JP7150510B2 - electrostatic chuck - Google Patents

electrostatic chuck Download PDF

Info

Publication number
JP7150510B2
JP7150510B2 JP2018142910A JP2018142910A JP7150510B2 JP 7150510 B2 JP7150510 B2 JP 7150510B2 JP 2018142910 A JP2018142910 A JP 2018142910A JP 2018142910 A JP2018142910 A JP 2018142910A JP 7150510 B2 JP7150510 B2 JP 7150510B2
Authority
JP
Japan
Prior art keywords
electrostatic
electrode
insulating substrate
wafer
electrostatic chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018142910A
Other languages
Japanese (ja)
Other versions
JP2020021780A (en
Inventor
誠 檜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018142910A priority Critical patent/JP7150510B2/en
Publication of JP2020021780A publication Critical patent/JP2020021780A/en
Application granted granted Critical
Publication of JP7150510B2 publication Critical patent/JP7150510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、静電チャックに関する。 The present invention relates to electrostatic chucks.

減圧環境下で行われる半導体製造工程では、ウエハステージとして静電チャックが使用される。近年、半導体製造工程の処理の増大に伴い、静電チャックからのウエハの離脱時間の短縮が求められている。この対策として、静電チャックの絶縁層の体積抵抗率を小さくすることの他、静電チャックの表面に凸部を設けてウエハとの接触面積を小さくして吸着力の全圧を小さくし残留する吸着力を小さくするなどの対策が講じられた技術が提案されている(特許文献1)。 An electrostatic chuck is used as a wafer stage in a semiconductor manufacturing process performed under a reduced pressure environment. In recent years, with the increase in the number of processes in the semiconductor manufacturing process, there has been a demand for shortening the time taken to remove the wafer from the electrostatic chuck. As a countermeasure against this, in addition to reducing the volume resistivity of the insulating layer of the electrostatic chuck, a convex portion is provided on the surface of the electrostatic chuck to reduce the contact area with the wafer, thereby reducing the total pressure of the adsorption force and reducing the residual pressure. A technique has been proposed in which a countermeasure is taken such as reducing the adsorption force to be applied (Patent Document 1).

特許第4407793号公報Japanese Patent No. 4407793

しかし、特許文献1の技術は、誘電体の内部に静電吸着電極が埋設されており、使用時に静電吸着電極とウエハ間に流れる微小な電流によって、ウエハと静電チャック表面との接触界面に分極が生じて微小電極が流れる。このため、静電チャックとウエハ間に、いわゆるジョンセン・ラ―ベック効果が発現し、静電吸着電極に給電するための吸着電源をオフにしても吸着力が一定時間過渡的に残留するため、残留する吸着力を小さくするさらなる改善が求められる。 However, in the technique disclosed in Patent Document 1, the electrostatic attraction electrode is embedded inside the dielectric, and the contact interface between the wafer and the surface of the electrostatic chuck is caused by a minute current flowing between the electrostatic attraction electrode and the wafer during use. The microelectrodes flow due to polarization. For this reason, the so-called Johnsen-Rahbek effect occurs between the electrostatic chuck and the wafer, and even if the attraction power supply for supplying power to the electrostatic attraction electrode is turned off, the attraction force remains transiently for a certain period of time. Further improvements are required to reduce the residual adsorption force.

本発明は、以上の点に鑑み、吸着電源をオフした後に残留する吸着力を小さくすることができる静電チャックを提供することを目的とする。 SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an electrostatic chuck capable of reducing the residual attraction force after the attraction power supply is turned off.

[1]上記目的を達成するため、本発明の静電チャックは、
絶縁性を有する絶縁基板と、
前記絶縁基板の表面に沿って前記絶縁基板に埋設された静電吸着電極と、
前記表面に設けられた複数の凸部と、
を備えた静電チャックであって、
前記静電吸着電極は、前記絶縁基板の厚み方向において前記凸部に重なる領域から離間しており、
前記絶縁基板における前記表面から前記静電吸着電極までの前記絶縁基板の厚み方向における距離Tが、2×10-3(m)以下であり、
前記凸部に最も近い前記静電吸着電極の端部から前記静電吸着電極の端部に最も近い前記凸部の下端部に向って延びる第1ベクトルと、前記絶縁基板の厚み方向に沿って前記第1ベクトルを前記静電吸着電極が配置される平面に投影することにより形成される第2ベクトルとのなす角度θが、10.6°~45°であることを特徴とする。
[1] To achieve the above object, the electrostatic chuck of the present invention comprises:
an insulating substrate having insulation;
an electrostatic adsorption electrode embedded in the insulating substrate along the surface of the insulating substrate;
a plurality of protrusions provided on the surface;
An electrostatic chuck comprising:
the electrostatic attraction electrode is spaced apart from the region overlapping the convex portion in the thickness direction of the insulating substrate,
a distance T in the thickness direction of the insulating substrate from the surface of the insulating substrate to the electrostatic attraction electrode is 2×10 −3 (m) or less;
a first vector extending from the end of the electrostatic adsorption electrode closest to the protrusion toward the lower end of the protrusion closest to the end of the electrostatic adsorption electrode; An angle θ formed between the first vector and a second vector formed by projecting the first vector onto a plane on which the electrostatic attraction electrode is arranged is 10.6° to 45° .

かかる構成によれば、絶縁基板における表面から静電吸着電極までの絶縁基板の厚み方向における距離(厚さ)Tが2×10-3(m)以下である。さらに、凸部に最も近い静電吸着電極の端部から静電吸着電極の端部に最も近い凸部の下端部に向って延びる第1ベクトルと、絶縁基板の厚み方向に沿って第1ベクトルを静電吸着電極が配置される平面に投影することにより形成される第2ベクトルとのなす角度θを、45°以下である。 According to this configuration, the distance (thickness) T in the thickness direction of the insulating substrate from the surface of the insulating substrate to the electrostatic attraction electrode is 2×10 −3 (m) or less. Further, a first vector extending from the end of the electrostatic attraction electrode closest to the projection toward the bottom end of the projection closest to the end of the electrostatic attraction electrode, and a first vector along the thickness direction of the insulating substrate to the second vector formed by projecting onto the plane on which the electrostatic adsorption electrodes are arranged is 45° or less.

