JP7127972B2 - Processing method - Google Patents

Processing method Download PDF

Info

Publication number
JP7127972B2
JP7127972B2 JP2017170156A JP2017170156A JP7127972B2 JP 7127972 B2 JP7127972 B2 JP 7127972B2 JP 2017170156 A JP2017170156 A JP 2017170156A JP 2017170156 A JP2017170156 A JP 2017170156A JP 7127972 B2 JP7127972 B2 JP 7127972B2
Authority
JP
Japan
Prior art keywords
processing
workpiece
holding
machining
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017170156A
Other languages
Japanese (ja)
Other versions
JP2019042886A (en
Inventor
研二 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2017170156A priority Critical patent/JP7127972B2/en
Priority to TW107126613A priority patent/TWI793147B/en
Priority to CN201810992953.9A priority patent/CN109427574B/en
Priority to KR1020180102844A priority patent/KR102574673B1/en
Publication of JP2019042886A publication Critical patent/JP2019042886A/en
Application granted granted Critical
Publication of JP7127972B2 publication Critical patent/JP7127972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/007Use, recovery or regeneration of abrasive mediums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0082Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3046Mechanical treatment, e.g. grinding, polishing, cutting using blasting, e.g. sand-blasting

Description

本発明は、砥粒をビトリファイドで結合した加工砥石で被加工物を加工する加工方法に関する。 TECHNICAL FIELD The present invention relates to a processing method for processing a workpiece with a processing grindstone in which abrasive grains are bonded by vitrified.

半導体ウエーハ等の板状の被加工物は、研削されて所定の厚みに薄化された後に、切削により分割されて個々のデバイスチップとなり、各種電子機器等に利用されている。そして、ウエーハが、窒化ガリウム(GaN)、シリコンカーバイド(SiC)またはガリウムヒ素(GaAs)等の難削材で形成されている場合には、砥粒をビトリファイドで結合した研削砥石を用いた研削方法(例えば、特許文献1参照)及び砥粒をビトリファイドで結合した切削砥石を用いた切削方法(例えば、特許文献2参照)が広く利用されている。 2. Description of the Related Art A plate-like workpiece such as a semiconductor wafer is ground and thinned to a predetermined thickness, and then divided by cutting into individual device chips, which are used in various electronic devices and the like. When the wafer is formed of a difficult-to-cut material such as gallium nitride (GaN), silicon carbide (SiC), or gallium arsenide (GaAs), a grinding method using a grinding wheel in which abrasive grains are bonded with vitrified. (see, for example, Patent Document 1) and a cutting method using a cutting wheel in which abrasive grains are bonded by vitrified (see, for example, Patent Document 2) are widely used.

特開2014-124690号公報JP 2014-124690 A 特開2013-219215号公報JP 2013-219215 A

しかし、上記の方法のいずれにおいても、砥石の磨耗量が必要以上に激しく生産コストが嵩むという問題がある。また、難削材で形成される被加工物の加工時には砥石の加工能力が低下し、生産性が低下するという問題がある。また、砥石による加工位置に金属が含まれている被加工物を加工する場合も、金属の延性によって加工が困難となるという問題がある。 However, in any of the above methods, there is a problem that the amount of wear of the grindstone is greater than necessary, resulting in increased production costs. In addition, there is a problem that the machining ability of the grindstone is lowered when machining a workpiece made of a difficult-to-cut material, resulting in a decrease in productivity. Moreover, when processing a workpiece containing a metal at the processing position of the grindstone, there is a problem that the processing becomes difficult due to the ductility of the metal.

よって、難削材等で形成される被加工物を加工する場合においては、加工砥石の過度な摩耗を抑えるとともに円滑に安定した加工ができるようにするという課題がある。 Therefore, when machining a workpiece made of a difficult-to-cut material or the like, there is a problem of suppressing excessive wear of the machining grindstone and enabling smooth and stable machining.

上記課題を解決するための本発明は、被加工物の加工方法であって、被加工物を保持する保持面を有した保持テーブルで被加工物を保持する保持ステップと、該保持ステップを実施した後、砥粒をビトリファイドで結合するとともに光触媒を含まない加工砥石を含む加工手段で被加工物を加工する加工ステップと、を備え、該加工手段は、該加工砥石を備える切削ブレードを有し、該加工ステップでは、該切削ブレードで被加工物を切削し、該加工ステップでは、被加工物に加工水を供給するとともに、該加工水が供給される直前の該切削ブレードの該加工砥石の有機物を含む加工面に対して所定波長の光を光照射手段から該加工砥石の加工面に照射することで該加工面に親水基を形成し、該加工面全体に該加工水が広がりやすくして被加工物と該加工面との接触部位に摩擦熱が発生するのを抑制する加工方法である。 The present invention for solving the above problems is a method for machining a workpiece, comprising a holding step of holding the workpiece with a holding table having a holding surface for holding the workpiece, and performing the holding step. After that, a processing step of processing the workpiece with a processing means including a processing grindstone that combines abrasive grains with vitrified and does not contain a photocatalyst, and the processing means has a cutting blade equipped with the processing grindstone. In the machining step, the workpiece is cut by the cutting blade, and in the machining step, machining water is supplied to the workpiece, and the machining grindstone of the cutting blade immediately before the machining water is supplied. By irradiating the processing surface of the processing grindstone with light having a predetermined wavelength from the light irradiation means, a hydrophilic group is formed on the processing surface, and the processing water is easily spread over the entire processing surface. This is a machining method for suppressing the generation of frictional heat at the contact portion between the workpiece and the machining surface.

上記課題を解決するための本発明は、被加工物の加工方法であって、被加工物を保持する保持面を有した保持テーブルで被加工物を保持する保持ステップと、該保持ステップを実施した後、砥粒をビトリファイドで結合するとともに光触媒を含まない加工砥石を含む加工手段で被加工物を加工する加工ステップと、を備え、該加工手段は、該加工砥石を備える研削ホイールを有し、該加工ステップでは、該研削ホイールで被加工物を研削し、該加工ステップでは、被加工物に加工水を供給するとともに、該研削ホイールの回転軌跡において該研削ホイールが該保持テーブルで保持された被加工物に進入する直前の位置に光照射手段が配設され、該加工砥石の有機物を含む加工面に対して所定波長の紫外光を該光照射手段から照射することで該加工面に親水基を形成し、該加工面全体に該加工水が広がりやすくして被加工物と該加工面との接触部位に摩擦熱が発生するのを抑制する加工方法。 The present invention for solving the above problems is a method for machining a workpiece, comprising a holding step of holding the workpiece with a holding table having a holding surface for holding the workpiece, and performing the holding step. After that, a processing step of processing the workpiece with a processing means including a processing grindstone that combines the abrasive grains with vitrified and does not contain a photocatalyst, the processing means having a grinding wheel equipped with the processing grindstone. In the machining step, the grinding wheel grinds the workpiece, and in the machining step, machining water is supplied to the workpiece, and the grinding wheel is held by the holding table in the rotation locus of the grinding wheel. A light irradiating means is disposed at a position just before entering the workpiece, and the light irradiating means irradiates the processing surface containing the organic matter of the processing grindstone with ultraviolet light of a predetermined wavelength, thereby irradiating the processing surface. A processing method in which a hydrophilic group is formed to facilitate spreading of the processing water over the entire processing surface, thereby suppressing generation of frictional heat at a contact portion between the workpiece and the processing surface.

本発明に係る被加工物の加工方法は、被加工物を保持する保持面を有した保持テーブルで被加工物を保持する保持ステップと、保持ステップを実施した後、砥粒をビトリファイドで結合するとともに光触媒を含まない加工砥石を含む加工手段で被加工物を加工する加工ステップと、を備え、加工ステップでは、被加工物に加工水を供給するとともに、所定波長の光を光照射手段から加工砥石の加工面に照射することで該加工面に親水基を形成することにより、例えば加工砥石を親水化させ加工水による冷却効果を向上させて加工砥石の過度の磨耗を抑えるとともに、加工屑の排出性を向上させることが可能となる。更に、加工砥石の親水化等によって、加工砥石の加工領域に効果的に加工水が供給されるため、加工熱による加工品質の悪化を防止でき、被加工物が難削材で形成されたウエーハであっても円滑に安定した加工を施すことが可能となる。特に、加工砥石が光触媒を含まないので、加工砥石の砥粒の自生発刃が光触媒で阻害されたり、研削中に加工砥石から光触媒が脱落して加工砥石の加工面と被加工物との接触部位に巻き込まれて被加工物の被研削面にスクラッチや割れを発生させたりすることが無い。 A method for processing a workpiece according to the present invention includes a holding step of holding the workpiece with a holding table having a holding surface for holding the workpiece, and after performing the holding step, binding abrasive grains by vitrification. and a processing step of processing the workpiece with a processing means including a processing grindstone that does not contain a photocatalyst, and in the processing step, processing water is supplied to the workpiece, and light of a predetermined wavelength is processed from the light irradiation means. By irradiating the processing surface of the grindstone to form hydrophilic groups on the processing surface, for example, the processing grindstone is hydrophilized and the cooling effect of the processing water is improved to suppress excessive wear of the processing grindstone and reduce processing waste. It becomes possible to improve dischargeability. Furthermore, since the processing water is effectively supplied to the processing area of the processing whetstone by making the processing whetstone hydrophilic, etc., deterioration of processing quality due to processing heat can be prevented. Even if it is, it becomes possible to apply smooth and stable processing. In particular, since the processing whetstone does not contain a photocatalyst, the self-sharpening of the abrasive grains of the processing whetstone is inhibited by the photocatalyst, or the photocatalyst falls off from the processing whetstone during grinding, causing contact between the processing surface of the processing whetstone and the workpiece. It does not get caught in parts and cause scratches or cracks on the ground surface of the workpiece.

