JP7159903B2 - 目標位置推測装置 - Google Patents

目標位置推測装置 Download PDF

Info

Publication number
JP7159903B2
JP7159903B2 JP2019027435A JP2019027435A JP7159903B2 JP 7159903 B2 JP7159903 B2 JP 7159903B2 JP 2019027435 A JP2019027435 A JP 2019027435A JP 2019027435 A JP2019027435 A JP 2019027435A JP 7159903 B2 JP7159903 B2 JP 7159903B2
Authority
JP
Japan
Prior art keywords
target position
area
predicted trajectory
point
estimation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019027435A
Other languages
English (en)
Other versions
JP2020133229A (ja
Inventor
耕治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Kobelco Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2019027435A priority Critical patent/JP7159903B2/ja
Priority to CN201980091912.5A priority patent/CN113396257B/zh
Priority to US17/428,459 priority patent/US11959256B2/en
Priority to EP19916476.5A priority patent/EP3901382B1/en
Priority to PCT/JP2019/050518 priority patent/WO2020170599A1/ja
Publication of JP2020133229A publication Critical patent/JP2020133229A/ja
Application granted granted Critical
Publication of JP7159903B2 publication Critical patent/JP7159903B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Description

本発明は、作業機械のオペレータの作業目標位置を推測する目標位置推測装置に関する。
例えば特許文献1などに、運転者が注視している領域を推測する技術が記載されている。
特開2018-185763号公報
同文献に記載の技術では、運転者の視線の方向に基づき、運転者が注視している領域(目標位置)を推測する。しかし、例えば車道を走行する自動車の運転者などに比べ、作業機械のオペレータは、様々な位置を目標として見る。そのため、オペレータの視線の方向のみからでは、目標位置の推測の精度が不十分となるおそれがある。
そこで、本発明は、作業機械のオペレータの作業目標位置を精度良く推測できる、目標位置推測装置を提供することを目的とする。
目標位置推測装置は、アタッチメントの先端部に設けられる先端装置を備える作業機械に用いられる。目標位置推測装置は、姿勢検出部と、操作検出部と、視線検出部と、距離情報検出部と、コントローラと、を備える。前記姿勢検出部は、前記作業機械の姿勢を検出する。前記操作検出部は、前記作業機械の操作を検出する。前記視線検出部は、前記作業機械を操作するオペレータの視線を検出する。前記距離情報検出部は、前記作業機械の前方の距離情報を検出する。前記コントローラは、前記オペレータの目標位置を推測する。前記コントローラは、前記姿勢検出部および前記操作検出部のそれぞれの検出結果に基づいて、前記先端装置が通ると予測される軌跡である予測軌跡に基づく領域であって、前記距離情報における領域である予測軌跡領域を算出する。前記コントローラは、前記視線検出部の検出結果に基づいて、前記オペレータの注視点に基づく領域であって、前記距離情報における領域である注視点領域を算出する。前記目標位置の条件には、前記予測軌跡領域の範囲内かつ前記注視点領域の範囲内であることが含まれる。
上記構成により、作業機械のオペレータの作業目標位置を精度良く推測できる。
目標位置推測装置30を備える作業機械1を横から見た図である。 図1に示す作業機械1を上から見た図である。 図1に示す目標位置推測装置30のブロック図である。 図1に示す目標位置推測装置30の作動を示すフローチャートである。 図2に示す注視点B1の分布を示す図である。
図1~図5を参照して、図1に示す作業機械1に用いられる目標位置推測装置30について説明する。
作業機械1は、先端装置25を用いて作業を行う機械である。作業機械1は、例えば、建設作業を行う建設機械であり、例えば、ショベルなどである。作業機械1は、下部走行体11と、上部旋回体15と、を備える。下部走行体11は、作業機械1を走行させる部分である。上部旋回体15は、下部走行体11に対して旋回可能であり、下部走行体11よりも上側に配置される。上部旋回体15は、キャブ16を備える。
キャブ16は、作業機械1を操作するオペレータOが操作を行う運転室である。キャブ16は、座席17と、操作部18と、を備える。座席17は、オペレータOが座るための席である。操作部18は、作業機械1を操作するための装置であり、オペレータOに操作される。操作部18によって行われる操作には、下部走行体11を走行させる操作、下部走行体11に対して上部旋回体15を旋回させる操作、および、アタッチメント20を作動させる操作が含まれる。操作部18は、例えば、レバーを備えてもよく、ペダルを備えてもよい。
アタッチメント20は、上部旋回体15に取り付けられ、作業を行う装置である。アタッチメント20は、例えば油圧シリンダにより駆動される。アタッチメント20は、ブーム21と、アーム23と、先端装置25と、を備える。ブーム21は、上部旋回体15に回転(起伏)可能に取り付けられる。アーム23は、ブーム21に回転可能に取り付けられる。
先端装置25は、作業対象(例えば土砂など)に接触する装置である。先端装置25は、アタッチメント20の先端部に設けられる。例えば、先端装置25は、アーム23に回転可能に取り付けられる。先端装置25は、例えば、土砂をすくうバケットでもよく、ハサミ状装置(ニブラ、カッターなど)(図示なし)でもよく、ブレーカ(図示なし)などでもよい。先端装置25に関する位置には、特定位置25tがある(詳細は後述)。
