガキ線等の目印を設けることにより、反射部材の目印7を、基板1の光導波路2の端部や補強部材10の上面に別途形成した目印に、合わせることで、光学部品の位置決めを容易に行うことができる。 As shown in FIG. 15, the reflecting member R is often longer in length T2 (the length of the region not bonded to the substrate 1) than the length T1 in the bonding region. A reflective member having a shape having a large degree of asymmetry is more difficult to position during joining. Therefore, as shown in FIG. 15, marks 7 such as scribe lines are provided to separately form the marks 7 of the reflecting member on the end portion of the optical waveguide 2 of the substrate 1 and the upper surface of the reinforcing member 10. By aligning with the mark, the optical component can be easily positioned.

図16は他の形状(その2)を有する反射部材Rと基板1、補強部材10の配置図であり、図17は、当該反射部材Rの他の形状(その2)を説明する図である。
反射部材Rには、切り欠き状の段差8を形成し、該段差を基板1又は補強部材10の角に当接させて反射部材Rを基板1等に接合する。このように段差8を目印として使用することにより、機械的に反射部材Rの位置決めができる。
FIG. 16 is a layout diagram of the reflecting member R having another shape (part 2), the substrate 1, and the reinforcing member 10, and FIG. 17 is a diagram explaining the other shape (part 2) of the reflecting member R. .
A notch-shaped step 8 is formed in the reflecting member R, and the step is brought into contact with a corner of the substrate 1 or the reinforcing member 10 to join the reflecting member R to the substrate 1 or the like. By using the step 8 as a mark in this manner, the reflecting member R can be positioned mechanically.

図18乃至22は、本発明の光デバイスに係る第2実施例を説明する図である。図18及び図19が示すように、反射部材Rが形成する折り返し光路(図19の点線矢印)は、基板1の第1の面(上面)が形成する平面よりも上方を通過するよう設定されている。
また、図18乃至22では、接合領域の形状(図20乃至22の斜線部分)が、光導波路の分岐部の対称軸(図18の二点鎖線)と基板1の短辺との交点(C2)が、基板1の短辺の延伸方向の中央に位置するよう配置されている。
18 to 22 are diagrams for explaining a second embodiment of the optical device of the present invention. As shown in FIGS. 18 and 19, the return optical path (dotted line arrow in FIG. 19) formed by the reflecting member R is set to pass above the plane formed by the first surface (upper surface) of the substrate 1. ing.
18 to 22, the shape of the junction region (hatched portion in FIGS. 20 to 22) is the intersection (C2 ) is positioned at the center of the short side of the substrate 1 in the extending direction.

図20乃至22は、反射部材Rと基板1等との接合部分の配置を図示したものである。
図20は、基板1(補強部材10)の幅と反射部材Rの厚み(図面の横方向の厚み)が同じとなる場合を示している。そして、接合領域(斜線部分)を取り囲む外周面が、基板1(補強部材10)左右の側面の辺と基板1の下面の辺の3つの辺で、連続した面を形成している。このような連続面が多い場合は、接合領域から基板1の外周付近にはみ出した接着剤を拭き取ることが容易に行え、接着剤の硬化収縮による内部応力の影響を抑制することが可能となる。
20 to 22 illustrate the arrangement of joints between the reflecting member R and the substrate 1 and the like.
FIG. 20 shows a case where the width of the substrate 1 (reinforcing member 10) and the thickness of the reflecting member R (thickness in the lateral direction of the drawing) are the same. The outer peripheral surface surrounding the bonding area (hatched portion) forms a continuous surface with three sides, ie, the left and right side sides of the substrate 1 (reinforcing member 10) and the bottom side of the substrate 1. FIG. When there are many such continuous surfaces, it is possible to easily wipe off the adhesive protruding from the bonding area to the vicinity of the outer periphery of the substrate 1, and it is possible to suppress the influence of the internal stress due to curing shrinkage of the adhesive.