研削装置の一例を示す斜視図である。It is a perspective view which shows an example of a grinding apparatus. 研削手段、保持テーブル、及び光照射手段の位置関係の一例を示す斜視図である。It is a perspective view which shows an example of the positional relationship of a grinding means, a holding table, and a light irradiation means. 保持テーブルに保持された被加工物を研削砥石で研削している状態を示す端面図である。FIG. 4 is an end view showing a state in which a grinding stone is grinding a workpiece held on a holding table; 図4(A)は、研削加工中における研削ホイールの回転軌跡と加工砥石による被加工物の加工領域と光照射手段との位置関係を上方から見た場合の説明図である。図4(B)は、加工面に光が照射された直後の加工砥石が被加工物に切り込んでいる状態を側方から見た場合の説明図である。FIG. 4A is an explanatory view of the positional relationship between the rotation trajectory of the grinding wheel, the processing area of the workpiece by the processing grindstone, and the light irradiation means during the grinding process, as viewed from above. FIG. 4(B) is an explanatory view of the state in which the processing grindstone cuts into the workpiece immediately after the processing surface is irradiated with light, viewed from the side. 研削加工中に発光部上のカバーに洗浄水を供給している状態を部分的に示す端面図である。FIG. 11 is an end view partially showing a state in which cleaning water is being supplied to a cover on the light emitting part during grinding; 実験1を実施して得た研削時における加工砥石の加工面に対する波長365nmの紫外光照射の効果を示すプロット図である。FIG. 10 is a plot diagram showing the effect of ultraviolet light irradiation with a wavelength of 365 nm on the processing surface of the processing grindstone during grinding obtained by conducting Experiment 1; 切削装置の一例を示す斜視図である。It is a perspective view which shows an example of a cutting device. 被加工物を保持した保持テーブル及び切削手段を示す断面図である。FIG. 4 is a cross-sectional view showing a holding table holding a workpiece and cutting means; 保持テーブルに保持された被加工物を切削手段で切削している状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which a cutting means is cutting a workpiece held on a holding table;

(実施形態1)
図1に示す研削装置1は、保持テーブル30上に保持された被加工物Wを研削ホイール74を備える加工手段7によって研削する装置である。研削装置1のベース10上の前方側(-Y方向側)は、保持テーブル30に対して被加工物Wの着脱が行われる領域である着脱領域Aとなっており、ベース10上の後方は、加工手段7により被加工物Wの研削が行われる領域である加工領域Bとなっている。ベース10上の前方側には、オペレータが研削装置1に対して加工条件等を入力するための入力手段12が配設されている。
(Embodiment 1)
A grinding apparatus 1 shown in FIG. 1 is an apparatus for grinding a workpiece W held on a holding table 30 by a processing means 7 having a grinding wheel 74 . The front side (−Y direction side) of the base 10 of the grinding apparatus 1 is an attachment/detachment area A in which the workpiece W is attached to and detached from the holding table 30, and the rear side of the base 10 is an attachment/detachment area A. , a processing region B in which the workpiece W is ground by the processing means 7 . On the front side of the base 10, input means 12 is arranged for the operator to input processing conditions and the like to the grinding apparatus 1. As shown in FIG.

保持テーブル30は、例えば、その外形が円形状であり、被加工物Wを吸着する吸着部300と、吸着部300を支持する枠体301とを備える。吸着部300は図示しない吸引源に連通し、吸着部300の露出面である保持面300a上で被加工物Wを吸引保持する。保持テーブル30の保持面300aは、保持テーブル30の回転中心を頂点とする極めて緩やか傾斜を備える円錐面に形成されている。保持テーブル30は、カバー31によって周囲から囲まれており、Z軸方向の軸心周りに回転可能であると共に、カバー31及びカバー31に連結された蛇腹カバー31aの下方に配設された図示しないY軸方向送り手段によって、着脱領域Aと加工領域Bとの間をY軸方向に往復移動可能となっている。 The holding table 30 has, for example, a circular outer shape, and includes a suction portion 300 that suctions the workpiece W and a frame 301 that supports the suction portion 300 . The suction part 300 communicates with a suction source (not shown), and sucks and holds the workpiece W on a holding surface 300 a that is an exposed surface of the suction part 300 . A holding surface 300a of the holding table 30 is formed into a conical surface having an extremely gentle slope with the rotation center of the holding table 30 as the apex. The holding table 30 is surrounded by a cover 31 and is rotatable about the axis in the Z-axis direction. It is reciprocally movable in the Y-axis direction between the attachment/detachment area A and the machining area B by the Y-axis direction feeding means.

加工領域Bには、コラム11が立設されており、コラム11の側面には加工手段7をZ軸方向に研削送りする研削送り手段5が配設されている。研削送り手段5は、Z軸方向の軸心を有するボールネジ50と、ボールネジ50と平行に配設された一対のガイドレール51と、ボールネジ50の上端に連結しボールネジ50を回動させるモータ52と、内部のナットがボールネジ50に螺合し側部がガイドレール51に摺接する昇降板53と、昇降板53に連結され加工手段7を保持するホルダ54とから構成され、モータ52がボールネジ50を回動させると、これに伴い昇降板53がガイドレール51にガイドされてZ軸方向に往復移動し、ホルダ54に保持された加工手段7がZ軸方向に研削送りされる。 A column 11 is erected in the processing area B, and a grinding feed means 5 for grinding and feeding the processing means 7 in the Z-axis direction is arranged on the side surface of the column 11 . The grinding feed means 5 includes a ball screw 50 having an axis in the Z-axis direction, a pair of guide rails 51 arranged parallel to the ball screw 50, and a motor 52 connected to the upper end of the ball screw 50 and rotating the ball screw 50. , an elevating plate 53 whose inner nut is screwed onto the ball screw 50 and whose side portion is in sliding contact with the guide rail 51; When rotated, the elevating plate 53 is guided by the guide rail 51 to reciprocate in the Z-axis direction, and the processing means 7 held by the holder 54 is fed for grinding in the Z-axis direction.

加工手段7は、軸方向がZ軸方向である回転軸70と、回転軸70を回転可能に支持するハウジング71と、回転軸70を回転駆動するモータ72と、回転軸70の先端に連結されたマウント73と、マウント73の下面に着脱可能に装着された研削ホイール74とを備える。 The processing means 7 includes a rotating shaft 70 whose axial direction is the Z-axis direction, a housing 71 that rotatably supports the rotating shaft 70 , a motor 72 that rotationally drives the rotating shaft 70 , and a tip end of the rotating shaft 70 . and a grinding wheel 74 detachably attached to the lower surface of the mount 73 .

研削ホイール74は、環状のホイール基台74bと、ホイール基台74bの底面(自由端部)に環状に配設された複数の略直方体形状の加工砥石74aとから構成される。加工砥石74aは、ガラス質、セラミック質のボンド剤であるビトリファイドでダイヤモンド砥粒を結合したものである。ビトリファイドとしては、例えば、二酸化珪素(SiO2)を主成分とし、融点を制御するために微量の添加剤を加えてもよい。なお、加工砥石74aの形状は、一体の環状を形成しているものでもよい。 The grinding wheel 74 is composed of an annular wheel base 74b and a plurality of substantially rectangular parallelepiped processing grindstones 74a annularly arranged on the bottom surface (free end) of the wheel base 74b. The processing grindstone 74a is obtained by bonding diamond abrasive grains with vitrified, which is a vitreous or ceramic bonding agent. Vitrified, for example, contains silicon dioxide (SiO2) as a main component, and a small amount of additive may be added to control the melting point. The shape of the processing grindstone 74a may be an integral annular shape.

図1に示す回転軸70の内部には、加工水供給手段8に連通し加工水の通り道となる流路70aが、回転軸70の軸方向(Z軸方向)に貫通して設けられており、流路70aを通過した加工水は、マウント73を通り、ホイール基台74bから加工砥石74aに向かって噴出できるようになっている。 Inside the rotating shaft 70 shown in FIG. 1, a flow path 70a that communicates with the machining water supply means 8 and serves as a path for the machining water is provided so as to pass through the rotating shaft 70 in the axial direction (Z-axis direction). , the processing water that has passed through the flow path 70a passes through the mount 73 and can be ejected from the wheel base 74b toward the processing grindstone 74a.

図1に示す加工水供給手段8は、例えば、水(例えば、純水)を蓄えた加工水源80と、加工水源80に接続され流路70aに連通する配管81と、配管81上の任意の位置に配設され加工水の流量を調整する調整バルブ82とを備える。 The processing water supply means 8 shown in FIG. and a regulating valve 82 disposed at a position for regulating the flow rate of the machining water.

研削装置1は、図1、2に示すように、例えば保持テーブル30に隣接して配設され、保持テーブル30で保持された被加工物Wを研削する加工砥石74aの加工面(下面)に所定波長の光を照射する光照射手段9を備えている。図2に示すように、光照射手段9は、例えば、略円弧状の外形を備えた台部90と、台部90の上面に複数(図示の例においては4つ)並ぶように配設された発光部91と、発光部91に向かって洗浄水(例えば、純水)を供給する洗浄水供給部92と、発光部91に汚れが付着してしまうことを防ぐカバー93とを備えている。 As shown in FIGS. 1 and 2, the grinding apparatus 1 is arranged adjacent to the holding table 30, for example, and has a working surface (lower surface) of a processing grindstone 74a for grinding the workpiece W held by the holding table 30. A light irradiating means 9 for irradiating light of a predetermined wavelength is provided. As shown in FIG. 2, the light irradiating means 9 includes, for example, a base portion 90 having a substantially arc-shaped outer shape, and a plurality of (four in the illustrated example) arranged on the upper surface of the base portion 90. a cleaning water supply unit 92 for supplying cleaning water (for example, pure water) toward the light emitting unit 91; and a cover 93 for preventing dirt from adhering to the light emitting unit 91. .

台部90の上面に形成された窪みに埋設されている発光部91は、例えば低圧水銀ランプやUVLEDであり、所定波長の光を発光することができ、図示しないスイッチによってオン/オフを切り替えることができる。発光部91は例えば2波長の光を発光でき、80nm以上200nm以下の波長の光と240nm以上280nm以下の波長の光とを発光できると好ましい。また、発光部91は、波長365nmの光を発光できるとさらに好ましい。本実施形態における発光部91は、2波長LED又は低圧水銀ランプであり、波長184.9nmの紫外光と波長253.7nmの紫外光とを同時に発光することができる。 A light-emitting part 91 embedded in a recess formed on the upper surface of the base part 90 is, for example, a low-pressure mercury lamp or UVLED, which can emit light of a predetermined wavelength, and can be turned on/off by a switch (not shown). can be done. For example, the light emitting unit 91 can emit light of two wavelengths, preferably light with a wavelength of 80 nm or more and 200 nm or less and light with a wavelength of 240 nm or more and 280 nm or less. Further, it is more preferable that the light emitting section 91 can emit light with a wavelength of 365 nm. The light-emitting unit 91 in this embodiment is a dual-wavelength LED or a low-pressure mercury lamp, and can simultaneously emit ultraviolet light with a wavelength of 184.9 nm and ultraviolet light with a wavelength of 253.7 nm.

