JP7167031B2 - Solid electrolyte including 3,4-ethylenedioxythiophene, electronic capacitor and electronic material including the same - Google Patents

Solid electrolyte including 3,4-ethylenedioxythiophene, electronic capacitor and electronic material including the same Download PDF

Info

Publication number
JP7167031B2
JP7167031B2 JP2019536010A JP2019536010A JP7167031B2 JP 7167031 B2 JP7167031 B2 JP 7167031B2 JP 2019536010 A JP2019536010 A JP 2019536010A JP 2019536010 A JP2019536010 A JP 2019536010A JP 7167031 B2 JP7167031 B2 JP 7167031B2
Authority
JP
Japan
Prior art keywords
carbon atoms
chemical formula
group
dihydrothieno
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019536010A
Other languages
Japanese (ja)
Other versions
JP2020504898A (en
Inventor
ピュンナム カン
ドヒョン イ
キュスン シン
ドミン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongjin Semichem Co Ltd
Original Assignee
Dongjin Semichem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongjin Semichem Co Ltd filed Critical Dongjin Semichem Co Ltd
Publication of JP2020504898A publication Critical patent/JP2020504898A/en
Application granted granted Critical
Publication of JP7167031B2 publication Critical patent/JP7167031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3247Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing combinations of different heteroatoms other than nitrogen and oxygen or nitrogen and sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は3、4-エチレンジオキシチオフェンを含む電解質、これを含む電解キャパシタ及び電子材料素材に関するもので、より詳細には耐電圧が高く、等価直列抵抗が低い3、4-エチレンジオキシチオフェンを含む電解質、これを含む電解キャパシタ及び電子材料用(導電性)素材に関するものである。 The present invention relates to an electrolyte containing 3,4-ethylenedioxythiophene, an electrolytic capacitor containing the same, and an electronic material, and more particularly to 3,4-ethylenedioxythiophene having a high withstand voltage and a low equivalent series resistance. The present invention relates to an electrolyte containing the above, an electrolytic capacitor containing the same, and a (conductive) material for electronic materials.

最近には電子機器の性能が向上され、小型化されて行きながら、モバイル機器のように、固定された場所で使用するだけではなく、移動中に電子機器を使用する頻度数が増加している趨勢である。例えば、電気車等のように、たくさんの電子機器が具備されている苛酷な環境でも円滑な駆動ができるように、電子機器の長期信頼性確保が重要視されている。 Recently, as the performance of electronic devices has been improved and they have been miniaturized, the frequency of using electronic devices not only in fixed places like mobile devices but also on the move is increasing. This is the trend. For example, it is important to ensure the long-term reliability of electronic equipment so that it can be smoothly driven even in a severe environment, such as an electric vehicle equipped with many electronic equipment.

前記のような、電子機器に使用される電解コンデンサは陽極側対向電極としてアルミニウム及びタンタル等が使用され、陽極箔に誘電体を形成し、陽極箔及び陰極箔にセパレーターを介在(陽極箔及び陰極箔の間に位置)させた後、捲回してコンデンサ素子を形成し、形成されたコンデンサ素子に電解質層を形成して、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を密封させた構造を持つ。 Electrolytic capacitors used in electronic devices as described above use aluminum, tantalum, or the like as the anode-side counter electrode. After placing it between the foils), it is wound to form a capacitor element, an electrolyte layer is formed on the formed capacitor element, and the capacitor element is sealed in a case made of metal such as aluminum or a case made of synthetic resin. structure.

前記電解質に使用される伝導性高分子では通常的に、3、4-エチレンジオキシチオフェン等の重合性モノマーと酸化剤溶液をそれぞれ混合して重合によって製造される伝導性高分子が広く知られている。 As the conductive polymer used in the electrolyte, a conductive polymer produced by polymerization by mixing a polymerizable monomer such as 3,4-ethylenedioxythiophene and an oxidant solution, respectively, is widely known. ing.

従来に合成されてきた3、4-エチレンジオキシチオフェンモノマーは単一のモノマーだけで重合をしたり3次炭素位置に1置換されている構造で耐電圧特性を向上させた形態に行われていた(公開特許2012-0113701号参照)。 Conventionally synthesized 3,4-ethylenedioxythiophene monomers are polymerized with only a single monomer or have a structure in which the tertiary carbon position is mono-substituted to improve withstand voltage characteristics. (See Japanese Patent Publication No. 2012-0113701).

しかし、このようなアルキルグループが置換された3、4-エチレンジオキシチオフェンの単独重合ではある程度の耐圧特性向上を期待できるが、高耐圧特性を持つ電解質を作るのは難しい問題点があり、長いアルキルグループを導入することで高耐圧特性を持つ電解質を作ることはできるが、このような場合には、等価直列抵抗(ESR)も又高すぎくなる問題点がある。 However, homopolymerization of 3,4-ethylenedioxythiophene substituted with such an alkyl group can be expected to improve the withstand voltage characteristics to some extent, but it is difficult to produce an electrolyte with high withstand voltage characteristics. By introducing alkyl groups, it is possible to create an electrolyte with high withstand voltage characteristics, but in such a case there is also the problem that the equivalent series resistance (ESR) is also too high.

従って、本発明の目的は耐電圧特性が向上されながら等価直列抵抗が低く、長期信頼性を持つ3、4-エチレンジオキシチオフェンを含む電解質、これを含む電解キャパシタ及び電子材料用(導電性)素材を提供することである。 Accordingly, an object of the present invention is to provide an electrolyte containing 3,4-ethylenedioxythiophene having improved withstand voltage characteristics, low equivalent series resistance, and long-term reliability, an electrolytic capacitor containing the same, and an electronic material (conductivity). to provide the material.

前記目的を達成するために、下記化学式1で表される一つ以上の3、4-エチレンジオキシチオフェン誘導体を含む電解質を提供する。
[化学式1]

Figure 0007167031000001
To achieve the above objects, an electrolyte is provided that includes one or more 3,4-ethylenedioxythiophene derivatives represented by Chemical Formula 1 below.
[Chemical Formula 1]
Figure 0007167031000001

前記化学式1で、l及びnはそれぞれ独立して、0乃至3の整数で、Aは存在しないか(Aの左側鎖基とAの右側鎖基が単結合で連結される)、酸素原子(O)を0乃至5個含む炭素数1乃至20のアルキル基又はアルキレン基、炭素数6乃至20のアリーレン基、炭素数4乃至15の環状型又は鎖型アルキレン基であり、Bは炭素数1乃至20のアルキル基であるか、

Figure 0007167031000002
であり、但し、l+nは3以下の整数である。 In Formula 1, l and n are each independently an integer of 0 to 3, A is absent (the left chain group of A and the right chain group of A are connected by a single bond), or an oxygen atom ( O) is an alkyl or alkylene group having 1 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a cyclic or chain alkylene group having 4 to 15 carbon atoms, and B is 1 carbon atom. to 20 alkyl groups,
Figure 0007167031000002
where l+n is an integer of 3 or less.

又、本発明は酸化被膜を持つ陽極電極層;陰極電極層;及び前記陽極電極層と陰極電極層間に位置するセパレーター及び電解質を含め、前記電解質は前記化学式1で表される一つ以上の3、4-エチレンジオキシチオフェン誘導体を含む電解キャパシタを提供する。 In addition, the present invention includes an anode electrode layer having an oxide film; a cathode electrode layer; and a separator and an electrolyte positioned between the anode electrode layer and the cathode electrode layer, wherein the electrolyte comprises one or more 3 , 4-ethylenedioxythiophene derivatives.

本発明に従う電解質は3、4-エチレンジオキシチオフェン誘導体を使用し、耐電圧特性が優秀で、低い等価直列抵抗(ESR)特性を持つ。又、本発明に従うキャパシタは耐電圧特性が優秀で、低い等価直列抵抗(ESR)特性を持ちながら、長期信頼性が優秀である。更に、本発明の3、4-エチレンジオキシチオフェン誘導体たちは伝導性がとても優秀である。 The electrolyte according to the present invention uses a 3,4-ethylenedioxythiophene derivative and has excellent withstand voltage characteristics and low equivalent series resistance (ESR) characteristics. In addition, the capacitor according to the present invention has excellent withstand voltage characteristics, low equivalent series resistance (ESR) characteristics, and excellent long-term reliability. Furthermore, the 3,4-ethylenedioxythiophene derivatives of the present invention have excellent conductivity.

図1は本発明に従うキャパシタの一例である電解コンデンサの斜視図。 1 is a perspective view of an electrolytic capacitor, which is an example of a capacitor according to the present invention; FIG.

以下、添付された図面を参照して本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the attached drawings.

本発明に従う電解質は一つ以上の3、4-エチレンジオキシチオフェン誘導体(3、4-ethylenedioxy thiophene derivative、EDOT)をふくめる。 Electrolytes according to the present invention contain one or more 3,4-ethylenedioxythiophene derivatives (3,4-ethylenedioxy thiophene derivative, EDOT).

前記3、4-エチレンジオキシチオフェン誘導体はアルキル基及び/又はアルコキシ基を含むことで、耐電圧特性を向上させて、低い等価直列抵抗(Equivalent Serial Resistance、ESR)を持たせることで、下記化学式1で表される。
[化学式1]

Figure 0007167031000003
The 3,4-ethylenedioxythiophene derivative contains an alkyl group and/or an alkoxy group to improve withstand voltage characteristics and have a low equivalent serial resistance (ESR), and has the following chemical formula: 1.
[Chemical Formula 1]
Figure 0007167031000003

前記化学式1で、l及びnはそれぞれ独立して、0乃至3、具体的には、0乃至2の整数で、Aは存在しないか(Aの左側鎖基とAの右側鎖基が単結合で連結される)、酸素原子(O)を0乃至5個含む炭素数1乃至20のアルキル基又はアルキレン基(例えば、鎖型等)であるか、炭素数6乃至20のアリーレン基、より具体的には、炭素数4乃至15の環状型又は鎖型アルキレン基であるか、炭素数6乃至15のフェニレン基、ビフェニレン基又はナフタレン基であることがあるし、例えば、

Figure 0007167031000004
等であることがある。又、Bは炭素数1乃至20のアルキル基(例えば、鎖型)であるか、
Figure 0007167031000005
であることがある。ここで、
Figure 0007167031000006
は結合部を意味し、但し、l+nは3以下の整数である。 In Formula 1, l and n are each independently an integer of 0 to 3, specifically 0 to 2, and A does not exist (the left chain group of A and the right chain group of A are single bonds). ), an alkyl group or an alkylene group having 1 to 20 carbon atoms containing 0 to 5 oxygen atoms (O) (for example, a chain type, etc.), or an arylene group having 6 to 20 carbon atoms, more specifically Specifically, it may be a cyclic or chain alkylene group having 4 to 15 carbon atoms, or a phenylene group, biphenylene group or naphthalene group having 6 to 15 carbon atoms.
Figure 0007167031000004
etc. Further, whether B is an alkyl group having 1 to 20 carbon atoms (for example, a chain type),
Figure 0007167031000005
can be. here,
Figure 0007167031000006
means a joint, provided that l+n is an integer of 3 or less.

具体的には、前記3、4-エチレンジオキシチオフェン誘導体は下記化学式2又は3で表示できる。
[化学式2]

Figure 0007167031000007
[化学式3]
Figure 0007167031000008
Specifically, the 3,4-ethylenedioxythiophene derivative can be represented by Formula 2 or 3 below.
[Chemical Formula 2]
Figure 0007167031000007
[Chemical Formula 3]
Figure 0007167031000008

前記化学式2及び3で、l、Aは化学式1で定義した通りであるし、pは1乃至19、具体的には1乃至10、より具体的には1乃至7の整数である。 In Formulas 2 and 3, 1 and A are as defined in Formula 1, and p is an integer of 1 to 19, specifically 1 to 10, more specifically 1 to 7.

又、本発明の3、4-エチレンジオキシチオフェン誘導体は前記化学式2及び3で表される化合物たちをそれぞれ又は混合して使用できるし、一つ以上の下記化学式4で表される化合物をもっと混合して使用できるし、例えば、(a)一つ以上の化学式2で表される3、4-エチレンジオキシチオフェン誘導体、(b)一つ以上の化学式3で表される3、4-エチレンジオキシチオフェン誘導体、(c)一つ以上の化学式2で表される3、4-エチレンジオキシチオフェン誘導体及び一つ以上の化学式4で表される3、4-エチレンジオキシチオフェン誘導体の混合物、(d)一つ以上の化学式3で表される3、4-エチレンジオキシチオフェン誘導体及び一つ以上の化学式4で表される3、4-エチレンジオキシチオフェン誘導体の混合物、(e)一つ以上の化学式2で表される3、4-エチレンジオキシチオフェン誘導体、一つ以上の化学式3で表される3、4-エチレンジオキシチオフェン誘導体及び一つ以上の化学式4で表される3、4-エチレンジオキシチオフェン誘導体の混合物が使用されることができ。このような場合、耐電圧特性がもっと優秀で、もっと低い等価直列抵抗を持つことができて、効果的である。ここで、混合物は単純に混合されていたり、共重合されている共重合体を意味し、具体的には、共重合体を意味する。
[化学式4]

Figure 0007167031000009
In addition, the 3,4-ethylenedioxythiophene derivative of the present invention can use the compounds represented by Formulas 2 and 3 above individually or in combination, and more than one compound represented by Formula 4 below. For example, (a) one or more 3,4-ethylenedioxythiophene derivatives represented by Chemical Formula 2, (b) one or more 3,4-ethylene represented by Chemical Formula 3. (c) a mixture of one or more 3,4-ethylenedioxythiophene derivatives represented by Formula 2 and one or more 3,4-ethylenedioxythiophene derivatives represented by Formula 4; (d) a mixture of one or more 3,4-ethylenedioxythiophene derivatives represented by Chemical Formula 3 and one or more 3,4-ethylenedioxythiophene derivatives represented by Chemical Formula 4; 3,4-ethylenedioxythiophene derivative represented by Chemical Formula 2, one or more 3,4-ethylenedioxythiophene derivatives represented by Chemical Formula 3, and one or more 3,4-ethylenedioxythiophene derivatives represented by Chemical Formula 4, Mixtures of 4-ethylenedioxythiophene derivatives can be used. In this case, it is effective because it can have better withstand voltage characteristics and lower equivalent series resistance. Here, a mixture simply means a copolymer that is mixed or copolymerized, and specifically means a copolymer.
[Chemical Formula 4]
Figure 0007167031000009

前記化学式4で、Rは水素又は炭素数1乃至20のアルキル基、具体的には、炭素数3乃至10のアルキル基(例えば、鎖型アルキル基)である。 In Formula 4, R is hydrogen or an alkyl group having 1 to 20 carbon atoms, specifically an alkyl group having 3 to 10 carbon atoms (eg, a chain alkyl group).

本発明に従う電解質内で、化学式2乃至4で表される化合物が混合されて使用される場合、化学式3で表される3、4-エチレンジオキシチオフェン誘導体の含量は電解質100重量部に対して、0.1乃至10重量部、具体的には、0.5乃至5重量部、より具体的には、1乃至3重量部で、化学式2及び/又は4で表される3、4-エチレンジオキシチオフェン誘導体の含量はそれぞれ1乃至99モル%、具体的には、20乃至80モル%、より具体的には、50乃至50モル%である。前記3、4-エチレンジオキシチオフェン誘導体たちの含量が前記範囲を外れると、3、4-エチレンジオキシチオフェン重合体間の密集度が低くて、耐電圧特性及び等価直列抵抗が良くなかったり、3、4-エチレンジオキシチオフェン重合体たちの密集度が高くて等価直列抵抗があまりにも高くなることがある。 When the compounds represented by Chemical Formulas 2 to 4 are mixed and used in the electrolyte according to the present invention, the content of the 3,4-ethylenedioxythiophene derivative represented by Chemical Formula 3 is 100 parts by weight of the electrolyte. , 0.1 to 10 parts by weight, specifically 0.5 to 5 parts by weight, more specifically 1 to 3 parts by weight of 3,4-ethylene represented by chemical formulas 2 and/or 4 The content of the dioxythiophene derivative is 1 to 99 mol%, specifically 20 to 80 mol%, more specifically 50 to 50 mol%. If the content of the 3,4-ethylenedioxythiophene derivatives is out of the above range, the density between the 3,4-ethylenedioxythiophene polymers is low, resulting in poor withstand voltage characteristics and equivalent series resistance. The high density of 3,4-ethylenedioxythiophene polymers may cause the equivalent series resistance to be too high.

本発明に従う電解質は前記化学式3で表される化合物が電解質内で、重合体形成時、下記構造体1に表せた通り、相異なる重合体間の架橋剤役割をすることができて、このような場合、3、4-エチレンジオキシチオフェン重合体間の結合をより堅固にすることで、耐電圧特性を向上させて、低い等価直列抵抗(Equivalent Serial Resistance、ESR)を持たせることができる。
[構造体1]

Figure 0007167031000010
In the electrolyte according to the present invention, the compound represented by Formula 3 can act as a cross-linking agent between different polymers as shown in Structure 1 below when forming a polymer in the electrolyte. In this case, by making the bond between the 3,4-ethylenedioxythiophene polymers more rigid, the withstand voltage characteristics can be improved and the Equivalent Serial Resistance (ESR) can be lowered.
[Structure 1]
Figure 0007167031000010

前記構造体1で、R、l、p及びAは前記化学式1で定義した通りである。 In Structure 1, R, l, p and A are as defined in Formula 1 above.

本発明に従う電解質で、化学式1で表される3、4-エチレンジオキシチオフェン誘導体の重量平均分子量は、導電性高分子電解質としての役割を遂行できる限り特別な制限がないが、通常1、000乃至500、000、具体的には、5、000乃至20、000である。前記重量平均分子量の値が小さい過ぎると、誘電体酸化被膜層が十分な耐電圧特性を出せなくて、漏洩電流が高くなれるし、大きい過ぎると、3、4-エチレンジオキシチオフェン誘導体が完全に溶解されなくて堅固で、均一な電解質層を形成できなくて、耐電圧特性及び低い等価直列抵抗の効率が低くなることがある。 In the electrolyte according to the present invention, the weight average molecular weight of the 3,4-ethylenedioxythiophene derivative represented by Chemical Formula 1 is not particularly limited as long as it can function as a conductive polymer electrolyte, but is usually 1,000. to 500,000, specifically 5,000 to 20,000. If the weight-average molecular weight is too small, the dielectric oxide film layer cannot exhibit sufficient withstand voltage characteristics, resulting in high leakage current. It may not be melted, solid, and unable to form a uniform electrolyte layer, resulting in low efficiency of withstand voltage characteristics and low equivalent series resistance.