図21のように反射部材Rの厚みd(図面横方向の厚み)を薄くすると、反射部材Rの左右に接着剤がはみ出すが、接合部分の面積が小さくなるため、接着剤の硬化収縮による内部応力の影響を少なくすることが可能となる。
また、図22のように反射部材Rの厚みd(図面横方向の厚み)を厚くすると、基板1(補強部材10)の左右側面に接着剤がはみ出す。しかしながら、これらの接着剤のはみだし部分は、接合部分における外周部の左右辺であるため、光導波路の端部へ加わる接着剤のはみだし部分からの応力をほぼ同じにすることができる。
さらに、図21の構成と比較して接着剤のはみだし部分は、光導波路のMZ部や分岐導波路部より離れているため、接着剤の内部応力による影響を減少させさせることが可能である。
If the thickness d (thickness in the horizontal direction of the drawing) of the reflecting member R is reduced as shown in FIG. It becomes possible to reduce the influence of stress.
When the thickness d (thickness in the horizontal direction of the drawing) of the reflecting member R is increased as shown in FIG. 22, the adhesive protrudes from the left and right side surfaces of the substrate 1 (reinforcing member 10). However, since the protruding portions of the adhesive are on the left and right sides of the outer peripheral portion of the joint portion, the stress from the protruding portion of the adhesive applied to the end portion of the optical waveguide can be made substantially the same.
Furthermore, compared to the configuration of FIG. 21, the protruding portion of the adhesive is farther from the MZ portion and the branch waveguide portion of the optical waveguide, so it is possible to reduce the influence of the internal stress of the adhesive.

さらに反射部材Rが形成する折り返し光路(点線矢印)は、基板1の第1の面(上面)が形成する平面よりも上方を通過するよう設定されているため、図4のように入力用光ファイバ31が基板1の側面に配置される構成と比較して光デバイスの面積を小さく(小型化)することができる。
なお、基板1の長辺の延伸方向から基板1の短辺側を見た際に、反射部材Rにおける反射方向は、基板1の上下や左右でなく斜め方向としてもよい。
Further, the return optical path (dotted arrow) formed by the reflecting member R is set to pass above the plane formed by the first surface (upper surface) of the substrate 1. Therefore, as shown in FIG. Compared to the configuration in which the fiber 31 is arranged on the side surface of the substrate 1, the area of the optical device can be reduced (downsized).
Note that when the short side of the substrate 1 is viewed from the extending direction of the long side of the substrate 1, the reflection direction of the reflecting member R may be an oblique direction instead of the top, bottom, left, and right of the substrate 1. FIG.

図23及び24は、本発明の光デバイスに係る第3実施例を説明する図である。ここでは、光導波路や制御電極(不図示)を形成した2つの基板1を、反射部材Rを介して光学的に結合している。反射部材Rと各基板1との接合領域が、上述した種々の条件を満足するよう設定することは言うまでもない。また、図24に示すように、反射部材Rに切り欠き部である溝部80を設けることで、基板1と反射部材Rの接合部分からはみ出した接着剤を溝部80に逃がすことができ、基板1の側面への接着剤の拡がりを抑えることができる。
このため、はみ出した接着剤の硬化収縮により発生する応力の光導波路端部への影響が減少し、光導波路の屈折率変化による偏波歪みの発生や、光軸のズレなどの不具合を抑制することができる。
23 and 24 are diagrams for explaining a third embodiment of the optical device of the present invention. Here, two substrates 1 on which optical waveguides and control electrodes (not shown) are formed are optically coupled via a reflecting member R. FIG. Needless to say, the bonding area between the reflecting member R and each substrate 1 is set so as to satisfy the various conditions described above. Further, as shown in FIG. 24, by providing a groove portion 80 which is a notch portion in the reflecting member R, the adhesive protruding from the joint portion between the substrate 1 and the reflecting member R can escape to the groove portion 80. It is possible to suppress the spread of the adhesive to the side surface of the
As a result, the impact of the stress generated by curing shrinkage of the protruding adhesive on the end of the optical waveguide is reduced, and problems such as polarization distortion due to changes in the refractive index of the optical waveguide and misalignment of the optical axis are suppressed. be able to.