板状のカバー93は、例えば、発光部91が生み出す光を透過させるガラス等の透明部材から構成されており、台部90の上面に発光部91を覆うように固定されている。例えば、台部90は、図示しないZ軸方向移動手段により上下動可能となっており、研削加工を実施する際にカバー93の上面の高さ位置を加工砥石74aの研削送り位置を考慮した所望の高さ位置に設定することができる。 The plate-shaped cover 93 is made of, for example, a transparent member such as glass that allows the light generated by the light emitting section 91 to pass therethrough, and is fixed to the upper surface of the base section 90 so as to cover the light emitting section 91 . For example, the base portion 90 can be vertically moved by Z-axis direction moving means (not shown), and when performing grinding, the height position of the upper surface of the cover 93 can be adjusted to a desired position in consideration of the grinding feed position of the processing grindstone 74a. can be set to any height position.

洗浄水供給部92は、例えば、水(例えば、純水)を蓄えた図示しない洗浄水源と、洗浄水源に連通する洗浄水ノズル920とを備えている。洗浄水ノズル920は、例えば、台部90の側面に台部90に沿うように固定されており、洗浄水をカバー93上面に向かって噴射可能な噴射口920aが複数長手方向に整列して設けられている。噴射口920aは、噴射した洗浄水をカバー93の上面上で清流化できるように形状、サイズ、及び発光部91に対する角度等が設定されている。噴射口920aは、図2のように細幅のスリット状に形成されており、洗浄水ノズル920の側面等に複数整列して設けられていると好ましいが、これに限定されるものではない。例えば噴射口920aは、丸穴状に形成され、洗浄水ノズル920の側面等に複数整列して設けられていてもよい。または、洗浄水ノズル920の側面等に一本の連続的に延びる細幅のスリット状に噴射口920aは形成されていてもよい。 The cleaning water supply unit 92 includes, for example, a cleaning water source (not shown) storing water (for example, pure water) and a cleaning water nozzle 920 communicating with the cleaning water source. The washing water nozzle 920 is, for example, fixed to the side surface of the base portion 90 along the base portion 90, and has a plurality of injection ports 920a arranged in the longitudinal direction for injecting washing water toward the upper surface of the cover 93. It is The injection port 920 a has a shape, a size, an angle with respect to the light emitting part 91 , and the like, so that the injected washing water can be made into a clear stream on the upper surface of the cover 93 . The injection port 920a is formed in a narrow slit shape as shown in FIG. 2, and it is preferable that a plurality of the injection ports 920a are arranged in a row on the side surface of the washing water nozzle 920, but the present invention is not limited to this. For example, the injection ports 920a may be formed in a circular hole shape, and may be arranged in a plurality on the side surface of the washing water nozzle 920 or the like. Alternatively, the injection port 920a may be formed in the side surface of the cleansing water nozzle 920, or the like, in the shape of a narrow slit extending continuously.

以下に、図1に示す研削装置1を用いて本発明に係る加工方法を実施する場合の、加工方法の各ステップ及び研削装置1の動作について説明していく。
図1に示す外形が円形板状の被加工物Wは、例えば、難削材のSiCで形成される半導体ウエーハであり、図1において下側を向いている被加工物Wの表面Waには、分割予定ラインによって区画された格子状の領域に多数のデバイスが形成されており、表面Waを保護する保護テープTが貼着されている。被加工物Wの裏面Wbは研削ホイール74で研削される被研削面となる。なお、被加工物Wの形状及び種類は特に限定されるものではなく、研削ホイール74との関係で適宜変更可能であり、GaASまたはGaN等で形成されるウエーハや、金属で形成されたウエーハまたは金属電極が部分的にウエーハの裏面に露出したウエーハも含まれる。
Each step of the processing method and the operation of the grinding device 1 when the processing method according to the present invention is performed using the grinding device 1 shown in FIG. 1 will be described below.
The workpiece W having a circular plate-like outer shape shown in FIG. 1 is, for example, a semiconductor wafer formed of SiC, which is a difficult-to-cut material. , a large number of devices are formed in a lattice-like area partitioned by the dividing lines, and a protective tape T is attached to protect the surface Wa. A back surface Wb of the workpiece W is a surface to be ground by the grinding wheel 74 . The shape and type of the workpiece W are not particularly limited, and can be changed as appropriate in relation to the grinding wheel 74. A wafer made of GaAs, GaN, or the like, a wafer made of metal, or the like can be used. A wafer in which the metal electrode is partially exposed on the back surface of the wafer is also included.

(1)保持ステップ
まず、着脱領域A内において、被加工物Wが、裏面Wbが上側になるように保持テーブル30の保持面300a上に載置される。そして、図示しない吸引源により生み出される吸引力が保持面300aに伝達されることにより、保持テーブル30が保持面300a上で被加工物Wを吸引保持する。被加工物Wは、緩やかな円錐面である保持面300aにならって吸引保持された状態になる。
(1) Holding Step First, in the attaching/detaching area A, the workpiece W is placed on the holding surface 300a of the holding table 30 so that the back surface Wb faces upward. A suction force generated by a suction source (not shown) is transmitted to the holding surface 300a, whereby the holding table 30 sucks and holds the workpiece W on the holding surface 300a. The workpiece W is sucked and held along the gently conical holding surface 300a.

(2)加工ステップ
保持テーブル30が、図示しないY軸方向送り手段によって加工手段7の下まで+Y方向へ移動して、研削ホイール74と保持テーブル30に保持された被加工物Wとの位置合わせがなされる。位置合わせは、例えば、研削ホイール74の回転中心が被加工物Wの回転中心に対して所定の距離だけ+Y方向にずれ、加工砥石74aの回転軌跡が被加工物Wの回転中心を通るように行われる。また、緩やかな円錐面である保持面300aが、加工砥石74aの下面である加工面に対して平行になるように保持テーブル30の傾きが調整されることで、被加工物Wの裏面Wbが加工砥石74aの加工面に対して平行になる。
(2) Processing Step The holding table 30 is moved in the +Y direction to below the processing means 7 by the Y-axis direction feeding means (not shown), and the grinding wheel 74 and the workpiece W held by the holding table 30 are aligned. is done. The alignment is performed, for example, so that the center of rotation of the grinding wheel 74 is displaced from the center of rotation of the workpiece W by a predetermined distance in the +Y direction, and the trajectory of rotation of the grinding wheel 74a passes through the center of rotation of the workpiece W. done. In addition, by adjusting the inclination of the holding table 30 so that the holding surface 300a, which is a gentle conical surface, is parallel to the processing surface, which is the lower surface of the processing grindstone 74a, the back surface Wb of the workpiece W is It becomes parallel to the processing surface of the processing grindstone 74a.

研削ホイール74と被加工物Wとの位置合わせが行われた後、モータ72により回転軸70が回転駆動されるのに伴って、図3に示すように、研削ホイール74が、+Z方向側からみて反時計周り方向に回転する。また、加工手段7が研削送り手段5により-Z方向へと送られ、加工手段7に備える研削ホイール74が-Z方向へと降下していき、加工砥石74aが被加工物Wの裏面Wbに当接することで研削加工が行われる。さらに、研削中は、保持テーブル30が+Z方向側からみて反時計周り方向に回転するのに伴って被加工物Wも回転するので、加工砥石74aが被加工物Wの裏面Wbの全面の研削加工を行う。 After the grinding wheel 74 and the workpiece W are aligned, the grinding wheel 74 moves from the +Z direction side as shown in FIG. Rotate in a counterclockwise direction. In addition, the processing means 7 is sent in the -Z direction by the grinding feed means 5, the grinding wheel 74 provided in the processing means 7 is lowered in the -Z direction, and the processing whetstone 74a touches the back surface Wb of the workpiece W. Grinding is performed by contact. Further, during grinding, the workpiece W rotates as the holding table 30 rotates counterclockwise when viewed from the +Z direction side, so that the processing grindstone 74a grinds the entire back surface Wb of the workpiece W. process.

研削加工中においては、加工水供給手段8が加工水を回転軸70中の流路70aに対して供給する。図3に示すように、流路70aに供給された加工水は、マウント73の内部にマウント73の周方向に一定の間隔をおいて形成された流路73bを通り、さらにホイール基台74bの噴射口74dから加工砥石74aに向かって噴射される。 During the grinding process, the machining water supply means 8 supplies machining water to the flow path 70 a in the rotating shaft 70 . As shown in FIG. 3, the processing water supplied to the flow path 70a passes through flow paths 73b formed inside the mount 73 at regular intervals in the circumferential direction of the mount 73, and further through the wheel base 74b. The jet is jetted toward the processing grindstone 74a from the jet port 74d.

被加工物Wは保持テーブル30の緩やかな円錐面である保持面300a上に保持面300aにならって吸引保持されているため、図4(A)に二点鎖線で示す研削ホイール74の回転軌跡中の領域E(以下、加工領域Eとする。)において、加工砥石74aは被加工物Wに当接し研削を行う。 Since the workpiece W is sucked and held on the holding surface 300a, which is a gentle conical surface of the holding table 30, following the holding surface 300a, the rotation trajectory of the grinding wheel 74 shown by the chain double-dashed line in FIG. In the middle region E (hereinafter referred to as processing region E), the processing grindstone 74a abuts on the workpiece W to perform grinding.

保持テーブル30に隣接して配設される光照射手段9は、例えば、研削ホイール74と保持テーブル30との位置合わせがなされた状態において、図4(A)に示すように保持テーブル30及び研削ホイール74の回転軌跡上において研削ホイール74が保持テーブル30で保持された被加工物Wに進入する直前、即ち、加工領域Eに加工砥石74aが進入する直前に配置される。 The light irradiating means 9 arranged adjacent to the holding table 30, for example, in a state where the grinding wheel 74 and the holding table 30 are aligned, as shown in FIG. The grinding wheel 74 is arranged on the rotation locus of the wheel 74 just before the grinding wheel 74 enters the workpiece W held by the holding table 30 , that is, just before the processing grindstone 74 a enters the processing area E.