このため、静電吸着電極は、絶縁基板の厚み方向において凸部に重なる領域から離間し、凸部に最も近い静電吸着電極の端部から静電吸着電極の端部に最も近い凸部までの距離が大きくなる。凸部に最も近い静電吸着電極の端部から静電吸着電極の端部に最も近い凸部までの距離が大きくなるので、静電チャックの絶縁基板(誘電体)における静電吸着電極の端部から凸部の頂面までの電気抵抗R2が大きくなる。静電チャックの絶縁基板(誘電体)における電気抵抗R2によって、静電吸着電極から凸部を介してウエハに流れる電流密度(電気力線)が小さくなる。 For this reason, the electrostatic chucking electrode is spaced apart from the region overlapping the convex portion in the thickness direction of the insulating substrate, from the end portion of the electrostatic chucking electrode closest to the convex portion to the convex portion closest to the end portion of the electrostatic chucking electrode. distance increases. Since the distance from the end of the electrostatic attraction electrode closest to the projection to the projection closest to the edge of the electrostatic attraction electrode increases, the edge of the electrostatic attraction electrode on the insulating substrate (dielectric) of the electrostatic chuck The electric resistance R2 from the ridge to the top surface of the ridge increases. Due to the electrical resistance R2 in the insulating substrate (dielectric) of the electrostatic chuck, the current density (electric lines of force) flowing from the electrostatic attraction electrode to the wafer via the projections is reduced.

凸部とウエハとの接触界面の電気抵抗R1は変わらないが、凸部を介してウエハに流れる電流密度(電気力線)が小さくなるので、凸部とウエハとの接触界面における電位差V1が小さくなる。凸部とウエハとの接触界面に形成される静電容量C1は変わらない状態で、電位差V1が小さくなるので、接触界面における電気量が小さくなる。そうするとデチャック時に残留する電気量が少なくなるので、ジョンセン・ラーベック効果による残留する吸着力を小さくし、静電チャックからのウエハの離脱時間を短縮することができる。 Although the electrical resistance R1 at the contact interface between the convex portion and the wafer does not change, the current density (electric line of force) flowing through the convex portion to the wafer becomes smaller, so the potential difference V1 at the contact interface between the convex portion and the wafer becomes smaller. Become. Since the potential difference V1 decreases while the capacitance C1 formed at the contact interface between the convex portion and the wafer remains unchanged, the amount of electricity at the contact interface decreases. As a result, the amount of electricity remaining at the time of dechucking is reduced, so that the remaining attraction force due to the Johnsen-Rahbek effect is reduced, and the detachment time of the wafer from the electrostatic chuck can be shortened.

[2]また、本発明の静電チャックにおいて、前記凸部の高さHは、3~15(μm)であることが好ましい。 [2] Further, in the electrostatic chuck of the present invention, it is preferable that the height H of the convex portion is 3 to 15 (μm).

かかる構成によれば、静電チャックに吸着される吸着物が、シリコンウエハのような半導体である場合は、絶縁基板の表面とシリコンウエハとのギャップである高さHの部分にクーロン力効果も発現する。静電吸着電極から絶縁基板の表面までの距離(厚さ)Tが非常に小さく、静電吸着電極とシリコンウエハとの間に入力される入力電圧は、絶縁基板の表面とシリコンウエハとのギャップである高さHの部分に分圧される。高さHを3(μm)より小さくすると製造することが難しい。また、高さHを15(μm)より大きくすると十分な吸着力を得るために過大な電圧が必要となる。このため、高さHを3~15(μm)として、クーロン力効果による吸着力を支配的にすることで、静電吸着電極から凸部を介してウエハに流れる電流密度(電気力線)を小さくし、残留する静電吸着力を小さくすることができる。 According to such a configuration, when the object to be attracted to the electrostatic chuck is a semiconductor such as a silicon wafer, a Coulomb force effect is also generated at the height H which is the gap between the surface of the insulating substrate and the silicon wafer. Express. The distance (thickness) T from the electrostatic adsorption electrode to the surface of the insulating substrate is very small, and the input voltage input between the electrostatic adsorption electrode and the silicon wafer is the gap between the surface of the insulating substrate and the silicon wafer. is divided into portions of height H where . If the height H is smaller than 3 (μm), manufacturing becomes difficult. Also, if the height H is made larger than 15 (μm), an excessive voltage is required to obtain a sufficient attracting force. Therefore, by setting the height H to 3 to 15 (μm) so that the attraction force due to the Coulomb force effect is dominant, the current density (electric line of force) flowing from the electrostatic attraction electrode to the wafer via the projections can be reduced. It is possible to reduce the residual electrostatic adsorption force.

[3]また、本発明の静電チャックにおいて、前記静電吸着電極と前記凸部に載置される吸着物との間に形成される平行板コンデンサの静電容量を1平方メートル当たりの静電容量に換算した値が1×10-8(F)以上であることが好ましい。かかる構成によれば、静電チャックとして十分な吸着力で吸着物を吸着することができる。 [3] Further, in the electrostatic chuck of the present invention, the capacitance of a parallel plate capacitor formed between the electrostatic chucking electrode and the chucking object placed on the convex portion is calculated as the electrostatic capacitance per square meter. The value converted to capacity is preferably 1×10 −8 (F) or more. According to such a configuration, an object to be attracted can be attracted with a sufficient attraction force as an electrostatic chuck.