図25は、本発明の光デバイスに係る第4実施例を説明する図である。ここでは、基板1の端部近傍に光変調に係るMZ部や分岐導波路部が2個形成されている。このような複数の変調部を有するMZ部や分岐導波路部が基板1の端部近傍にある場合には、端部に最も近いMZ部や分岐導波路部に着目し、該MZ部や分岐導波路部における光導波路の配置形状の対称軸(光波の伝搬方向又は基板の長辺方向の対称軸。図25の二点鎖線)を特定し、該対称軸と接合領域の交点(対称軸と基板の短辺との交点)C2に基づき、上述したように接合領域の形状を設定することが好ましい。なお、図25の場合は、光導波路の端部も複数あることから、該端部の配置形状の中心点C1を特定し、接合領域の形状を設定することも可能である。 FIG. 25 is a diagram for explaining a fourth embodiment of the optical device of the present invention. Here, two MZ sections and two branch waveguide sections related to optical modulation are formed near the edge of the substrate 1 . When the MZ section and the branch waveguide section having such a plurality of modulation sections are located near the edge of the substrate 1, the MZ section and the branch waveguide section closest to the edge are focused on and The axis of symmetry of the arrangement shape of the optical waveguides in the waveguide portion (the axis of symmetry in the propagation direction of the light wave or the long side direction of the substrate; the two-dot chain line in FIG. 25) is specified, and the intersection of the axis of symmetry and the junction region (the axis of symmetry and It is preferable to set the shape of the bonding region as described above based on the intersection point C2 with the short side of the substrate. In the case of FIG. 25, since there are a plurality of end portions of the optical waveguide, it is also possible to specify the center point C1 of the arrangement shape of the end portions and set the shape of the bonding region.

図26は、本発明の光デバイスに係る第5実施例を説明する図である。ここでは、図25と同様に、基板1の端部近傍に光変調に係るMZ部や分岐導波路部が2個形成されている。図26では、反射部材Rと基板1との接合領域を2つに分割するため、反射部材Rの接合面の一部に凹部を形成している。そして、図26の上側の接合領域の形状の設定は、上側の光導波路2に係る分岐導波路部の対称軸と接合領域の交点(対称軸と基板の短辺との交点)C2に基づき行われている。また、図26の下側の接合領域の形状の設定は、下側の光導波路2’の端部の配置形状の中心点C1’に基づき行われている。当然、下側の接合領域の形状の設定も、下側の光導波路2’に係る分岐導波路部の対称軸と接合領域の交点C2’に基づき行っても良い。 FIG. 26 is a diagram for explaining a fifth embodiment of the optical device of the present invention. Here, as in FIG. 25, two MZ sections and branch waveguide sections related to optical modulation are formed near the edge of the substrate 1 . In FIG. 26, in order to divide the bonding area between the reflecting member R and the substrate 1 into two, a concave portion is formed in a portion of the bonding surface of the reflecting member R. As shown in FIG. The setting of the shape of the joint region on the upper side of FIG. 26 is performed based on the intersection point (the intersection point between the axis of symmetry and the short side of the substrate) C2 between the axis of symmetry of the branch waveguide portion of the optical waveguide 2 on the upper side and the joint region. It is Also, the shape of the bonding region on the lower side of FIG. 26 is set based on the center point C1' of the arrangement shape of the end portion of the optical waveguide 2' on the lower side. Of course, the shape of the lower joint region may also be set based on the intersection point C2' between the joint region and the axis of symmetry of the branch waveguide portion of the lower optical waveguide 2'.

図27は、本発明の光デバイスに係る第6実施例を説明する図である。ここでは、上述した本発明の光デバイスの折り返し光路の特徴を生かして、反射部材Rの基板1側とは反対側となる筐体4の側壁に、電気信号入出力端子を配置している。具体的には、基板1と反射部材R及び中継基板9は筐体4内に収容され、基板1上の制御電極に高周波信号を入力する電気信号入力部40が、基板1に対して反射部材Rが配置された側の筐体4の側壁に配置されている。そして、電気信号入力部40に入力された高周波信号は、中継基板9(アルミナ等)に形成された中継線路(不図示)を介して、該基板1の長辺側(図の上側)に設けられた制御電極の入力部(不図示)に伝送されている。必要に応じて、DCバイアス電圧を供給する電気信号入力部や、光導波路2の伝搬光や放射光を検知した検知信号を出力する電気信号出力部を付加することも可能である。 FIG. 27 is a diagram for explaining the sixth embodiment of the optical device of the present invention. Here, by taking advantage of the characteristic of the folded optical path of the optical device of the present invention described above, the electrical signal input/output terminals are arranged on the side wall of the housing 4 on the opposite side of the reflecting member R from the substrate 1 side. Specifically, the substrate 1, the reflecting member R, and the relay substrate 9 are accommodated in the housing 4, and the electrical signal input section 40 for inputting a high-frequency signal to the control electrode on the substrate 1 is connected to the substrate 1 by the reflecting member R. It is arranged on the side wall of the housing 4 on the side where the R is arranged. A high-frequency signal input to the electrical signal input unit 40 is provided on the long side (upper side in the figure) of the substrate 1 via a relay line (not shown) formed on the relay substrate 9 (alumina or the like). is transmitted to the input section (not shown) of the control electrode that is connected. If necessary, it is possible to add an electrical signal input section for supplying a DC bias voltage and an electrical signal output section for outputting a detection signal obtained by detecting propagating light or radiation light in the optical waveguide 2 .