研削加工の開始に伴って、図4(B)に示すように、発光部91がオン状態となり、発光部91が例えば波長184.9nmの紫外光と波長253.7nmの紫外光とを+Z方向に向かって照射する。照射された光は、カバー93を透過して加工領域Eに進入する直前の加工砥石74aの下面に照射される。 Along with the start of the grinding process, as shown in FIG. 4B, the light emitting unit 91 is turned on, and the light emitting unit 91 emits, for example, ultraviolet light with a wavelength of 184.9 nm and ultraviolet light with a wavelength of 253.7 nm in the +Z direction. irradiate toward The irradiated light passes through the cover 93 and irradiates the lower surface of the processing grindstone 74a immediately before entering the processing region E. As shown in FIG.

加工領域Eに進入する直前の加工砥石74aの下面に対して波長184.9nmの紫外光が照射されることで、加工砥石74aの下面と発光部91との間に存在する空気中の酸素分子が紫外光を吸収し、基底状態の酸素原子を生成する。生成された酸素原子は周囲の酸素分子と結合してオゾンを生成する。また、波長184.9nmの紫外光は、加工砥石74aの加工面に付着した研削屑による有機汚濁等の分子間結合及び原子間結合を切断して励起状態にすることで、有機汚濁を分解していく。さらに、発生したオゾンが波長253.7nmの紫外光を吸収することで、励起状態の活性酸素が生成される。活性酸素やオゾンは高い酸化力を有するため、加工砥石74aの加工面に生じた炭素や水素等と結合して、ヒドロキシル基、アルデヒド基、及びカルボキシル基等の極性の大きな親水基を加工砥石74aの加工面に形成していく。その結果、加工砥石74aが親水化して、加工砥石74aの加工面において加工水が水滴になりにくくなり、加工砥石74aの加工面全体に加工水が水膜状に広がりやすくなる。 By irradiating the lower surface of the processing grindstone 74a with a wavelength of 184.9 nm to the lower surface of the processing grindstone 74a immediately before entering the processing region E, oxygen molecules in the air existing between the lower surface of the processing grindstone 74a and the light emitting portion 91 absorbs UV light and generates ground-state oxygen atoms. The generated oxygen atoms combine with surrounding oxygen molecules to generate ozone. In addition, the ultraviolet light with a wavelength of 184.9 nm cuts the intermolecular bonds and interatomic bonds of organic contamination such as grinding dust adhering to the processing surface of the processing grindstone 74a to excite them, thereby decomposing the organic contamination. To go. Further, the generated ozone absorbs ultraviolet light with a wavelength of 253.7 nm, thereby generating active oxygen in an excited state. Since active oxygen and ozone have a high oxidizing power, they combine with carbon, hydrogen, and the like generated on the processing surface of the processing grindstone 74a to form hydrophilic groups with high polarity, such as hydroxyl groups, aldehyde groups, and carboxyl groups, on the processing grindstone 74a. is formed on the processed surface of As a result, the processing whetstone 74a becomes hydrophilic, making it difficult for the processing water to form water droplets on the processing surface of the processing whetstone 74a, and the processing water tends to spread like a water film over the entire processing surface of the processing whetstone 74a.

親水化した加工砥石74aは、多くの加工水を伴って加工領域E内へと進入し被加工物Wの裏面Wbを研削する。加工水が被加工物Wの裏面Wbと加工砥石74aの加工面との接触部位により多く入り込むことで、接触部位に発生する摩擦熱の発生が抑制される。 The hydrophilized processing grindstone 74a enters into the processing area E with a large amount of processing water, and grinds the back surface Wb of the workpiece W. As shown in FIG. Since more processing water enters the contact portion between the back surface Wb of the workpiece W and the processing surface of the processing grindstone 74a, generation of frictional heat at the contact portion is suppressed.

図5に示すように、研削加工中においては、洗浄水供給部92が洗浄水をカバー93の上面に向かって供給する。すなわち、図示しない洗浄水源から洗浄水ノズル920へ洗浄水が供給され、この洗浄水が噴射口920aからノズル外部に向かって噴出し、放物線を描くようにしてカバー93上に到達する。そして、洗浄水が、流れが適度に整流化されつつカバー93上に付着している研削屑等の汚れを除去することで、研削中において発光部91が生み出す光が加工砥石74aの加工面に適切に照射される状態が維持される。 As shown in FIG. 5, the cleaning water supply unit 92 supplies cleaning water toward the upper surface of the cover 93 during the grinding process. That is, washing water is supplied to the washing water nozzle 920 from a washing water source (not shown), and this washing water is ejected from the injection port 920a toward the outside of the nozzle and reaches the cover 93 in a parabola. The washing water is properly rectified and removes dirt such as grinding waste adhering to the cover 93, so that the light generated by the light emitting part 91 during grinding is applied to the processing surface of the processing grindstone 74a. Appropriate illumination is maintained.

本発明に係る被加工物の加工方法は、被加工物Wを保持する保持面300aを有した保持テーブル30で被加工物Wを保持する保持ステップと、保持ステップを実施した後、砥粒をビトリファイドで結合した加工砥石74aを含む加工手段7で被加工物Wを研削加工する加工ステップと、を備え、加工ステップでは、被加工物Wに加工水を供給するとともに、所定波長の光を光照射手段9から加工砥石74aの加工面に照射することで、被加工物Wの裏面Wbと加工砥石74aの加工面との接触部位により多くの加工水を入り込ませて、接触部位に発生する摩擦熱の発生を抑制して加工砥石74aの磨耗(適切な自生発刃を促す磨耗を超える異常磨耗)を抑えることができる。また、被加工物Wの裏面Wbと加工砥石74aの加工面との接触部位に生じる研削屑を、加工水により効率よく排除していくことができる。更に、加工砥石74aの親水化等によって、加工砥石74aが被加工物Wを研削する加工領域Eに効果的に加工水が供給されるため、加工熱の上昇によるウエーハ焼けの発生等の加工品質の悪化を防止でき、被加工物Wが難削材で形成されたウエーハであっても円滑に安定した研削を施すことが可能となる。 A method for processing a workpiece according to the present invention includes a holding step of holding a workpiece W by a holding table 30 having a holding surface 300a for holding the workpiece W, and after performing the holding step, abrasive grains are removed. and a machining step of grinding the workpiece W with the machining means 7 including the machining grindstone 74a bonded by vitrified, and in the machining step, machining water is supplied to the workpiece W, and light of a predetermined wavelength is emitted. By irradiating the processing surface of the processing grindstone 74a from the irradiation means 9, more processing water enters the contact portion between the back surface Wb of the workpiece W and the processing surface of the processing grindstone 74a, thereby reducing the friction generated at the contact portion. By suppressing heat generation, it is possible to suppress wear of the processing grindstone 74a (abnormal wear exceeding wear that promotes proper self-sharpening). Further, the grinding waste generated at the contact portion between the back surface Wb of the workpiece W and the processing surface of the processing grindstone 74a can be efficiently removed by the processing water. Furthermore, since the processing water is effectively supplied to the processing region E where the processing grindstone 74a grinds the workpiece W by making the processing grindstone 74a hydrophilic or the like, processing quality such as wafer burning due to an increase in processing heat may be reduced. Therefore, even if the workpiece W is a wafer made of a difficult-to-cut material, smooth and stable grinding can be performed.

本発明の発明者は、本発明に係る加工方法の加工ステップにおける加工砥石の加工面に対する波長365nmの光照射の効果を検証するため、下記の実験1を行った。実験1においては、円形板状の被加工物Wとして厚さ10mmのソーダガラス板を採用した。また、研削ホイール74の加工砥石74aは、粒径♯1000のダイヤモンド砥粒をビトリファイドボンドで結合したものを採用した。 The inventors of the present invention conducted Experiment 1 below in order to verify the effect of light irradiation with a wavelength of 365 nm on the processing surface of the processing grindstone in the processing step of the processing method according to the present invention. In Experiment 1, a soda glass plate with a thickness of 10 mm was used as the circular plate-shaped workpiece W. As shown in FIG. The processing grindstone 74a of the grinding wheel 74 employs diamond abrasive grains having a grain size of #1000 bonded with a vitrified bond.

実験1においては、保持ステップを実施した後、加工ステップを以下に示す加工条件で実施した。
研削ホイール74の回転数(rpm) :2000rpm
保持テーブル30の回転数(rpm) :300rpm
研削ホイール74の研削送り速度(下降速度) :0.5μm/秒
実験1では、加工ステップにおいて、図2に示す光照射手段9の発光部91としてLEDライトを用いて、波長365nmの紫外光を研削ホイール74の加工砥石74aの下面に照射しつつ被加工物Wを50μm研削し、次いで、発光部91からの加工砥石74aの下面に対する紫外光の照射を停止しつつ被加工物Wを50μm研削し、このような紫外光の照射を伴う研削と紫外光の照射を伴わない研削とを繰り返し連続的に実施した。加工水の加工砥石74aの供給等は、先述した加工ステップと同様に行った。
In Experiment 1, after the holding step was performed, the processing step was performed under the processing conditions shown below.
Grinding wheel 74 rotation speed (rpm): 2000 rpm
Number of rotations (rpm) of holding table 30: 300 rpm
Grinding feed rate (falling rate) of grinding wheel 74: 0.5 μm/sec In Experiment 1, in the processing step, an LED light was used as the light emitting unit 91 of the light irradiation means 9 shown in FIG. Grind the workpiece W by 50 μm while irradiating the lower surface of the processing grindstone 74 a of the grinding wheel 74 , and then grind the workpiece W by 50 μm while stopping the irradiation of the ultraviolet light from the light emitting unit 91 to the lower surface of the processing grindstone 74 a. Then, such grinding accompanied by irradiation of ultraviolet light and grinding without irradiation of ultraviolet light were continuously repeated. The supply of the processing water to the processing grindstone 74a and the like were performed in the same manner as in the previously described processing steps.