本発明の静電チャックを示す断面図である。1 is a cross-sectional view showing an electrostatic chuck of the present invention; FIG. 図1のII-II線断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1; 図1の静電チャックを示す要部拡大図である。2 is an enlarged view of a main portion showing the electrostatic chuck of FIG. 1; FIG. 図1の静電チャックを示す等価回路図である。2 is an equivalent circuit diagram showing the electrostatic chuck of FIG. 1; FIG. 図5Aは本発明の実施形態の静電チャックの作用図である。図5Bは比較例の静電チャックの作用図である。図5Cはさらなる比較例の静電チャックの作用図である。FIG. 5A is a working diagram of the electrostatic chuck of the embodiment of the present invention. FIG. 5B is an action diagram of the electrostatic chuck of the comparative example. FIG. 5C is a working diagram of an electrostatic chuck of a further comparative example.

以下、図面を用いて本発明の実施形態を説明する。なお、図面は、静電チャック1を概念的(模式的)に示すものとする。 Embodiments of the present invention will be described below with reference to the drawings. The drawings conceptually (schematically) show the electrostatic chuck 1 .

図1及び図2に示すように、静電チャック1は、絶縁性を有する絶縁基板2と、絶縁基板2の表面3に沿って絶縁基板2に埋設された静電吸着電極4と、表面3に設けられた複数の凸部5と、を備えている。凸部5の高さHは、3~15(μm)であり、凸部5上には半導体としてのウエハ11が配置されている。静電吸着電極4には、開口部6が形成されており、静電吸着電極4は、絶縁基板2の厚み方向において凸部5に重なる領域S1から離間している。 As shown in FIGS. 1 and 2, the electrostatic chuck 1 includes an insulating substrate 2 having insulating properties, an electrostatic attraction electrode 4 embedded in the insulating substrate 2 along a surface 3 of the insulating substrate 2, and an electrostatic chuck electrode 4 embedded in the insulating substrate 2. and a plurality of protrusions 5 provided on the . A height H of the projection 5 is 3 to 15 (μm), and a wafer 11 as a semiconductor is placed on the projection 5 . An opening 6 is formed in the electrostatic attraction electrode 4 , and the electrostatic attraction electrode 4 is separated from the region S<b>1 overlapping the protrusion 5 in the thickness direction of the insulating substrate 2 .

図2及び図3に示すように、絶縁基板2における表面3から静電吸着電極4までの絶縁基板2の厚み方向における距離Tは、2×10-3(m)以下に設定されている。絶縁基板2の表面3から静電吸着電極4までの間は誘電体7である。 As shown in FIGS. 2 and 3, the distance T in the thickness direction of the insulating substrate 2 from the surface 3 of the insulating substrate 2 to the electrostatic attraction electrode 4 is set to 2×10 −3 (m) or less. A dielectric 7 is provided between the surface 3 of the insulating substrate 2 and the electrostatic attraction electrode 4 .

絶縁基板2の凸部5に最も近い静電吸着電極4の開口部6の端部Aから静電吸着電極4の開口部6の端部Aに最も近い凸部5の下端部Bに向って延びる第1ベクトルABと、絶縁基板2の厚み方向に沿って第1ベクトルABを静電吸着電極4が配置される平面に投影することにより形成される第2ベクトルACとのなす角度θは、45°以下に設定されている。なお、C点は凸部5の下端部Bを静電吸着電極4が設けられる平面に絶縁基板2の厚み方向へ投影した投影点である。 From the end A of the opening 6 of the electrostatic adsorption electrode 4 closest to the protrusion 5 of the insulating substrate 2 toward the bottom end B of the protrusion 5 closest to the end A of the opening 6 of the electrostatic adsorption electrode 4 The angle θ between the extending first vector AB and the second vector AC formed by projecting the first vector AB along the thickness direction of the insulating substrate 2 onto the plane on which the electrostatic attraction electrode 4 is arranged is It is set at 45° or less. Point C is a projection point obtained by projecting the lower end portion B of the projection 5 onto the plane on which the electrostatic attraction electrode 4 is provided in the thickness direction of the insulating substrate 2 .

次に等価回路も用いて静電チャック1を説明する。 Next, the electrostatic chuck 1 will be described using an equivalent circuit as well.

図4に示すように、図左の模式的に示した静電チャック1は、電源12からリード線13を介して絶縁基板2に埋設された静電吸着電極4に給電される。絶縁基板2の凸部5には吸着物としてウエハ11が載置されている。このように、静電チャック1は、平行板コンデンサのような構成となる。 As shown in FIG. 4 , the electrostatic chuck 1 schematically shown on the left side of the drawing is supplied with power from a power source 12 via lead wires 13 to the electrostatic attraction electrodes 4 embedded in the insulating substrate 2 . A wafer 11 is placed on the convex portion 5 of the insulating substrate 2 as an object to be adsorbed. Thus, the electrostatic chuck 1 has a configuration like a parallel plate capacitor.

静電チャック1の吸着力は、静電チャック1の凸部5とウエハ11との界面で生じるジョンセン・ラーベック力f(j)と、静電吸着電極4とウエハ11との間で生じるクーロン力f(c)とからなり、吸着力=f(j)+f(c)と表わすことができる。 The attraction force of the electrostatic chuck 1 is composed of the Johnsen-Rahbek force f(j) generated at the interface between the projections 5 of the electrostatic chuck 1 and the wafer 11 and the Coulomb force generated between the electrostatic attraction electrode 4 and the wafer 11. f(c), and can be expressed as attraction force=f(j)+f(c).

ジョンセン・ラーベック力f(j)は、接触する物体である凸部5とウエハ11とに電圧を印加して電流を流した際、凸部5とウエハ11との接点部分の抵抗R1によって急激な電圧降下が生じることで接触面の間に電荷が蓄積され、物体間に引力が生じる現象による力である。 The Johnsen-Rahbek force f(j) is abruptly generated by the resistance R1 of the contact portion between the convex portion 5 and the wafer 11 when a voltage is applied to the convex portion 5 and the wafer 11, which are objects in contact with each other. It is a force due to a phenomenon in which an electric charge is accumulated between contact surfaces due to a voltage drop, and an attractive force is generated between objects.