中継基板9がアルミナなどで形成された場合、高周波信号の伝送損失は基板1上における伝送損失よりも小さい。
このため、図27のように中継基板9をL字状とし、該基板1から反射部材Rが突出しない該基板1の長辺側(図の上側)まで中継線路(不図示)を配置することで、各構成部品を効率的に配置できるとともに高周波信号を少ない伝送損失で効率よく該基板1の長辺側(図の上側)に設けられた制御電極まで伝送することができる。
なお、図18から図22のように反射部材Rでの折り返し光路が該基板1の長辺側の側面を通らない場合、L字形状の中継基板9及び中継線路(不図示)は該基板1のどちらの長辺側(図27の上側や下側)に配置してもよい。
If the relay board 9 is made of alumina or the like, the transmission loss of the high frequency signal is smaller than the transmission loss on the board 1 .
Therefore, as shown in FIG. 27, the relay board 9 is L-shaped, and the relay line (not shown) is arranged up to the long side of the board 1 (upper side in the figure) where the reflecting member R does not protrude from the board 1. Therefore, each component can be efficiently arranged, and high-frequency signals can be efficiently transmitted to the control electrodes provided on the long side (upper side in the figure) of the substrate 1 with little transmission loss.
18 to 22, when the optical path returned by the reflecting member R does not pass through the side surface on the long side of the substrate 1 as shown in FIGS. may be arranged on either long side (upper side or lower side in FIG. 27).

上述した光デバイスを光変調器として構成し、さらに光受信器を同じ装置に組み込むことで、光送受信装置を構成することも可能である。 It is also possible to construct an optical transmission/reception apparatus by constructing the optical device described above as an optical modulator and incorporating an optical receiver into the same apparatus.

以上説明したように、本発明によれば、電気光学基板と反射部材とを接合した際でも、両者の接合部分に発生する内部応力の影響を抑制し、光損失等の変動の少ない光デバイスや変調光の品質の劣化等を抑制した光デバイスを提供することができる。 As described above, according to the present invention, even when an electro-optical substrate and a reflective member are joined together, the effect of internal stress generated in the joining portion between the two can be suppressed, and an optical device or optical device with little variation in optical loss, etc. It is possible to provide an optical device that suppresses quality deterioration of modulated light.

1 電気光学基板
2 光導波路
4 筐体
10 補強部材
31,32 光ファイバ
L,L1~L3 レンズ
R 反射部材
1 electro-optical substrate 2 optical waveguide 4 housing 10 reinforcing member 31, 32 optical fibers L, L1 to L3 lens R reflecting member

Claims (8)