図6に示すプロット図P1は、実験1で得られた測定値をプロットしたものであり、プロット図P1において、横軸は被加工物Wを50μm研削毎の研削ホイール74の加工砥石74aの消耗量(μm)を示し、縦軸は研削ホイール74が被加工物Wを50μm研削中に受けた最大加工荷重(N)を示している。測定した紫外光を照射しつつ研削を行った際の加工砥石74aの消耗量値と研削ホイール74が受けた最大加工荷重値とは、プロット図P1において丸点で示しており、破線で示すグラフG1によってその推移を把握しやすく示している。また、測定した紫外光を照射せずに研削を行った際の加工砥石74aの消耗量値と研削ホイール74が受けた最大加工荷重値とは、プロット図P1において三角点で示しており、一点鎖線で示すグラフG2によってその推移を把握しやすく示している。 The plotted diagram P1 shown in FIG. 6 plots the measured values obtained in Experiment 1. In the plotted diagram P1, the horizontal axis represents the consumption of the processing grindstone 74a of the grinding wheel 74 for every 50 μm grinding of the workpiece W. The vertical axis indicates the maximum processing load (N) received by the grinding wheel 74 while grinding the workpiece W by 50 μm. The measured wear amount value of the processing grindstone 74a and the maximum processing load value received by the grinding wheel 74 when grinding was performed while irradiating the ultraviolet light are indicated by circle points in the plot diagram P1, and are indicated by dashed lines. G1 indicates the transition so that it can be easily grasped. In addition, the measured wear amount value of the processing grindstone 74a and the maximum processing load value received by the grinding wheel 74 when grinding was performed without irradiating ultraviolet light are indicated by triangular points in the plot diagram P1. A graph G2 indicated by a dashed line shows the transition in a manner that is easy to grasp.

プロット図P1から読み取ることができるように、波長365nmの紫外光を研削ホイール74の加工砥石74aの下面に照射しつつ被加工物Wの研削加工を行った場合には、紫外光を照射していない場合に比べて、加工砥石74aの消耗量及び研削ホイール74が研削時に受ける荷重を低く抑えることができた。研削ホイール74が受ける加工荷重をこのように低く抑えることができると、図1に示す研削送り手段5のモータ52が受ける負荷を減らせたり、加工負荷によってボールネジ50にバックラッシュが発生してしまうことを防ぐことができたりする。なお、研削ホイール74が受ける加工荷重を同荷重に合わせて比較した場合、波長365nmの紫外光を研削ホイール74の加工砥石74aの下面に照射しつつ研削した場合は紫外光を照射していない場合に比べて、加工砥石74aの消耗量を約20%低く抑えることができた。 As can be read from the plot diagram P1, when the workpiece W is ground while irradiating the lower surface of the processing grindstone 74a of the grinding wheel 74 with ultraviolet light having a wavelength of 365 nm, the ultraviolet light is irradiated. As compared with the case without the grinding wheel 74a, the amount of wear of the processing grindstone 74a and the load received by the grinding wheel 74 during grinding could be kept low. If the processing load applied to the grinding wheel 74 can be suppressed to such a low level, the load applied to the motor 52 of the grinding feeding means 5 shown in FIG. can be prevented. When the processing load applied to the grinding wheel 74 is compared according to the same load, when grinding is performed while irradiating the lower surface of the processing grindstone 74a of the grinding wheel 74 with ultraviolet light having a wavelength of 365 nm, when the ultraviolet light is not irradiated. Compared to , the wear amount of the processing grindstone 74a could be reduced by about 20%.

(実施形態2)
図7に示す切削装置2は、保持テーブル20の保持面200aに保持された被加工物Wに対して、加工手段21が備える切削ブレード210を回転させ切り込ませて切削加工を施す装置である。
(Embodiment 2)
The cutting device 2 shown in FIG. 7 is a device that cuts the workpiece W held on the holding surface 200a of the holding table 20 by rotating the cutting blade 210 of the machining means 21 to cut the workpiece W. .

切削装置2の基台2A上には、切削送り方向(X軸方向)に保持テーブル20を往復移動させる切削送り手段22が配設されている。切削送り手段22は、X軸方向の軸心を有するボールネジ220と、ボールネジ220と平行に配設された一対のガイドレール221と、ボールネジ220を回動させるモータ222と、内部のナットがボールネジ220に螺合し底部がガイドレール221に摺接する可動板223とから構成される。そして、モータ222がボールネジ220を回動させると、これに伴い可動板223がガイドレール221にガイドされてX軸方向に移動し、可動板223上に配設された保持テーブル20もX軸方向に移動する。 A cutting feeding means 22 for reciprocating the holding table 20 in the cutting feeding direction (X-axis direction) is arranged on the base 2A of the cutting device 2 . The cutting feeding means 22 includes a ball screw 220 having an axis in the X-axis direction, a pair of guide rails 221 arranged parallel to the ball screw 220, a motor 222 for rotating the ball screw 220, and a nut inside the ball screw 220. and a movable plate 223 which is screwed into the guide rail 221 and whose bottom portion is in sliding contact with the guide rail 221 . When the motor 222 rotates the ball screw 220, the movable plate 223 is guided by the guide rails 221 and moves in the X-axis direction. move to

可動板223上に配設された保持テーブル20は、例えば、その外形が円形状であり、ポーラス部材からなり被加工物Wを吸着する吸着部200と、吸着部200を支持する枠体201とを備える。吸着部200は図示しない吸引源に連通し、吸着部200の露出面である保持面200a上で被加工物Wを吸引保持する。保持テーブル20は、保持テーブル20の底面側に配設された回転手段202により回転可能となっている。保持テーブル20の周囲には、固定クランプ204が図示の例では4つ均等な間隔で配設されている。 The holding table 20 arranged on the movable plate 223 has, for example, a circular outer shape, and is composed of a suction portion 200 which is made of a porous member and which suctions the workpiece W, and a frame 201 which supports the suction portion 200 . Prepare. The suction unit 200 communicates with a suction source (not shown), and suction-holds the workpiece W on a holding surface 200a that is an exposed surface of the suction unit 200 . The holding table 20 is rotatable by rotating means 202 arranged on the bottom side of the holding table 20 . Four fixing clamps 204 are arranged at equal intervals around the holding table 20 in the illustrated example.

基台2A上の中央から後方側(+Y方向側)にかけては、Y軸方向に加工手段21を往復移動させる割り出し送り手段23が配設されている。割り出し送り手段23は、Y軸方向の軸心を有するボールネジ230と、ボールネジ230と平行に配設された一対のガイドレール231と、ボールネジ230を回動させるモータ232と、内部のナットがボールネジ230に螺合し底部がガイドレール231に摺接する可動部233とから構成される。そして、モータ232がボールネジ230を回動させると、これに伴い可動部233がガイドレール231にガイドされてY軸方向に移動し、可動部233の移動に伴い加工手段21がY軸方向に移動する。 An indexing feed means 23 for reciprocating the processing means 21 in the Y-axis direction is arranged from the center to the rear side (+Y direction side) of the base 2A. The indexing feed means 23 includes a ball screw 230 having an axis in the Y-axis direction, a pair of guide rails 231 arranged parallel to the ball screw 230, a motor 232 for rotating the ball screw 230, and a nut inside the ball screw 230. and a movable portion 233 which is screwed into the guide rail 231 and whose bottom portion is in sliding contact with the guide rail 231 . When the motor 232 rotates the ball screw 230, the movable portion 233 is guided by the guide rail 231 and moves in the Y-axis direction. do.

可動部233上にはコラム234が一体的に立設されており、コラム234の-X方向側の側面には、Z軸方向に加工手段21を上下動させる切り込み送り手段24が配設されている。切り込み送り手段24は、Z軸方向の軸心を有するボールネジ240と、ボールネジ240と平行に配設された一対のガイドレール241と、ボールネジ240を回動させるモータ242と、内部のナットがボールネジ240に螺合し側部がガイドレール241に摺接する支持部材243とから構成される。そして、モータ242がボールネジ240を回動させると、これに伴い支持部材243がガイドレール241にガイドされてZ軸方向に移動し、支持部材243が支持する加工手段21がZ軸方向に切り込み送りされる。 A column 234 is integrally erected on the movable portion 233, and a cutting feed means 24 for moving the processing means 21 up and down in the Z-axis direction is arranged on the side surface of the column 234 on the -X direction side. there is The cutting feeding means 24 includes a ball screw 240 having an axis in the Z-axis direction, a pair of guide rails 241 arranged parallel to the ball screw 240, a motor 242 for rotating the ball screw 240, and a nut inside the ball screw 240. and a support member 243 which is screwed into the guide rail 241 and whose side portion is in sliding contact with the guide rail 241 . When the motor 242 rotates the ball screw 240, the supporting member 243 is guided by the guide rail 241 and moves in the Z-axis direction, and the processing means 21 supported by the supporting member 243 cuts and feeds in the Z-axis direction. be done.

加工手段21は、軸方向が保持テーブル20の移動方向(X軸方向)に対し水平方向に直交する方向(Y軸方向)であるスピンドル211と、スピンドル211を回転可能に支持するハウジング212と、ハウジング212内部に収容されスピンドル211を回転駆動する図示しないモータと、スピンドル211の-Y方向側の先端部に装着された切削ブレード210とを備えており、モータがスピンドル211を回転駆動することに伴って、切削ブレード210も高速回転する。 The processing means 21 includes a spindle 211 whose axial direction is perpendicular to the horizontal direction (Y-axis direction) with respect to the moving direction (X-axis direction) of the holding table 20; a housing 212 that rotatably supports the spindle 211; It comprises a motor (not shown) housed inside a housing 212 to rotationally drive the spindle 211, and a cutting blade 210 attached to the tip of the spindle 211 on the -Y direction side, and the motor rotationally drives the spindle 211. Along with this, the cutting blade 210 also rotates at high speed.

ハウジング212の側面には、被加工物Wを撮像して切削ブレード210を切り込ませる位置を検出するためのアライメント手段25が配設されている。アライメント手段25は、被加工物Wの被切削面を撮像するアライメント用カメラ250を備えており、アライメント用カメラ250により取得した画像に基づき、パターンマッチング等の画像処理によって被加工物Wの切削すべき分割予定ラインSを検出することができる。 Alignment means 25 is arranged on the side surface of the housing 212 for detecting the position where the cutting blade 210 cuts by imaging the workpiece W. As shown in FIG. The alignment means 25 includes an alignment camera 250 that captures an image of the cut surface of the workpiece W. Based on the image acquired by the alignment camera 250, the workpiece W is cut by image processing such as pattern matching. It is possible to detect the planned division line S with a power.