クーロン力f(c)は、電荷を有する物体間である、静電吸着電極4とウエハ11とに働く力である。クーロン力f(c)の大きさは、各々の電荷の量に比例し、静電吸着電極4とウエハ11との距離の二乗に反比例する。 The Coulomb force f(c) is a force acting on the electrostatic attraction electrode 4 and the wafer 11 between charged objects. The magnitude of the Coulomb force f(c) is proportional to the amount of each charge and inversely proportional to the square of the distance between the electrostatic attraction electrode 4 and the wafer 11 .

図4中、R1はジョンセン・ラーベック力に関する凸部5とウエハ11との接点部分の電気抵抗である。C1はジョンセン・ラーベック力に関する凸部5とウエハ11とのギャップδ部分の静電容量である。V1はジョンセン・ラーベック力に関する凸部5とウエハ11とのギャップδ部分の電位差である。
また、R2はクーロン力に関する静電吸着電極4とウエハ11との間の電気抵抗であり、C2はクーロン力に関する静電吸着電極4の真上にある絶縁体7の静電容量であり、V2はジョンセン・ラーベック力に関する静電吸着電極4と凸部5のウエハ11との接点部分との間の電位差である。全体の電圧V0は、V0=V1+V2と表わすことができる。
In FIG. 4, R1 is the electric resistance of the contact portion between the projection 5 and the wafer 11 relating to the Johnsen-Rahbek force. C1 is the capacitance of the gap δ portion between the convex portion 5 and the wafer 11 relating to the Johnsen-Rahbek force. V1 is the potential difference at the gap δ portion between the projection 5 and the wafer 11 relating to the Johnsen-Rahbek force.
Also, R2 is the electrical resistance between the electrostatic attraction electrode 4 and the wafer 11 with respect to the Coulomb force, C2 is the capacitance of the insulator 7 immediately above the electrostatic attraction electrode 4 with respect to the Coulomb force, and V2 is the potential difference between the electrostatic attraction electrode 4 and the contact portion of the projection 5 with the wafer 11 with respect to the Johnsen-Rahbek force. The overall voltage V0 can be expressed as V0=V1+V2.

静電チャック1に電圧V0を印加すると、電位差V1の大きさに応じたジョンセン・ラーベック力f(j)と、電位差V0の大きさに応じたクーロン力f(c)とが生じる。 When a voltage V0 is applied to the electrostatic chuck 1, a Johnsen-Rahbek force f(j) corresponding to the magnitude of the potential difference V1 and a Coulomb force f(c) corresponding to the magnitude of the potential difference V0 are generated.

ここで、ジョンセン・ラーベック効果は、静電吸着電極4とウエハ11間に流れる微小な電流によって、ウエハ11と静電チャック1の凸部5の接触界面に分極せしめるものであるが、静電吸着電極4は絶縁基板2の厚み方向において凸部5に重なる領域S1から離間しており電気抵抗R2が大きいため、静電チャック1とウエハ11間に流れる電流が抑制され、ジョンセン・ラーベック効果が減じられる。 Here, the Johnsen-Rahbek effect is to polarize the contact interface between the wafer 11 and the projections 5 of the electrostatic chuck 1 by a minute current flowing between the electrostatic attraction electrode 4 and the wafer 11. Since the electrode 4 is separated from the region S1 overlapping the protrusion 5 in the thickness direction of the insulating substrate 2 and has a large electric resistance R2, the electric current flowing between the electrostatic chuck 1 and the wafer 11 is suppressed, and the Johnsen-Rahbek effect is reduced. be done.

一方、静電吸着電極4とウエハ11間には、絶縁基板2の厚み方向における凸部5以外の領域では、絶縁層である誘電体7の厚さT及び凸部5の高さHに相当する空間有して対向しているため、静電吸着電極4とウエハ11の平行板コンデンサを形成し、静電吸着電極4の真上にある誘電体7の静電容量と誘電体7の直上の凸部5の高さHに相当する空間の静電容量との合成容量C0に電位差V0が付加されることでクーロン力が生じ、ウエハ11が静電チャック1に吸着される。 On the other hand, between the electrostatic adsorption electrode 4 and the wafer 11, the area other than the protrusions 5 in the thickness direction of the insulating substrate 2 corresponds to the thickness T of the dielectric 7 which is an insulating layer and the height H of the protrusions 5. Since the electrostatic attraction electrode 4 and the wafer 11 are opposed to each other with a space therebetween, a parallel plate capacitor is formed between the electrostatic attraction electrode 4 and the wafer 11. Coulomb force is generated by adding a potential difference V0 to the combined capacitance C0 of the capacitance of the space corresponding to the height H of the projection 5, and the wafer 11 is attracted to the electrostatic chuck 1. FIG.

この際、電流はわずかに凸部5を介してウエハ11に流れるが、凸部5以外の大部分の領域では誘電体7及びその上の空間によって電流はほとんど流れないので、残留吸着力の原因となる電流自体がほとんど流れず、ジョンセン・ラーベック効果が極小化されて、ウエハ11の離脱性を向上させることができる。このように、本発明では、吸着電源をオフした後に残留する吸着力を小さくすることができる。 At this time, a small amount of current flows to the wafer 11 through the protrusions 5, but almost no current flows in most regions other than the protrusions 5 due to the dielectric 7 and the space above it. Therefore, the Johnsen-Rahbek effect is minimized and the detachability of the wafer 11 can be improved. Thus, in the present invention, it is possible to reduce the residual attraction force after the attraction power supply is turned off.