前記化学式2で表される3、4-エチレンジオキシチオフェン誘導体の製造方法は製造することさえできれば、特別な制限はなく、例えば、下記反応式1及び2に表せた通り、先に、トリエチルアミン下で、化合物eと塩化トルエンスルホニルを反応させ、化合物f(化学式2の第1中間体)を製造する。次に、p-トルエンスルホン酸下で、3、4-ジメトキシチオフェンと化合物gを反応させ、化合物h(化学式2の第2中間体)を製造した後、ジメチルスルホキシド(dimethyl sulfoxide)下で、製造された化合物hと塩化アセチルを反応させて化合物iを製造した。その次に、製造された化合物iを水酸化ナトリウムと反応させ、化合物j(化学式2の第3中間体)を製造した後、ジメチルホルムアミド下で、製造された化合物j、化合物f及び水素化ナトリウムを反応させて製造できる。下記反応式1及び2で、l及びpは前記化学式2で定義された通りである。
[反応式1]

Figure 0007167031000011
[反応式2]
Figure 0007167031000012
The method for producing the 3,4-ethylenedioxythiophene derivative represented by Chemical Formula 2 is not particularly limited as long as it can be produced. to produce compound f (the first intermediate of formula 2) by reacting compound e with toluenesulfonyl chloride. Next, 3,4-dimethoxythiophene and compound g are reacted in the presence of p-toluenesulfonic acid to produce compound h (the second intermediate of chemical formula 2), and then in the presence of dimethyl sulfoxide. Compound h was reacted with acetyl chloride to prepare compound i. Then, the prepared compound i is reacted with sodium hydroxide to prepare compound j (the third intermediate of Formula 2), and then the prepared compound j, compound f and sodium hydride are treated in dimethylformamide. can be produced by reacting In Reaction Formulas 1 and 2 below, l and p are as defined in Formula 2 above.
[Reaction Formula 1]
Figure 0007167031000011
[Reaction Formula 2]
Figure 0007167031000012

前記化学式3で表される架橋剤の製造方法は、上と同じく、製造方法に特別な制限はなく、例えば、下記反応式3及び4に表せた通り、先に、トリエチルアミン(triethylamine、TEA)及び塩化メチレン(methylene chloride、MC)下で、化合物aと塩化トルエンスルホニル(toluensulfonyl chloride)を反応させ、化合物b(化学式3の第1中間体)を製造する。次に、ジメチルホルムアミド(dimethylformamide、DMF)下で、製造された化合物b、前記化合物j及び水素化ナトリウム(sodium hydride、NaH)を反応させ、製造できる。
[反応式3]

Figure 0007167031000013
The method for producing the cross-linking agent represented by Chemical Formula 3 is not particularly limited as described above. Compound a and toluensulfonyl chloride are reacted under methylene chloride (MC) to prepare compound b (the first intermediate of Formula 3). Next, the prepared compound b, the compound j and sodium hydride (NaH) are reacted in dimethylformamide (DMF) to prepare.
[Reaction Formula 3]
Figure 0007167031000013

前記化学式4で表される3、4-エチレンジオキシチオフェン誘導体の製造方法は製造方法に特別な制限はなく、例えば、下記反応式4に表せた通り、3、4-ジメトキシチオフェン(3、4-dimethoxythiophen)と化合物dで表されるジオール(diol)化合物を反応させて製造できる。
[反応式4]

Figure 0007167031000014
The method for producing the 3,4-ethylenedioxythiophene derivative represented by Chemical Formula 4 is not particularly limited. -dimethoxythiophen) and a diol compound represented by compound d.
[Reaction Formula 4]
Figure 0007167031000014

本発明に従う電解質は架橋剤及び3、4-エチレンジオキシチオフェン誘導体が重合されて形成できるし、その方法には特別な制限がないし、例えば、化学的酸化重合及び電気分解酸化重合中どんな方法でも形成できるし、具体的には化学的酸化重合を利用して共重合体を製造できる。例えば、前記架橋剤及び3、4-エチレンジオキシチオフェン誘導体たちと酸化剤が溶解された溶液を混合した後、加熱して重合させることができる。 The electrolyte according to the present invention can be formed by polymerizing a cross-linking agent and a 3,4-ethylenedioxythiophene derivative, and the method is not particularly limited, such as chemical oxidation polymerization and electrolytic oxidation polymerization. can be formed, and in particular chemical oxidative polymerization can be used to produce the copolymer. For example, a solution in which the cross-linking agent, the 3,4-ethylenedioxythiophene derivatives and the oxidizing agent are dissolved is mixed and then heated to polymerize.

前記酸化剤としては有機スルホン酸鉄(III)が使用できるし、具体的には、p-トルエンスルホン酸第3鉄塩、ベンゼンスルホン酸第3鉄塩、ナフタレンスルホン酸第3鉄塩等を使用できる。又、前記酸化剤が溶解される溶媒としてはn-ブタノール、エタノール、トルエン等を使用できるが、前記酸化剤は20乃至90重量%、具体的には、30乃至80重量%、より具体的には、40乃至70重量%の酸化剤がアルコール類型の溶媒に溶解されているのである。 As the oxidizing agent, organic iron (III) sulfonate can be used. Specifically, ferric p-toluenesulfonate, ferric benzenesulfonate, ferric naphthalenesulfonate, etc. can be used. can. In addition, n-butanol, ethanol, toluene, etc. can be used as a solvent in which the oxidizing agent is dissolved. , 40 to 70% by weight of oxidizing agent is dissolved in an alcohol type solvent.

次に、本発明に従う電解キャパシタを説明する。図1は本発明に従うキャパシタの一例である電解コンデンサの斜視図である。図1に図示された通り、本発明に従う電解キャパシタは酸化被膜を持つ陽極電極層(1);陰極電極層(2);及び前記陽極電極層と陰極電極層の間に位置するセパレーター(separator、5)及び電解質を含む。前記電解質は前記化学式1で表される3、4-エチレンジオキシチオフェン誘導体(例えば、前記化学式2及び4のモノマーたちと前記化学式3の架橋剤)を含む一つ以上のモノマーたちの重合体である。前記セパレーター(5)は含浸性が良いセルロース系、耐圧特性が良いアクリル系があるし本発明の架橋剤及び3、4-エチレンジオキシチオフェン誘導体を利用した場合には密度が低くて炭化工程が必要ないナイロン系を使用することが望ましいが、ナイロン系に限定されるのではない。 Next, an electrolytic capacitor according to the invention will be described. FIG. 1 is a perspective view of an electrolytic capacitor, which is an example of a capacitor according to the present invention. As shown in FIG. 1, an electrolytic capacitor according to the present invention comprises an anode electrode layer (1) having an oxide film; a cathode electrode layer (2); and a separator located between the anode electrode layer and the cathode electrode layer. 5) and electrolytes. The electrolyte is a polymer of one or more monomers including the 3,4-ethylenedioxythiophene derivative represented by Formula 1 (eg, the monomers of Formulas 2 and 4 and the cross-linking agent of Formula 3). be. The separator (5) may be a cellulose type separator with good impregnating properties or an acrylic type separator with good pressure resistance. Although it is desirable to use non-essential nylon systems, it is not limited to nylon systems.

本発明に従う電解キャパシタを製造するためでは、先に酸化被膜を持つ陽極電極層(1)と陰極電極層(2)の間にセパレーター(5)を位置させる。次に、前記陽極電極層(1)と陰極電極層(2)の間に、前記化学式1で表される3、4-エチレンジオキシチオフェン誘導体を含む一つ以上のモノマーたちと酸化剤を含浸させて、前記モノマーたちを加熱して電解質を形成し、前記含浸は120秒の間遂行することができる。次に、形成されたキャパシタ素子にエポキシ樹脂を使用して前記キャパシタケースを製造し、陽極に電圧4Vを印加した後エージングをして電解キャパシタを製造する。 In order to manufacture an electrolytic capacitor according to the present invention, a separator (5) is placed between the anode electrode layer (1) and the cathode electrode layer (2) which previously had an oxide coating. Next, between the anode electrode layer (1) and the cathode electrode layer (2), one or more monomers including the 3,4-ethylenedioxythiophene derivative represented by Formula 1 and an oxidant are impregnated. Then, the monomers are heated to form an electrolyte, and the impregnation may be performed for 120 seconds. Next, an epoxy resin is used for the formed capacitor element to manufacture the capacitor case, and after applying a voltage of 4 V to the anode, aging is performed to manufacture an electrolytic capacitor.

本発明に従う電解キャパシタは高い耐電圧及び低い等価直列抵抗を持つので、多様な電子部品たち、例えば、中央処理回路及び電源回路等のキャパシタを使用する回路に使用できるし、前記回路はコンピューター、サーバー、カメラ、ゲーム機、DVD機器、AV機器及び携帯電話等の各種デジタル機器、各種電源等の電子機器に使用できるし、本発明に従う3、4-エチレンジオキシチオフェン誘導体たちは伝導性が優秀で、透明導電性液晶ディスプレイ、エレクトロルミネセンスディスプレイ、エレクトロクロミックディスプレイ、太陽電池、タッチパネル等の電極及び電磁波遮断材等の器材の素材で使用できる。 Since the electrolytic capacitor according to the present invention has a high withstand voltage and a low equivalent series resistance, it can be used in various electronic components such as central processing circuits, power circuits, and other circuits that use capacitors, such as computers and servers. , cameras, game machines, DVD equipment, AV equipment, various digital equipment such as mobile phones, and electronic equipment such as various power supplies. , transparent conductive liquid crystal displays, electroluminescence displays, electrochromic displays, solar cells, touch panels, electrodes and electromagnetic shielding materials.

以下、実施例を通じて本発明をより詳細に説明するが、本発明が下記実施例によって限定されるのではない。 Hereinafter, the present invention will be described in more detail through examples, but the present invention is not limited by the following examples.

[製造例1]化学式4の単量体製造
下記反応式5に表せた通り、3、4-ジメトキシチオフェン(3、4-dimethoxythiophene)(1)(30.00g、208.06mmol)、エチレングリコール(ethyleneglycol)(2)(25.83g、416.12mmol)、p-トルエンスルホン酸(p-toluenesulfonic acid)(3.96g、20.81mmol)及びトルエン300mLを混合し、100℃で12時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=10:1(体積比)混合溶液で展開しながら、カラム精製して、3、4-エチレンジオキシチオフェン(3、4-Ethylenedioxythiophene、EDOT)である化合物3(20.70g、70% yield)を得られた。
[Production Example 1] Production of a monomer of Chemical Formula 4
As shown in Reaction Scheme 5 below, 3,4-dimethoxythiophene (1) (30.00 g, 208.06 mmol), ethyleneglycol (2) (25.83 g, 416.0 mmol) were prepared. 12 mmol), p-toluenesulfonic acid (3.96 g, 20.81 mmol) and 300 mL of toluene were mixed and reacted at 100° C. for 12 hours with stirring. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a mixed solution of hexane:ethyl acetate = 10:1 (volume ratio) to obtain 3,4-ethylenedioxythiophene (3 , 4-Ethylenedioxythiophene, EDOT) was obtained (20.70 g, 70% yield).

H-NMR(CDCl、Varian 400MHz):δ4.18(4H、s)、6.31(2H、s)
[反応式5]

Figure 0007167031000015
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 4.18 (4H, s), 6.31 (2H, s)
[Reaction formula 5]
Figure 0007167031000015

[製造例2]化学式4の単量体製造
下記反応式6に表せた通り、3、4-ジメトキシチオフェン(3、4-dimethoxythiophene)(1)(30.00g、208.06mmol)、1、2-ペンタンジオール(1、2-pentanediol)(4)(43.34g、416.12mmol)、p-トルエンスルホン酸(p-toluenesulfonic acid)(3.96g、20.81mmol)及びトルエン300mLを混合し、110℃で9時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=10:1(体積比)混合溶液で展開しながら、カラム精製して、2-プロピル-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2-Propyl-2、3-dihydrothieno[3、4-b][1、4]dioxine、propyl-EDOT)である化合物5(25.00g、70% yield)を得られた。
[Production Example 2] Production of a monomer of Chemical Formula 4
As shown in Reaction Scheme 6 below, 3,4-dimethoxythiophene (1) (30.00 g, 208.06 mmol), 1,2-pentanediol (1,2-pentanediol) (4 ) (43.34 g, 416.12 mmol), p-toluenesulfonic acid (3.96 g, 20.81 mmol) and 300 mL of toluene were mixed and reacted with stirring at 110° C. for 9 hours. rice field. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a mixed solution of hexane:ethyl acetate=10:1 (volume ratio) to give 2-propyl-2,3-dihydrothieno[ Compound 5 (25.00 g, 70 % yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ0.88(3H、t、J=12Hz)、1.31-1.70(4H、m)、3.86(1H、dd、J=8.0、3.2Hz)、4.10-4.16(2H、m)、6.30(2H、s)。
[反応式6]

Figure 0007167031000016
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.88 (3H, t, J=12 Hz), 1.31-1.70 (4H, m), 3.86 (1H, dd, J=8. 0, 3.2 Hz), 4.10-4.16 (2H, m), 6.30 (2H, s).
[Reaction Formula 6]
Figure 0007167031000016

[製造例3]化学式4の単量体製造
下記反応式7に表せた通り、3、4-ジメトキシチオフェン(3、4-dimethoxythiophene)(1)(50.00g、346.76mmol)、1、2-デカンジオール(1、2-octanediol)(6)(120.87g、693.52mmol)、p-トルエンスルホン酸(p-toluenesulfonic acid)(6.60g、34.68mmol)及びトルエン500mLを混合し、110℃で9時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=10:1(体積比)混合溶液で展開しながら、カラム精製して、2-オクチル-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2-Octyl-2、3-dihydrothieno[3、4-b][1、4]dioxine、octyl-EDOT)である化合物7(57.33g、65% yield)を得られた。
[Production Example 3] Production of a monomer of Chemical Formula 4
As shown in Reaction Scheme 7 below, 3,4-dimethoxythiophene (1) (50.00 g, 346.76 mmol), 1,2-decanediol (1,2-octanediol) (6 ) (120.87 g, 693.52 mmol), p-toluenesulfonic acid (6.60 g, 34.68 mmol) and toluene 500 mL were mixed and reacted at 110° C. for 9 hours with stirring. rice field. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a mixed solution of hexane:ethyl acetate=10:1 (volume ratio) to give 2-octyl-2,3-dihydrothieno[ Compound 7 (57.33 g, 65 % yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ0.88(3H、t、J=12Hz)、1.27-1.71(14H、m)、3.86(1H、dd、J=8.0、3.2Hz)、4.07-4.15(2H、m)、6.29(2H、s)。
[反応式7]

Figure 0007167031000017
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.88 (3H, t, J=12 Hz), 1.27-1.71 (14H, m), 3.86 (1H, dd, J=8. 0, 3.2 Hz), 4.07-4.15 (2H, m), 6.29 (2H, s).
[Reaction Formula 7]
Figure 0007167031000017

[製造例4]化学式4の単量体製造
下記反応式8に表せた通り、3、4-ジメトキシチオフェン(3、4-dimethoxythiophene)(1)(30.00g、208.06mmol)、1、2-ドデカンジオール(1、2-dodecanediol)(8)(42.07g、416.12mmol)、p-トルエンスルホン酸(p-toluenesulfonicacid)(3.96g、20.81mmol)及びトルエン300mLを混合し、110℃で9時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=10:1(体積比)混合溶液で展開しながら、カラム精製して、2-デシル-2、3-ジヒドロチエノ[3、4][1、4]ダイオキシン(2-Decyl-2、3-dihydrothieno[3、4-b][1、4]dioxine、decyl-EDOT)である化合物9(38.20g、65% yield)を得られた。
[Production Example 4] Production of the monomer of Chemical Formula 4
As shown in Reaction Scheme 8 below, 3,4-dimethoxythiophene (1) (30.00 g, 208.06 mmol), 1,2-dodecanediol (1,2-dodecanediol) (8 ) (42.07 g, 416.12 mmol), p-toluenesulfonic acid (3.96 g, 20.81 mmol) and 300 mL of toluene were mixed and reacted at 110° C. for 9 hours with stirring. . Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a mixed solution of hexane:ethyl acetate=10:1 (volume ratio) to give 2-decyl-2,3-dihydrothieno[ 3,4][1,4]dioxin (2-Decyl-2,3-dihydrothieno[3,4-b][1,4]dioxine, decyl-EDOT) Compound 9 (38.20 g, 65% yield ) was obtained.

H-NMR(CDCl、Varian 400MHz):δ0.88(3H、t、J=12Hz)、1.27-1.71(18H、m)、3.86(1H、dd、J=8.0、3.2Hz)、4.07-4.15(2H、m)、6.29(2H、s)。
[反応式8]

Figure 0007167031000018
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.88 (3H, t, J=12 Hz), 1.27-1.71 (18H, m), 3.86 (1H, dd, J=8. 0, 3.2 Hz), 4.07-4.15 (2H, m), 6.29 (2H, s).
[Reaction Formula 8]
Figure 0007167031000018

[製造例5]化学式2の単量体の第1中間体製造
下記反応式9-1に表せた通り、ジクロロメタン(DCM)(1000mL、10mL/g)にノルマループロパノール(n-Propanol)(10)(100g、0.524mol)とトリエチルアミン(TEA)(108.95mL、0.786mol)を溶解させた後、0℃でTosyl chloride(100g、0.524mol)を入れてあげた後、常温で20h間攪拌した。反応終了後ジクロロメタン(DCM)を使用して抽出して、無水NaSO乾燥し有機層を濃縮して、液体化合物10-1を(105.5g、94% yield)収得した。
[Production Example 5] Production of the first intermediate of the monomer of Chemical Formula 2
As shown in the reaction scheme 9-1 below, normal-propanol (n-Propanol) (10) (100 g, 0.524 mol) and triethylamine (TEA) (108.95 mL) were added to dichloromethane (DCM) (1000 mL, 10 mL/g). , 0.786 mol) was dissolved, Tosyl chloride (100 g, 0.524 mol) was added at 0° C. and stirred at room temperature for 20 h. After completion of the reaction, extraction was performed using dichloromethane (DCM), dried over anhydrous Na 2 SO 4 and the organic layer was concentrated to obtain liquid compound 10-1 (105.5 g, 94% yield).

H NMR:δ0.87-0.90(3H、t、J=7.6Hz)、1.63-1.68(2H、m)、2.43(3H、s)、3.96-3.99(2H、t、J=6.8Hz)、7.32-7.34(2H、d、J=8.4Hz)、7.77-7.79(2H、d、J=8.0Hz)。
[反応式9-1]

Figure 0007167031000019
1 H NMR: δ 0.87-0.90 (3H, t, J = 7.6 Hz), 1.63-1.68 (2H, m), 2.43 (3H, s), 3.96-3 .99 (2H, t, J = 6.8 Hz), 7.32-7.34 (2H, d, J = 8.4 Hz), 7.77-7.79 (2H, d, J = 8.0 Hz) ).
[Reaction formula 9-1]
Figure 0007167031000019

[製造例6]化学式2の単量体の第1中間体製造
下記反応式9-2に表せた通り、ジクロロメタン(DCM)(9000mL、10mL/g)にノルマルー-ブタノール(n-Butanol)(11)(130mL、1.416mol)とトリエチルアミン(TEA)(98.15mL、0.708mol)を溶解させた後、0℃でTosyl chloride(90g、0.472mol)を入れてあげた後、常温で20h間攪拌した。反応終了後ジクロロメタン(DCM)を使用して抽出して、無水NaSO乾燥して有機層を濃縮して、液体化合物11-1を(89.9g、89% yield)収得した。
[Production Example 6] Production of the first intermediate of the monomer of Chemical Formula 2
As shown in the reaction scheme 9-2 below, normal-butanol (n-Butanol) (11) (130 mL, 1.416 mol) and triethylamine (TEA) (98.15 mL) were added to dichloromethane (DCM) (9000 mL, 10 mL/g). , 0.708 mol) was dissolved, Tosyl chloride (90 g, 0.472 mol) was added at 0° C., and the mixture was stirred at room temperature for 20 hours. After completion of the reaction, extraction was performed using dichloromethane (DCM), dried over anhydrous Na 2 SO 4 and the organic layer was concentrated to obtain liquid compound 11-1 (89.9 g, 89% yield).