目標位置推測装置30は、図2に示すオペレータOが作業を行おうとしている位置(作業目標位置)を推測する装置である。目標位置推測装置30は、目標位置Tを算出する。目標位置推測装置30は、オペレータOが先端装置25(さらに詳しくは特定位置25t)を移動させようとしている位置を推測する。目標位置推測装置30は、作業機械1に用いられ、作業機械1に配置(取り付け、搭載)される。目標位置推測装置30の構成要素の一部は、作業機械1の外部に配置されてもよい。図3に示すように、目標位置推測装置30は、姿勢検出部31と、操作検出部32と、視線検出部33と、距離情報検出部34と、種類情報取得部35と、オペレータ情報取得部36と、除外領域取得部37と、コントローラ40と、を備える。
姿勢検出部31は、図1に示す作業機械1の姿勢を検出する。具体的には、姿勢検出部31(図3参照)は、下部走行体11に対する上部旋回体15の旋回角度、およびアタッチメント20の姿勢を検出する。アタッチメント20の姿勢には、例えば、上部旋回体15に対するブーム21の回転角度、ブーム21に対するアーム23の回転角度、および、アーム23に対する先端装置25の回転角度が含まれる。姿勢検出部31は、回転角度を検出する回転角度センサを備えてもよい。姿勢検出部31は、作業機械1の少なくとも一部(例えばアタッチメント20)の姿勢を、カメラで取得した画像情報に基づいて検出してもよい。上記「カメラ」は、距離情報検出部34と兼用されてもよい。姿勢検出部31は、アタッチメント20の姿勢を検出することで、先端装置25の移動速度を検出してもよい。
操作検出部32(図3参照)は、オペレータOによる作業機械1の操作を検出する。操作検出部32は、オペレータOによる操作部18の操作を検出し、具体的には例えば、操作部18の操作量および操作方向を検出する。
視線検出部33(図3参照)は、オペレータOの視線B0を検出する。視線検出部33は、座席17に向けられたカメラを備え、オペレータOの目を撮影する。
距離情報検出部34(図3参照)は、作業機械1の前方の距離情報を検出し、上部旋回体15の前方の距離情報を検出する。上記「作業機械1の前方」は、上部旋回体15に対して先端装置25が配置される側である。距離情報検出部34は、作業機械1の周囲の領域であって、オペレータOの視界を含む領域の、距離情報を検出する。距離情報検出部34に検出される距離情報は、三次元の情報であり、奥行きの情報を含む画像(映像)情報である。距離情報検出部34は、例えばTOF(Time of Flight)カメラを備えてもよく、複眼カメラを備えてもよい。
種類情報取得部35(図3参照)は、先端装置25の種類に関する情報(種類情報)を取得する。種類情報取得部35は、例えばオペレータOなどにより手作業により入力された情報に基づいて、先端装置25の種類情報を取得してもよい。種類情報取得部35は、カメラなど(例えば距離情報検出部34など)に取得された画像に基づいて、先端装置25の種類を自動的に判別することで、先端装置25の種類情報を取得してもよい。
オペレータ情報取得部36(図3参照)は、作業機械1を操作しているオペレータOに関する情報(オペレータO情報)を取得する。オペレータO情報は、オペレータOが誰であるかの情報を含んでもよい。オペレータO情報は、後述する予測軌跡領域A2(図2参照)および注視点領域B2(図2参照)の少なくともいずれかの設定に関する情報を含んでもよい。オペレータ情報取得部36(図3参照)は、手作業により入力された情報に基づいてオペレータO情報を取得してもよい。オペレータ情報取得部36は、オペレータOが所持する装置(例えば無線タグなど)からオペレータO情報を取得してもよい。オペレータ情報取得部36は、カメラで撮影したオペレータOの画像からオペレータO情報(誰であるか)を取得してもよい。
除外領域取得部37(図3参照)は、図2に示す目標位置Tから除外する領域である除外領域Dに関する情報を取得する(後述)。
コントローラ40は、図3に示すように、信号の入出力、情報の記憶、演算(算出、判定など)を行う。コントローラ40は、目標位置T(図2参照)の推測に関する演算を行う。
(作動)
目標位置推測装置30は、以下のように作動するように構成される。以下では、主に、コントローラ40については図3を参照し、各ステップ(S10~S43)については図4を参照して説明する。図2に示す目標位置推測装置30の作動の概要は次の通りである。コントローラ40は、アタッチメント20の姿勢および操作部18の操作に基づいて、先端装置25の予測軌跡領域A2を算出する(ステップS20)。コントローラ40は、オペレータOの視線B0から注視点領域B2を算出する(ステップS30)。コントローラ40は、予測軌跡領域A2と注視点領域B2とが重なる重複領域Cから除外領域Dを除いた領域を、目標位置Tとする。目標位置推測装置30の作動の詳細は、以下の通りである。
距離情報検出部34(図3参照)に検出された距離情報が、コントローラ40に入力される(ステップS10)。
(予測軌跡領域A2の算出(ステップS20))
コントローラ40は、姿勢検出部31(図3参照)および操作検出部32(図3参照)のそれぞれの検出結果に基づいて、予測軌跡領域A2を算出する(ステップS20)。予測軌跡領域A2の算出の詳細は、次の通りである。
姿勢検出部31(図3参照)に検出された作業機械1の姿勢が、コントローラ40に入力される(ステップS21)。コントローラ40は、作業機械1の姿勢に基づいて、先端装置25の位置を算出する(ステップS22)。このとき、コントローラ40は、例えば、基準位置に対する先端装置25の位置を算出する。上記「基準位置」は、例えば距離情報検出部34の位置でもよく、上部旋回体15の(例えばキャブ16の)特定の位置でもよい。なお、基準位置に対する先端装置25の位置の算出に必要な情報であって、作業機械1の姿勢以外の情報は、予め(先端装置25の位置の算出前に)コントローラ40に設定される。具体的には例えば、基準位置に対するブーム21の基端部の位置、ブーム21、アーム23、および先端装置25のそれぞれの寸法および形状などの情報は、予めコントローラ40に設定される。
コントローラ40は、先端装置25の位置の情報を、距離情報に関連付ける(ステップS23)。さらに詳しくは、コントローラ40は、基準位置に対する先端装置25の現実の位置の情報を、距離情報のデータ上の位置に関連付ける(対応付ける、重畳させる)。なお、この関連付けに必要となる情報は、予めコントローラ40に設定される。具体的には例えば、基準位置に対する距離情報検出部34の位置および検出方向などの情報は、予めコントローラ40に設定される。
操作検出部32(図3参照)に検出された操作が、コントローラ40に入力される(ステップS24)。
コントローラ40は、姿勢検出部31(図3参照)および操作検出部32(図3参照)のそれぞれの検出結果に基づいて、予測軌跡A1を算出する(ステップS25)。予測軌跡A1は、先端装置25(さらに詳しくは特定位置25t)が通ると予測される軌跡である。さらに詳しくは、コントローラ40は、操作検出部32で検出されている操作が、現在(現時刻)からある時間経過後まで継続すると仮定した場合に、先端装置25が通ると予測される予測軌跡A1を検出する。なお、図2には、ブーム21に対してアーム23が畳まれた状態から、ブーム21に対してアーム23が開きながら、下部走行体11に対して上部旋回体15が左に旋回する場合の、予測軌跡A1を示す。