図8に示す切削ブレード210は、例えば、中央に装着孔を備える外形が環状のワッシャー型のブレードであり、その全体が加工砥石となる。例えば、切削ブレード210は、ガラス質、セラミック質のボンド剤であるビトリファイドでダイヤモンド砥粒を結合したものであり、ビトリファイドとしては、例えば、二酸化珪素(SiO2)を主成分とし、長石等を微量混入したものを用いている。切削ブレード210は、着脱フランジ218と図示しないマウントフランジとによりY軸方向両側から挟まれており、固定ナット217による締め付けによってスピンドル211に装着されている。なお切削ブレード210は、アルミニウム等からなる基台に径方向外側に向かって加工砥石を突出するように備えるハブタイプの切削ブレードであってもよい。 The cutting blade 210 shown in FIG. 8 is, for example, a washer-shaped blade having an annular outer shape with a mounting hole in the center, and the whole serves as a processing grindstone. For example, the cutting blade 210 is made by bonding diamond abrasive grains with vitrified, which is a vitrified or ceramic bonding agent. I'm using what I made. The cutting blade 210 is sandwiched from both sides in the Y-axis direction by a detachable flange 218 and a mount flange (not shown), and is attached to the spindle 211 by fastening with a fixing nut 217 . The cutting blade 210 may be a hub-type cutting blade having a processing grindstone protruding radially outward from a base made of aluminum or the like.

図7、8に示すように、加工手段21は、例えば、切削ブレード210をカバーするブレードカバー219を備えている。ブレードカバー219は、その略中央部に切削ブレード210を収容する開口を備えており、ハウジング212に装着されることで、開口に切削ブレード210を位置付け、切削ブレード210を上方から覆うことができる。 As shown in FIGS. 7 and 8, the processing means 21 has, for example, a blade cover 219 that covers the cutting blade 210 . The blade cover 219 has an opening that accommodates the cutting blade 210 in its substantially central portion, and is attached to the housing 212 to position the cutting blade 210 in the opening and cover the cutting blade 210 from above.

ブレードカバー219の-X方向側端には、支持ブロック213が調整ネジ213aによりZ軸方向に移動可能に締結されている。支持ブロック213には、一対の加工水ノズル214が固定されている。一対の加工水ノズル214には、支持ブロック213を通じて供給ホース213bから加工水が供給される。一対の加工水ノズル214は、切削ブレード210の下部を切削ブレード210の側面両側から挟むようにして+X方向側に互いに平行に延びている。一対の加工水ノズル214の先端側の切削ブレード210に相対する位置には、スリットが複数X軸方向に整列して設けられており、複数のスリットによって側方から加工水が噴射されて、切削ブレード210と被加工物Wとの接触部位の冷却が行われる。また、支持ブロック213の下端には、噴射された加工水を-X方向側に導く一対の飛沫カバー213cが配設されている。 A support block 213 is fastened to the -X direction side end of the blade cover 219 by an adjusting screw 213a so as to be movable in the Z-axis direction. A pair of machining water nozzles 214 are fixed to the support block 213 . Processing water is supplied to the pair of processing water nozzles 214 from supply hoses 213b through support blocks 213 . The pair of machining water nozzles 214 extend parallel to each other in the +X direction so as to sandwich the lower portion of the cutting blade 210 from both sides of the cutting blade 210 . A plurality of slits are provided in alignment in the X-axis direction at a position facing the cutting blade 210 on the tip side of the pair of machining water nozzles 214, and the machining water is jetted from the side by the plurality of slits to perform cutting. The contact portion between the blade 210 and the workpiece W is cooled. At the lower end of the support block 213, a pair of splash covers 213c are arranged to guide the jetted machining water in the -X direction.

ブレードカバー219の+X方向側端には、加工水ブロック215が、調整ネジ215aによりY軸方向にスライド移動可能に締結されている。図8に示すように、加工水ブロック215には、切削ブレード210の外周方向から切削ブレード210に対し加工水を噴射する加工水ノズル216が配設されている。加工水ノズル216の上端には供給ホース215bが連通しており、加工水ノズル216の下端である加工水噴射口216aは切削ブレード210の先端面(加工面)に向かって開口している。加工水ノズル216により外周方向から切削ブレード210に加工水が噴射されることで、回転する切削ブレード210に加工水が巻き込まれて、切削ブレード210と被加工物Wとの接触部位に生じる切削屑と共に-X方向側に押し出されることで、接触部位の洗浄及び冷却が行われる。 The machining water block 215 is fastened to the +X direction side end of the blade cover 219 by an adjustment screw 215a so as to be slidable in the Y-axis direction. As shown in FIG. 8, the machining water block 215 is provided with machining water nozzles 216 that inject machining water toward the cutting blade 210 from the outer peripheral direction of the cutting blade 210 . A supply hose 215b communicates with the upper end of the machining water nozzle 216, and a machining water injection port 216a, which is the lower end of the machining water nozzle 216, opens toward the tip surface (machining surface) of the cutting blade 210. As shown in FIG. The machining water nozzle 216 sprays the machining water to the cutting blade 210 from the outer peripheral direction, so that the machining water is caught in the rotating cutting blade 210, and cutting waste is generated at the contact portion between the cutting blade 210 and the workpiece W. The contact portion is cleaned and cooled by being pushed out in the -X direction side together with the .

切削装置2は、切削ブレード210の加工面(ブレードの先端面)に所定波長の光を照射する光照射手段4を備えている。光照射手段4は、例えば、例えば低圧水銀ランプやUVLEDからなる発光部40と、発光部40のオン/オフを切り替える電源41とを備えている。 The cutting device 2 includes a light irradiating means 4 for irradiating the machining surface of the cutting blade 210 (the tip surface of the blade) with light of a predetermined wavelength. The light irradiation means 4 includes, for example, a light emitting section 40 composed of a low-pressure mercury lamp or UVLED, and a power supply 41 for switching on/off of the light emitting section 40 .

発光部40は、例えば、切削ブレード210の加工面に径方向外側から向かい合うように加工水ブロック215に配設されており、加工水ノズル216の加工水噴射口216aよりも高い位置に位置している。発光部40は2波長の光を発光でき、80nm以上200nm以下の波長の光と240nm以上280nm以下の波長の光とを発光できると好ましい。また、発光部40は、波長365nmの光を発光できるとさらに好ましい。本実施形態における発光部40は2波長LED又は低圧水銀ランプであり、波長184.9nmの紫外光と波長253.7nmの紫外光とを同時に発光することができる。 For example, the light emitting unit 40 is arranged in the machining water block 215 so as to face the machining surface of the cutting blade 210 from the outside in the radial direction, and is positioned higher than the machining water injection port 216a of the machining water nozzle 216. there is The light emitting unit 40 can emit light of two wavelengths, and preferably can emit light with a wavelength of 80 nm or more and 200 nm or less and light with a wavelength of 240 nm or more and 280 nm or less. Further, it is more preferable that the light emitting section 40 can emit light with a wavelength of 365 nm. The light-emitting unit 40 in this embodiment is a dual-wavelength LED or a low-pressure mercury lamp, and can simultaneously emit ultraviolet light with a wavelength of 184.9 nm and ultraviolet light with a wavelength of 253.7 nm.

以下に、図7に示す切削装置2を用いて本発明に係る加工方法を実施する場合の、加工方法の各ステップ及び切削装置2の動作について説明していく。
図1に示す外形が円形板状の被加工物Wは、例えば、難削材のSiCで形成される半導体ウエーハであり、図7においては上側を向いている被加工物Wの表面Waには、分割予定ラインSによって区画された格子状の領域に多数のデバイスDが形成されている。被加工物Wの裏面Wbには、被加工物Wよりも大径のダイシングテープT1が貼着されている。ダイシングテープT1の粘着面の外周領域には円形の開口を備える環状フレームFが貼着されており、被加工物Wは、ダイシングテープT1を介して環状フレームFによって支持され、環状フレームFを介したハンドリングが可能な状態になっている。なお、被加工物Wの形状及び種類は特に限定されるものではなく、切削ブレード210との関係で適宜変更可能であり、GaASまたはGaN等で形成されるウエーハや、金属で形成されたウエーハまたは金属電極が部分的にウエーハの裏面に露出したウエーハも含まれる。
Each step of the processing method and the operation of the cutting device 2 when the processing method according to the present invention is carried out using the cutting device 2 shown in FIG. 7 will be described below.
The workpiece W having a circular plate-like outer shape shown in FIG. 1 is, for example, a semiconductor wafer formed of SiC, which is a difficult-to-cut material. , a large number of devices D are formed in a lattice-like area partitioned by division lines S. FIG. A dicing tape T1 having a diameter larger than that of the workpiece W is attached to the back surface Wb of the workpiece W. As shown in FIG. An annular frame F having a circular opening is attached to the outer peripheral area of the adhesive surface of the dicing tape T1. It is ready for handling. The shape and type of the workpiece W are not particularly limited, and can be changed as appropriate in relation to the cutting blade 210. A wafer made of GaAs, GaN, or the like, a wafer made of metal, or the like can be used. A wafer in which the metal electrode is partially exposed on the back surface of the wafer is also included.

(1)保持ステップ
被加工物Wが、ダイシングテープT1側を下にして保持テーブル20の保持面200a上に載置される。そして、図示しない吸引源により生み出される吸引力が保持面200aに伝達されることにより、被加工物Wが保持テーブル20によって吸引保持された状態になる。また、各固定クランプ204によって環状フレームFが固定される。
(1) Holding Step The workpiece W is placed on the holding surface 200a of the holding table 20 with the dicing tape T1 side facing down. Then, a suction force generated by a suction source (not shown) is transmitted to the holding surface 200a, so that the workpiece W is suction-held by the holding table 20. As shown in FIG. Also, the annular frame F is fixed by each fixing clamp 204 .

(2)加工ステップ
切削送り手段22によって、保持テーブル20に保持された被加工物Wが-X方向に送られ、切削ブレード210を切り込ませるべき分割予定ラインSのY軸方向の座標位置が、アライメント手段25により検出される。また、加工手段21が割り出し送り手段23によってY軸方向に駆動され、切削すべき分割予定ラインSと切削ブレード210とのY軸方向における位置合わせが行われる。
(2) Processing Step The workpiece W held on the holding table 20 is fed in the -X direction by the cutting feeding means 22, and the Y-axis coordinate position of the dividing line S to be cut by the cutting blade 210 is set. , are detected by the alignment means 25 . Further, the processing means 21 is driven in the Y-axis direction by the indexing and feeding means 23, and the division line S to be cut and the cutting blade 210 are aligned in the Y-axis direction.