H NMR:δ0.82-0.86(3H、t、J=7.6Hz)、1.27-1.37(2H、m)、1.57-1.64(2H、m)2.43(3H、s)、3.99-4.2(2H、t、J=6.8Hz)、7.32-7.34(2H、d、J=8.4Hz)、7.76-7.78、d、J=8.0Hz)。
[反応式9-2]

Figure 0007167031000020
1 H NMR: δ 0.82-0.86 (3H, t, J=7.6 Hz), 1.27-1.37 (2H, m), 1.57-1.64 (2H, m)2. 43 (3H, s), 3.99-4.2 (2H, t, J = 6.8 Hz), 7.32-7.34 (2H, d, J = 8.4 Hz), 7.76-7 .78, d, J=8.0 Hz).
[Reaction formula 9-2]
Figure 0007167031000020

[製造例7]化学式2の単量体の第1中間体製造
下記反応式9-3に表せた通り、ジクロロメタン(DCM)(200mL、10mL/g)にジエチレングリコールモノエチルエーテル(diethylene glycol monoethyl ehther)(12)(20g、149.05mmol)とトリエチルアミン(TEA)(31.18mL、223.58mmol)を溶解させた後、0℃でTosyl chloride(25.57g、134.15mmol)を入れてあげた後、常温で3h間攪拌した。反応終了後ジクロロメタン(DCM)を使用して抽出して、無水NaSO乾燥して有機層を濃縮して、2-(2-エトキシエトキシ)エーテル4-メチルベンゼンスルホン酸(2-(2-ethoxyethoxy)ether 4-methylbenzenesulfonate)である液体化合物12-1(35.0g、81% yield)収得した。
[Production Example 7] Production of the first intermediate of the monomer of Chemical Formula 2
Diethylene glycol monoethyl ether (12) (20 g, 149.05 mmol) and triethylamine (TEA) (31 .18 mL, 223.58 mmol) was dissolved, Tosyl chloride (25.57 g, 134.15 mmol) was added at 0° C., and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, the organic layer was extracted with dichloromethane (DCM), dried over anhydrous Na 2 SO 4 and concentrated to yield 2-(2-ethoxyethoxy) ether 4-methylbenzenesulfonic acid (2-(2 -ethoxyethoxy) ether 4-methylbenzenesulfonate) was obtained as liquid compound 12-1 (35.0 g, 81% yield).

H-NMR(CDCl、Varian 400MHz):δ1.19(3H、t、J=7.2Hz)、2.45(3H、s)、3.47-3.53(4H、m)、3.57-3.59(2H、m)、3.70(2H、t、J=4.8Hz)4.17(2H、t、J=5.2Hz)、7.34(2H、d、J=8.0Hz)、7.80(2H、d、J=8.4Hz)。
[反応式9-3]

Figure 0007167031000021
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.19 (3H, t, J=7.2 Hz), 2.45 (3H, s), 3.47-3.53 (4H, m), 3 .57-3.59 (2H, m), 3.70 (2H, t, J = 4.8 Hz) 4.17 (2H, t, J = 5.2 Hz), 7.34 (2H, d, J = 8.0 Hz), 7.80 (2H, d, J = 8.4 Hz).
[Reaction formula 9-3]
Figure 0007167031000021

[製造例8]化学式2の単量体の第1中間体製造
下記反応式9-4に表せた通り、ジクロロメタン(DCM)(200mL、10mL/g)に1-オクタノール(1-octanol)(13)(20g、153.57mmol)とトリエチルアミン(TEA)(32.13mL、230.36mmol)を溶解させた後、0℃でTosyl chloride(26.35g、138.21mmol)を入れてあげた後、常温で3h間攪拌した。反応終了後ジクロロメタン(DCM)を使用して抽出して、無水NaSO乾燥して有機層を濃縮して、オクチル4-メチルベンゼンスルホン酸(Octyl 4-methylbenzenesulfonate)である液体化合物13-1を(34.0g、78% yield)収得した。
[Production Example 8] Production of the first intermediate of the monomer of Chemical Formula 2
As shown in the reaction scheme 9-4 below, 1-octanol (13) (20 g, 153.57 mmol) and triethylamine (TEA) (32.13 mL) were added to dichloromethane (DCM) (200 mL, 10 mL/g). , 230.36 mmol) was dissolved, Tosyl chloride (26.35 g, 138.21 mmol) was added at 0°C, and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, the organic layer was extracted with dichloromethane (DCM), dried over anhydrous Na 2 SO 4 and concentrated to obtain liquid compound 13-1, which is octyl 4-methylbenzenesulfonate. (34.0 g, 78% yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ0.87(3H、t、J=7.2Hz)、1.21-1.28(10H、s)、1.60-1.67(2H、m)、2.45(3H、s)、4.02(2H、t、J=6.4Hz)、7.34(2H、d、J=8.0Hz)、7.79(2H、d、J=8.0Hz)。
[反応式9-4]

Figure 0007167031000022
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.87 (3H, t, J=7.2 Hz), 1.21-1.28 (10H, s), 1.60-1.67 (2H, m), 2.45 (3H, s), 4.02 (2H, t, J = 6.4 Hz), 7.34 (2H, d, J = 8.0 Hz), 7.79 (2H, d, J=8.0 Hz).
[Reaction formula 9-4]
Figure 0007167031000022

[製造例9]化学式2の単量体の第1中間体製造
下記反応式9-5に表せた通り、ジクロロメタン(DCM)(200mL、10mL/g)にエチレングリコールモノヘキシルエーテル(ethylene glycol monohexyl ether)(14)(20g、136.77mmol)とトリエチルアミン(TEA)(28.61mL、205.16mmol)を溶解させた後、0℃でTosyl chloride(23.47g、123.09mmol)を入れてあげた後、常温で3h間攪拌した。反応終了後ジクロロメタン(DCM)を使用して抽出して、無水NaSO乾燥して有機層を濃縮して、2-(ヘクトシ)エチル4-メチルベンゼンスルホン酸(2-(hexyloxy)ethyl 4-methylbenzenesulfonate)である液体化合物14-1を(34.0g、92% yield)収得した。
[Production Example 9] Production of the first intermediate of the monomer of Chemical Formula 2
Ethylene glycol monohexyl ether (14) (20 g, 136.77 mmol) and triethylamine (TEA) ( 28.61 mL, 205.16 mmol) was dissolved, Tosyl chloride (23.47 g, 123.09 mmol) was added at 0° C., and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, the organic layer was extracted with dichloromethane (DCM), dried over anhydrous Na 2 SO 4 and concentrated to give 2-(hectoxy)ethyl 4-methylbenzenesulfonate (2-(hexyloxy)ethyl 4 -methylbenzenesulfonate) was obtained (34.0 g, 92% yield).

H-NMR(CDCl、Varian 400MHz):δ0.88(3H、t、J=6.8Hz)、1.24-1.32(7H、m)、1.47-1.50(2H、m)、2.45(2H、s)、3.37(2H、t、J=7.2Hz)、3.60(2H、t、J=4.8Hz)、4.16(2H、t、J=5.2Hz)、7.34(2H、d、J=8.0Hz)、7.81(2H、d、J=8.0Hz)。
[反応式9-5]

Figure 0007167031000023
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.88 (3H, t, J=6.8 Hz), 1.24-1.32 (7H, m), 1.47-1.50 (2H, m), 2.45 (2H, s), 3.37 (2H, t, J = 7.2 Hz), 3.60 (2H, t, J = 4.8 Hz), 4.16 (2H, t, J=5.2 Hz), 7.34 (2H, d, J=8.0 Hz), 7.81 (2H, d, J=8.0 Hz).
[Reaction formula 9-5]
Figure 0007167031000023

[製造例10]化学式2の単量体の第1中間体製造
下記反応式9-6に表せた通り、ジクロロメタン(DCM)(200mL、10mL/g)にトリエチレングリコールモノブチルエーテル(triethylene glycol monobutyl ether)(15)(20g、96.96mmol)とトリエチルアミン(TEA)(20.29mL、145.44mmol)を溶解させた後、0℃でTosyl chloride(16.64g、87.26mmol)を入れてあげた後、常温で3h間攪拌した。反応終了後ジクロロメタン(DCM)を使用して抽出して、無水NaSO乾燥して有機層を濃縮して、2-(2-(2-ブトキシエトキシ)エトキシ)エチル4-メチルベンゼンスルホン酸(2-(2-(2-butoxyethoxy)ethoxy)ethyl 4-methylbenzene sulfonate)である液体化合物15-1を(24.90g、71% yield)収得した。
[Production Example 10] Production of the first intermediate of the monomer of Chemical Formula 2
As shown in the following reaction scheme 9-6, triethylene glycol monobutyl ether (15) (20 g, 96.96 mmol) and triethylamine (TEA) (200 mL, 10 mL/g) in dichloromethane (DCM) ( 20.29 mL, 145.44 mmol) was dissolved, Tosyl chloride (16.64 g, 87.26 mmol) was added at 0° C., and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, the organic layer was extracted with dichloromethane (DCM), dried over anhydrous Na 2 SO 4 and concentrated to give 2-(2-(2-butoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonic acid. Liquid compound 15-1 (2-(2-(2-butoxyethoxy)ethoxy)ethyl 4-methylbenzene sulfonate) was obtained (24.90 g, 71% yield).

H-NMR(CDCl、Varian 400MHz):δ0.90(3H、t、J=7.2Hz)、1.30-1.39(2H、m)、1.51-1.59(2H、m)、2.44(3H、s)、3.44(2H、t、J=6.4Hz)、3.54-3.61(8H、m)、3.68(2H、t、J=4.8Hz)、4.15(2H、t、J=4.8Hz)、7.33(2H、d、J=8.0Hz)、7.79(2H、d、J=8.0Hz)。
[反応式9-6]

Figure 0007167031000024
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.90 (3H, t, J=7.2 Hz), 1.30-1.39 (2H, m), 1.51-1.59 (2H, m), 2.44 (3H, s), 3.44 (2H, t, J = 6.4 Hz), 3.54-3.61 (8H, m), 3.68 (2H, t, J = 4.8 Hz), 4.15 (2H, t, J = 4.8 Hz), 7.33 (2H, d, J = 8.0 Hz), 7.79 (2H, d, J = 8.0 Hz).
[Reaction formula 9-6]
Figure 0007167031000024

[製造例11]化学式2の単量体の第1中間体製造
下記反応式9-7に表せた通り、ジクロロメタン(DCM)(200mL、10mL/g)に2、5、8、11-テトラオキサトリデカン-13-オル(2、5、8、11-tetraoxatridecan-13-ol)(16)(20g、96.04mmol)とトリエチルアミン(TEA)(20.08mL、144.06mmol)を溶解させた後、0℃でTosyl chloride(16.48g、86.43mmol)を入れてあげた後、常温で3h間攪拌した。反応終了後ジクロロメタン(DCM)を使用して抽出して、無水NaSO乾燥して有機層を濃縮して、2、5、8、11-テトラオキサトリデカン-13-イル4-メチルベンゼンスルホン酸(2、5、8、11-tetraoxatridecan-13-yl 4-methylbenzenesulfonate)である液体化合物16-1を(30.1g、86% yield)収得した。
[Production Example 11] Production of the first intermediate of the monomer of Chemical Formula 2
As shown in the following Reaction Scheme 9-7, 2,5,8,11-tetraoxatridecan-13-ol (2,5,8,11-tetraoxatridecan- 13-ol) (16) (20 g, 96.04 mmol) and triethylamine (TEA) (20.08 mL, 144.06 mmol) were dissolved, and Tosyl chloride (16.48 g, 86.43 mmol) was added at 0°C. After drying, the mixture was stirred at room temperature for 3 hours. After completion of the reaction, the organic layer was extracted with dichloromethane (DCM), dried over anhydrous Na 2 SO 4 and concentrated to yield 2,5,8,11-tetraoxatridecan-13-yl-4-methylbenzene. A sulfonic acid (2,5,8,11-tetraoxatridecan-13-yl 4-methylbenzenesulfonate), liquid compound 16-1, was obtained (30.1 g, 86% yield).

H-NMR(CDCl、Varian 400MHz):δ2.44(3H、s)、3.30(3H、s)、3.54-3.65(12H、m)、3.70(2H、t、J=4.8Hz)4.17(2H、t、J=5.2Hz)、7.33(2H、d、J=8.0Hz)、7.79(2H、d、J=8.0Hz)。
[反応式9-7]

Figure 0007167031000025
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 2.44 (3H, s), 3.30 (3H, s), 3.54-3.65 (12H, m), 3.70 (2H, t , J = 4.8 Hz) 4.17 (2H, t, J = 5.2 Hz), 7.33 (2H, d, J = 8.0 Hz), 7.79 (2H, d, J = 8.0 Hz ).
[Reaction formula 9-7]
Figure 0007167031000025

[製造例12]化学式2の単量体の第2中間体製造
下記反応式11に表せた通り、3、4-ジメトキシチオフェン(3、4-dimethoxythiophene)(1)(200.00g、1.387mol)、3-クロロ-1、2-プロパンジオール(3-Chloro-1、2-propanediol)(17)(306.65g、2.774mol)、p-トルエンスルホン酸(p-toluenesulfonic acid)(26.38g、0.138mol)及びトルエン2000mLを混合し、110℃で15時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン溶液で展開しながら、カラム精製して、2-クロロ-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2-chloro-2、3-dihydrothieno[3、4-b][1、4]dioxine)である化合物18(120.0g、45% yield)収得した。
[Production Example 12] Production of the second intermediate of the monomer of Chemical Formula 2
As shown in Reaction Scheme 11 below, 3,4-dimethoxythiophene (1) (200.00 g, 1.387 mol), 3-chloro-1,2-propanediol (3-Chloro- 1,2-propanediol) (17) (306.65 g, 2.774 mol), p-toluenesulfonic acid (26.38 g, 0.138 mol) and toluene 2000 mL were mixed and heated at 110° C. for 15 The reaction was allowed to proceed while stirring for a period of time. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was purified by silicon dioxide (SiO 2 ) column chromatography while being developed with a hexane solution to give 2-chloro-2,3-dihydrothieno[3,4-b][1,4]dioxin. Compound 18 (2-chloro-2,3-dihydrothieno[3,4-b][1,4]dioxine) was obtained (120.0 g, 45% yield).

H-NMR(CDCl、Varian 400MHz):δ3.64-3.75(2H、m)、4.11-4.18(1H、m)、4.27-4.30(1H、m)、4.35-4.44(1H、m)、6.36(2H、s)。
[反応式11]

Figure 0007167031000026
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 3.64-3.75 (2H, m), 4.11-4.18 (1H, m), 4.27-4.30 (1H, m) , 4.35-4.44 (1H, m), 6.36 (2H, s).
[Reaction formula 11]
Figure 0007167031000026

[製造例13]化学式2の単量体の第3中間体製造
下記反応式12に表せた通り、化合物18(60.00g、314.71mmol)、酢酸ナトリウム(sodium acetate)(38.72g、472.07mmol)及びジメチルスルホキシド900mLを混合し、110℃で2時間の間攪拌しながら反応させた。メチレンクロライドを添加し、反応液を完全に溶解させ、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された化合物19(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イルメチルアセテート(2、3-dihydrothieno[3、4-b][1、4]dioxin-2-yl)methyl acetate))を水酸化ナトリウム(sodium hydroxide)(44.12g、1.102mol)及び水1200mLを混合し、100℃で4時間の間攪拌しながら反応させた。反応が終了されて常温に温度を冷やした後塩酸(hydrochloric acid)をpH3になるまで滴加して、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=1:3(体積比)混合溶液で展開しながら、カラム精製して、(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)メタノール(2、3-dihydrothieno[3、4-b][1、4]dioxin-2-yl)methanol)である化合物20(38.20g、70% yield)を得られた。
[Production Example 13] Production of the third intermediate of the monomer of Chemical Formula 2
Compound 18 (60.00 g, 314.71 mmol), sodium acetate (38.72 g, 472.07 mmol) and 900 mL of dimethyl sulfoxide were mixed as shown in Reaction Scheme 12 below, and heated at 110° C. for 2 hours. The mixture was reacted with intermittent stirring. Methylene chloride was added, the reaction solution was completely dissolved, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. Enriched compound 19 (2,3-dihydrothieno[3,4-b][1,4]dioxin-2-ylmethyl acetate (2,3-dihydrothieno[3,4-b][1,4]dioxin- 2-yl) methyl acetate)) was mixed with sodium hydroxide (44.12 g, 1.102 mol) and 1200 mL of water, and reacted with stirring at 100° C. for 4 hours. After the reaction was completed and the temperature was cooled to room temperature, hydrochloric acid was added dropwise until the pH reached 3. After extraction with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ). The organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a mixed solution of hexane:ethyl acetate=1:3 (volume ratio) to obtain (2,3-dihydrothieno[3,4 Compound 20 (38.20 g, b][1,4]dioxin-2-yl)methanol 70% yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ1.87(1H、s)、3.83-3.88(2H、m)、4.08-4.13(1H、m)、4.22-4.26(1H、m)、6.35(2H、s)。
[反応式12]

Figure 0007167031000027
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.87 (1H, s), 3.83-3.88 (2H, m), 4.08-4.13 (1H, m), 4.22 -4.26 (1H, m), 6.35 (2H, s).
[Reaction Formula 12]
Figure 0007167031000027

[製造例14]化学式2の単量体製造
下記反応式13に表せた通り、化合物20(7.00g、40.65mmol)をN、N-ジメチルホルムアミド70mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride、60% dispersion in mineral oil)(1.63g、40.65mmol)を添加して常温に温度を上げて30分間攪拌させた。また0℃に温度を下げた後化合物10-1(9.58g、44.72mmol)を添加して12時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=1:1(体積比)溶液で展開しながら、カラム精製して、2-(プロポキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2-(propoxymethyl)-2、3-dihydrothieno[3、4-b][1、4]dioxine、5-EDOT-1)である化合物21(7.5g、86% yield)収得した。
[Production Example 14] Production of the monomer of Chemical Formula 2
Compound 20 (7.00 g, 40.65 mmol) was mixed with 70 mL of N,N-dimethylformamide as shown in the following Reaction Scheme 13, the temperature was lowered to 0° C., and then sodium hydride (60% dispersion) was added. in mineral oil) (1.63 g, 40.65 mmol) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 10-1 (9.58 g, 44.72 mmol) was added and reacted with stirring for 12 hours. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was purified by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:ethyl acetate = 1:1 (volume ratio) solution to obtain 2-(propoxymethyl)-2,3- Compound 21, dihydrothieno[3,4-b][1,4]dioxin (2-(propoxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxine, 5-EDOT-1) (7.5 g, 86% yield).