コントローラ40は、何らかの条件に応じて、予測軌跡A1を変えてもよい。例えば、コントローラ40は、種類情報取得部35に取得された先端装置25の種類情報に応じて、予測軌跡A1を変えてもよい。この詳細は次の通りである。作業時にオペレータOが注視すると想定される位置が、先端装置25の種類によって異なる。具体的には例えば、先端装置25がバケットの場合、オペレータOは、バケットの先端(特定位置25t)を注視すると想定される。また、例えば、先端装置25がハサミ状装置の場合、オペレータOは、開いたハサミの間の空間を注視すると想定される。先端装置25に関する位置であって、作業時にオペレータOが注視すると想定される位置を特定位置25tとする。そして、コントローラ40は、この特定位置25tが通ると予測される軌跡を、予測軌跡A1として算出する。
コントローラ40は、予測軌跡領域A2を算出する(ステップS27)。予測軌跡領域A2は、予測軌跡A1を含む領域であり、予測軌跡A1に基づいて算出される。予測軌跡領域A2は、距離情報における領域(データ上の位置の範囲)である。予測軌跡A1から、予測軌跡領域A2の外側端部(境界)までの距離を、距離Lとする。第1の向きにおける距離Lを距離Laとし、第1の向きとは異なる第2の向きにおける距離Lを距離Lbとする。
予測軌跡領域A2の広さについて説明する。コントローラ40が推測しようとしている目標位置Tは、予測軌跡領域A2と注視点領域B2との重複領域Cの範囲内であることが条件となる。よって、予測軌跡領域A2は、目標位置Tの候補となる領域である。そのため、予測軌跡領域A2が狭い(距離Lが短い)ほど、目標位置Tの候補となる領域が狭くなり、目標位置Tの精度が向上し得る。一方、予測軌跡領域A2が狭いほど、注視点領域B2(詳細は後述)が予測軌跡領域A2に含まれず、目標位置Tを特定できない可能性が高くなる。また、予測軌跡領域A2が広い(距離Lが長い)ほど、目標位置Tの候補となる領域が広くなるので、注視点領域B2が予測軌跡領域A2に含まれやすくなる。一方、予測軌跡領域A2が広いほど、目標位置Tの精度は悪くなり得る(注視点領域B2の広さによる)。
予測軌跡A1に対する予測軌跡領域A2の範囲(以下、単に「予測軌跡領域A2の範囲」とも言う)は、様々に設定可能である。例えば、予測軌跡領域A2の広さ、および、予測軌跡A1に対する予測軌跡領域A2の範囲の偏りなどは、様々に設定可能である。[例1]予測軌跡領域A2は、予測軌跡A1から一定の距離L以内の範囲でもよい(距離Lは一定値でもよい)。この場合、予測軌跡A1に対する予測軌跡領域A2の範囲の偏りはない。[例1a]距離Lは0でもよい。予測軌跡領域A2は、予測軌跡A1と一致してもよく、線状の領域でもよい。[例1b]距離Lが一定値の場合、距離Lは、正の数でもよい。予測軌跡領域A2は、空間的広がりを有する範囲でもよい。
[例2]距離Lは、一定でなくてもよい。[例2a]距離Lは、予測軌跡A1に対する向きによって相違してもよい。具体的には例えば、第1の向きの距離La(例えば予測軌跡A1に対して作業機械1側の距離La)と、第2の向きの距離Lb(例えば予測軌跡A1に対して作業機械1とは反対側の距離Lb)と、が相違してもよい。[例2b]距離Lは、作業機械1の特定の位置からの距離によって相違してもよい。例えば、キャブ16から遠いほど、距離Lが大きく設定されてもよい。例えば、現在の先端装置25の位置から遠い位置ほど、距離Lが大きく設定されてもよい。
[例3]予測軌跡領域A2の範囲は、何らかの条件に応じて変えられても(設定されても)よい。[例3a]予測軌跡領域A2の範囲は、オペレータOなどが入力した情報(例えば距離Lの値など)に基づいて設定されてもよい。
[例3b]コントローラ40は、先端装置25の移動速度に応じて、予測軌跡領域A2の範囲を変えてもよい。先端装置25の移動速度は、例えば、ステップS22で算出される先端装置25の位置の単位時間当たりの変化量である。例えば、先端装置25の移動速度が速いほど、オペレータOの実際の作業目標位置と予測軌跡A1とのずれが大きくなり、注視点領域B2が予測軌跡領域A2に含まれない可能性が高くなり、目標位置Tを特定できない可能性が高くなる場合がある。そこで、コントローラ40は、先端装置25の移動速度が速いほど、予測軌跡領域A2を広くしてもよい。なお、この例はあくまで一例であり(以下の具体例も同様)、コントローラ40は、先端装置25の移動速度が速いほど予測軌跡領域A2を狭くしてもよい。
[例3c]コントローラ40は、姿勢検出部31に検出されたアタッチメント20の姿勢に応じて、予測軌跡領域A2の範囲を変えてもよい。さらに詳しくは、アタッチメント20の姿勢に基づいて予測軌跡A1が算出され(ステップS21~S25)、さらに、アタッチメント20の姿勢に応じて、予測軌跡A1に対する予測軌跡領域A2の範囲が変えられてもよい。例えば、アタッチメント20の水平方向における長さ(例えばキャブ16から先端装置25までの距離)が長いほど、オペレータOの実際の作業目標位置と予測軌跡A1とのずれが大きくなり、目標位置Tを特定できない可能性が高くなる場合がある。そこで、コントローラ40は、アタッチメント20の水平方向における長さが長いほど、予測軌跡領域A2を広く(距離Lを長く)してもよい。
[例3d]コントローラ40は、種類情報取得部35に取得された先端装置25の種類に関する情報に応じて、予測軌跡領域A2の範囲を変えてもよい。
[例3e]コントローラ40は、オペレータ情報取得部36に取得されたオペレータO情報に応じて、予測軌跡領域A2の範囲を変えてもよい。具体的には例えば、オペレータOの熟練度によって、実際の先端装置25の軌跡と予測軌跡A1とのずれの大きさが異なる。例えば、オペレータOが熟練者であるほど、現在の操作部18の操作状態が維持されたまま先端装置25を移動させることができるので、実際の先端装置25の軌跡と予測軌跡A1とのずれが小さい。一方、オペレータOが非熟練者であるほど、無駄な操作が多く、操作部18の操作状態が変化しやすく、実際の先端装置25の軌跡と予測軌跡A1とのずれが大きい。そこで、コントローラ40は、熟練度の高いオペレータOほど予測軌跡領域A2を狭く設定してもよい。また、オペレータOによって操作の傾向(癖)が異なる。例えば、実際の先端装置25の軌跡と予測軌跡A1とのずれの傾向(ずれの大きさ、向きなど)がオペレータOによって異なる場合がある。また、注視点領域B2と予測軌跡A1とのずれの傾向がオペレータOによって異なる場合がある。そこで、コントローラ40は、オペレータOに応じて予測軌跡領域A2を変えてもよい。