切り込み送り手段24が加工手段21を-Z方向に降下させていき、図9に示すように、例えば、切削ブレード210が被加工物Wの裏面Wbを切り抜けダイシングテープT1に到る所定の高さ位置に加工手段21が位置付けられる。また、図示しないモータがスピンドル211を回転駆動することに伴って、切削ブレード210が例えば-Y方向側から見て時計回り方向に高速回転する。 The cutting feed means 24 lowers the processing means 21 in the -Z direction, and as shown in FIG. A processing means 21 is positioned at the position. In addition, as a motor (not shown) rotates the spindle 211, the cutting blade 210 rotates at a high speed clockwise when viewed from the -Y direction side, for example.

被加工物Wを保持する保持テーブル20が所定の切削送り速度でさらに-X方向に送り出されることで、高速回転する切削ブレード210が被加工物Wに切り込み、分割予定ラインSに沿って被加工物Wを切断していく。また、切削加工中においては、加工水ノズル214によって切削ブレード210の側方から、切削ブレード210と被加工物Wとの接触部位に対して加工水の噴射が行われ、接触部位の冷却及び洗浄が行われる。 When the holding table 20 holding the workpiece W is further sent out in the -X direction at a predetermined cutting feed rate, the cutting blade 210 rotating at high speed cuts into the workpiece W, and along the planned division line S, the workpiece is processed. The thing W is cut. Further, during cutting, the machining water nozzle 214 sprays machining water from the side of the cutting blade 210 to the contact portion between the cutting blade 210 and the workpiece W to cool and clean the contact portion. is done.

切削加工の開始に伴って電源41によって発光部40がON状態になり、発光部40が例えば波長184.9nmの紫外光と波長253.7nmの紫外光とを切削ブレード210の外周方向から回転する切削ブレード210の加工面に照射する。 With the start of cutting, the power source 41 turns on the light emitting unit 40, and the light emitting unit 40 emits, for example, ultraviolet light with a wavelength of 184.9 nm and ultraviolet light with a wavelength of 253.7 nm, and rotates from the outer peripheral direction of the cutting blade 210. The machined surface of the cutting blade 210 is irradiated.

さらに、加工水ノズル216により切削ブレード210の外周方向から切削ブレード210の加工面に加工水が噴射されることで、光が照射された回転する切削ブレード210の加工面に加工水が巻き込まれて、切削ブレード210と被加工物Wとの接触部位に生じる加工屑等と共に-X方向側に押し出されることで、接触部位の冷却及び洗浄が行われる。 Further, the machining water nozzle 216 sprays the machining water onto the machining surface of the cutting blade 210 from the outer peripheral direction of the cutting blade 210, so that the machining water is caught in the machining surface of the rotating cutting blade 210 irradiated with light. , and are extruded in the -X direction along with the machining chips and the like generated at the contact portion between the cutting blade 210 and the workpiece W, thereby cooling and cleaning the contact portion.

加工水ノズル216から加工水が噴射される直前の切削ブレード210の加工面に対して波長184.9nmの紫外光が照射されることで、切削ブレード210の先端面と発光部40との間に存在する空気中の酸素分子が紫外光を吸収し、基底状態の酸素原子を生成する。生成された酸素原子は周囲の酸素分子と結合してオゾンを生成する。また、波長184.9nmの紫外光は、切削ブレード210の加工面に付着した切削屑による有機汚濁等の分子間結合及び原子間結合を切断して励起状態にすることで、有機汚濁を分解していく。さらに、発生したオゾンが波長253.7nmの紫外光を吸収することで、励起状態の活性酸素が生成される。生成された活性酸素やオゾンは高い酸化力を有するため、切削ブレード210の加工面に生じた炭素や水素等と結合して、ヒドロキシル基、アルデヒド基、及びカルボキシル基等の極性の大きな親水基を切削ブレード210の加工面に形成していく。その結果、切削ブレード210が親水化して、切削ブレード210の加工面において加工水が水滴になりにくくなり、切削ブレード210の加工面に加工水が水膜状に広がりやすくなる。 By irradiating the machining surface of the cutting blade 210 with a wavelength of 184.9 nm just before the machining water is sprayed from the machining water nozzle 216, a gap between the tip surface of the cutting blade 210 and the light emitting part 40 Oxygen molecules in the air present absorb UV light and produce ground state oxygen atoms. The generated oxygen atoms combine with surrounding oxygen molecules to generate ozone. In addition, the ultraviolet light with a wavelength of 184.9 nm cuts the intermolecular bonds and interatomic bonds of the organic contaminants such as cutting dust adhering to the machining surface of the cutting blade 210 to an excited state, thereby decomposing the organic contaminants. To go. Further, the generated ozone absorbs ultraviolet light with a wavelength of 253.7 nm, thereby generating active oxygen in an excited state. Since the generated active oxygen and ozone have high oxidizing power, they combine with carbon, hydrogen, and the like generated on the processing surface of the cutting blade 210 to form highly polar hydrophilic groups such as hydroxyl groups, aldehyde groups, and carboxyl groups. It is formed on the processing surface of the cutting blade 210 . As a result, the cutting blade 210 becomes hydrophilic, and the processing water is less likely to form droplets on the processing surface of the cutting blade 210, and the processing water tends to spread on the processing surface of the cutting blade 210 in the form of a water film.

親水化した切削ブレード210は、加工水ノズル216から噴射された加工水を多く伴って被加工物Wの裏面Wbに切り込む。加工水が被加工物Wの裏面Wbと切削ブレード210の加工面との接触部位により多く入り込むことで、接触部位に発生する摩擦熱の発生が抑制される。 The hydrophilized cutting blade 210 cuts the back surface Wb of the workpiece W accompanied by a large amount of machining water jetted from the machining water nozzle 216 . Since more machining water enters the contact portion between the back surface Wb of the workpiece W and the machining surface of the cutting blade 210, the generation of frictional heat at the contact portion is suppressed.

切削ブレード210が分割予定ラインSを切削し終えるX軸方向の所定の位置まで被加工物Wが-X方向に進行すると、-X方向への被加工物Wの切削送りを一度停止させ、切削ブレード210を被加工物Wから離間させ、保持テーブル20を+X方向へ送り出して元の位置に戻す。そして、隣り合う分割予定ラインSの間隔ずつ切削ブレード210をY軸方向に割り出し送りしながら順次同様の切削を行うことにより、同方向の全ての分割予定ラインSを切削する。さらに、保持テーブル20を90度回転させてから同様の切削を行うと、全ての分割予定ラインSが縦横に全てフルカットされる。 When the workpiece W advances in the -X direction to a predetermined position in the X-axis direction where the cutting blade 210 finishes cutting the planned division line S, the cutting feed of the workpiece W in the -X direction is once stopped, and cutting is performed. The blade 210 is separated from the workpiece W, and the holding table 20 is sent out in the +X direction and returned to its original position. Then, the cutting blade 210 is indexed and fed in the Y-axis direction by the distance between the adjacent lines S to be divided, and the same cutting is sequentially performed, thereby cutting all the lines S to be divided in the same direction. Further, when the holding table 20 is rotated by 90 degrees and then the same cutting is performed, all of the dividing lines S are fully cut vertically and horizontally.

本発明に係る被加工物の加工方法は、被加工物Wを保持する保持面200aを有した保持テーブル20で被加工物Wを保持する保持ステップと、保持ステップを実施した後、砥粒をビトリファイドで結合した加工砥石、即ち切削ブレード210を含む加工手段21で被加工物Wを加工する加工ステップと、を備え、加工ステップでは、被加工物Wに加工水を供給するとともに、所定波長の光を光照射手段4から切削ブレード210の加工面に照射することで、切削ブレード210の親水化等により被加工物Wの裏面Wbと切削ブレード210の加工面との接触部位により多くの加工水を入り込ませて、接触部位に発生する摩擦熱の発生を抑制して切削ブレード210の必要以上の磨耗を抑えることができ、また、加工熱の上昇によるウエーハ焼けの発生等の加工品質の悪化を防止でき、被加工物Wが難削材で形成されたウエーハであっても円滑に切削することが可能となる。さらに、被加工物Wの裏面Wbと切削ブレード210の加工面との接触部位に生じる切削屑を、加工水により効率よく排除していくことができる。 A method for processing a workpiece according to the present invention includes a holding step of holding a workpiece W on a holding table 20 having a holding surface 200a for holding the workpiece W, and after performing the holding step, abrasive grains are removed. and a machining step of machining the workpiece W with a machining means 21 including a machining grindstone bonded by vitrified, that is, a cutting blade 210. In the machining step, machining water is supplied to the workpiece W and a predetermined wavelength of By irradiating the processing surface of the cutting blade 210 with light from the light irradiation means 4, more processing water is generated at the contact portion between the back surface Wb of the workpiece W and the processing surface of the cutting blade 210 due to the hydrophilization of the cutting blade 210 or the like. can enter to suppress the generation of frictional heat generated at the contact portion, thereby suppressing excessive wear of the cutting blade 210, and also preventing the deterioration of processing quality such as the occurrence of wafer burning due to an increase in processing heat. Therefore, even if the workpiece W is a wafer made of a difficult-to-cut material, it can be cut smoothly. Furthermore, the cutting waste generated at the contact portion between the back surface Wb of the workpiece W and the machining surface of the cutting blade 210 can be efficiently removed by the machining water.