図2~図4に示すように、静電吸着電極4は、絶縁基板2の厚み方向において凸部5に重なる領域S1から離間し、凸部5に最も近い静電吸着電極4の端部から静電吸着電極4の端部に最も近い凸部5までの距離が大きくなる。凸部5直下にまで静電吸着電極4を配置した場合の静電吸着電極4から静電吸着電極4に最も近い凸部5までの距離に比較して、凸部5に最も近い静電吸着電極4の端部から静電吸着電極4の端部に最も近い凸部5までの距離が大きくなるので、静電チャック1の絶縁基板(誘電体)2における静電吸着電極4の端部から凸部5の頂面までの電気抵抗R2が大きくなる。 As shown in FIGS. 2 to 4, the electrostatic chucking electrode 4 is separated from the region S1 overlapping the convex portion 5 in the thickness direction of the insulating substrate 2, and is separated from the end of the electrostatic chucking electrode 4 closest to the convex portion 5. The distance to the projection 5 closest to the end of the electrostatic attraction electrode 4 is increased. Compared to the distance from the electrostatic adsorption electrode 4 to the protrusion 5 closest to the electrostatic adsorption electrode 4 when the electrostatic adsorption electrode 4 is arranged immediately below the protrusion 5, the electrostatic adsorption closest to the protrusion 5 is Since the distance from the edge of the electrode 4 to the projection 5 closest to the edge of the electrostatic attraction electrode 4 increases, the distance from the edge of the electrostatic attraction electrode 4 on the insulating substrate (dielectric) 2 of the electrostatic chuck 1 increases. The electric resistance R2 up to the top surface of the projection 5 is increased.

静電チャック1の絶縁基板2における電気抵抗R2によって、静電吸着電極4から凸部5を介してウエハ11に流れる電流密度(電気力線)が小さくなる。凸部5とウエハ11との接触界面の電気抵抗R1は変わらないが、電気抵抗R2が大きいため、凸部5を介してウエハ11に流れる電流密度(電気力線)が小さくなり、凸部5とウエハ11との接触界面における電位差V1が小さくなる。凸部5とウエハ11との接触界面に形成される静電容量C1は変わらない状態で、電位差V1が小さくなるので、接触界面における電気量が小さくなる。そうすると吸着電源をオフにした後に残留する電気量が少なくなるので、ジョンセン・ラーベック効果による残留する吸着力を小さくし、静電チャック1からのウエハ11の離脱時間を短縮することができる。 Due to the electrical resistance R2 in the insulating substrate 2 of the electrostatic chuck 1, the current density (electric line of force) flowing from the electrostatic attraction electrode 4 to the wafer 11 via the projections 5 is reduced. Although the electrical resistance R1 at the contact interface between the projections 5 and the wafer 11 does not change, the electrical resistance R2 is large, so the current density (electric line of force) flowing through the projections 5 to the wafer 11 is reduced. and the wafer 11, the potential difference V1 at the contact interface becomes smaller. Since the potential difference V1 decreases while the capacitance C1 formed at the contact interface between the convex portion 5 and the wafer 11 remains unchanged, the amount of electricity at the contact interface decreases. This reduces the amount of electricity that remains after the power supply for attraction is turned off, so that the remaining attraction force due to the Johnsen-Rahbek effect is reduced, and the detachment time of the wafer 11 from the electrostatic chuck 1 can be shortened.

次に、ジョンセン・ラーベック効果が極小化してウエハ11の離脱性を向上させるための、詳細な構成を説明する。静電チャック1は、一例として次のように複数種類作製し、以下の方法で評価した。 Next, a detailed configuration for minimizing the Johnsen-Rahbek effect and improving the detachability of the wafer 11 will be described. As an example, a plurality of types of electrostatic chucks 1 were produced as follows and evaluated by the following methods.

[静電チャック1の構成]
静電チャック1の外径は、φ298mmである。静電チャック1の表面3に、φd/m、高さH=10μmの円柱状の凸部5を形成する。凸部5は、絶縁基板2の表面3全体に一辺がピッチP/mの正三角形の頂点に連続して配置する。
[Configuration of Electrostatic Chuck 1]
The outer diameter of the electrostatic chuck 1 is φ298 mm. On the surface 3 of the electrostatic chuck 1, a columnar protrusion 5 having a diameter of φd/m and a height H of 10 μm is formed. The protrusions 5 are arranged on the entire surface 3 of the insulating substrate 2 so as to be continuous with the vertexes of equilateral triangles having a pitch of P/m on one side.

静電吸着電極4は双極型(半月状)とし、表面3に形成される凸部5と絶縁基板2の厚み方向に重ならないように離間させ、φD/mの円形の空間(開口部6)を形成する。 The electrostatic attraction electrode 4 is of a bipolar type (half-moon shape), and is spaced apart so as not to overlap the protrusions 5 formed on the surface 3 and the insulating substrate 2 in the thickness direction, forming a circular space (opening 6) of φD/m. to form

[製造方法]
円盤状の絶縁層をセラミックス焼結体で作製する。窒化アルミニウム(AlN)にモリブデンの静電吸着電極4を埋設しホットプレス焼成(1800℃、10MP、8時間焼成)する。なお、静電チャック1の厚みは15mmとする。
[Production method]
A disk-shaped insulating layer is made of a ceramic sintered body. A molybdenum electrostatic adsorption electrode 4 is embedded in aluminum nitride (AlN) and hot-press fired (1800° C., 10 MP, 8 hours firing). Note that the thickness of the electrostatic chuck 1 is 15 mm.

静電チャック1は、絶縁基板2の誘電体7の厚みTが、0.3~3mmのものを複数作製する。静電吸着電極4は、モリブデン箔(直径φ290mm、厚さ0.1mm)の所定の位置にφDmの開口部6を形成することにより作製する。焼成後のセラミックス焼結体に加工を行い、絶縁層である誘電体7の厚みTの調整及び表面3の凸部5を加工する。 A plurality of electrostatic chucks 1 are manufactured in which the dielectric 7 of the insulating substrate 2 has a thickness T of 0.3 to 3 mm. The electrostatic adsorption electrode 4 is produced by forming an opening 6 of φDm at a predetermined position in a molybdenum foil (diameter 290 mm, thickness 0.1 mm). The ceramic sintered body after sintering is processed to adjust the thickness T of the dielectric 7 which is an insulating layer and to process the protrusions 5 on the surface 3 .