H-NMR(CDCl、Varian 400MHz):δ0.89(3H、t、J=7.2Hz)、1.54(2H、t、J=8.8Hz)、3.45(2H、t、J=6.8Hz)、3.57-3.70(1H、m)、4.00-4.18(1H、m)、4.23-4.33(1H、m)、6.25(2H、s)。
[反応式13]

Figure 0007167031000028
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.89 (3H, t, J=7.2 Hz), 1.54 (2H, t, J=8.8 Hz), 3.45 (2H, t, J = 6.8 Hz), 3.57-3.70 (1H, m), 4.00-4.18 (1H, m), 4.23-4.33 (1H, m), 6.25 ( 2H, s).
[Reaction Formula 13]
Figure 0007167031000028

[製造例15]化学式2の単量体製造
下記反応式14に表せた通り、化合物20(7.00g、40.65mmol)をN、N-ジメチルホルムアミド70mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride、60% dispersion in mineral oil)(1.63g、40.65mmol)を添加して常温に温度を上げて30分間攪拌させた。又0℃に温度を下げた後化合物11-1(10.21g、44.72mmol)を添加して12時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=1:1(体積比)溶液で展開しながら、カラム精製して、2(ブトキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2-(butoxymethyl)-2、3-dihydrothieno[3、4-b][1、4]dioxine、6-EDOT-1)である化合物22(6.0g、65% yield)収得した。
[Production Example 15] Production of the monomer of Chemical Formula 2
As shown in the following Reaction Scheme 14, compound 20 (7.00 g, 40.65 mmol) was mixed with 70 mL of N,N-dimethylformamide, the temperature was lowered to 0° C., and then sodium hydride (60% dispersion) was added. in mineral oil) (1.63 g, 40.65 mmol) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 11-1 (10.21 g, 44.72 mmol) was added and reacted with stirring for 12 hours. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:ethyl acetate = 1:1 (volume ratio) solution to give 2(butoxymethyl)-2,3-dihydrothieno. [3,4-b][1,4]dioxin (2-(butoxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxine, 6-EDOT-1) compound 22 ( 6.0 g, 65% yield).

H-NMR(CDCl、Varian 400MHz):δ0.90(3H、t、J=7.2Hz)、1.44-55(4H、m)、3.45(2H、t、J=6.8Hz)、3.58(2H、t、J=6.8Hz)、3.57-3.70(1H、m)、4.00-4.18(1H、m)、4.23-4.33(1H、m)、6.27(2H、s)。
[反応式14]

Figure 0007167031000029
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.90 (3H, t, J=7.2 Hz), 1.44-55 (4H, m), 3.45 (2H, t, J=6. 8 Hz), 3.58 (2H, t, J=6.8 Hz), 3.57-3.70 (1H, m), 4.00-4.18 (1H, m), 4.23-4. 33 (1H, m), 6.27 (2H, s).
[Reaction Formula 14]
Figure 0007167031000029

[製造例16]化学式2の単量体製造
下記反応式15に表せた通り、化合物20(700g、40.65mmol)をN、N-ジメチルホルムアミド70mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride、60% dispersion in mineral oil)(1.63g、40.65mmol)を添加して常温に温度を上げて30分間攪拌させた。又0℃に温度を下げた後化合物12-1(12.89g、44.72mmol)を添加して12時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=1:1(体積比)溶液で展開しながら、カラム精製して、2((2-(2-エトキシエトキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2((2-(2-ethoxyethoxy)ethoxy)methyl)-2、3-dihydrothieno[3、4-b][1、4]dioxine、10-EDOT-3)である化合物23(11.50g、98% yield)収得した。
[Production Example 16] Production of the monomer of Chemical Formula 2
Compound 20 (700 g, 40.65 mmol) was mixed with 70 mL of N,N-dimethylformamide as shown in the following Reaction Scheme 15, the temperature was lowered to 0° C., and then sodium hydride (60% dispersion in mineral) was added. oil) (1.63 g, 40.65 mmol) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 12-1 (12.89 g, 44.72 mmol) was added and reacted with stirring for 12 hours. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:ethyl acetate = 1:1 (volume ratio) solution to give 2((2-(2-ethoxyethoxy) ethoxy)methyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin (2((2-(2-ethoxyethoxy)ethoxy)methyl)-2,3-dihydrothieno[3,4-b ][1,4]dioxine, 10-EDOT-3), compound 23 (11.50 g, 98% yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ1.21(3H、t、J=6.8Hz)、3.53(2H、dd、J=7.2Hz)、3.58-3.60(2H、m)、3.64-3.79(8H、m)、4.04-4.15(1H、m)、4.24-4.35(2H、m)、6.32(2H、s)。
[反応式15]

Figure 0007167031000030
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.21 (3H, t, J=6.8 Hz), 3.53 (2H, dd, J=7.2 Hz), 3.58-3.60 ( 2H, m), 3.64-3.79 (8H, m), 4.04-4.15 (1H, m), 4.24-4.35 (2H, m), 6.32 (2H, s).
[Reaction formula 15]
Figure 0007167031000030

[製造例17]化学式2の単量体製造
下記反応式16に表せた通り、化合物20(5.00g、29.04mmol)をN、N-ジメチルホルムアミド50mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride)(1.70g、29.04mmol、60% dispersion in mineral oil)を添加して常温に温度を上げて30分間攪拌させた。又0℃に温度を下げた後化合物13-1(9.08g、31.94mmol)を添加して12時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=5:1(体積比)溶液で展開しながら、カラム精製して、2-(オクチルオキシメチル)2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2-(octyloxymethyl)-2、3-dihydrothieno[3、4-b][1、4]dioxine、10-EDOT-1)である化合物24(5.30g、64% yield)収得した。
[Production Example 17] Production of the monomer of Chemical Formula 2
Compound 20 (5.00 g, 29.04 mmol) was mixed with 50 mL of N,N-dimethylformamide as shown in Reaction Scheme 16 below, the temperature was lowered to 0° C., and sodium hydride (1. 70 g, 29.04 mmol, 60% dispersion in mineral oil) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 13-1 (9.08 g, 31.94 mmol) was added and reacted with stirring for 12 hours. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while being developed with a hexane:ethyl acetate=5:1 (volume ratio) solution to give 2-(octyloxymethyl)2,3- Compound 24, dihydrothieno[3,4-b][1,4]dioxin (2-(octyloxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxine, 10-EDOT-1) (5.30 g, 64% yield).

H-NMR(CDCl、Varian 400MHz):δ0.88(3H、t、J=7.2Hz)、1.22-1.32(12H、m)、1.63(2H、t、J=8.8Hz)、3.49(2H、t、J=6.8Hz)、3.57-3.70(1H、m)、4.00-4.15(1H、m)、4.23-4.33(1H、m)、6.32(2H、s)。
[反応式16]

Figure 0007167031000031
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.88 (3H, t, J = 7.2 Hz), 1.22-1.32 (12H, m), 1.63 (2H, t, J = 8.8Hz), 3.49 (2H, t, J = 6.8Hz), 3.57-3.70 (1H, m), 4.00-4.15 (1H, m), 4.23- 4.33 (1H, m), 6.32 (2H, s).
[Reaction formula 16]
Figure 0007167031000031

[製造例18]化学式2の単量体製造
下記反応式17に表せた通り、化合物20(6.00g、34.84mmol)をN、N-ジメチルホルムアミド60mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride)(1.39g、34.84mmol、60% dispersion in mineral oil)を添加して常温に温度を上げて30分間攪拌させた。又0℃に温度を下げた後化合物14-1(9.42g、31.36mmol)を添加して12時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=5:1(体積比)溶液で展開しながら、カラム精製して、2-((2-(ヘキシルオキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2-((2-(hexyloxy)ethoxy)methyl)-2、3-dihydrothieno[3、4-b][1、4]dioxine、11-EDOT-2)である化合物25(5.30g、54% yield)収得した。
[Production Example 18] Production of the monomer of Chemical Formula 2
Compound 20 (6.00 g, 34.84 mmol) was mixed with 60 mL of N,N-dimethylformamide and cooled to 0° C., and sodium hydride (1. 39 g, 34.84 mmol, 60% dispersion in mineral oil) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 14-1 (9.42 g, 31.36 mmol) was added and reacted with stirring for 12 hours. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:ethyl acetate = 5:1 (volume ratio) solution to give 2-((2-(hexyloxy)ethoxy ) methyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin (2-((2-(hexyloxy)ethoxy)methyl)-2,3-dihydrothieno[3,4-b][ 1,4]dioxine, 11-EDOT-2), compound 25 (5.30 g, 54% yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ0.89(3H、t、J=6.8Hz)、1.24-1.35(6H、m)、1.54-1.60(2H、m)、3.45(2H、t、J=7.2Hz)、3.57-3.60(2H、m)、3.66-3.80(4H、m)、4.04-4.13(1H、m)、4.24-4.36(2H、m)、6.32(2H、t、J=4.4Hz)。
[反応式17]

Figure 0007167031000032
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.89 (3H, t, J=6.8 Hz), 1.24-1.35 (6H, m), 1.54-1.60 (2H, m), 3.45 (2H, t, J=7.2 Hz), 3.57-3.60 (2H, m), 3.66-3.80 (4H, m), 4.04-4. 13 (1H, m), 4.24-4.36 (2H, m), 6.32 (2H, t, J=4.4 Hz).
[Reaction formula 17]
Figure 0007167031000032

[製造例19]化学式2の単量体製造
下記反応式18に表せた通り、化合物20(6.85g、39.76mmol)をN、N-ジメチルホルムアミド70mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride)(1.59g、39.76mmol、60% dispersion in mineral oil)を添加して常温に温度を上げて30分間攪拌させた。又0℃に温度を下げた後化合物15-1(12.90g、35.79mmol)を添加して12時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=2:1(体積比)溶液で展開しながら、カラム精製して、2、2、5、8、11-テトラオキサペンタデシル-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2、2、5、8、11-tetraoxapentadecyl-2、3-dihydrothieno[3、4-b][1、4]dioxine、15-EDOT-4)である化合物26(7.10g、50% yield)収得した。
[Production Example 19] Production of the monomer of Chemical Formula 2
As shown in the following reaction scheme 18, compound 20 (6.85 g, 39.76 mmol) was mixed with 70 mL of N,N-dimethylformamide, cooled to 0° C., and treated with sodium hydride (1. 59 g, 39.76 mmol, 60% dispersion in mineral oil) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 15-1 (12.90 g, 35.79 mmol) was added and reacted with stirring for 12 hours. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:ethyl acetate = 2:1 (volume ratio) solution to give 2,2,5,8,11-tetra Oxapentadecyl-2,3-dihydrothieno[3,4-b][1,4]dioxin (2,2,5,8,11-tetraoxapentadecyl-2,3-dihydrothieno[3,4-b][1, 4] Compound 26 (7.10 g, 50% yield), which is dioxine, 15-EDOT-4) was obtained.

H-NMR(CDCl、Varian 400MHz):δ0.91(3H、t、J=7.6Hz)、1.31-1.40(2H、m)、1.52-1.58(2H、m)、3.45(2H、t、J=6.8Hz)、3.57(2H、d、J=4.8Hz)、3.63-3.79(12H、m)、4.04-4.13(1H、m)、4.24-4.34(2H、m)、6.32(2H、s)。
[反応式18]

Figure 0007167031000033
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.91 (3H, t, J=7.6 Hz), 1.31-1.40 (2H, m), 1.52-1.58 (2H, m), 3.45 (2H, t, J = 6.8 Hz), 3.57 (2H, d, J = 4.8 Hz), 3.63-3.79 (12H, m), 4.04- 4.13 (1H, m), 4.24-4.34 (2H, m), 6.32 (2H, s).
[Reaction Formula 18]
Figure 0007167031000033

[製造例20]化学式2の単量体製造
下記反応式19に表せた通り、化合物20(6.00g、34.84mmol)をN、N-ジメチルホルムアミド60mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride)(1.39g、34.84mmol、60% dispersion in mineral oil)を添加して常温に温度を上げて30分間攪拌させた。又0℃に温度を下げた後化合物16-1(11.37g、31.36mmol)を添加して12時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=5:1(体積比)溶液で展開しながら、カラム精製して、2-2、5、8、11、14-ペンタオキサペンタデカンデシル-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2-2、5、8、11、14-pentaoxapentadecyl-2、3-dihydrothieno[3、4-b][1、4]dioxine、15-EDOT-5)である化合物27(6.50g、52% yield)収得した。
[Production Example 20] Production of the monomer of Chemical Formula 2
Compound 20 (6.00 g, 34.84 mmol) was mixed with 60 mL of N,N-dimethylformamide, cooled to 0° C., and treated with sodium hydride (1. 39 g, 34.84 mmol, 60% dispersion in mineral oil) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 16-1 (11.37 g, 31.36 mmol) was added and reacted with stirring for 12 hours. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:ethyl acetate = 5:1 (volume ratio) solution. -pentaoxapentadecandecyl-2,3-dihydrothieno[3,4-b][1,4]dioxin (2-2,5,8,11,14-pentaoxapentadecyl-2,3-dihydrothieno[3,4-b ][1,4]dioxine, 15-EDOT-5), compound 27 (6.50 g, 52% yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ3.30(3H、t、J=7.6Hz)、3.54-3.65(18H、m)、4.04-4.13(1H、m)、4.24-4.34(2H、m)、6.32(2H、s)。
[反応式19]

Figure 0007167031000034
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 3.30 (3H, t, J=7.6 Hz), 3.54-3.65 (18H, m), 4.04-4.13 (1H, m), 4.24-4.34 (2H, m), 6.32 (2H, s).
[Reaction Formula 19]
Figure 0007167031000034

[製造例21]化学式3の第1中間体製造
下記反応式20に表せた通り、ジクロロメタン(DCM)(300mL、10mL/g)にトリエチレングリコール(triethyleneglycol)(28)(30g、199.77mmol)とトリエチルアミン(TEA)(84mL、599.32mol)を溶解させた後、0℃でTosyl chloride(114.26g、599.31mmol)を入れてあげた後、常温で6時間の間攪拌した。反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:ジクロロメタン(DCM)=1:1(体積比)溶液で展開しながら、カラム精製して、2、2’-(エタン-1、2-ジイルビス(オキシ))ビス(エタン-2、1-ジイル)ビス(4-メチルベンゼンスルホン酸)(2、2’-(ethane-1、2-diylbis(oxy))bis(ethane-2、1-diyl) bis(4-methylbenzenesulfonate))である化合物28-1(54.20g、59% yield)収得した。
[Production Example 21] Production of the first intermediate of Chemical Formula 3
Triethyleneglycol (28) (30 g, 199.77 mmol) and triethylamine (TEA) (84 mL, 599.32 mol) were added to dichloromethane (DCM) (300 mL, 10 mL/g) as shown in the following reaction scheme 20. After dissolving, tosyl chloride (114.26 g, 599.31 mmol) was added at 0° C. and stirred at room temperature for 6 hours. After the reaction solution was completely dissolved and extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ) and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:dichloromethane (DCM) = 1:1 (volume ratio) solution to give 2,2'-(ethane-1 , 2-diylbis(oxy))bis(ethane-2,1-diyl)bis(4-methylbenzenesulfonic acid)(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2 , 1-diyl) bis(4-methylbenzenesulfonate)), compound 28-1 (54.20 g, 59% yield).

H-NMR(CDCl、Varian 400MHz):δ2.45(6H、s)、3.53(4H、s)、3.66(4H、t、J=4.8Hz)、4.14(4H、t、J=4.8Hz)、7.34(4H、d、J=8.0Hz)、7.79(4H、d、J=8.0Hz)。
[反応式20]

Figure 0007167031000035
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 2.45 (6H, s), 3.53 (4H, s), 3.66 (4H, t, J = 4.8 Hz), 4.14 (4H , t, J = 4.8 Hz), 7.34 (4H, d, J = 8.0 Hz), 7.79 (4H, d, J = 8.0 Hz).
[Reaction formula 20]
Figure 0007167031000035

[製造例22]化学式3の第1中間体製造
下記反応式21に表せた通り、ジクロロメタン(DCM)(300mL、10mL/g)に1、4-シクロヘキサンジメタノール(1、4-cyclohexanedimethanol)(29)(30g、208.03mmol)とトリエチルアミン(TEA)(87mL、624.09mol)を溶解させた後、0℃でTosyl chloride(118.98g、624.09mmol)を入れてあげた後、常温で6時間の間攪拌した。反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:ジクロロメタン(DCM)=1:1(体積比)溶液で展開しながら、カラム精製して、シクロヘキサン-1、4-ジイルビス(メチレン)ビス(4-メチルベンゼンスルホン酸)(cyclohexane-1、4-diylbis(methylene) bis(4-methylbenzenesulfonate))である化合物29-1(38.50g、41% yield)収得した。
[Production Example 22] Production of the first intermediate of Chemical Formula 3
As shown in the following Reaction Scheme 21, 1,4-cyclohexanedimethanol (29) (30 g, 208.03 mmol) and triethylamine (TEA) were added to dichloromethane (DCM) (300 mL, 10 mL/g). (87 mL, 624.09 mol) was dissolved, and Tosyl chloride (118.98 g, 624.09 mmol) was added at 0° C. and stirred at room temperature for 6 hours. After the reaction solution was completely dissolved and extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ) and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:dichloromethane (DCM) = 1:1 (volume ratio) solution to obtain cyclohexane-1,4-diylbis(methylene). ) bis(4-methylbenzenesulfonic acid) (cyclohexane-1, 4-diylbis(methylene) bis(4-methylbenzenesulfonate)), compound 29-1 (38.50 g, 41% yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ0.90(4H、t、J=9.2Hz)、1.58(2H、m)、1.73(4H、d、J=7.2Hz)、2.44(6H、s)、3.80(4H、d、J=6.4Hz)、7.34(4H、d、J=8.0Hz)、7.77(4H、d、J=8.0Hz)。
[反応式21]

Figure 0007167031000036
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.90 (4H, t, J=9.2 Hz), 1.58 (2H, m), 1.73 (4H, d, J=7.2 Hz) , 2.44 (6H, s), 3.80 (4H, d, J = 6.4 Hz), 7.34 (4H, d, J = 8.0 Hz), 7.77 (4H, d, J = 8.0 Hz).
[Reaction Formula 21]
Figure 0007167031000036

[製造例23]化学式3の第1中間体製造
下記反応式22に表せた通り、ジクロロメタン(DCM)(300mL、10mL/g)に1、6-ヘキサンジオール(1、6-hexanediol)(30)(30g、253.85mmol)とトリエチルアミン(TEA)(106mL、761.55mmol)を溶解させた後、0℃でTosyl chloride(118.98g、624.09mmol)を入れてあげた後、常温で6時間の間攪拌した。反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:ジクロロメタン(DCM)=1:1(体積比)溶液で展開しながら、カラム精製して、ヘキサン-1、6-ジイルビス(4-メチルベンゼンスルホン酸)(hexane-1、6-diyl bis(4-methylbenzenesulfonate))である化合物30-1(50.65g、57% yield)収得した。
[Production Example 23] Production of the first intermediate of Chemical Formula 3
As shown in the following reaction scheme 22, 1,6-hexanediol (30) (30 g, 253.85 mmol) and triethylamine (TEA) (300 mL, 10 mL/g) in dichloromethane (DCM) 106 mL, 761.55 mmol) was dissolved, Tosyl chloride (118.98 g, 624.09 mmol) was added at 0° C., and the mixture was stirred at room temperature for 6 hours. After the reaction solution was completely dissolved and extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ) and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:dichloromethane (DCM) = 1:1 (volume ratio) solution to give hexane-1,6-diylbis(4 Compound 30-1 (50.65 g, 57% yield), which is hexane-1,6-diyl bis(4-methylbenzenesulfonate)).