[例3f]コントローラ40は、予測軌跡領域A2の範囲を、学習により変えてもよい(調整してもよい)。例えば、コントローラ40は、目標位置Tを推測した後(後述するステップS43の後)、第1所定時間内に、先端装置25(さらに詳しくは特定位置25t)が目標位置Tに移動したか否かに応じて、予測軌跡領域A2の範囲を変える。具体的には例えば、作業機械1による作業の開始時には、予測軌跡領域A2をできるだけ広く設定しておくことで、予測軌跡領域A2に注視点領域B2が含まれやすくする。そして、作業中に、目標位置Tの推測が行われる。目標位置Tが推測され、ある時間(第1所定時間)内に、先端装置25が目標位置Tに実際に移動した場合は、目標位置Tの推測が妥当であったことになる。この場合、コントローラ40は、目標位置Tの精度を向上させるために、予測軌跡領域A2を狭くする。例えば、コントローラ40は、目標位置Tの推測が妥当であった回数が所定回数を超えた場合に、予測軌跡領域A2を狭くしてもよい。一方、目標位置Tが推測された後、第1所定時間内に、先端装置25が目標位置Tに移動しなかった場合は、目標位置Tの推測が妥当ではなかったことになる。この場合、予測軌跡領域A2を広くすることで、目標位置Tの候補となる領域を広げる。これにより、オペレータOの実際の作業目標位置が、目標位置Tに含まれやすくなる。
(注視点領域B2の算出(ステップS30))
コントローラ40は、視線検出部33(図3参照)の検出結果に基づいて、注視点領域B2を算出する(ステップS30)。注視点領域B2の算出の詳細は、次の通りである。
視線検出部33に検出されたオペレータOの視線B0の情報(向き)が、コントローラ40に入力される(ステップS31)。
コントローラ40は、視線B0の情報を、距離情報に関連付ける(ステップS33)。さらに詳しくは、コントローラ40は、視線B0の現実の位置(例えば、視線B0の通過点の位置および方向)を、距離情報のデータ上の位置に関連付ける(対応付ける、重畳させる)。なお、この関連付けに必要となる情報は、予めコントローラ40に設定される。具体的には例えば、基準位置に対する視線検出部33の位置および検出方向などの情報は、予めコントローラ40に設定される。
コントローラ40は、視線検出部33の検出結果に基づいて、注視点B1(アイポイント位置)を算出する(ステップS35)。注視点B1は、オペレータOが注視している現実の位置に対応する、距離情報における位置(データ上の位置)である。
コントローラ40は、視線検出部33の検出結果に基づいて、注視点領域B2を算出する(ステップS37)。注視点領域B2は、距離情報におけるデータ上の領域(位置の範囲)であり、注視点B1に基づく領域である。予測軌跡領域A2と同様に、注視点領域B2は、目標位置Tの候補となる領域である。注視点領域B2が狭いほど、目標位置Tの候補となる領域が狭くなり、目標位置Tの精度が向上し得る。一方、注視点領域B2が狭いほど、注視点領域B2が予測軌跡領域A2に含まれない可能性が高くなり、目標位置Tを特定できない可能性が高くなる。また、注視点領域B2が広いほど、目標位置Tの候補となる領域が広くなり、注視点領域B2が予測軌跡領域A2に含まれやすくなる。一方、注視点領域B2が広いほど、目標位置Tの精度は悪くなり得る(予測軌跡領域A2の広さによる)。
注視点B1に対する注視点領域B2の範囲(単に「注視点領域B2の範囲」とも言う)(例えば広さ)は、様々に設定可能である。[例4]注視点領域B2は、注視点B1と一致してもよい。注視点領域B2は、点状または線状の領域でもよい。[例4a]この場合、現在の(ある瞬間の)注視点B1を注視点領域B2としてもよい。[例4b]ある時間内での注視点B1の軌跡を注視点領域B2としてもよい。この「ある時間」は、一定時間でもよく、下記の第2所定時間などと同様に様々に設定されてもよい(下記の[例5b]の「ある時間」も同様)。[例5]注視点領域B2は、広がりを有する領域でもよい。[例5a]この場合、現在の(ある瞬間の、1点の)注視点B1を含む、広がりを有する領域を、注視点領域B2としてもよい。[例5b]また、ある時間内での注視点B1の軌跡を含む、広がりを有する領域を注視点領域B2としてもよい。
[例6]オペレータOの注視点B1は常時揺れ動いているところ、オペレータOが特に見ていると推測される領域を、注視点領域B2としてもよい。さらに詳しくは、コントローラ40は、図5に示すように、ある時間(第2所定時間)内での注視点B1の頻度の分布に基づいて、注視点領域B2を設定してもよい。なお、図5では、点で示す複数の注視点B1のうち、一部の注視点B1にのみ符号を付した。[例6a]具体的には、距離情報を複数の領域に分け、注視点B1が含まれた回数を各領域で計測することで、注視点B1の頻度の分布が算出される。コントローラ40は、距離情報における複数の領域の中で、注視点B1の頻度が、閾値th1(注視点領域設定閾値)よりも大きい領域を、注視点領域B2とする。[例6a1]例えば、距離情報をメッシュ状に複数の領域に分け、各領域での注視点B1の頻度の分布が算出されてもよい。[例6a2]図5に示す例では、図5における左右方向の注視点B1の頻度の分布を示した。[例6a3]図5における上下方向の注視点B1の頻度の分布が算出されてもよい。
[例7a]上記[例6]において、注視点B1の分布を取得する時間(第2所定時間)は、一定時間でもよい。[例7b]上記[例6]において、注視点領域B2を決定するための閾値th1は、一定値でもよい。
[例8]注視点B1に対する注視点領域B2の範囲(以下、単に「注視点領域B2の範囲」とも言う)は、何らかの条件に応じて変えられても(設定されても)よい。具体的には、上記の第2所定時間および閾値th1の少なくともいずれかは、何らかの条件に応じて変えられてもよい。第2所定時間を長くするほど注視点領域B2は広くなる。閾値th1を小さくするほど、注視点領域B2は広くなる。[例8a]注視点B1と注視点領域B2との関係は、オペレータOなどが入力した情報に応じて変えられてもよい。
[例8b]コントローラ40は、図2に示す先端装置25の移動速度に応じて、注視点領域B2の範囲を変えてもよい。先端装置25の移動速度は、例えば、ステップS22で算出される先端装置25の位置の単位時間当たりの変化量である。例えば、先端装置25の移動速度が速いほど、オペレータOが実際の作業目標位置を見る時間が短いと考えられる。そこで、コントローラ40は、先端装置25の移動速度が速いほど、第2所定時間を短くしてもよい。なお、この例はあくまで一例であり(以下の具体例も同様)、コントローラ40は、先端装置25の速度が速いほど第2所定時間を長くしてもよい。
[例8c]コントローラ40は、姿勢検出部31に検出されたアタッチメント20の姿勢に応じて、注視点領域B2の範囲を変えてもよい。[例8d]コントローラ40は、種類情報取得部35に取得された先端装置25の種類情報に応じて、注視点領域B2の範囲を変えてもよい。
[例8e]コントローラ40は、オペレータ情報取得部36に取得されたオペレータO情報に応じて、注視点領域B2を変えてもよい。具体的には例えば、オペレータOによって、実際の作業目標位置を注視する時間、および注視点B1の揺れ動きの度合いが相違する。例えば、オペレータOが熟練者であるほど、注視点B1の揺れ動きが少ないと考えられる。そこで、コントローラ40は、熟練度の高いオペレータOほど注視点領域B2を狭く設定してもよく、具体的には例えば、第2所定時間を短くしてもよく、閾値th1を高くしてもよい。