電気光学効果を有する基板と、
該基板は、平面視した形状が対向する長辺と対向する短辺とを有する第1の面を備え、
該第1の面上には、少なくとも一方の該短辺に接する入射用又は出射用の端部を有する光導波路と、該光導波路を伝搬する光波を制御するための制御電極とが形成され、
該光導波路の該端部が配置される該短辺に沿って該基板上に配置される補強部材と、
該光導波路の該端部に対向して該基板の外部に配置される反射部材とを有する光デバイスにおいて、
該反射部材は、該光導波路に入射又は該光導波路から出射する光波を、該基板の長辺方向に対して折り返す方向に光路を変換して該基板の外部を伝搬するよう構成しており、
さらに、該反射部材は、該短辺に位置する該基板の端面と該補強部材の端面に接合領域で接合され、
該長辺の延伸方向から平面視した場合、該反射部材と該基板の端面とが接合される該接合領域の形状は、該短辺上における該光導波路の該端部の配置形状の中心点、又は該光導波路で該端部に近い分岐用又は合波用の分岐導波路部の配置形状の対称軸であり、該長辺と同じ方向に延びる該対称軸が該短辺と交差する点に対して短辺の延伸方向に対称となるよう設定されていることを特徴とする光デバイス。
a substrate having an electro-optic effect;
The substrate has a first surface having long sides facing each other and short sides facing each other in a plan view,
Formed on the first surface are an optical waveguide having an input or output end contacting at least one of the short sides, and a control electrode for controlling a light wave propagating through the optical waveguide,
a reinforcing member arranged on the substrate along the short side on which the end of the optical waveguide is arranged;
and a reflecting member disposed outside the substrate facing the end of the optical waveguide,
The reflecting member is configured to convert an optical path of a light wave incident on or emitted from the optical waveguide into a direction in which the light wave is turned back with respect to the long side direction of the substrate to propagate outside the substrate,
Further, the reflecting member is bonded to the end surface of the substrate located on the short side and the end surface of the reinforcing member at a bonding region,
When viewed in plan from the extending direction of the long side, the shape of the bonding region where the reflecting member and the end surface of the substrate are bonded is the center point of the arrangement shape of the end of the optical waveguide on the short side. or a symmetrical axis of the arrangement shape of the branching or multiplexing branching waveguide section near the end of the optical waveguide, and the point where the symmetrical axis extending in the same direction as the long side intersects with the short side An optical device characterized by being set so as to be symmetrical with respect to the extending direction of the short side.
請求項1に記載の光デバイスにおいて、該長辺の延伸方向から平面視した場合、該反射部材と該基板又は該補強部材との接合部分では、該接合領域を取り囲む該反射部材の外周面の少なくとも一部と、該接合領域を取り囲む該基板又は該補強部材の外周面の少なくとも一部とは、連続した面となるように設定されていることを特徴とする光デバイス。 2. The optical device according to claim 1, wherein when viewed from above in the extending direction of the long side, at a joint portion between the reflecting member and the substrate or the reinforcing member, the outer peripheral surface of the reflecting member surrounding the joint region is An optical device, wherein at least a portion and at least a portion of an outer peripheral surface of the substrate or the reinforcing member surrounding the bonding region are set to form a continuous surface. 請求項1に記載の光デバイスにおいて、該反射部材の接合領域の面積が、該基板の端面と該補強部材の端面とが形成する端面領域の面積より小さいことを特徴とする光デバイス。 2. The optical device according to claim 1, wherein the area of the bonding area of the reflecting member is smaller than the area of the edge area formed by the edge surface of the substrate and the edge surface of the reinforcing member. 請求項1乃至3に記載の光デバイスにおいて、該反射部材は少なくとも2つの反射面を有し、該光導波路に入射又は該光導波路から出射する光波を、該基板の長辺方向に対して折り返す方向に光路を変換するよう構成されていることを特徴とする光デバイス。 4. The optical device according to claim 1, wherein the reflecting member has at least two reflecting surfaces, and reflects light waves incident on or emitted from the optical waveguide in the longitudinal direction of the substrate. An optical device, characterized in that it is configured to change an optical path in a direction. 請求項4に記載の光デバイスにおいて、該光導波路から出射された後に該反射部材で折り返された光路、または該光導波路に入射される光路であって該反射部材で折り返される前の光路は、該基板の第1の面が形成する平面よりも上方を通過するよう設定されていることを特徴とする光デバイス。 5. The optical device according to claim 4, wherein the optical path that is output from the optical waveguide and is turned back by the reflecting member, or the optical path that is incident on the optical waveguide and is before being turned back by the reflecting member, An optical device configured to pass above a plane formed by the first surface of the substrate. 請求項1乃至5のいずれかに記載の光デバイスにおいて、該基板と該反射部材は筐体内に収容され、該筐体に対して、該基板は固定されるが、該反射部材は固定されていないことを特徴とする光デバイス。 6. The optical device according to any one of claims 1 to 5, wherein the substrate and the reflecting member are housed in a housing, and the substrate is fixed to the housing, but the reflecting member is not fixed. An optical device characterized by: 請求項1乃至6のいずれかに記載の光デバイスにおいて、該基板と該反射部材及び中継基板は筐体内に収容され、該制御電極の高周波信号を入力する電気信号入力部が、該基板に対して該反射部材が配置された側の筐体側壁に配置され、該高周波信号は、該中継基板に形成された中継線路を介して、該電気信号入力部から該基板の長辺側に設けられた該制御電極の入力部に伝送されていることを特徴とする光デバイス。 7. The optical device according to claim 1, wherein the substrate, the reflecting member and the relay substrate are accommodated in a housing, and an electrical signal input section for inputting a high frequency signal of the control electrode is connected to the substrate. and the high-frequency signal is provided from the electrical signal input portion to the long side of the substrate via a relay line formed on the relay substrate. and an input portion of the control electrode. 請求項1乃至7のいずれかに記載の光デバイスは光変調器であり、さらに光受信器を備えたことを特徴とする光送受信装置。 8. An optical transmitter-receiver, wherein the optical device according to claim 1 is an optical modulator, and further comprises an optical receiver.
JP2019067753A 2019-03-29 2019-03-29 Optical device and optical transceiver using the same Active JP7172803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019067753A JP7172803B2 (en) 2019-03-29 2019-03-29 Optical device and optical transceiver using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067753A JP7172803B2 (en) 2019-03-29 2019-03-29 Optical device and optical transceiver using the same