H-NMR(CDCl、Varian 400MHz):δ1.27(4H、s)、1.58-1.62(4H、m)、2.44(6H、s)、3.98(4H、t、J=7.6Hz)、7.35(4H、d、J=8.4Hz)、7.78(4H、d、J=8.4Hz)。
[反応式22]

Figure 0007167031000037
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.27 (4H, s), 1.58-1.62 (4H, m), 2.44 (6H, s), 3.98 (4H, t , J=7.6 Hz), 7.35 (4H, d, J=8.4 Hz), 7.78 (4H, d, J=8.4 Hz).
[Reaction Formula 22]
Figure 0007167031000037

[製造例24]化学式3の第1重合体の製造
下記反応式23に表せた通り、ジクロロメタン(DCM)(100mL、10mL/g)にジエチレングリコール(triethyleneglycol)(31)(10g、94.23mmol)とトリエチルアミン(TEA)(39mL、282.70mol)を溶解させた後、0℃でTosyl chloride(53.89g、282.70mmol)を入れてあげた後、常温で6時間の間攪拌した。反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:ジクロロメタン(DCM)=1:1(体積比)溶液で展開しながら、カラム精製して、2、2’-オキシビス(エタン-2、1-ジイル)ビス(4-メチルベンゼンスルホン酸)(2、2’-oxybis(ethane-2、1-diyl) bis(4-methylbenzenesulfonate))である化合物31-1(28.0g、72% yield)収得した。
[Production Example 24] Production of the first polymer represented by Chemical Formula 3
Diethylene glycol (31) (10 g, 94.23 mmol) and triethylamine (TEA) (39 mL, 282.70 mol) were dissolved in dichloromethane (DCM) (100 mL, 10 mL/g) as shown in Reaction Scheme 23 below. Then, tosyl chloride (53.89 g, 282.70 mmol) was added at 0° C. and stirred at room temperature for 6 hours. After the reaction solution was completely dissolved and extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ) and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:dichloromethane (DCM) = 1:1 (volume ratio) solution to obtain 2,2'-oxybis(ethane- Compound 31-1 (28.0 g, 72 % yield) obtained.

H-NMR(CDCl、Varian 400MHz):δ2.34(6H、s)、3.56(4H、t、J=4.8Hz)、3.70(4H、t、J=4.8Hz)、7.34(4H、d、J=8.0Hz)、7.79(4H、d、J=8.0Hz)。
[反応式23]

Figure 0007167031000038
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 2.34 (6H, s), 3.56 (4H, t, J=4.8Hz), 3.70 (4H, t, J=4.8Hz) , 7.34 (4H, d, J=8.0 Hz), 7.79 (4H, d, J=8.0 Hz).
[Reaction Formula 23]
Figure 0007167031000038

[製造例25]化学式1の架橋剤製造(A-1)
下記反応式24に表せた通り、化合物20(4.09g、23.75mmol)をN、N-ジメチルホルムアミド400mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride)(0.95g、23.75mmol、60% dispersion in mineral oil)を添加して常温に温度を上げて30分間攪拌させた。又0℃に温度を下げた後化合物28-1(5.11g、11.16mmol)を添加して12時間の間攪拌しながら反応させた。ジクロロメタン(DCM)を添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=1:1(体積比)溶液で展開しながら、カラム精製して、1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン(1、12-bis(2、3-dihydrothieno[3、4-b][1、4]dioxin-2-yl)-2、5、8、11-tetraoxadodecane)である化合物32(3.10g、61% yield)収得した。
[Production Example 25] Production of a cross-linking agent of chemical formula 1 (A-1)
Compound 20 (4.09 g, 23.75 mmol) was mixed with 400 mL of N,N-dimethylformamide as shown in the following Reaction Scheme 24, the temperature was lowered to 0° C., and then sodium hydride (0.00 C) was added. 95 g, 23.75 mmol, 60% dispersion in mineral oil) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 28-1 (5.11 g, 11.16 mmol) was added and reacted with stirring for 12 hours. Dichloromethane (DCM) was added to dissolve the reaction completely and extracted with water, then the organic layer was dried over sodium sulfate (Na 2 SO 4 ) and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:ethyl acetate = 1:1 (volume ratio) solution to obtain 1,12-bis(2,3-dihydrothieno). [3,4-b][1,4]dioxin-2-yl)-2,5,8,11-tetraoxadodecane (1,12-bis(2,3-dihydrothieno[3,4-b][ 1,4]dioxin-2-yl)-2,5,8,11-tetraoxadodecane), compound 32 (3.10 g, 61% yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ3.65-3.78(16H、m)、4.03-4.06(2H、dd、J=11.6Hz)、4.23-4.33(4H、m)。
[反応式24]

Figure 0007167031000039
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 3.65-3.78 (16H, m), 4.03-4.06 (2H, dd, J=11.6 Hz), 4.23-4. 33 (4H, m).
[Reaction Formula 24]
Figure 0007167031000039

[製造例26]化学式1の架橋剤製造(A-2)
下記反応式25に表せた通り、化合物20(9.8g、56.91mmol)をN、N-ジメチルホルムアミド100mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride)(2.28g、56.91mmol、60% dispersion in mineral oil)を添加して常温に温度を上げて30分間攪拌させた。又0℃に温度を下げた後化合物29-1(12.11g、26.75mmol)を添加して12時間の間攪拌しながら反応させた。エチルアセテートを添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=1:1(体積比)溶液で展開しながら、カラム精製して、1、4-ビス(((2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)メトキシ)メチルシクロヘキサン(1、4-bis(((2、3-dihydrothieno[3、4-b][1、4]dioxin-2-yl)methoxy)methyl)cyclohexane)である化合物33(6.50g、54% yield)収得した。
[Production Example 26] Production of a cross-linking agent of chemical formula 1 (A-2)
Compound 20 (9.8 g, 56.91 mmol) was mixed with 100 mL of N,N-dimethylformamide as shown in the following Reaction Scheme 25, the temperature was lowered to 0° C., and sodium hydride (2. 28 g, 56.91 mmol, 60% dispersion in mineral oil) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 29-1 (12.11 g, 26.75 mmol) was added and reacted with stirring for 12 hours. Ethyl acetate was added to completely dissolve the reaction solution, extracted with water, the organic layer was dried over sodium sulfate (Na 2 SO 4 ), and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:ethyl acetate = 1:1 (volume ratio) solution to obtain 1,4-bis(((2,3 - dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy)methylcyclohexane (1,4-bis(((2,3-dihydrothieno[3,4-b][1,4] Dioxin-2-yl)methoxy)methyl)cyclohexane), compound 33 (6.50 g, 54% yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ0.96(4H、t、J=6.0Hz)、1.80(4H、d、J=7.6Hz)、3.36(4H、d、J=7.6Hz)3.56-3.70(4H、m)、4.03-4.08(2H、m)、4.23-4.32(4H、m)、6.33(4H、s)。
[反応式25]

Figure 0007167031000040
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.96 (4H, t, J = 6.0 Hz), 1.80 (4H, d, J = 7.6 Hz), 3.36 (4H, d, J=7.6Hz) 3.56-3.70 (4H, m), 4.03-4.08 (2H, m), 4.23-4.32 (4H, m), 6.33 (4H , s).
[Reaction Formula 25]
Figure 0007167031000040

[製造例27]化学式1の架橋剤製造(A-3)
下記反応式26に表せた通り、化合物20(15.0g、87.11mmol)をN、N-ジメチルホルムアミド150mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride)(3.48g、87.11mmol、60% dispersion in mineral oil)を添加して常温に温度を上げて30分間攪拌させた。又0℃に温度を下げた後化合物30-1(17.46g、40.94mmol)を添加して12時間の間攪拌しながら反応させた。ジクロロメタン(DCM)を添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=3:1(体積比)溶液で展開しながら、カラム精製して、1、6-ビス((2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)メトキシ)ヘキサン(1、6-bis((2、3-dihydrothieno[3、4-b][1、4]dioxin-2-yl)methoxy)hexane)である化合物34(4.90g、28% yield)収得した。
[Production Example 27] Production of a cross-linking agent of Chemical Formula 1 (A-3)
As shown in the following reaction scheme 26, compound 20 (15.0 g, 87.11 mmol) was mixed with 150 mL of N,N-dimethylformamide, cooled to 0° C., and treated with sodium hydride (3. 48 g, 87.11 mmol, 60% dispersion in mineral oil) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 30-1 (17.46 g, 40.94 mmol) was added and reacted with stirring for 12 hours. Dichloromethane (DCM) was added to dissolve the reaction completely and extracted with water, then the organic layer was dried over sodium sulfate (Na 2 SO 4 ) and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:ethyl acetate = 3:1 (volume ratio) solution to obtain 1,6-bis((2,3- dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy)hexane (1,6-bis((2,3-dihydrothieno[3,4-b][1,4]dioxin-2 -yl)methoxy)hexane), compound 34 (4.90 g, 28% yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ1.35-1.38(4H、m)、1.57-1.61(4H、m)、3.48-3.52(4H、m)、3.57-3.70(4H、m)4.05(2H、dd、J=11.6Hz)、4.22-4.32(4H、m)、6.33(4H、s)。
[反応式26]

Figure 0007167031000041
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.35-1.38 (4H, m), 1.57-1.61 (4H, m), 3.48-3.52 (4H, m) , 3.57-3.70 (4H, m) 4.05 (2H, dd, J=11.6 Hz), 4.22-4.32 (4H, m), 6.33 (4H, s).
[Reaction Formula 26]
Figure 0007167031000041

[製造例28]化学式1の架橋剤製造(A-4)
下記反応式27に表せた通り、化合物20(2.0g、11.62mmol)をN、N-ジメチルホルムアミド20mLに混合し、0℃に温度を下げた後水素化ナトリウム(sodium hydride)(0.46g、11.62mmol、60% dispersion in mineral oil)を添加して常温に温度を上げて30分間攪拌させた。又0℃に温度を下げた後化合物31-1(2.26g、5.46mmol)を添加して12時間の間攪拌しながら反応させた。ジクロロメタン(DCM)を添加し、反応液を完全に溶解させて、水で抽出した後、有機層を硫酸ナトリウム(NaSO)で乾燥して、残った有機層を濃縮した。濃縮された有機層を二酸化珪素(SiO)カラムクロマトグラフィーでヘキサン:エチルアセテート=1:1(体積比)溶液で展開しながら、カラム精製して、2、2’-(2、2’-オキシビス(エタン-2、1-ジイル)ビス(オキシ))ビス(メチレン)ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2、2’-(2、2’-oxybis(ethane-2、1-diyl)bis(oxy))bis(methylene)bis(2、3-dihydrothieno[3、4-b][1、4]dioxine))である化合物35(2.05g、88% yield)収得した。
[Production Example 28] Production of a cross-linking agent of Chemical Formula 1 (A-4)
Compound 20 (2.0 g, 11.62 mmol) was mixed with 20 mL of N,N-dimethylformamide as shown in the following Reaction Scheme 27, the temperature was lowered to 0° C., and then sodium hydride (0.000 C) was added. 46 g, 11.62 mmol, 60% dispersion in mineral oil) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. After lowering the temperature to 0° C., compound 31-1 (2.26 g, 5.46 mmol) was added and reacted with stirring for 12 hours. Dichloromethane (DCM) was added to dissolve the reaction completely and extracted with water, then the organic layer was dried over sodium sulfate (Na 2 SO 4 ) and the remaining organic layer was concentrated. The concentrated organic layer was subjected to column purification by silicon dioxide (SiO 2 ) column chromatography while developing with a hexane:ethyl acetate = 1:1 (volume ratio) solution to obtain 2,2'-(2,2'- oxybis(ethane-2,1-diyl)bis(oxy))bis(methylene)bis(2,3-dihydrothieno[3,4-b][1,4]dioxin (2,2′-(2,2′ -oxybis(ethane-2,1-diyl)bis(oxy))bis(methylene)bis(2,3-dihydrothieno[3,4-b][1,4]dioxine)) Compound 35 (2.05 g) , 88% yield).

H-NMR(CDCl、Varian 400MHz):δ3.65-3.79(12H、m)、4.06(2H、dd、J=7.2Hz)、4.23-4.34(4H、m)、6.32(4H、s)。
[反応式27]

Figure 0007167031000042
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 3.65-3.79 (12H, m), 4.06 (2H, dd, J = 7.2 Hz), 4.23-4.34 (4H, m), 6.32 (4H, s).
[Reaction formula 27]
Figure 0007167031000042

[製造例29]化学式2の単量体の第1中間体製造
前記製造例11で2、5、8、11-テトラオキサトリデカン-13-オル(2、5、8、11-tetraoxatridecan-13-ol)(16)の代わりに2-(2-(ヘプチルオキシ)エトキシ)エタノール(2-(2-(heptyloxy)ethoxy)ethanol)(36)(20.0g、97.89mmol)を使用したことを除いて製造例11と同一な方法で合成して2-(2-(2-(ヘプチルオキシ)エトキシ)エチル)4-メチルベンゼンスルホン酸(2-(2-(heptyloxy)ethoxy)ethyl 4-methylbenzenesulfonate)である液体化合物36-1を(28.50g、81% yield)収得した。
[Production Example 29] Production of the first intermediate of the monomer of Chemical Formula 2
2-(2-(heptyloxy 2-( Liquid Compound 36-1, which is 2-(2-(heptyloxy)ethoxy)ethyl 4-methylbenzenesulfonate, is 2-(2-(heptyloxy)ethoxy)ethyl)4-methylbenzenesulfonate (28.50 g, 81% yield) was obtained.

H-NMR(CDCl、Varian 400MHz):δ0.90(3H、t、J=7.2Hz)、1.30-1.43(8H、m)、1.51-1.59(2H、m)、2.44(3H、s)、3.44(2H、t、J=6.4Hz)、3.54-3.61(8H、m)、7.33(2H、d、J=8.0Hz)、7.79(2H、d、J=8.0Hz)。
[反応式27-1]

Figure 0007167031000043
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.90 (3H, t, J=7.2 Hz), 1.30-1.43 (8H, m), 1.51-1.59 (2H, m), 2.44 (3H, s), 3.44 (2H, t, J = 6.4 Hz), 3.54-3.61 (8H, m), 7.33 (2H, d, J = 8.0 Hz), 7.79 (2H, d, J=8.0 Hz).
[Reaction formula 27-1]
Figure 0007167031000043

[製造例30]化学式2の単量体製造
前記製造例20で化合物16-1の代わりに前記製造例29の化合物36-1を使用したことを除いて製造例20と同一な方法で合成して2-((2-2-(ヘプチルオキシ)エトキシ)エトキシ)メチル)-2-3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン(2-((2-(2-(heptyloxy)ethoxy)ethoxy)methyl)-2、3-dihydrothieno[3、4-b][1、4]dioxide、15-EDOT-3)である液体化合物37を(6.10g、50% yield)収得した。
[Production Example 30] Production of the monomer of Chemical Formula 2
2-((2-2-(heptyloxy )ethoxy)ethoxy)methyl)-2-3-dihydrothieno[3,4-b][1,4]dioxin (2-((2-(2-(heptyloxy)ethoxy)ethoxy)methyl)-2,3- Liquid compound 37 (6.10 g, 50% yield), which is dihydrothieno[3,4-b][1,4]dioxide, 15-EDOT-3) was obtained.

H-NMR(CDCl、Varian 400MHz):δ0.89(3H、t、J=6.8Hz)、1.29-1.35(8H、m)、1.54-1.62(2H、m)、3.45(2H、t、J=7.2Hz)、3.57-3.60(6H、m)、3.66-3.80(4H、m)、4.04-4.13(1H、m)、4.24-4.36(2H、m)、6.32(2H、t、J=4.4Hz)。
[反応式28]

Figure 0007167031000044
1 H-NMR (CDCl 3 , Varian 400 MHz): δ 0.89 (3H, t, J=6.8 Hz), 1.29-1.35 (8H, m), 1.54-1.62 (2H, m), 3.45 (2H, t, J=7.2 Hz), 3.57-3.60 (6H, m), 3.66-3.80 (4H, m), 4.04-4. 13 (1H, m), 4.24-4.36 (2H, m), 6.32 (2H, t, J=4.4 Hz).
[Reaction Formula 28]
Figure 0007167031000044

[比較例1]アルミニウム捲回型電解コンデンサの製造(poly mono-propyl EDOT)
先に、陽極側対向電極でアルミニウム箔を使用し、陽極箔表面にエッチング処理した後、化成処理を実施して、アルミニウム箔の表面に酸化被膜でなる誘電体層を形成した陽極にリード端子を付着した。次に、アルミニウム箔でなる陰極にリード端子を付着し、前記リード端子が付着された陽極と陰極をナイロン系セパレーターを通じて捲回しコンデンサ素子を制作した。
[Comparative Example 1] Production of aluminum wound electrolytic capacitor (poly mono-propyl EDOT)
First, an aluminum foil is used for the anode-side counter electrode, and after etching the surface of the anode foil, chemical conversion treatment is performed to form a dielectric layer made of an oxide film on the surface of the aluminum foil, and lead terminals are attached to the anode. Adhered. Next, a lead terminal was attached to the cathode made of aluminum foil, and the anode and cathode with the lead terminal attached were wound through a nylon separator to fabricate a capacitor element.

次に、(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーを用意した後酸化剤50%p-トルエンスルホン酸第3鉄塩/n-ブタノール溶液を重量比で1対2.5で導電性高分子電解質溶液を制作し、前記コンデンサ素子をこの導電性高分子電解質溶液に浸漬して、吹出して45℃で2時間の間、105℃で35分の間、125℃で1時間の間加熱して、酸化重合して導電性高分子でなる電解質層を形成した。最後に、前記電解質層を外装材で外装し、陽極たちに4Vの電圧を印加するエージングを行いアルミニウム捲回型電解コンデンサを制作した。 Next, (2-propyl-2,3-dihydrothieno)dioxin) monomer was prepared, and then a 50% p-toluenesulfonic acid ferric salt/n-butanol solution with an oxidizing agent was added at a weight ratio of 1:2.5 to make it conductive. A polymer electrolyte solution is prepared, the capacitor element is immersed in the conductive polymer electrolyte solution, blown out and heated at 45° C. for 2 hours, 105° C. for 35 minutes, and 125° C. for 1 hour. Then, oxidative polymerization was performed to form an electrolyte layer made of a conductive polymer. Finally, the electrolyte layer was wrapped with a wrapping material, and aging was performed by applying a voltage of 4 V to the anodes to produce an aluminum wound electrolytic capacitor.

[比較例2]アルミニウム捲回型電解コンデンサの製造(poly mono octyl-EDOT)
(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーの代わりに(2-オクチル2、3-ジヒドロチエノ)ダイオキシン)モノマーを使用したことを除いては、比較例1と同一な方法でコンデンサ素子及びアルミニウム捲回型電解コンデンサを制作した。
[Comparative Example 2] Production of aluminum wound electrolytic capacitor (poly mono octyl-EDOT)
A capacitor element and aluminum were prepared in the same manner as in Comparative Example 1, except that (2-octyl 2,3-dihydrothieno)dioxin) monomer was used instead of (2-propyl 2,3-dihydrothieno)dioxin) monomer. I made a wound type electrolytic capacitor.