[例8f]コントローラ40は、注視点領域B2の範囲を、学習により変えてもよい(調整してもよい)。例えば、コントローラ40は、目標位置Tを推測した後(ステップS43の後)、第3所定時間内に、先端装置25(さらに詳しくは特定位置25t)が目標位置Tに移動したか否かに応じて、注視点領域B2を変える。具体的には例えば、上記[例3f]と同様に、作業機械1の作業の開始時には、注視点領域B2をできるだけ広くしておくことで、予測軌跡領域A2に注視点領域B2が含まれやすくする。そして、作業機械1の作業中に、目標位置Tの推測が行われる。目標位置Tが推測された後、ある時間(第3所定時間)内に、先端装置25が目標位置Tに実際に移動した場合は、目標位置Tの推測が妥当であったことになる。この場合、コントローラ40は、目標位置Tの精度を向上させるために、注視点領域B2を狭くしてもよい。例えば、コントローラ40は、目標位置Tの推測が妥当であった回数が所定回数を超えた場合に、注視点領域B2を狭くしてもよい。一方、目標位置Tが推測され、第3所定時間内に、先端装置25が目標位置Tに移動しなかった場合は、目標位置Tの推測が妥当ではなかったことになる。この場合、注視点領域B2を広くすることで、目標位置Tの候補となる領域を広げてもよい。これにより、オペレータOの実際の作業目標位置が、目標位置Tに含まれやすくなる。
オペレータOの実際の作業目標位置は、通常1か所であるため、注視点領域B2は通常1か所である。図2に示す例では、注視点領域B2は1か所である。一方、注視点領域B2の条件を満たす領域が複数か所に存在する(互いに離れた位置に存在する)場合も考えられる。この場合は、注視点領域B2の条件を満たす複数の領域を、そのまま注視点領域B2としてもよい。また、この場合は、上記「複数の領域」を含むような範囲であって、現在の注視点領域B2よりも広い1か所の範囲を、新たな注視点領域B2としてもよい。
(目標位置Tの算出(ステップS40))
コントローラ40は、予測軌跡領域A2および注視点領域B2に基づいて、目標位置Tを算出する(ステップS40)。この算出の詳細は次の通りである。
コントローラ40は、予測軌跡領域A2の範囲内かつ注視点領域B2の範囲内である重複領域Cを算出する(ステップS41)。なお、重複領域Cが存在しない場合は、目標位置Tは算出されない。この場合は、例えば、次回の処理から、予測軌跡領域A2および注視点領域B2の少なくともいずれかを、現在(今回の処理)よりも広く設定してもよい。
除外領域取得部37(図3参照)に取得された除外領域Dが、コントローラ40に入力される。除外領域Dは、目標位置Tから除外する領域である。具体的には例えば、作業機械1が土砂を掘削する作業を行う場合、土砂の運搬車両が存在する領域、および、建物が存在する領域などは、オペレータOの実際の作業目標位置ではない。そこで、実際の作業目標位置とはならない領域を除外領域Dとする。そして、コントローラ40は、重複領域Cから除外領域Dを除外する(ステップS42)。除外領域Dは、例えばオペレータOなどが入力した情報に基づいて取得されてもよい。除外領域Dは、距離情報検出部34の距離情報に基づいて自動的に設定されてもよく、距離情報検出部34以外の検出部(カメラなど)に取得された画像に基づいて自動的に設定されてもよい。
コントローラ40は、重複領域Cから除外領域Dを除いた領域を、目標位置Tとする(ステップS43)。目標位置Tは、例えば所定の時間ごとに更新される。目標位置Tは、様々に利用可能であり、例えば操作のアシスト、操作のガイダンス、操作の訓練、操作の自動化(例えば視線B0による操作)などに利用できる。
(背景の例)
建設現場での人手不足が問題となっており、特に、熟練オペレータ不足による建設現場の生産性の低下が問題となっている。さらに詳しくは、非熟練オペレータは、熟練オペレータに比べて、無駄な操作が多く、安定した作業を行うのが難しいため、生産性の低下の要因になっている。さらに具体的には、非熟練オペレータは、作業目標位置を特定しても、その位置に素早く無駄なく先端装置25を移動させ停止させるなどの技量がないことがある。また、作業機械1の種類(大きさや、後方小旋回機であるか否かなど)によって、上部旋回体15やアタッチメント20の慣性力や特性が変わる。そのため、ある機種の操作に慣れたオペレータでも、作業機械1の種類が変わるごとに、作業機械1の特性を理解して操作できるようになるまでに時間がかかる。上記の問題を改善するには、操作のアシスト、操作のガイダンス、操作の訓練、操作の自動化などが考えられるところ、これらには、具体的な目標位置Tの特定が必要である。なお、この背景の例に関する問題点は、本実施形態によって解決されなくてもよい。
また、自動車の運転者の走行目標位置は、通常、決められた走行車線上である。一方、作業機械1では、様々な位置が、オペレータOの作業目標位置となり得る。例えば、作業機械1では、成形しようとする土の形状に対して、現状の土の状態や形状などを加味して、ある程度自由な範囲でオペレータOが作業目標位置を決める。そのため、オペレータOの視線B0の情報のみから作業目標位置を推測することは困難である。一方、本実施形態では、以下のように作業機械1のオペレータOの作業目標位置を推測できる。
(効果)
図2に示す目標位置推測装置30による効果は次の通りである。なお、コントローラ40については図3を参照する。
(第1の発明の効果)
目標位置推測装置30は、アタッチメント20の先端部に設けられる先端装置25を備える作業機械1に用いられる。図3に示すように、目標位置推測装置30は、姿勢検出部31と、操作検出部32と、視線検出部33と、距離情報検出部34と、コントローラ40と、を備える。姿勢検出部31は、図2に示す作業機械1の姿勢を検出する。操作検出部32(図3参照)は、作業機械1の操作を検出する。視線検出部33(図3参照)は、作業機械1を操作するオペレータOの視線B0を検出する。距離情報検出部34(図3参照)は、作業機械1の前方の距離情報を検出する。コントローラ40は、オペレータOの目標位置Tを推測する。
[構成1]図3に示すコントローラ40は、姿勢検出部31および操作検出部32のそれぞれの検出結果に基づいて、図2に示す予測軌跡領域A2を算出する。予測軌跡領域A2は、先端装置25が通ると予測される軌跡である予測軌跡A1に基づく領域であって、距離情報における領域である。コントローラ40は、視線検出部33の検出結果に基づいて、注視点領域B2を算出する。注視点領域B2は、オペレータOの注視点B1に基づく領域であって、距離情報における領域である。目標位置Tの条件には、予測軌跡領域A2の範囲内かつ注視点領域B2の範囲(重複領域C)内であることが含まれる。
上記[構成1]では、オペレータOの注視点B1に基づく注視点領域B2の範囲内、かつ、先端装置25の予測軌跡領域A2の範囲内であることが、目標位置Tの条件に含まれる。よって、オペレータOの注視点B1に関する情報のみに基づいて目標位置Tを推測する場合に比べ、オペレータOの実際の作業目標位置に対する、目標位置Tの精度を高くできる。したがって、作業機械1のオペレータOの作業目標位置を精度良く推測できる。