なお、製造方法は上記の方法に限定されず、例えば、絶縁層となる誘電体7を溶射により作製してもよい。この場合、アルミナ基板(φ298mm、厚さ15mm)にタングステンをプラズマ溶射し、所定形状にサンドブラスト加工でパターニングして静電吸着電極4を形成する。静電吸着電極4はタングステンとして厚さを30μmとする。その上に誘電体7としてアルミナに25wt%TiOを添加した顆粒粉をプラズマ溶射する。絶縁層としての誘電体7の厚さは500μmに形成後、加工により所定の厚さにする。 Note that the manufacturing method is not limited to the above method, and for example, the dielectric 7 to be the insulating layer may be manufactured by thermal spraying. In this case, an alumina substrate (φ298 mm, thickness 15 mm) is plasma-sprayed with tungsten and patterned into a predetermined shape by sandblasting to form the electrostatic attraction electrode 4 . The electrostatic attraction electrode 4 is made of tungsten and has a thickness of 30 μm. Granular powder of alumina added with 25 wt % TiO 2 is plasma-sprayed thereon as dielectric 7 . After forming the dielectric 7 as an insulating layer to a thickness of 500 μm, it is processed to a predetermined thickness.

さらに別の製造方法として、アルミナ基板(直径φ290mm、厚さ15mm)にチタン及びクロムをPVDにより製膜し、所定形状にエッヂング加工でパターニングして静電吸着電極4を形成する。静電吸着電極4の厚さは、5μmとし、その上に誘電体7としてのアルミナに3wt%TiOを添加して作製した焼結体をターゲットとしてスパッタリングにより作製する。この際、絶縁層としての誘電体7の厚さを60μmに形成後、加工により所定の厚さにする。 As another manufacturing method, a film of titanium and chromium is formed on an alumina substrate (290 mm in diameter and 15 mm in thickness) by PVD, and patterned into a predetermined shape by etching to form the electrostatic attraction electrode 4 . The thickness of the electrostatic attraction electrode 4 is set to 5 μm, and a sintered compact made by adding 3 wt % TiO 2 to alumina as the dielectric 7 is sputtered thereon as a target. At this time, after forming the dielectric 7 as an insulating layer to a thickness of 60 μm, it is processed to a predetermined thickness.

[評価方法]
作製した静電チャック1を、真空装置内で残留吸着力の測定を行った。試験条件は、吸着物としてのウエハ11をシリコンウエハ(吸着面側に絶縁性の被膜500nmを形成したもの)とし、静電チャック1に載置する。印加電圧を±1000Vとし、印加時間を60秒とし、電圧印加が終了してから5秒経過した時にウエハを静電チャック1より離脱させ、その時に与えた外力による負荷をロードセルで計測した。負荷が10N以下の場合は、ウエハ11が離脱時に跳ね上がり離脱性良好「〇」と判定し、負荷が10Nよりも大きい場合は、ウエハ11が離脱時に跳ね上がり離脱性不良「×」と判定した。
[Evaluation method]
The electrostatic chuck 1 thus produced was subjected to measurement of residual adsorption force in a vacuum apparatus. The test condition is that the wafer 11 as an attraction object is a silicon wafer (having an insulating film of 500 nm formed on the attraction surface side), and is placed on the electrostatic chuck 1 . The applied voltage was ±1000 V, the application time was 60 seconds, and the wafer was released from the electrostatic chuck 1 5 seconds after the end of the voltage application. When the load was 10 N or less, the wafer 11 jumped up during release, and was judged to be good "O".

下表は、以上の評価結果を示している。 The table below shows the above evaluation results.

Figure 0007150510000001
Figure 0007150510000001

この表1を参照すると、実施例1~実施例12は、誘電体7の(絶縁層)厚さTが2mm以下かつ、第1ベクトルABと第2ベクトルACとのなす角度θが45°以下の場合であり、ウエハ11の離脱時の負荷が10N以下となり、比較例1~比較例8に比べて残留吸着力が更に小さくなり離脱性良好「〇」であることが示された。
表1で示される合成容量C0は、静電吸着電極4とウエハ11との間に形成される平行板コンデンサの静電容量を1平方メートル当たりの静電容量に換算した値を示している。合成容量C0が大きいほど吸着力は大きくなり、静電チャックの機能として好ましい。良好な吸着を行うには、合成容量C0が1×10-8F以上であることが好ましく、1×10-7F以上であることがより好ましい。
Referring to Table 1, in Examples 1 to 12, the (insulating layer) thickness T of the dielectric 7 is 2 mm or less and the angle θ between the first vector AB and the second vector AC is 45° or less. In this case, the load at the time of detachment of the wafer 11 was 10 N or less, and the residual attracting force was even smaller than in Comparative Examples 1 to 8, indicating that the detachability was good (good).
The combined capacitance C0 shown in Table 1 indicates a value obtained by converting the capacitance of the parallel plate capacitor formed between the electrostatic attraction electrode 4 and the wafer 11 into capacitance per square meter. The larger the combined capacitance C0, the larger the attracting force, which is preferable for the function of the electrostatic chuck. For good adsorption, the combined capacity C0 is preferably 1×10 −8 F or more, more preferably 1×10 −7 F or more.

上記結果は、第1ベクトルABと第2ベクトルACとのなす角度θが45°より大きくになると残留吸着力が大きくなるが、静電吸着電極4とウエハ間の電流密度が増加して、その分ジョンセン・ラーベック効果が凸部5の接触面で生じているからであると推測される。 The above results show that when the angle θ formed by the first vector AB and the second vector AC becomes larger than 45°, the residual attracting force increases, but the current density between the electrostatic attracting electrode 4 and the wafer increases. It is presumed that this is because the Johnsen-Rahbek effect occurs at the contact surface of the convex portion 5 .