[比較例3]アルミニウム捲回型電解コンデンサの製造(poly mono decyl-EDOT)
(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーの代わりに(2-デシル2、3-ジヒドロチエノ)ダイオキシン)モノマーを使用したことを除いては、比較例1と同一な方法でコンデンサ素子及びアルミニウム捲回型電解コンデンサを制作した。
[Comparative Example 3] Production of aluminum wound electrolytic capacitor (poly monodecyl-EDOT)
A capacitor element and aluminum were prepared in the same manner as in Comparative Example 1, except that (2-decyl 2,3-dihydrothieno)dioxin) monomer was used instead of (2-propyl 2,3-dihydrothieno)dioxin) monomer. I made a wound type electrolytic capacitor.

[比較例4]アルミニウム捲回型電解コンデンサの製造(poly mono-(15-EDOT-5))
(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーの代わりに2-2、5、8、11、14-ペンタオキサペンタデカンデシル-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマーを使用したことを除いては、比較例1と同一な方法でコンデンサ素子及びアルミニウム捲回型電解コンデンサを制作した。
[Comparative Example 4] Production of aluminum wound electrolytic capacitor (poly mono-(15-EDOT-5))
2-2,5,8,11,14-Pentaoxapentadecanedecyl-2,3-dihydrothieno[3,4-b][1,4] instead of (2-propyl 2,3-dihydrothieno)dioxin) monomer A capacitor element and an aluminum wound electrolytic capacitor were manufactured in the same manner as in Comparative Example 1, except that dioxin monomer was used.

[比較例5]アルミニウム捲回型電解コンデンサの製造(poly mono-(5-EDOT-1))
(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーの代わりに2-(プロポキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマーを使用したことを除いては、比較例1と同一な方法でコンデンサ素子及びアルミニウム捲回型電解コンデンサを制作した。
[Comparative Example 5] Production of aluminum wound electrolytic capacitor (poly mono-(5-EDOT-1))
(2-Propoxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin monomer instead of (2-propyl 2,3-dihydrothieno)dioxin) monomer. A capacitor element and an aluminum-wound electrolytic capacitor were manufactured in the same manner as in Comparative Example 1.

[実施例1]アルミニウム捲回型電解コンデンサの製造(poly mono-(6-EDOT-1))
(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーの代わりに2(ブトキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマーを使用したことを除いては、比較例1と同一な方法でコンデンサ素子及びアルミニウム捲回型電解コンデンサを制作した。
[Example 1] Production of aluminum wound electrolytic capacitor (poly mono-(6-EDOT-1))
2(butoxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin monomer was used instead of (2-propyl 2,3-dihydrothieno)dioxin) monomer. A capacitor element and an aluminum wound electrolytic capacitor were manufactured in the same manner as in Comparative Example 1.

[実施例2]アルミニウム捲回型電解コンデンサの製造(poly mono-(10-EDOT-3))
(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーの代わりに(2-((2-(2-エトキシエトキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーを使用したことを除いては、比較例1と同一な方法でコンデンサ素子及びアルミニウム捲回型電解コンデンサを制作した。
[Example 2] Production of aluminum wound electrolytic capacitor (poly mono-(10-EDOT-3))
(2-((2-(2-ethoxyethoxy)ethoxy)methyl)-2,3-dihydrothieno[3,4-b][1,4 instead of (2-propyl 2,3-dihydrothieno)dioxin) monomer ] A capacitor element and an aluminum wound electrolytic capacitor were manufactured in the same manner as in Comparative Example 1, except that a dioxin monomer was used.

[実施例3]アルミニウム捲回型電解コンデンサの製造(poly mono-(10-EDOT-1))
(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーの代わりに(2-(オクチルオキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーを使用したことを除いては、比較例1と同一な方法でコンデンサ素子及びアルミニウム捲回型電解コンデンサを制作した。
[Example 3] Production of aluminum wound electrolytic capacitor (poly mono-(10-EDOT-1))
(2-(Octyloxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin) monomer was used in place of (2-propyl 2,3-dihydrothieno)dioxin) monomer. A capacitor element and an aluminum wound electrolytic capacitor were manufactured in the same manner as in Comparative Example 1, except for the following.

[実施例4]アルミニウム捲回型電解コンデンサの製造(poly mono-(11-EDOT-2))
(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーの代わりに2-((2-(ヘキシルオキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマーを使用したことを除いては、比較例1と同一な方法でコンデンサ素子及びアルミニウム捲回型電解コンデンサを制作した。
[Example 4] Production of aluminum wound electrolytic capacitor (poly mono-(11-EDOT-2))
2-((2-(hexyloxy)ethoxy)methyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin monomer instead of (2-propyl 2,3-dihydrothieno)dioxin) monomer A capacitor element and an aluminum wound electrolytic capacitor were manufactured in the same manner as in Comparative Example 1, except that .

[実施例5]アルミニウム捲回型電解コンデンサの製造(poly mono-(15-EDOT-4))
(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーの代わりに2、2、5、8、11-テトラオキサペンタデシル-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマーを使用したことを除いては、比較例1と同一な方法でコンデンサ素子及びアルミニウム捲回型電解コンデンサを制作した。
[Example 5] Production of aluminum wound electrolytic capacitor (poly mono-(15-EDOT-4))
2,2,5,8,11-tetraoxapentadecyl-2,3-dihydrothieno[3,4-b][1,4]dioxin monomer instead of (2-propyl 2,3-dihydrothieno)dioxin) monomer A capacitor element and an aluminum wound electrolytic capacitor were manufactured in the same manner as in Comparative Example 1, except that .

[実施例6]アルミニウム捲回型電解コンデンサの製造(poly EDOT:10-EDOT-1)
比較例1と同一な方法でコンデンサ素子を製造し、重合用化合物は下記のような方法で製造した。
[Example 6] Production of aluminum wound electrolytic capacitor (poly EDOT: 10-EDOT-1)
A capacitor element was prepared in the same manner as in Comparative Example 1, and a polymerizable compound was prepared in the following manner.

先に、3、4-エチレンジオキシチオフェンモノマー及び(2-(オクチルオキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーをそれぞれmol比50%(1:1)で混合(mixing)して用意した後酸化剤50%p-トルエンスルホン酸第3鉄塩/n-ブタノール溶液を重量比で1対2.5で導電性高分子電解質溶液を制作した。次に、前記コンデンサ素子をこの導電性高分子電解質溶液に浸漬し、吹出して45℃で2時間の間、105℃で35分の間、125℃で1時間の間加熱して、酸化重合して導電性高分子でなる電解質層を形成した。前記導体電解質層を外装材で外装し、陽極たちに4Vの電圧を印加するエージングを行いアルミニウム捲回型電解コンデンサを制作した。 First, 3,4-ethylenedioxythiophene monomer and (2-(octyloxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin) monomer were each added at a molar ratio of 50% (1 : After mixing and preparing in 1), a conductive polymer electrolyte solution was prepared with a weight ratio of 50% p-toluenesulfonic acid ferric salt/n-butanol solution of 1:2.5 as an oxidizing agent. . Next, the capacitor element was immersed in this conductive polymer electrolyte solution, blown out, and heated at 45° C. for 2 hours, 105° C. for 35 minutes, and 125° C. for 1 hour for oxidation polymerization. to form an electrolyte layer made of a conductive polymer. The conductor electrolyte layer was wrapped with a wrapping material, and aging was performed by applying a voltage of 4 V to the anodes to produce an aluminum wound electrolytic capacitor.

[実施例7]アルミニウム捲回型電解コンデンサの製造(poly EDOT:15-EDOT-4)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 7] Production of aluminum wound electrolytic capacitor (poly EDOT: 15-EDOT-4)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、3、4-エチレンジオキシチオフェンモノマー及び(2-(オクチルオキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーの代わりに3、4-エチレンジオキシチオフェンモノマー及び(2、2、5、8、11-テトラオキサペンタデシル-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマーを使用したことを除いては、実施例6と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 Then 3,4-ethylenedioxythiophene monomer and 3,4-ethylene in place of (2-(octyloxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin) monomer except that dioxythiophene monomer and (2,2,5,8,11-tetraoxapentadecyl-2,3-dihydrothieno[3,4-b][1,4]dioxin monomer were used. An aluminum wound electrolytic capacitor was produced in the same manner as in Example 6.

[実施例8]アルミニウム捲回型電解コンデンサの製造(poly propyl-EDOT:15-EDOT-4)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 8] Production of aluminum wound electrolytic capacitor (polypropyl-EDOT: 15-EDOT-4)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、3、4-エチレンジオキシチオフェンモノマー及び(2-(オクチルオキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーの代わりに2-プロピル-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマー及び(2、2、5、8、11-テトラオキサペンタデシル-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマーを使用したことを除いては、実施例6と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 2-propyl-2 in place of 3,4-ethylenedioxythiophene and (2-(octyloxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin) monomers , 3-dihydrothieno[3,4-b][1,4]dioxin monomer and (2,2,5,8,11-tetraoxapentadecyl-2,3-dihydrothieno[3,4-b][1, 4) An aluminum wound electrolytic capacitor was manufactured in the same manner as in Example 6, except that dioxin monomer was used.

[実施例9]アルミニウム捲回型電解コンデンサの製造(poly EDOT:10-EDOT-3)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 9] Production of aluminum wound electrolytic capacitor (poly EDOT: 10-EDOT-3)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、3、4-エチレンジオキシチオフェンモノマー及び(2-(オクチルオキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーの代わりに3、4-エチレンジオキシチオフェンモノマー及び2((2-(2-エトキシエトキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマーを使用したことを除いては、実施例6と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 Then 3,4-ethylenedioxythiophene monomer and 3,4-ethylene in place of (2-(octyloxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin) monomer except that dioxythiophene monomer and 2((2-(2-ethoxyethoxy)ethoxy)methyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin monomer were used. An aluminum wound electrolytic capacitor was produced in the same manner as in Example 6.

[実施例10]アルミニウム捲回型電解コンデンサの製造(poly EDOT:11-EDOT-2)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 10] Production of aluminum wound electrolytic capacitor (poly EDOT: 11-EDOT-2)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、3、4-エチレンジオキシチオフェンモノマー及び(2-(オクチルオキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーの代わりに3、4-エチレンジオキシチオフェンモノマー及び(2-((2-(ヘキシルオキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーを使用したことを除いては、実施例6と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 Then 3,4-ethylenedioxythiophene monomer and 3,4-ethylene in place of (2-(octyloxymethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin) monomer Dioxythiophene monomer and (2-((2-(hexyloxy)ethoxy)methyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin) monomer were used, An aluminum wound electrolytic capacitor was manufactured in the same manner as in Example 6.

[実施例11]アルミニウム捲回型電解コンデンサの製造(poly octyl-EDOT:A-1)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 11] Production of aluminum wound electrolytic capacitor (poly octyl-EDOT: A-1)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、(2-オクチル2、3-ジヒドロチエノ)ダイオキシン)モノマーを単独に用意し、架橋剤である(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)を重量比100対2で混合(mixing)して用意した後、酸化剤50%p-トルエンスルホン酸第3鉄塩/n-ブタノール溶液を重量比で1対2.5に導電性高分子電解質溶液を制作した。 Next, (2-octyl 2,3-dihydrothieno)dioxin) monomer is prepared alone, and the cross-linking agent (1,12-bis(2,3-dihydrothieno[3,4-b][1,4] Dioxin-2-yl)-2,5,8,11-tetraoxadodecane) was prepared by mixing at a weight ratio of 100:2, and then oxidizing agent 50% p-toluenesulfonic acid ferric salt/ A conductive polymer electrolyte solution was prepared with an n-butanol solution at a weight ratio of 1:2.5.

その次に、前記コンデンサ素子をこの導電性高分子電解質溶液に浸漬して、吹出して45℃で2時間の間、105℃で35分の間、125℃で1時間の間加熱して、酸化重合して導電性高分子でなる電解質層を形成した。前記電解質層を外装材に外装し、両極たちに4Vの電圧を印加するエージングを行いアルミニウム捲回型電解コンデンサを制作した。 Then, the capacitor element is immersed in this conductive polymer electrolyte solution, blown out, and heated at 45° C. for 2 hours, 105° C. for 35 minutes, and 125° C. for 1 hour to oxidize. An electrolyte layer made of a conductive polymer was formed by polymerization. The electrolyte layer was wrapped in a wrapping material, and aging was performed by applying a voltage of 4V to both electrodes to produce an aluminum wound electrolytic capacitor.

[実施例12]アルミニウム捲回型電解コンデンサの製造(poly octyl-EDOT:A-2)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 12] Production of aluminum wound electrolytic capacitor (poly octyl-EDOT: A-2)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、架橋剤として、(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)の代わりに(1、4-ビス(((2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)メトキシ)メチル)シクロヘキセン)を使用したことを除いては、実施例11と同一な方法で酸化剤アルミニウム捲回型電解コンデンサを制作した。 Next, as a cross-linking agent, (1,12-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-2,5,8,11-tetraoxadodecane) except that (1,4-bis(((2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy)methyl)cyclohexene) was used instead of An oxidizer aluminum wound type electrolytic capacitor was manufactured in the same manner as in Example 11.

[実施例13]アルミニウム捲回型電解コンデンサの製造(poly octyl-EDOT:A-3)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 13] Production of aluminum wound electrolytic capacitor (poly octyl-EDOT: A-3)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、架橋剤として、(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)の代わりに(1、6-ビス((2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)メトキシ)ヘキセン)を使用したことを除いては、実施例11と同一な方法で、アルミニウム捲回型電解コンデンサを制作した。 Next, as a cross-linking agent, (1,12-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-2,5,8,11-tetraoxadodecane) Example 11, except that (1,6-bis((2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy)hexene) was used instead of An aluminum wound type electrolytic capacitor was produced by the same method as above.

[実施例14]アルミニウム捲回型電解コンデンサの製造(poly octyl-EDOT:A-4)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 14] Production of aluminum wound electrolytic capacitor (poly octyl-EDOT: A-4)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、架橋剤として、(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)の代わりに(2、2’-(2、2’-オキシビス(エテン-2、1-ジイル)ビス(オキシ))ビス(メチレン)ビス(2、3-ジヒドロチエノ)[3、4-b][1、4]ダイオキシン)を使用したことを除いては、実施例11と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 Next, as a cross-linking agent, (1,12-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-2,5,8,11-tetraoxadodecane) instead of (2,2′-(2,2′-oxybis(ethene-2,1-diyl)bis(oxy))bis(methylene)bis(2,3-dihydrothieno)[3,4-b][ 1, 4] Dioxin) was used, and an aluminum wound electrolytic capacitor was manufactured in the same manner as in Example 11.

[実施例15]アルミニウム捲回型電解コンデンサの製造(poly 10-EDOT-3:A-1)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 15] Production of aluminum wound electrolytic capacitor (poly 10-EDOT-3: A-1)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、(2-オクチル2、3-ジヒドロチエノ)ダイオキシンモノマーの代わりに(2-((2-(2-エトキシエトキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーを使用し、架橋剤として、(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)の代わりに(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)を使用したことを除いては、実施例11と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 (2-((2-(2-ethoxyethoxy)ethoxy)methyl)-2,3-dihydrothieno[3,4-b][1 in place of (2-octyl-2,3-dihydrothieno)dioxin monomer , 4]dioxin) monomer, and as a cross-linking agent, (1,12-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-2,5,8 , 11-tetraoxadodecane) instead of (1,12-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-2,5,8,11-tetra An aluminum wound electrolytic capacitor was manufactured in the same manner as in Example 11, except that oxadodecane was used.

[実施例16]アルミニウム捲回型電解コンデンサの製造(poly 10-EDOT-3:A-4)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 16] Production of aluminum wound electrolytic capacitor (poly 10-EDOT-3: A-4)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、(2-オクチル2、3-ジヒドロチエノ)ダイオキシンモノマーの代わりに(2-((2-(2-エトキシエトキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーを使用し、架橋剤として、(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)の代わりに(2、2’-(2、2’-オキシビス(エテン-2、1-ジイル)ビス(オキシ))ビス(メチレン)ビス(2、3-ジヒドロチエノ)[3、4-b][1、4]ダイオキシン)を使用したことを除いては、実施例11と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 (2-((2-(2-ethoxyethoxy)ethoxy)methyl)-2,3-dihydrothieno[3,4-b][1 in place of (2-octyl-2,3-dihydrothieno)dioxin monomer , 4]dioxin) monomer, and as a cross-linking agent, (1,12-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-2,5,8 , 11-tetraoxadodecane) instead of (2,2′-(2,2′-oxybis(ethene-2,1-diyl)bis(oxy))bis(methylene)bis(2,3-dihydrothieno) [ An aluminum wound electrolytic capacitor was manufactured in the same manner as in Example 11, except that 3,4-b][1,4]dioxin) was used.

[実施例17]アルミニウム捲回型電解コンデンサの製造(poly 11-EDOT-2:A-1)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 17] Production of aluminum wound electrolytic capacitor (poly 11-EDOT-2: A-1)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、(2-オクチル2、3-ジヒドロチエノ)ダイオキシンモノマーの代わりに(2-((2-(ヘキシルオキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーを使用し、架橋剤として、(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)の代わりに(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)を使用したことを除いては、実施例11と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 (2-((2-(hexyloxy)ethoxy)methyl)-2,3-dihydrothieno[3,4-b][1,4 instead of (2-octyl-2,3-dihydrothieno)dioxin monomer ] dioxin) monomer, and as a cross-linking agent, (1,12-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-2,5,8,11 -tetraoxadodecane) instead of (1,12-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-2,5,8,11-tetraoxadodecane ) was used to fabricate an aluminum wound electrolytic capacitor in the same manner as in Example 11.

[実施例18]アルミニウム捲回型電解コンデンサの製造(poly 11-EDOT-2:A-4)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 18] Production of aluminum wound electrolytic capacitor (poly 11-EDOT-2: A-4)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、(2-オクチル2、3-ジヒドロチエノ)ダイオキシンモノマーの代わりに(2-((2-(ヘキシルオキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーを使用し、架橋剤として、(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)の代わりに(2、2’-(2、2’-オキシビス(エテン-2、1-ジイル)ビス(オキシ))ビス(メチレン)ビス(2、3-ジヒドロチエノ)[3、4-b][1、4]ダイオキシン)を使用したことを除いては実施例11と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 (2-((2-(hexyloxy)ethoxy)methyl)-2,3-dihydrothieno[3,4-b][1,4 instead of (2-octyl-2,3-dihydrothieno)dioxin monomer ] dioxin) monomer, and as a cross-linking agent, (1,12-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-2,5,8,11 -tetraoxadodecane) instead of (2,2′-(2,2′-oxybis(ethene-2,1-diyl)bis(oxy))bis(methylene)bis(2,3-dihydrothieno)[3, 4-b][1,4]dioxin) was used to fabricate an aluminum wound electrolytic capacitor in the same manner as in Example 11.