(第2の発明の効果)
[構成2]コントローラ40は、先端装置25の種類に関する情報に応じて、予測軌跡A1を変える。
オペレータOが作業目標位置とする位置(特定位置25t)は、先端装置25の種類によって異なる。そのため、先端装置25の種類によって、適切な予測軌跡A1が異なる。そこで、目標位置推測装置30は、上記[構成2]を備える。よって、先端装置25の種類に基づいた適切な予測軌跡A1を算出でき、その結果、予測軌跡領域A2を、先端装置25の種類に基づいた適切な領域(位置、範囲)に設定できる。
(第3の発明の効果)
[構成3]コントローラ40は、先端装置25の移動速度に応じて、予測軌跡A1に対する予測軌跡領域A2の範囲を変える。
上記[構成3]により、予測軌跡領域A2を、先端装置25の移動速度に基づいた適切な領域に設定できる。
[効果α]例えば、予測軌跡領域A2を狭くした(距離Lを短くした)場合は、オペレータOの実際の作業目標位置に対する目標位置Tの精度をより向上させることができる。また、予測軌跡領域A2を広くした(距離Lを長くした)場合は、オペレータOの実際の作業目標位置を予測軌跡領域A2(目標位置Tの候補となる領域)に含まれやすくできる。
(第4の発明の効果)
[構成4]コントローラ40は、アタッチメント20の姿勢に応じて、予測軌跡A1に対する予測軌跡領域A2の範囲を変える。
上記[構成4]により、予測軌跡A1に対する予測軌跡領域A2の範囲を、アタッチメント20の姿勢に基づいた適切な領域に設定できる。その結果、上記[効果α]と同様の効果を得ることができる。
(第5の発明の効果)
[構成5]コントローラ40は、作業機械1を操作しているオペレータOに関する情報に応じて、予測軌跡A1に対する予測軌跡領域A2の範囲を変える。
上記[構成5]により、予測軌跡領域A2を、オペレータOに関する情報に基づいた適切な領域に設定できる。その結果、上記[効果α]と同様の効果を得ることができる。
(第6の発明の効果)
[構成6]コントローラ40は、目標位置Tを推測した後、第1所定時間内に、先端装置25が目標位置Tに移動したか否かに応じて、予測軌跡A1に対する予測軌跡領域A2の範囲を変える。
目標位置Tを推測した後、第1所定時間内に、先端装置25が目標位置Tに移動した場合は、目標位置Tの推測が妥当であったと言える。一方、目標位置Tを推測した後、第1所定時間内に、先端装置25が目標位置Tに移動しなかった場合は、目標位置Tの推測が妥当でなかったと言える。そこで、目標位置推測装置30は、上記[構成6]を備える。よって、予測軌跡領域A2を、目標位置Tの推測が妥当であったか否かに基づいた適切な領域に設定できる。その結果、上記[効果α]と同様の効果を得られる。
(第7の発明の効果)
[構成7]コントローラ40は、第2所定時間内での注視点B1の頻度の分布に基づいて、注視点領域B2を設定する。
オペレータOの視点は揺れ動くので、オペレータOの注視点B1が、必ずしもオペレータOの実際の作業目標位置に一致するとは限らない。そこで、目標位置推測装置30は、上記[構成7]を備える。よって、オペレータOの実際の作業目標位置である可能性が高い領域を、注視点領域B2として設定できる。
[効果β]例えば、注視点領域B2を広くした場合は、オペレータOの実際の作業目標位置に対する目標位置Tの精度をより向上させることができる。また、注視点領域B2を狭くした場合は、オペレータOの実際の作業目標位置を注視点領域B2(目標位置Tの候補となる領域)に含まれやすくできる。
(第8の発明の効果)
[構成8]コントローラ40は、先端装置25の移動速度に応じて、注視点B1に対する注視点領域B2の範囲を変える。
上記[構成8]により、注視点領域B2の範囲を、先端装置25の移動速度に応じた適切な範囲に設定できる。その結果、上記[効果β]と同様の効果を得ることができる。
(第9の発明の効果)
[構成9]コントローラ40は、作業機械1を操作しているオペレータOに関する情報に応じて、注視点B1に対する注視点領域B2の範囲を変える。
上記[構成9]により、注視点領域B2を、オペレータOに関する情報に基づいた適切な領域に設定できる。その結果、上記[効果β]と同様の効果を得ることができる。
(第10の発明の効果)
[構成10]コントローラ40は、目標位置Tを推測した後、第3所定時間内に、先端装置25が目標位置Tに移動したか否かに応じて、注視点B1に対する注視点領域B2の範囲を変える。
上記[構成10]により、注視点領域B2を、目標位置Tの推測が妥当であったか否かに基づいた適切な領域に設定できる(上記[構成6]による効果の説明を参照)。その結果、上記[効果β]と同様の効果を得られる。
(第11の発明の効果)
[構成11]コントローラ40は、目標位置Tから除外する領域である除外領域Dを取得する。目標位置Tの条件には、除外領域Dの外部であることが含まれる。
上記[構成11]により、オペレータOの作業目標位置ではないと想定される領域を除外領域Dに設定した場合、目標位置Tの精度をより向上させることができる。
(変形例)
例えば、図3に示す回路の接続は変更されてもよい。例えば、図4に示すフローチャートのステップの順序が変更されてもよく、ステップの一部が行われなくてもよい。例えば、上記実施形態の構成要素の数が変更されてもよく、構成要素の一部が設けられなくてもよい。例えば、互いに異なる複数の部分(構成要素)として説明したものが、一つの部分とされてもよい。例えば、一つの部分として説明したものが、互いに異なる複数の部分に分けて設けられてもよい。
例えば、目標位置推測装置30(図2、図3を参照)の構成要素の一部が、図2に示す作業機械1の外部に配置されてもよい。例えば、コントローラ40が、作業機械1の外部に配置されてもよい。オペレータOは、作業機械1の外部で作業機械1を遠隔操縦してもよい。この場合、座席17、操作部18、操作検出部32(図4参照)、および視線検出部33は、作業機械1の外部に配置される。この場合、オペレータOは、作業機械1の周囲の画像が映された画面を見ながら操作するところ、視線検出部33は、このオペレータOの視線B0(画面のどこを見ているか)を検出する。
例えば、上記のように、予測軌跡領域A2は、予測軌跡A1と一致してもよく(線状の領域でもよく)、注視点領域B2は、注視点B1と一致してもよい(点状または線状でもよい)。予測軌跡領域A2および注視点領域B2の少なくともいずれかは、空間的広がりを有する領域であることが好ましい。
例えば、何らかの条件に応じて予測軌跡A1、予測軌跡領域A2、注視点B1、および注視点領域B2を変える例を示したが、各例の一部のみが行われてもよい。例えば、除外領域Dは設定されなくてもよい。
1 作業機械
20 アタッチメント
25 先端装置
30 目標位置推測装置
31 姿勢検出部
32 操作検出部
33 視線検出部
34 距離情報検出部
40 コントローラ
A1 予測軌跡
A2 予測軌跡領域
B1 注視点
B2 注視点領域
D 除外領域
O オペレータ
T 目標位置