なお、比較例9は、第1ベクトルABと第2ベクトルACとのなす角度θが45°以下であるが、誘電体7の(絶縁層)厚さTが2mmより大きく、絶縁層自体の静電容量が小さく、その結果、合成容量C0が1×10-8F未満と小さいため吸着力(クーロン力)自体が小さくなり静電チャックの機能として不適とした。 In Comparative Example 9, the angle θ between the first vector AB and the second vector AC is 45° or less, but the thickness T of the dielectric 7 (insulating layer) is greater than 2 mm, and the static electricity of the insulating layer itself is low. The electrostatic capacity is small, and as a result, the combined capacity C0 is as small as less than 1×10 −8 F, so that the adsorption force (Coulomb force) itself becomes small, making it unsuitable for the function of an electrostatic chuck.

次に実施例と比較例の作用効果を説明する。 Next, the effects of Examples and Comparative Examples will be described.

図5Aは実施例1~実施例12の一例の作用を示す図であり、第1ベクトルABと第2ベクトルACとのなす角度θが45°以下であるので、静電吸着電極4は、絶縁基板2の厚み方向において凸部5に重なる領域S1から離間している。 FIG. 5A is a diagram showing the action of one example of Examples 1 to 12. Since the angle θ between the first vector AB and the second vector AC is 45° or less, the electrostatic attraction electrode 4 is insulated. It is separated from the region S<b>1 overlapping the convex portion 5 in the thickness direction of the substrate 2 .

このため、静電吸着電極4の開口部6側の端部から、凸部5とウエハ11との接触部までの距離が大きく、抵抗が大きくなるので、凸部5における電流密度(電気力線)が小さくなり、ジョンセン・ラーベック効果による残留する吸着力をより小さくすることができる。 Therefore, the distance from the end of the electrostatic attraction electrode 4 on the side of the opening 6 to the contact portion between the convex portion 5 and the wafer 11 is large, and the resistance is large. ) becomes smaller, and the remaining adsorption force due to the Johnsen-Rahbek effect can be made smaller.

図5Bは比較例1~比較例7の一例の作用を示す図であり、静電吸着電極4が凸部5に重なる領域S1から離間しているが、第1ベクトルABと第2ベクトルACとのなす角度θが45°より大きい。 FIG. 5B is a diagram showing an example of the action of Comparative Examples 1 to 7. Although the electrostatic attraction electrode 4 is separated from the region S1 overlapping the convex portion 5, the first vector AB and the second vector AC are separated from each other. is greater than 45°.

このため、第1ベクトルABと第2ベクトルACとのなす角度θが45°以下である場合(実施例1~12)と比べて、静電吸着電極4の開口部6側の端部から、凸部5とウエハ11との接触部までの距離が小さく、抵抗が小さくなる。このため、実施例1~12と比較して、凸部5における電流密度(電気力線)が大きくなり、ジョンセン・ラーベック効果による残留する吸着力が大きくなる。 Therefore, compared to the case where the angle θ formed by the first vector AB and the second vector AC is 45° or less (Examples 1 to 12), from the end of the electrostatic attraction electrode 4 on the opening 6 side, The distance to the contact portion between the convex portion 5 and the wafer 11 is small, and the resistance is small. Therefore, compared to Examples 1 to 12, the current density (lines of electric force) in the convex portion 5 is increased, and the remaining attractive force due to the Johnsen-Rahbek effect is increased.

図5Cは比較例8の一例の作用を示す図であり、静電吸着電極4には開口がなく、静電吸着電極4が凸部5に重なる領域S1にも配置されている。 FIG. 5C is a diagram showing an example of the action of Comparative Example 8, in which the electrostatic chucking electrode 4 has no opening and is also arranged in the region S1 where the electrostatic chucking electrode 4 overlaps the convex portion 5. FIG.

このため、凸部5に重なる領域S1(凸部5の直下の領域)に静電吸着電極4がない場合と比較して、凸部5における電流密度(電気力線)が大きくなり、ジョンセン・ラーベック効果による残留する吸着力が大きくなる。 For this reason, the current density (lines of electric force) in the convex portion 5 increases compared to the case where there is no electrostatic adsorption electrode 4 in the region S1 overlapping the convex portion 5 (the region immediately below the convex portion 5). The residual adsorption force due to the Rabeck effect increases.

なお、実施形態では、凸部5を円柱形状としたが、これに限定されず、凸部5を角柱形状としてもよい。また、実施形態では、静電吸着電極4の開口部6の形状を円形状としたが、これに限定されず、矩形状、楕円、さらには曲線、直線の少なくとも一方が連続する開口形状など、静電吸着電極4が絶縁基板2の厚み方向において凸部5に重なる領域S1から離間しており、距離Tが2×10-3(m)以下であり、第1ベクトルABと第2ベクトルACとのなす角度θが45°以下であれば、静電吸着電極4の開口部6の形状は問わない。 In addition, in the embodiment, the convex portion 5 has a columnar shape, but it is not limited to this, and the convex portion 5 may have a prismatic shape. Further, in the embodiment, the shape of the opening 6 of the electrostatic attraction electrode 4 is circular, but it is not limited to this. The electrostatic adsorption electrode 4 is separated from the region S1 overlapping the convex portion 5 in the thickness direction of the insulating substrate 2, the distance T is 2×10 −3 (m) or less, and the first vector AB and the second vector AC If the angle .theta.