[実施例19]アルミニウム捲回型電解コンデンサの製造(poly EDOT:10-EDOT-1:A-1)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 19] Production of aluminum wound electrolytic capacitor (poly EDOT: 10-EDOT-1: A-1)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、(2-オクチル2、3-ジヒドロチエノ)ダイオキシンモノマーの代わりに3、4-エチレンジオキシチオフェンモノマー及び(2-(オクチルオキシメチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーをそれぞれmol比50%(1:1)で使用し、架橋剤として、(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)の代わりに(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)を使用することを除いては、実施例11と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 Then, instead of (2-octyl-2,3-dihydrothieno) dioxin monomer, 3,4-ethylenedioxythiophene monomer and (2-(octyloxymethyl)-2,3-dihydrothieno[3,4-b][ 1,4]dioxin) monomer is used at a molar ratio of 50% (1:1), and as a cross-linking agent, (1,12-bis(2,3-dihydrothieno[3,4-b][1,4] dioxin-2-yl)-2,5,8,11-tetraoxadodecane) instead of (1,12-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-2- An aluminum wound electrolytic capacitor was manufactured in the same manner as in Example 11, except that yl)-2,5,8,11-tetraoxadodecane) was used.

[実施例20]アルミニウム捲回型電解コンデンサの製造(poly EDOT:11-EDOT-2:A-1)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 20] Production of aluminum wound electrolytic capacitor (poly EDOT: 11-EDOT-2: A-1)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、(2-オクチル2、3-ジヒドロチエノ)ダイオキシンモノマーの代わりに3、4-エチレンジオキシチオフェンモノマー及び(2-((2-(ヘキシルオキシ)エトキシ)メチル)-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン)モノマーをそれぞれmol比20%:80%で使用し、架橋剤として、(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)の代わりに(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)を使用したことを除いては、実施例11と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 Then, instead of (2-octyl 2,3-dihydrothieno) dioxin monomer, 3,4-ethylenedioxythiophene monomer and (2-((2-(hexyloxy)ethoxy)methyl)-2,3-dihydrothieno[ 3,4-b][1,4]dioxin) monomers were used at a molar ratio of 20%:80%, respectively, and (1,12-bis(2,3-dihydrothieno[3,4-b] [1,4]dioxin-2-yl)-2,5,8,11-tetraoxadodecane) instead of (1,12-bis(2,3-dihydrothieno[3,4-b][1,4 ]Dioxin-2-yl)-2,5,8,11-tetraoxadodecane) was used to fabricate an aluminum wound electrolytic capacitor in the same manner as in Example 11.

[実施例21]アルミニウム捲回型電解コンデンサの製造(poly EDOT:15-EDOT-4:A-1)
先に、比較例1と同一な方法でコンデンサ素子を製造した。
[Example 21] Production of aluminum wound electrolytic capacitor (poly EDOT: 15-EDOT-4: A-1)
First, a capacitor element was manufactured in the same manner as in Comparative Example 1.

次に、(2-オクチル2、3-ジヒドロチエノ)ダイオキシンモノマーの代わりに3、4-エチレンジオキシチオフェンモノマー及び(2、2、5、8、11-テトラオキサペンタデシル-2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマーをそれぞれmol比20%:80%で使用し、架橋剤として、(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)の代わりに(1、12-ビス(2、3-ジヒドロチエノ[3、4-b][1、4]ダイオキシン-2-イル)-2、5、8、11-テトラオキサドデカン)を使用したことを除いては、実施例11と同一な方法でアルミニウム捲回型電解コンデンサを制作した。 Then, instead of (2-octyl-2,3-dihydrothieno) dioxin monomer, 3,4-ethylenedioxythiophene monomer and (2,2,5,8,11-tetraoxapentadecyl-2,3-dihydrothieno[ 3,4-b][1,4]dioxin monomers were used at a molar ratio of 20%:80%, respectively, and (1,12-bis(2,3-dihydrothieno[3,4-b][ 1,4]dioxin-2-yl)-2,5,8,11-tetraoxadodecane) instead of (1,12-bis(2,3-dihydrothieno[3,4-b][1,4] An aluminum wound electrolytic capacitor was manufactured in the same manner as in Example 11, except that dioxin-2-yl)-2,5,8,11-tetraoxadodecane) was used.

[実施例22]アルミニウム捲回型電解コンデンサの製造(poly mono-(15-EDOT-3))
(2-プロピル2、3-ジヒドロチエノ)ダイオキシン)モノマーの代わりに2-((2-2-(ヘプチルオキシ)エトキシ)エトキシ)メチル)-2-3-ジヒドロチエノ[3、4-b][1、4]ダイオキシンモノマーを使用したことを除いては、比較例1と同一な方法でコンデンサ素子及びアルミニウム捲回型電解コンデンサを制作した。
[Example 22] Production of aluminum wound electrolytic capacitor (poly mono-(15-EDOT-3))
2-((2-2-(heptyloxy)ethoxy)ethoxy)methyl)-2-3-dihydrothieno[3,4-b][1 in place of (2-propyl 2,3-dihydrothieno)dioxin) monomer, 4) A capacitor element and an aluminum wound electrolytic capacitor were manufactured in the same manner as in Comparative Example 1, except that a dioxin monomer was used.

前記比較例1乃至5及び実施例1乃至22に使用された3、4-エチレンジオキシチオフェン誘導体、その組成比及び架橋剤を整理して、下記表1及び2に表せた。 The 3,4-ethylenedioxythiophene derivatives, their composition ratios, and cross-linking agents used in Comparative Examples 1 to 5 and Examples 1 to 22 are summarized in Tables 1 and 2 below.

Figure 0007167031000045
Figure 0007167031000045

Figure 0007167031000046
Figure 0007167031000046

[実験例1]アルミニウム捲回型電解コンデンサの評価1
前記比較例1乃至5及び実施例1乃至22で製造されたアルミニウム捲回型電解コンデンサをHEWLETTPACKARD社のLCRメーター(4284A)を使用して25℃の温度条件下で、100kHzで等価直列抵抗(ESR)を測定し、120Hzで静電容量を測定して、Matsusada Precision社製のPRk650-2.5を使用して25℃の条件下で電圧を1V/分の速度で上昇させ破壊電圧を測定したし、その結果を下記表1乃至8に表せた。下記表3乃至10で、等価直列抵抗(ESR)及び静電容量はそれぞれ10個ずつの平均値を求めて、小数点第二位を四捨五入して表せたものであり、破壊電圧値は小数点以下を四捨五入して表せたものである(6.3x6の素子サイズ、作動電圧:50V、電気容量:10μF)。
[Experimental Example 1] Evaluation 1 of Aluminum Wound Electrolytic Capacitor
The equivalent series resistance (ESR) of the aluminum wound electrolytic capacitors manufactured in Comparative Examples 1 to 5 and Examples 1 to 22 was measured at 100 kHz at 25° C. using a HEWLETT PACKARD LCR meter (4284A). ) was measured, the capacitance was measured at 120 Hz, and the breakdown voltage was measured by increasing the voltage at a rate of 1 V / min under conditions of 25 ° C. using PRk650-2.5 manufactured by Matsusada Precision. The results are shown in Tables 1 to 8 below. In Tables 3 to 10 below, the equivalent series resistance (ESR) and capacitance are obtained by calculating the average value of 10 pieces each and rounded to the second decimal place, and the breakdown voltage value is shown after the decimal point. It is rounded off (element size of 6.3×6, operating voltage: 50 V, electric capacity: 10 μF).

Figure 0007167031000047
Figure 0007167031000047

前記表3に表せた通り、比較例1乃至3は3、4-エチレンジオキシチオフェンモノマーに3次炭素位置に1置換されている構造で単一のアルキルグループが置換されたモノマーだけで重合して捲回型アルミニウム電解コンデンサを制作したし、破壊電圧をよく見ると比較例1乃至3は炭素個数が3~10の長いアルキル鎖を持つ捲回型アルミニウム電解コンデンサで比較例3は比較的高い破壊電圧を持ちこれはアルキル鎖個数が増加するほど高い破壊電圧を持つことは知られている事実である。しかし鎖個数が10個を超えると高い破壊電圧を持つ代わりに比較例3と同じく、ESRが急激に高くなることを確認できる。 As shown in Table 3, Comparative Examples 1 to 3 were polymerized only with a monomer having a structure in which a 3,4-ethylenedioxythiophene monomer was mono-substituted at the tertiary carbon position and a single alkyl group was substituted. Looking closely at the breakdown voltage, the wound aluminum electrolytic capacitors of Comparative Examples 1 to 3 have a long alkyl chain with 3 to 10 carbon atoms, and the breakdown voltage of Comparative Example 3 is relatively high. It is a known fact that the breakdown voltage increases as the number of alkyl chains increases. However, when the number of chains exceeds 10, it can be confirmed that the ESR rapidly increases as in Comparative Example 3 instead of having a high breakdown voltage.

又、前記表3で鎖数が増加しながら高い破壊電圧を持つ特性を表せたがESR特性も又増加することが分かる。これにこのような問題を解決するためアルキルグループの中に酸素(O)原子を導入することで炭素(C)鎖だけで成ったアルキルグループに比べて溶解度が優秀な特性を表すアルキルアルコキシグループを導入した。 Also, in Table 3, as the number of chains increases, the breakdown voltage increases, and it can be seen that the ESR characteristics also increase. To solve this problem, oxygen (O) atoms are introduced into the alkyl group to create an alkylalkoxy group that exhibits superior solubility compared to the alkyl group consisting of only carbon (C) chains. introduced.

Figure 0007167031000048
Figure 0007167031000048

前記表4に表せた通り、実施例1乃至5は3、4-エチレンジオキシチオフェン3次炭素位置に1置換されているモノマーにアルキルアルコキシグループが置換されたモノマーを単一モノマーだけで重合し捲回型アルミニウム電解コンデンサを制作した。前記実施例1乃至5で破壊電圧をよく見ると前記表2でと同じく鎖数が増加することに従って高い破壊電圧特性を表すことがわかる。又、アルキルグループが炭素(C)だけで成る比較例3からよりもアルキル鎖に酸素(O)グループが入っているアルキルアルコキシグループを持つ実施例2及び実施例3で同一な鎖数を持つ時もっと低いESR特性を表すことが分かる。 As shown in Table 4, in Examples 1 to 5, 3,4-ethylenedioxythiophene, in which a mono-substituted monomer at the tertiary carbon position was substituted with an alkylalkoxy group, was polymerized using only a single monomer. A wound type aluminum electrolytic capacitor was produced. Looking closely at the breakdown voltage in Examples 1 to 5, it can be seen that as in Table 2, as the number of chains increases, the breakdown voltage characteristic increases. In addition, when the alkyl groups of Examples 2 and 3 have the same number of chains as those of Comparative Example 3, in which the alkyl groups contain only carbon (C), the alkylalkoxy groups containing oxygen (O) groups in the alkyl chains It can be seen that it exhibits much lower ESR characteristics.

前記表4と同じく比較例5を見ると鎖数が5個である時は破壊電圧が40Vと低くて有効な耐電圧特性を表すのが難しく鎖数が6個以上である時50V以上で優秀な耐電圧特性を表すことが分かる。また鎖数が16個以上になると高い耐電圧特性に比べてESR値が顕著に高くなる欠点を持っている。 Looking at Comparative Example 5 as well as Table 4, when the number of chains is 5, the breakdown voltage is as low as 40 V, making it difficult to exhibit effective withstand voltage characteristics. It can be seen that it exhibits excellent withstand voltage characteristics. Moreover, when the number of chains is 16 or more, there is a drawback that the ESR value becomes remarkably high compared to the high withstand voltage characteristics.

前記結果を基に同一な鎖数で酸素(O)原子がある時といない時を比較するために表5で同一な鎖数を持つ比較例3と実施例2及び実施例3の場合を比較して見た。 Based on the above results, in order to compare the presence and absence of oxygen (O) atoms with the same chain number, Comparative Example 3 with the same chain number and Example 2 and Example 3 are compared in Table 5. I saw it.

アルキル鎖が炭素(C)だけで成った比較例3とアルキル鎖が炭素(C)間に酸素(O)が3個入る実施例2、又炭素(C)間に酸素(O)が1個入れる実施例3を設計し同一なアルキル鎖個数で酸素(O)原子がある場合の特性を比較して見た。その結果、実施例2は比較例3に比べて破壊電圧が多少落ちるがESR値が顕著に低くなったことを確認できた。実施例3の場合比較例1に比べて破壊電圧がむしろもっと高かったし又ESR値が顕著に落ちることを確認した。 Comparative Example 3 in which the alkyl chain consists only of carbon (C), Example 2 in which the alkyl chain has three oxygens (O) between carbons (C), and one oxygen (O) between carbons (C) Example 3 was designed to include the same number of alkyl chains and the characteristics in the case of having oxygen (O) atoms were compared. As a result, it was confirmed that Example 2 had a slightly lower breakdown voltage than Comparative Example 3, but a significantly lower ESR value. In the case of Example 3, it was confirmed that the breakdown voltage was rather higher than that of Comparative Example 1, and the ESR value was significantly lowered.

Figure 0007167031000049
Figure 0007167031000049

前記結果を利用してアルキル鎖に酸素(O)原子を導入時耐圧特性は大きく落ちないながらESR特性を顕著に改善することを確認した。 Based on the above results, it was confirmed that the introduction of oxygen (O) atoms into the alkyl chain remarkably improved the ESR characteristics while not greatly degrading the breakdown voltage characteristics.

しかし、表6を見るとアルキルグループに酸素(O)原子が入った構造たちで鎖数が15個を持つアルキルアルコキシグループを比較した。比較例4の場合鎖数が15個でありながら酸素(O)原子が5個を持って、実施例5の場合鎖数が15個でありながら酸素(O)原子が4個、実施例22は鎖数が15個でありながら酸素(O)原子が3個である構造で破壊電圧をよく見ると酸素(O)原子を5個を持つ比較例4の場合実施例5と実施例22に比べて低い破壊電圧を持った。ESR特性も又実施例4及び実施例22に比べて顕著に高い値を持つことを確認できた。このような長い鎖の中で酸素(O)原子たちが5個を超えるとむしろ破壊電圧特性は落ちてESR特性はむしろ上がる特性を表せた。 However, Table 6 compares alkylalkoxy groups having 15 chains among structures having an oxygen (O) atom in an alkyl group. Comparative Example 4 has 15 chains and 5 oxygen (O) atoms; Example 5 has 15 chains and 4 oxygen (O) atoms; is a structure with 15 chains and 3 oxygen (O) atoms. Looking closely at the breakdown voltage, in the case of Comparative Example 4 with 5 oxygen (O) atoms, Example 5 and Example 22 It has a relatively low breakdown voltage. It was confirmed that the ESR characteristics also had significantly higher values than those of Examples 4 and 22. When the number of oxygen (O) atoms exceeds 5 in such a long chain, the breakdown voltage characteristic is decreased and the ESR characteristic is increased.

Figure 0007167031000050
Figure 0007167031000050

アルキルアルコキシグループを導入すればアルキル鎖が炭素(C)だけで成った3、4-エチレンジオキシチオフェン誘導体より破壊電圧及びESR特性が改善されることと現れたが、ESR特性をもっと改善するために表6に実施例6乃至10のように3、4-エチレンジオキシチオフェンモノマーに3次炭素位置にアルキルアルコキシグループが置換されたモノマーと化学式4で誘導されたモノマーをそれぞれ一つ以上混合重合して捲回型アルミニウム電解コンデンサを制作した。 The introduction of an alkylalkoxy group was found to improve breakdown voltage and ESR characteristics as compared to 3,4-ethylenedioxythiophene derivatives in which the alkyl chain consists only of carbon (C). In Table 6, as in Examples 6 to 10, 3,4-ethylenedioxythiophene monomer was mixed and polymerized with at least one monomer substituted with an alkylalkoxy group at the tertiary carbon position and a monomer derived from Formula 4. A wound type aluminum electrolytic capacitor was manufactured.

Figure 0007167031000051
Figure 0007167031000051

前記表7の結果を見ると実施例6乃至10の場合破壊電圧が54乃至68V程度で表4の実施例3及び実施例5でアルキルアルコキシグループを単一重合した電解コンデンサに比べて低い破壊電圧を持つが、ESR特性が大きく改善されることを確認した。しかしESR特性が大きく向上される代わりに破壊電圧も又ある程度損失が発生したしこのような損失を最小化するために化学式3で誘導された架橋剤を添加して耐電圧特性を補完するための実験を進行した。下記表7に実施例11乃至18に掛けて多様な化学式3で表示された化合物(架橋剤)を一定重量比を添加して耐電圧特性を改善しようとした。 Looking at the results of Table 7, the breakdown voltages of Examples 6 to 10 are about 54 to 68 V, which is lower than that of the electrolytic capacitors in which alkylalkoxy groups are monopolymerized in Examples 3 and 5 of Table 4. However, it was confirmed that the ESR characteristics were greatly improved. However, although the ESR characteristics are greatly improved, the breakdown voltage also suffers a certain amount of loss. Experiment proceeded. In Examples 11 to 18 shown in Table 7 below, various compounds (cross-linking agents) represented by Chemical Formula 3 were added in a certain weight ratio to improve withstand voltage characteristics.

Figure 0007167031000052
Figure 0007167031000052

前記表8に表せた通り、実施例11乃至14はモノマーとして(2-オクチル2、3-ジヒドロチエノ)ダイオキシン)を使用したし、それぞれの架橋剤は前記製造例25乃至28で製造されたA-1、A-2、A-3及びA-4タイプを添加し、ESR特性を維持した状態で耐電圧特性を向上させるための実験を進行した。実施例11乃至14の場合比較例2に比べてESR特性は維持しながら破壊電圧特性が顕著に向上されたことを確認できた。 As shown in Table 8 above, Examples 11-14 used (2-octyl-2,3-dihydrothieno)dioxin) as a monomer, and the respective cross-linking agents were A- 1, A-2, A-3, and A-4 types were added, and an experiment was conducted to improve the withstand voltage characteristics while maintaining the ESR characteristics. In Examples 11 to 14, compared to Comparative Example 2, it was found that breakdown voltage characteristics were remarkably improved while ESR characteristics were maintained.

これに前の実験でESR特性及び破壊電圧特性が比較的優秀だったアルキルアルコキシグループを持った実施例2及び実施例4にそれぞれA-1及びA-4の架橋剤を添加してESR特性及び破壊電圧特性を調べてみた。 To this, the cross-linking agents A-1 and A-4 were added to Examples 2 and 4, which had alkylalkoxy groups that had relatively excellent ESR characteristics and breakdown voltage characteristics in the previous experiment, to obtain ESR characteristics and breakdown voltage characteristics. I examined the breakdown voltage characteristics.

Figure 0007167031000053
Figure 0007167031000053

前記表9に現れた通り、実施例15乃至18の場合、それぞれ実施例2及び実施例4で架橋剤の添加なく重合した時より、多少高い電圧で破壊電圧を持つことを確認できる。このような架橋剤が添加されることで、高分子と高分子間の中間に化学式3で誘導された架橋剤が位置され、架橋されることによってより堅固な結合ができる(前記構造体1参照)。 As shown in Table 9, Examples 15 to 18 had breakdown voltages slightly higher than those of Examples 2 and 4, which were polymerized without the addition of a cross-linking agent. By adding such a cross-linking agent, the cross-linking agent derived from Chemical Formula 3 is positioned between the polymers, and the cross-linking results in a stronger bond (see Structure 1 above). ).