Claims (11)

  1. アタッチメントの先端部に設けられる先端装置を備える作業機械に用いられる、目標位置推測装置であって、
    前記作業機械の姿勢を検出する姿勢検出部と、
    前記作業機械の操作を検出する操作検出部と、
    前記作業機械を操作するオペレータの視線を検出する視線検出部と、
    前記作業機械の前方の距離情報を検出する距離情報検出部と、
    前記オペレータの目標位置を推測するコントローラと、
    を備え、
    前記コントローラは、
    前記姿勢検出部および前記操作検出部のそれぞれの検出結果に基づいて、前記先端装置が通ると予測される軌跡である予測軌跡に基づく領域であって、前記距離情報における領域である予測軌跡領域を算出し、
    前記視線検出部の検出結果に基づいて、前記オペレータの注視点に基づく領域であって、前記距離情報における領域である注視点領域を算出し、
    前記目標位置の条件には、前記予測軌跡領域の範囲内かつ前記注視点領域の範囲内であることが含まれる、
    目標位置推測装置。
  2. 請求項1に記載の目標位置推測装置であって、
    前記コントローラは、前記先端装置の種類に関する情報に応じて、前記予測軌跡を変える、
    目標位置推測装置。
  3. 請求項1または2に記載の目標位置推測装置であって、
    前記コントローラは、前記先端装置の移動速度に応じて、前記予測軌跡に対する前記予測軌跡領域の範囲を変える、
    目標位置推測装置。
  4. 請求項1~3のいずれか1項に記載の目標位置推測装置であって、
    前記コントローラは、前記アタッチメントの姿勢に応じて、前記予測軌跡に対する前記予測軌跡領域の範囲を変える、
    目標位置推測装置。
  5. 請求項1~4のいずれか1項に記載の目標位置推測装置であって、
    前記コントローラは、前記作業機械を操作している前記オペレータに関する情報に応じて、前記予測軌跡に対する前記予測軌跡領域の範囲を変える、
    目標位置推測装置。
  6. 請求項1~5のいずれか1項に記載の目標位置推測装置であって、
    前記コントローラは、前記目標位置を推測した後、第1所定時間内に、前記先端装置が前記目標位置に移動したか否かに応じて、前記予測軌跡に対する前記予測軌跡領域の範囲を変える、
    目標位置推測装置。
  7. 請求項1~6のいずれか1項に記載の目標位置推測装置であって、
    前記コントローラは、第2所定時間内での前記注視点の頻度の分布に基づいて、前記注視点領域を設定する、
    目標位置推測装置。
  8. 請求項1~7のいずれか1項に記載の目標位置推測装置であって、
    前記コントローラは、前記先端装置の移動速度に応じて、前記注視点に対する前記注視点領域の範囲を変える、
    目標位置推測装置。
  9. 請求項1~8のいずれか1項に記載の目標位置推測装置であって、
    前記コントローラは、前記作業機械を操作している前記オペレータに関する情報に応じて、前記注視点に対する前記注視点領域の範囲を変える、
    目標位置推測装置。
  10. 請求項1~9のいずれか1項に記載の目標位置推測装置であって、
    前記コントローラは、前記目標位置を推測した後、第3所定時間内に、前記先端装置が前記目標位置に移動したか否かに応じて、前記注視点に対する前記注視点領域の範囲を変える、
    目標位置推測装置。
  11. 請求項1~10のいずれか1項に記載の目標位置推測装置であって、
    前記コントローラは、
    前記目標位置から除外する領域である除外領域を取得し、
    前記目標位置の条件には、前記除外領域の外部であることが含まれる、
    目標位置推測装置。
JP2019027435A 2019-02-19 2019-02-19 目標位置推測装置 Active JP7159903B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019027435A JP7159903B2 (ja) 2019-02-19 2019-02-19 目標位置推測装置
CN201980091912.5A CN113396257B (zh) 2019-02-19 2019-12-24 工程机械的目标位置推定装置
US17/428,459 US11959256B2 (en) 2019-02-19 2019-12-24 Work machine target position estimation device
EP19916476.5A EP3901382B1 (en) 2019-02-19 2019-12-24 Work machine target position estimation device
PCT/JP2019/050518 WO2020170599A1 (ja) 2019-02-19 2019-12-24 作業機械の目標位置推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027435A JP7159903B2 (ja) 2019-02-19 2019-02-19 目標位置推測装置