Publications (2)

Publication Number Publication Date
JP2020166166A JP2020166166A (en) 2020-10-08
JP7172803B2 true JP7172803B2 (en) 2022-11-16

Family

ID=72717300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067753A Active JP7172803B2 (en) 2019-03-29 2019-03-29 Optical device and optical transceiver using the same

Country Status (1)

Country Link
JP (1) JP7172803B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350046A (en) 2000-06-05 2001-12-21 Sumitomo Osaka Cement Co Ltd Integrated optical waveguide element
JP2003279769A (en) 2002-03-20 2003-10-02 Sumitomo Osaka Cement Co Ltd Integrated light guide element
JP2005084090A (en) 2003-09-04 2005-03-31 Sumitomo Osaka Cement Co Ltd Integrated optical waveguide device
US20050201686A1 (en) 2004-03-12 2005-09-15 Cole James H. Low loss electrodes for electro-optic modulators
JP2011186170A (en) 2010-03-08 2011-09-22 Nippon Telegr & Teleph Corp <Ntt> Optical component
JP2018173595A (en) 2017-03-31 2018-11-08 住友大阪セメント株式会社 Optical communication module and optical modulator used in the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6268883B2 (en) * 2013-09-30 2018-01-31 住友大阪セメント株式会社 Light modulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350046A (en) 2000-06-05 2001-12-21 Sumitomo Osaka Cement Co Ltd Integrated optical waveguide element
JP2003279769A (en) 2002-03-20 2003-10-02 Sumitomo Osaka Cement Co Ltd Integrated light guide element
JP2005084090A (en) 2003-09-04 2005-03-31 Sumitomo Osaka Cement Co Ltd Integrated optical waveguide device
US20050201686A1 (en) 2004-03-12 2005-09-15 Cole James H. Low loss electrodes for electro-optic modulators
JP2011186170A (en) 2010-03-08 2011-09-22 Nippon Telegr & Teleph Corp <Ntt> Optical component
JP2018173595A (en) 2017-03-31 2018-11-08 住友大阪セメント株式会社 Optical communication module and optical modulator used in the same

Also Published As

Publication number Publication date
JP2020166166A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP5421595B2 (en) Traveling wave type optical modulator
US7386198B2 (en) Optical waveguide device
US8570644B2 (en) Optical modulator
US11460650B2 (en) Optical waveguide device, and optical modulation device and optical transmission device using it
US10598862B2 (en) Optical modulator
US20100296776A1 (en) Optical circuit and optical signal processing apparatus using the same
US7778497B2 (en) Optical modulators
CN106662711B (en) Polarization synthesis module
JP6938894B2 (en) Optical modulators and optical modules
JP7293605B2 (en) Optical waveguide element and optical modulator
JP7172803B2 (en) Optical device and optical transceiver using the same
JP7054068B2 (en) Optical control element, optical modulation device using it, and optical transmitter
US11493788B2 (en) Optical modulator
JP2021189227A (en) Optical modulator
JPH10213784A (en) Integration type optical modulator
JP6413807B2 (en) Light modulator
JP2004271681A (en) Optical waveguide element
JP7135374B2 (en) light modulator
US20240069367A1 (en) Optical module
JP3871867B2 (en) Optical waveguide module
JP2982691B2 (en) Waveguide type optical circulator
JP2003215520A (en) Variable light attenuator and optical module using the same
JP2006119661A (en) Light source built-in type optical modulator module
JP2003279769A (en) Integrated light guide element
JP2014059475A (en) Optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150