前記表9の結果を基に実施例19乃至21の場合、単一モノマーではない混合組成を通じて単一重合時破壊電圧特性が優秀だった実施例2乃至4のモノマーである10-EDOT-1、11-EDOT-2、15-EDOT-4にそれぞれ違う組成の3、4-エチレンジオキシチオフェンモノマー(5:5、8:2及び8:2組成)を混合組成し架橋剤A-1を添加して重合した(表9)。 Based on the results of Table 9, in the case of Examples 19 to 21, 10-EDOT-1, which is the monomer of Examples 2 to 4, which had excellent breakdown voltage characteristics during single polymerization through a mixed composition that is not a single monomer, 11-EDOT-2 and 15-EDOT-4 were mixed with different compositions of 3,4-ethylenedioxythiophene monomers (5:5, 8:2 and 8:2 compositions), and cross-linking agent A-1 was added. and polymerized (Table 9).

Figure 0007167031000054
Figure 0007167031000054

同一組成で架橋剤A-1が添加された実施例19の場合実施例6に比べて破壊電圧特性が向上されたし同じく実施例20乃至実施例21の場合も比較的高い破壊電圧で比較的低いESR値を持つことを確認した。 In the case of Example 19, in which the cross-linking agent A-1 was added to the same composition, the breakdown voltage characteristics were improved as compared with Example 6. Similarly, in the case of Examples 20 and 21, the breakdown voltage was relatively high and the breakdown voltage was relatively high. It was confirmed to have a low ESR value.

特に、実施例20の場合、ESRの値が目標した値(60mΩ)以下である58mΩで測定されたし、破壊電圧が72Vで、高い破壊電圧を持つことを確認した。 In particular, in the case of Example 20, the ESR value was measured at 58 mΩ, which is less than the target value (60 mΩ), and the breakdown voltage was 72 V, confirming that it had a high breakdown voltage.

前記表3乃至10に表せた通り、本発明に従う3、4-エチレンジオキシチオフェン誘導体を使用する場合、耐電圧特性が優秀で、低い等価直列抵抗を持つだけではなく、伝導性がとても優秀であることが分かる。 As shown in Tables 3 to 10, when the 3,4-ethylenedioxythiophene derivative according to the present invention is used, it has excellent withstand voltage characteristics, low equivalent series resistance, and excellent conductivity. I know there is.

Claims (8)

下記化学式1で表される一つ以上の3、4-エチレンジオキシチオフェン誘導体を含む電解質であって、前記3、4-エチレンジオキシチオフェン誘導体は下記化学式2又は下記化学式3で表される前記電解質
[化学式1]
Figure 0007167031000055

前記化学式1で、l及びnはそれぞれ独立して、0乃至3の整数で、Aは存在しないか、酸素原子(O)を0乃至5個含む炭素数1乃至20のアルキル基又はアルキレン基、炭素数6乃至20のアリーレン基、炭素数4乃至15の環状型又は鎖型アルキレン基であり、Bは炭素数1乃至20のアルキル基であるか、
Figure 0007167031000056

であり、但し、l+nは3以下の整数であり、但し、l+nが0でAが存在しない場合、Bは炭素数1のアルキル基が除外される。
[化学式2]
Figure 0007167031000057

前記化学式2で、lは0乃至3の整数で、pは1乃至19の整数である。
[化学式3]
Figure 0007167031000058

前記化学式3で、Aは存在しないか、酸素原子(O)を0乃至5個含む炭素数1乃至20のアルキル基又はアルキレン基、炭素数6乃至20のアリーレン基、炭素数4乃至15の環状型又は鎖型アルキレン基である。
An electrolyte containing one or more 3,4-ethylenedioxythiophene derivatives represented by Chemical Formula 1 below , wherein the 3,4-ethylenedioxythiophene derivative is represented by Chemical Formula 2 or Chemical Formula 3 below. electrolyte .
[Chemical Formula 1]
Figure 0007167031000055

wherein l and n are each independently an integer of 0 to 3, A is absent, or an alkyl group having 1 to 20 carbon atoms or an alkylene group containing 0 to 5 oxygen atoms (O); an arylene group having 6 to 20 carbon atoms, a cyclic or chain alkylene group having 4 to 15 carbon atoms, and B is an alkyl group having 1 to 20 carbon atoms,
Figure 0007167031000056

with the proviso that l+n is an integer of 3 or less, provided that when l+n is 0 and A does not exist, B excludes an alkyl group having 1 carbon atoms.
[Chemical Formula 2]
Figure 0007167031000057

In Formula 2, l is an integer of 0 to 3, and p is an integer of 1 to 19.
[Chemical Formula 3]
Figure 0007167031000058

In the chemical formula 3, A is not present, or an alkyl group or alkylene group having 1 to 20 carbon atoms containing 0 to 5 oxygen atoms (O), an arylene group having 6 to 20 carbon atoms, or a cyclic group having 4 to 15 carbon atoms. It is a type or chain type alkylene group.
前記3、4-エチレンジオキシチオフェン誘導体は下記化学式2及び3で表される化合物を含む共重合体である、請求項1に記載の電解質。
[化学式2]
Figure 0007167031000059

[化学式3]
Figure 0007167031000060

前記化学式2及び3で、lは0乃至3の整数で、pは1乃至19の整数であり、Aは存在しないか、酸素原子(O)を0乃至5個含む炭素数1乃至20のアルキレン基であるか、炭素数6乃至20のアリーレン基、炭素数4乃至15の環状型又は鎖型アルキレン基である。
2. The electrolyte according to claim 1, wherein the 3,4-ethylenedioxythiophene derivative is a copolymer containing compounds represented by Formulas 2 and 3 below.
[Chemical Formula 2]
Figure 0007167031000059

[Chemical Formula 3]
Figure 0007167031000060

In Formulas 2 and 3, l is an integer of 0 to 3, p is an integer of 1 to 19, and A is absent or an alkylene having 1 to 20 carbon atoms and containing 0 to 5 oxygen atoms (O). or an arylene group having 6 to 20 carbon atoms, or a cyclic or chain alkylene group having 4 to 15 carbon atoms.
一つ以上の下記化学式4で表される化合物を更に含む、請求項1又は2に記載の電解質。
[化学式4]
Figure 0007167031000061

前記化学式4で、Rは水素又は炭素数1乃至20のアルキル基である。
3. The electrolyte according to claim 1 or 2 , further comprising one or more compounds represented by Formula 4 below.
[Chemical Formula 4]
Figure 0007167031000061

In Formula 4, R is hydrogen or an alkyl group having 1 to 20 carbon atoms.
前記Aは炭素数4乃至15の環状型又は鎖型アルキレン基であるか、炭素数6乃至15のフェニレン基、ビフェニレン基又はナフタレン基である、請求項1に記載の電解質。 2. The electrolyte according to claim 1, wherein A is a cyclic or chain alkylene group having 4 to 15 carbon atoms, or a phenylene group, biphenylene group or naphthalene group having 6 to 15 carbon atoms. 酸化被膜を持つ陽極電極層;
陰極電極層;及び
前記陽極電極層と陰極電極層の間に位置するセパレーター及び電解質を含み、
下記化学式1で表される一つ以上の3、4-エチレンジオキシチオフェン誘導体を含む、電解キャパシタであって、前記3、4-エチレンジオキシチオフェン誘導体は下記化学式2又は下記化学式3で表される前記電解キャパシタ
[化学式1]
Figure 0007167031000062

前記化学式1で、l及びnはそれぞれ独立して、0乃至3の整数で、Aは存在しないか、酸素原子(O)を0乃至5個含む炭素数1乃至20のアルキル基又はアルキレン基、炭素数6乃至20のアリーレン基、炭素数4乃至15の環状型又は鎖型アルキレン基であり、Bは炭素数1乃至20のアルキル基であるか、
Figure 0007167031000063

であり、但し、l+nは3以下の整数であり、但し、l+nが0でAが存在しない場合、Bは炭素数1のアルキル基が除外される。
[化学式2]
Figure 0007167031000064

前記化学式2で、lは0乃至3の整数で、pは1乃至19の整数である。
[化学式3]
Figure 0007167031000065

前記化学式3で、Aは存在しないか、酸素原子(O)を0乃至5個含む炭素数1乃至20のアルキル基又はアルキレン基、炭素数6乃至20のアリーレン基、炭素数4乃至15の環状型又は鎖型アルキレン基である。
an anode electrode layer with an oxide layer;
a cathode electrode layer; and a separator and an electrolyte positioned between the anode electrode layer and the cathode electrode layer;
An electrolytic capacitor comprising one or more 3,4-ethylenedioxythiophene derivatives represented by Chemical Formula 1 below , wherein the 3,4-ethylenedioxythiophene derivative is represented by Chemical Formula 2 or Chemical Formula 3 below. said electrolytic capacitor .
[Chemical Formula 1]
Figure 0007167031000062

wherein l and n are each independently an integer of 0 to 3, A is absent, or an alkyl or alkylene group having 1 to 20 carbon atoms and containing 0 to 5 oxygen atoms (O); an arylene group having 6 to 20 carbon atoms, a cyclic or chain alkylene group having 4 to 15 carbon atoms, and B is an alkyl group having 1 to 20 carbon atoms,
Figure 0007167031000063

with the proviso that l+n is an integer of 3 or less, provided that when l+n is 0 and A does not exist, B excludes an alkyl group having 1 carbon atoms.
[Chemical Formula 2]
Figure 0007167031000064

In Formula 2, l is an integer of 0 to 3, and p is an integer of 1 to 19.
[Chemical Formula 3]
Figure 0007167031000065

In the chemical formula 3, A is not present, or an alkyl group or alkylene group having 1 to 20 carbon atoms containing 0 to 5 oxygen atoms (O), an arylene group having 6 to 20 carbon atoms, or a cyclic group having 4 to 15 carbon atoms. It is a type or chain type alkylene group.
前記3、4-エチレンジオキシチオフェン誘導体は下記化学式2及び3で表される化合物を含む共重合体である、請求項に記載の電解キャパシタ。
[化学式2]
Figure 0007167031000066

[化学式3]
Figure 0007167031000067

前記化学式2及び3で、lは0乃至3の整数で、pは1乃至19の整数であり、Aは存在しないか、酸素原子(O)を0乃至5個含む炭素数1乃至20のアルキレン基であるか、炭素数6乃至20のアリーレン基、炭素数4乃至15の環状型又は鎖型アルキレン基である。
6. The electrolytic capacitor of claim 5 , wherein the 3,4-ethylenedioxythiophene derivative is a copolymer containing compounds represented by Formulas 2 and 3 below.
[Chemical Formula 2]
Figure 0007167031000066

[Chemical Formula 3]
Figure 0007167031000067

In Formulas 2 and 3, l is an integer of 0 to 3, p is an integer of 1 to 19, and A is absent or an alkylene having 1 to 20 carbon atoms and containing 0 to 5 oxygen atoms (O). or an arylene group having 6 to 20 carbon atoms, or a cyclic or chain alkylene group having 4 to 15 carbon atoms.
下記化学式4で表される化合物を更に含む、請求項5又は6に記載の電解キャパシタ。
[化学式4]
Figure 0007167031000068

前記化学式4で、Rは水素又は炭素数1乃至20のアルキル基である。
7. The electrolytic capacitor according to claim 5 , further comprising a compound represented by Chemical Formula 4 below.
[Chemical Formula 4]
Figure 0007167031000068

In Formula 4, R is hydrogen or an alkyl group having 1 to 20 carbon atoms.
下記化学式1で表される一つ以上の3、4-エチレンジオキシチオフェン誘導体を含む電子材料用素材であって、前記3、4-エチレンジオキシチオフェン誘導体は下記化学式2又は下記化学式3で表される前記電子材料用素材
[化学式1]
Figure 0007167031000069

前記化学式1で、l及びnはそれぞれ独立して、0乃至3の整数で、Aは存在しないか、酸素原子(O)を0乃至5個含む炭素数1乃至20のアルキル基又はアルキレン基、炭素数6乃至20のアリーレン基、炭素数4乃至15の環状型又は鎖型アルキレン基であり、Bは炭素数1乃至20のアルキル基であるか、
Figure 0007167031000070

であり、但し、l+nは3以下の整数であり、但し、l+nが0でAが存在しない場合、Bは炭素数1のアルキル基が除外される。
[化学式2]
Figure 0007167031000071

前記化学式2で、lは0乃至3の整数で、pは1乃至19の整数である。
[化学式3]
Figure 0007167031000072

前記化学式3で、Aは存在しないか、酸素原子(O)を0乃至5個含む炭素数1乃至20のアルキル基又はアルキレン基、炭素数6乃至20のアリーレン基、炭素数4乃至15の環状型又は鎖型アルキレン基である。
A material for an electronic material containing one or more 3,4-ethylenedioxythiophene derivatives represented by the following chemical formula 1 , wherein the 3,4-ethylenedioxythiophene derivative is represented by the following chemical formula 2 or the following chemical formula 3 The material for the electronic material to be made .
[Chemical Formula 1]
Figure 0007167031000069

wherein l and n are each independently an integer of 0 to 3, A is absent, or an alkyl or alkylene group having 1 to 20 carbon atoms and containing 0 to 5 oxygen atoms (O); an arylene group having 6 to 20 carbon atoms, a cyclic or chain alkylene group having 4 to 15 carbon atoms, and B is an alkyl group having 1 to 20 carbon atoms,
Figure 0007167031000070

with the proviso that l+n is an integer of 3 or less, provided that when l+n is 0 and A does not exist, B excludes an alkyl group having 1 carbon atoms.
[Chemical Formula 2]
Figure 0007167031000071

In Formula 2, l is an integer of 0 to 3, and p is an integer of 1 to 19.
[Chemical Formula 3]
Figure 0007167031000072

In the chemical formula 3, A is not present, or an alkyl group or alkylene group having 1 to 20 carbon atoms containing 0 to 5 oxygen atoms (O), an arylene group having 6 to 20 carbon atoms, or a cyclic group having 4 to 15 carbon atoms. It is a type or chain type alkylene group.
JP2019536010A 2016-12-30 2017-12-18 Solid electrolyte including 3,4-ethylenedioxythiophene, electronic capacitor and electronic material including the same Active JP7167031B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0184115 2016-12-30
KR1020160184115A KR20180078874A (en) 2016-12-30 2016-12-30 Solid electrolyte including 3,4-ethylenedioxythiophene, electrolytic capacitor and electronic material including the same
PCT/KR2017/014931 WO2018124574A1 (en) 2016-12-30 2017-12-18 Electrolyte comprising 3,4-ethylenedioxythiophene, and electrolytic capacitor and material for electronic material including same

Publications (2)

Publication Number Publication Date
JP2020504898A JP2020504898A (en) 2020-02-13
JP7167031B2 true JP7167031B2 (en) 2022-11-08

Family

ID=62710611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019536010A Active JP7167031B2 (en) 2016-12-30 2017-12-18 Solid electrolyte including 3,4-ethylenedioxythiophene, electronic capacitor and electronic material including the same

Country Status (4)

Country Link
JP (1) JP7167031B2 (en)
KR (1) KR20180078874A (en)
CN (1) CN110140187B (en)
WO (1) WO2018124574A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146315A (en) 2015-02-06 2016-08-12 寧徳新能源科技有限公司 Electrolyte additive application and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097835A1 (en) * 2001-05-31 2002-12-05 Nippon Chemi-Con Corporation Solid electrolytic capacitor
US7105620B2 (en) * 2001-12-20 2006-09-12 Agfa Gevaert 3,4-alkylenedioxy-thiophene copolymers
KR20100110622A (en) * 2009-04-03 2010-10-13 허문석 Conducting polymer, a capacitor comprising conducting polymer and method for manufacturing the same
EP2570846A1 (en) * 2011-09-19 2013-03-20 Hydro-Québec Flexible transparent electrochromic device
KR102122105B1 (en) * 2012-07-03 2020-06-11 토소가부시키가이샤 Polythiophenes, water-soluble conductive polymer using same, and method for producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146315A (en) 2015-02-06 2016-08-12 寧徳新能源科技有限公司 Electrolyte additive application and application thereof

Also Published As

Publication number Publication date
CN110140187B (en) 2021-11-26
KR20180078874A (en) 2018-07-10
WO2018124574A1 (en) 2018-07-05
JP2020504898A (en) 2020-02-13
CN110140187A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
JP7181873B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
US5586001A (en) Solid electrolyte capacitor using polyaniline doped with disulfonic acid
JP6273917B2 (en) Thiophene copolymer and aqueous solution thereof, and thiophene monomer composition and production method thereof
JP5745881B2 (en) Solid electrolytic capacitor
JP2015147834A (en) Conductive polymer aqueous solution and conductive polymer film
JP5968485B2 (en) Electrolyte material composition, electrolyte material composition formed from the electrolyte material composition and use thereof
JP2013247312A (en) Conductive polymer for solid electrolytic capacitor
JP7167031B2 (en) Solid electrolyte including 3,4-ethylenedioxythiophene, electronic capacitor and electronic material including the same
KR20120022803A (en) Electroconductive coating composition and process for production of electroconductive coating film
JP6053721B2 (en) ELECTROLYTE AND ITS MANUFACTURING METHOD, COMPOSITION USED TO FORM ELECTROLYTE, AND CAPACITOR CONTAINING THE SAME
JP4225820B2 (en) Alkylenedioxythiophenes and poly (alkylenedioxythiophenes) having urethane-containing side groups, processes and starting compounds for the preparation of the thiophenes, cross-linked products obtained using the thiophenes and the use of new compounds and cross-linked products
WO2015064504A1 (en) Solid-electrolyte additive composition for solid electrolytic capacitor, solid-electrolyte composition for solid electrolytic capacitor, solid-electrolyte-precursor composition for solid electrolytic capacitor, conductive film for solid electrolytic capacitor, method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP2019172770A (en) Conductive polymer composition, manufacturing method of conductive polymer thin film
KR102452886B1 (en) conductive polymer composition
KR102486550B1 (en) 3,4-ethylenedioxythiophene copolymer, solid electrolyte including the same, solid electrolytic capacitor including the same and method for preparing the same
JP2010184968A (en) Pyrrole copolymer and solid electrolytic capacitor using the same
KR102192467B1 (en) Solid electrolyte and Solid electrolyte capacitor including the same
CN112876655B (en) Conductive polymer material and use thereof
JP2014037508A (en) Conductive composition and conductive film
KR101656991B1 (en) Production of conductive polymer solution by viscosity control and cured product thereby
JP5522674B2 (en) Monomer composition for producing conductive polymer, conductive polymer, solid electrolytic capacitor using the same as solid electrolyte, and method for producing the same
JP5062694B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP2014037504A (en) Conductive composition and conductive film
JP2013179292A (en) Oxidant solution for manufacturing electroconductive polymer and method of manufacturing solid electrolytic capacitor using the same
JP2012094835A (en) Solid capacitor formation oxidant, electrolyte composition containing the same, solid capacitor, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220812

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220812

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220831

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R150 Certificate of patent or registration of utility model

Ref document number: 7167031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150