Publications (2)

Publication Number Publication Date
JP2020133229A JP2020133229A (ja) 2020-08-31
JP7159903B2 true JP7159903B2 (ja) 2022-10-25

Family

ID=72144319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027435A Active JP7159903B2 (ja) 2019-02-19 2019-02-19 目標位置推測装置

Country Status (5)

Country Link
US (1) US11959256B2 (ja)
EP (1) EP3901382B1 (ja)
JP (1) JP7159903B2 (ja)
CN (1) CN113396257B (ja)
WO (1) WO2020170599A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419348B2 (ja) * 2019-04-04 2024-01-22 株式会社小松製作所 作業機械を含むシステム、コンピュータによって実行される方法、および学習済みの姿勢推定モデルの製造方法
KR20230047091A (ko) 2020-08-05 2023-04-06 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 무선통신 장치 및 무선통신 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145787A1 (ja) 2016-02-23 2017-08-31 ソニー株式会社 遠隔操作装置、および遠隔操作方法、遠隔操作システム、並びにプログラム
JP2018185763A (ja) 2017-04-27 2018-11-22 トヨタ自動車株式会社 注視領域推定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458099B2 (en) * 2004-08-26 2019-10-29 Caterpillar Trimble Control Technologies Llc Auto recognition of at least one standoff target to determine position information for a mobile machine
US8473166B2 (en) * 2009-05-19 2013-06-25 Topcon Positioning Systems, Inc. Semiautomatic control of earthmoving machine based on attitude measurement
JP6258582B2 (ja) * 2012-12-28 2018-01-10 株式会社小松製作所 建設機械の表示システムおよびその制御方法
US10503249B2 (en) * 2014-07-03 2019-12-10 Topcon Positioning Systems, Inc. Method and apparatus for construction machine visualization
JP6693105B2 (ja) * 2015-12-01 2020-05-13 株式会社Jvcケンウッド 視線検出装置及び視線検出方法
CN105425967B (zh) * 2015-12-16 2018-08-28 中国科学院西安光学精密机械研究所 视线追踪及人眼感兴趣区域定位***
US20180164895A1 (en) * 2016-02-23 2018-06-14 Sony Corporation Remote control apparatus, remote control method, remote control system, and program
AU2016402225B2 (en) * 2016-04-04 2022-02-10 Topcon Positioning Systems, Inc. Method and apparatus for augmented reality display on vehicle windscreen
CN109070879B (zh) * 2016-08-09 2021-05-07 Jvc 建伍株式会社 显示控制装置、显示装置、显示控制方法以及存储介质
JP6873059B2 (ja) * 2017-03-31 2021-05-19 株式会社小松製作所 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
JP6581139B2 (ja) * 2017-03-31 2019-09-25 日立建機株式会社 作業機械の周囲監視装置
JP7074432B2 (ja) * 2017-06-26 2022-05-24 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145787A1 (ja) 2016-02-23 2017-08-31 ソニー株式会社 遠隔操作装置、および遠隔操作方法、遠隔操作システム、並びにプログラム
JP2018185763A (ja) 2017-04-27 2018-11-22 トヨタ自動車株式会社 注視領域推定装置

Also Published As

Publication number Publication date
JP2020133229A (ja) 2020-08-31
WO2020170599A1 (ja) 2020-08-27
EP3901382A4 (en) 2022-04-06
US20220106774A1 (en) 2022-04-07
EP3901382B1 (en) 2023-05-03
CN113396257B (zh) 2022-07-08
US11959256B2 (en) 2024-04-16
CN113396257A (zh) 2021-09-14
EP3901382A1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
CN109101032B (zh) 用于利用传感器融合来控制机器姿态的***和方法
US8498806B2 (en) Hydraulic shovel positional guidance system and method of controlling same
JP6025372B2 (ja) 油圧ショベルの掘削制御システム及び掘削制御方法
JP5706050B1 (ja) 作業車両
JP7408761B2 (ja) 作業機械の制御装置および制御方法
US20130158784A1 (en) Hydraulic shovel operability range display device and method for controlling same
WO2015182455A1 (ja) 作業機の作動状態検出システム及び作業機
JP7159903B2 (ja) 目標位置推測装置
JP7203616B2 (ja) 作業機械
JP7071203B2 (ja) 作業機械
JP7402026B2 (ja) 作業機械の制御システム、作業機械、作業機械の制御方法
CN112513378A (zh) 作业机械
KR20180062968A (ko) 작업기 제어 장치 및 작업 기계
JP2017008719A (ja) 油圧ショベルの掘削制御システム
JP2020046439A (ja) ショベル
JP2024514793A (ja) 機械状態を決定するための方法およびシステム
US20230339402A1 (en) Selectively utilizing multiple imaging devices to maintain a view of an area of interest proximate a work vehicle
WO2020183987A1 (ja) 作業機械
CN111989439B (zh) 推土铲控制装置及推土铲控制方法
JP7197342B2 (ja) 作業機械、作業機械を含むシステム、および作業機械の制御方法
CN111971437B (zh) 推土铲控制装置及推土铲控制方法
KR20210061159A (ko) 건설기계의 제어 시스템 및 제어 방법
JPWO2020202393A1 (ja) 作業機械
JP2020051066A (ja) 建設機械
JP7263287B2 (ja) 作業機械

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7159903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150