1 … 静電チャック
2 … 絶縁基板
3 … 表面
4 … 静電吸着電極
5 … 凸部
11… ウエハ
S1… 凸部に重なる領域
H … 凸部の高さ
T … 誘電体の厚み方向の距離
θ … 第1ベクトルと第2ベクトルとのなす角
REFERENCE SIGNS LIST 1 : electrostatic chuck 2 : insulating substrate 3 : surface 4 : electrostatic attraction electrode 5 : convex portion 11 : wafer S1 : area overlapping with convex portion H : height of convex portion T : distance in thickness direction of dielectric θ : The angle between the first vector and the second vector

Claims (3)

絶縁性を有する絶縁基板と、
前記絶縁基板の表面に沿って前記絶縁基板に埋設された静電吸着電極と、
前記表面に設けられた複数の凸部と、
を備えた静電チャックであって、
前記静電吸着電極は、前記絶縁基板の厚み方向において前記凸部に重なる領域から離間しており、
前記絶縁基板における前記表面から前記静電吸着電極までの前記絶縁基板の厚み方向における距離Tが、2×10-3(m)以下であり、
前記凸部に最も近い前記静電吸着電極の端部から前記静電吸着電極の端部に最も近い前記凸部の下端部に向って延びる第1ベクトルと、前記絶縁基板の厚み方向に沿って前記第1ベクトルを前記静電吸着電極が配置される平面に投影することにより形成される第2ベクトルとのなす角度θが、10.6°~45°であることを特徴とする静電チャック。
an insulating substrate having insulation;
an electrostatic adsorption electrode embedded in the insulating substrate along the surface of the insulating substrate;
a plurality of protrusions provided on the surface;
An electrostatic chuck comprising:
the electrostatic adsorption electrode is separated from the region overlapping the convex portion in the thickness direction of the insulating substrate,
a distance T in the thickness direction of the insulating substrate from the surface of the insulating substrate to the electrostatic attraction electrode is 2×10 −3 (m) or less;
a first vector extending from the end of the electrostatic adsorption electrode closest to the protrusion toward the lower end of the protrusion closest to the end of the electrostatic adsorption electrode; An electrostatic chuck, wherein an angle θ between the first vector and a second vector formed by projecting the first vector onto a plane on which the electrostatic attraction electrode is arranged is 10.6° to 45°. .
請求項1に記載の静電チャックであって、
前記凸部の高さHは、3~15(μm)であることを特徴とする静電チャック。
The electrostatic chuck of claim 1, comprising:
The electrostatic chuck, wherein the height H of the convex portion is 3 to 15 (μm).
請求項1又は2に記載の静電チャックであって、
前記静電吸着電極と前記凸部に載置される吸着物との間に形成される平行板コンデンサの静電容量を1平方メートル当たりの静電容量に換算した値が1×10-8(F)以上であることを特徴とする静電チャック。
The electrostatic chuck according to claim 1 or 2,
The value obtained by converting the capacitance of the parallel plate capacitor formed between the electrostatic attraction electrode and the attraction placed on the convex portion to the capacitance per square meter is 1×10 −8 (F). ) above.
JP2018142910A 2018-07-30 2018-07-30 electrostatic chuck Active JP7150510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018142910A JP7150510B2 (en) 2018-07-30 2018-07-30 electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018142910A JP7150510B2 (en) 2018-07-30 2018-07-30 electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2020021780A JP2020021780A (en) 2020-02-06
JP7150510B2 true JP7150510B2 (en) 2022-10-11

Family

ID=69587558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018142910A Active JP7150510B2 (en) 2018-07-30 2018-07-30 electrostatic chuck

Country Status (1)

Country Link
JP (1) JP7150510B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188322A (en) 1991-08-30 2000-07-04 Toto Ltd Method for designing electrostatic chuck
JP2004022889A (en) 2002-06-18 2004-01-22 Anelva Corp Electrostatic chuck
JP2015508229A (en) 2012-02-03 2015-03-16 エーエスエムエル ネザーランズ ビー.ブイ. Substrate holder, lithographic apparatus, device manufacturing method, and substrate holder manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188322A (en) 1991-08-30 2000-07-04 Toto Ltd Method for designing electrostatic chuck
JP2004022889A (en) 2002-06-18 2004-01-22 Anelva Corp Electrostatic chuck
JP2015508229A (en) 2012-02-03 2015-03-16 エーエスエムエル ネザーランズ ビー.ブイ. Substrate holder, lithographic apparatus, device manufacturing method, and substrate holder manufacturing method

Also Published As

Publication number Publication date
JP2020021780A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP4890421B2 (en) Electrostatic chuck
JP2009272646A (en) Sputtering device
US7623334B2 (en) Electrostatic chuck device
JP4061131B2 (en) Electrostatic adsorption device
JP2002222851A (en) Electrostatic chuck and board processor
JP4010541B2 (en) Electrostatic adsorption device
WO2000072376A1 (en) Electrostatic chuck and treating device
TW201316448A (en) Alternating current drive electrostatic chuck
JP2005223185A (en) Electrostatic chuck and its manufacturing method
JPH056433B2 (en)
WO2012090430A1 (en) Electrostatic adsorption apparatus
US20170117174A1 (en) Electro-static chuck with radiofrequency shunt
JP5996276B2 (en) Electrostatic chuck, suction method and suction device
US10381253B2 (en) Electrostatic chuck
JP7150510B2 (en) electrostatic chuck
JP4033508B2 (en) Electrostatic chuck
JP4879771B2 (en) Electrostatic chuck
JP2008300374A (en) Electrostatic suction apparatus
JP5279455B2 (en) Electrostatic chuck
JP2000340640A (en) Non-contacting electrostatically attracting apparatus
JP2006157032A (en) Electrostatic chuck, electrostatic attraction method, heating/cooling treatment device and electrostatic attraction treatment device
JP2851766B2 (en) Electrostatic chuck
JP2010177698A (en) Method for manufacturing electrostatic chuck
JP7214867B2 (en) electrostatic chuck
JPH06198533A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220928

R150 Certificate of patent or registration of utility model

Ref document number: 7150510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150