1:研削装置 10:ベース 11:コラム 12:入力手段
30:保持テーブル 300:吸着部 300a:保持面 301:枠体
31:カバー 31a:蛇腹カバー
5:研削送り手段 50:ボールネジ 51:ガイドレール 52:モータ 53:昇降板 54:ホルダ
7:加工手段 70:回転軸 70a:流路 71:ハウジング 72:モータ 73:マウント 74:研削ホイール 74a:加工砥石 74b:ホイール基台
8:加工水供給手段 80:加工水源 81:配管 82:調整バルブ
9:光照射手段 90:台部 91:発光部 92:洗浄水供給部 920:洗浄水ノズル 920a:噴射口 93:カバー
W:被加工物 Wa:被加工物の表面 Wb:被加工物の裏面 T:保護テープ
A:着脱領域 B:研削領域
P1:プロット図
2:切削装置 2A:基台
20:保持テーブル 200:吸着部 200a:保持面 201:枠体 202:回転手段 204:固定クランプ
21:加工手段 210:切削ブレード 211:スピンドル 212:ハウジング 218:着脱フランジ 217:固定ナット
219:ブレードカバー 213:支持ブロック 213a:調整ネジ 213b:供給ホース 213c:飛沫カバー 214:加工水ノズル 215:加工水ブロック 215a:調整ネジ 216:加工水ノズル 216a:加工水噴射口
25:アライメント手段 250:アライメント用カメラ
22:切削送り手段 220:ボールネジ 221:ガイドレール 222:モータ 223:可動板
23:割り出し送り手段 230:ボールネジ 231:ガイドレール 232:モータ
233:可動部 234:コラム
24:切り込み送り手段 240:ボールネジ 241:ガイドレール 242:モータ 243:支持部材
4:光照射手段 40:発光部 41:電源
W:被加工物 Wa:被加工物の表面 Wb:被加工物の裏面 S:分割予定ライン D:デバイス T1:ダイシングテープ F:環状フレーム
1: Grinding Device 10: Base 11: Column 12: Input Means 30: Holding Table 300: Suction Part 300a: Holding Surface 301: Frame 31: Cover 31a: Bellows Cover 5: Grinding Feeding Means 50: Ball Screw 51: Guide Rail 52 : Motor 53: Elevating plate 54: Holder 7: Processing means 70: Rotating shaft 70a: Flow path 71: Housing 72: Motor 73: Mount 74: Grinding wheel 74a: Processing whetstone 74b: Wheel base
8: Processing water supply means 80: Processing water source 81: Piping 82: Adjustment valve 9: Light irradiation means 90: Base 91: Light emitting unit 92: Cleaning water supply unit 920: Cleaning water nozzle 920a: Injection port 93: Cover W: Workpiece Wa: Surface of workpiece Wb: Back surface of workpiece T: Protective tape
A: Detachable area B: Grinding area P1: Plot Figure 2: Cutting device 2A: Base 20: Holding table 200: Adsorption part 200a: Holding surface 201: Frame body 202: Rotating means 204: Fixed clamp 21: Processing means 210: Cutting blade 211: Spindle 212: Housing 218: Detachable flange 217: Fixing nut 219: Blade cover 213: Support block 213a: Adjusting screw 213b: Supply hose 213c: Splash cover 214: Processing water nozzle 215: Processing water block 215a: Adjusting screw 216: Machining water nozzle 216a: Machining water injection port 25: Alignment means 250: Alignment camera 22: Cutting feeding means 220: Ball screw 221: Guide rail 222: Motor 223: Movable plate 23: Indexing feeding means 230: Ball screw 231: Guide Rail 232: Motor 233: Movable part 234: Column 24: Cutting feed means 240: Ball screw 241: Guide rail 242: Motor 243: Support member 4: Light irradiation means 40: Light emitting part 41: Power supply W: Workpiece Wa: Workpiece Surface of workpiece Wb: Back surface of workpiece S: Line to be divided D: Device T1: Dicing tape F: Annular frame

Claims (2)

被加工物の加工方法であって、
被加工物を保持する保持面を有した保持テーブルで被加工物を保持する保持ステップと、
該保持ステップを実施した後、砥粒をビトリファイドで結合するとともに光触媒を含まない加工砥石を含む加工手段で被加工物を加工する加工ステップと、を備え、
該加工手段は、該加工砥石を備える切削ブレードを有し、該加工ステップでは、該切削ブレードで被加工物を切削し、
該加工ステップでは、被加工物に加工水を供給するとともに、該加工水が供給される直前の該切削ブレードの該加工砥石の有機物を含む加工面に対して所定波長の紫外光を光照射手段から照射することで該加工面に親水基を形成し、該加工面全体に該加工水が広がりやすくして被加工物と該加工面との接触部位に摩擦熱が発生するのを抑制する加工方法。
A method for processing a workpiece,
a holding step of holding the workpiece with a holding table having a holding surface for holding the workpiece;
After performing the holding step, a processing step of processing the workpiece with a processing means including a processing grindstone that combines abrasive grains with vitrified and does not contain a photocatalyst,
The processing means has a cutting blade equipped with the processing grindstone, and in the processing step, cutting the workpiece with the cutting blade,
In the machining step, machining water is supplied to the workpiece, and ultraviolet light of a predetermined wavelength is applied to the machining surface of the machining grindstone of the cutting blade immediately before the machining water is supplied. A processing that forms hydrophilic groups on the processing surface by irradiating from the above, and makes it easier for the processing water to spread over the entire processing surface, thereby suppressing the generation of frictional heat at the contact portion between the workpiece and the processing surface. Method.
被加工物の加工方法であって、
被加工物を保持する保持面を有した保持テーブルで被加工物を保持する保持ステップと、
該保持ステップを実施した後、砥粒をビトリファイドで結合するとともに光触媒を含まない加工砥石を含む加工手段で被加工物を加工する加工ステップと、を備え、
該加工手段は、該加工砥石を備える研削ホイールを有し、該加工ステップでは、該研削ホイールで被加工物を研削し、
該加工ステップでは、被加工物に加工水を供給するとともに、該研削ホイールの回転軌跡において該研削ホイールが該保持テーブルで保持された被加工物に進入する直前の位置に光照射手段が配設され、該加工砥石の有機物を含む加工面に対して所定波長の紫外光を該光照射手段から照射することで該加工面に親水基を形成し、該加工面全体に該加工水が広がりやすくして被加工物と該加工面との接触部位に摩擦熱が発生するのを抑制する加工方法。
A method for processing a workpiece,
a holding step of holding the workpiece with a holding table having a holding surface for holding the workpiece;
After performing the holding step, a processing step of processing the workpiece with a processing means including a processing grindstone that combines abrasive grains with vitrified and does not contain a photocatalyst,
The processing means has a grinding wheel equipped with the processing grindstone, and in the processing step, grinds the workpiece with the grinding wheel,
In the machining step, machining water is supplied to the workpiece, and a light irradiation means is provided at a position immediately before the grinding wheel enters the workpiece held by the holding table on the rotational trajectory of the grinding wheel. By irradiating the processing surface of the processing grindstone containing organic matter with ultraviolet light of a predetermined wavelength from the light irradiation means, hydrophilic groups are formed on the processing surface, and the processing water tends to spread over the entire processing surface. A processing method for suppressing the generation of frictional heat at the contact portion between the workpiece and the processing surface.
JP2017170156A 2017-09-05 2017-09-05 Processing method Active JP7127972B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017170156A JP7127972B2 (en) 2017-09-05 2017-09-05 Processing method
TW107126613A TWI793147B (en) 2017-09-05 2018-08-01 processing method
CN201810992953.9A CN109427574B (en) 2017-09-05 2018-08-29 Processing method
KR1020180102844A KR102574673B1 (en) 2017-09-05 2018-08-30 Machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017170156A JP7127972B2 (en) 2017-09-05 2017-09-05 Processing method

Publications (2)

Publication Number Publication Date
JP2019042886A JP2019042886A (en) 2019-03-22
JP7127972B2 true JP7127972B2 (en) 2022-08-30

Family

ID=65514596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170156A Active JP7127972B2 (en) 2017-09-05 2017-09-05 Processing method

Country Status (4)

Country Link
JP (1) JP7127972B2 (en)
KR (1) KR102574673B1 (en)
CN (1) CN109427574B (en)
TW (1) TWI793147B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111843675B (en) * 2020-07-15 2021-09-07 郑州龙华机电工程有限公司 Power equipment on-line monitoring system
CN117464110B (en) * 2023-12-28 2024-03-15 成都鼎易精密模具有限公司 Arc special-shaped part machining clamp and machining method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018368A (en) 2007-07-11 2009-01-29 Disco Abrasive Syst Ltd Processing device
JP2013219215A (en) 2012-04-10 2013-10-24 Disco Abrasive Syst Ltd Method for processing sapphire wafer
WO2014034921A1 (en) 2012-09-03 2014-03-06 国立大学法人 熊本大学 Machining method and machining device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0943399A1 (en) * 1997-09-08 1999-09-22 The Institute Of Physical & Chemical Research Optical dressing method, machining device based on this method, grindstone and polishing cloth
JP2003334762A (en) * 2002-05-17 2003-11-25 Isel Co Ltd Grinding wheel and grinding work method using the grinding wheel and grinding machine
JP4192135B2 (en) * 2004-09-29 2008-12-03 株式会社東芝 Processing apparatus and processing method
JP5424188B2 (en) * 2008-08-28 2014-02-26 株式会社クリスタル光学 Grindability adjustment method of resinoid grinding wheel
JP2013123792A (en) * 2011-12-16 2013-06-24 Fujitsu Ltd Method for manufacturing semiconductor device, and grinding device
JP2014124690A (en) 2012-12-25 2014-07-07 Disco Abrasive Syst Ltd Grinding method and grinding device
JP6289886B2 (en) 2013-12-03 2018-03-07 株式会社ディスコ Wafer cutting method
JP2015231653A (en) * 2014-06-10 2015-12-24 株式会社ディスコ Grind stone
JP6475518B2 (en) * 2015-03-03 2019-02-27 株式会社ディスコ Wafer processing method
JP2017024093A (en) * 2015-07-17 2017-02-02 Towa株式会社 Cutting device and cutting method
JP2017056522A (en) * 2015-09-17 2017-03-23 株式会社ディスコ Grinding wheel and grinding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018368A (en) 2007-07-11 2009-01-29 Disco Abrasive Syst Ltd Processing device
JP2013219215A (en) 2012-04-10 2013-10-24 Disco Abrasive Syst Ltd Method for processing sapphire wafer
WO2014034921A1 (en) 2012-09-03 2014-03-06 国立大学法人 熊本大学 Machining method and machining device

Also Published As

Publication number Publication date
JP2019042886A (en) 2019-03-22
TWI793147B (en) 2023-02-21
TW201912310A (en) 2019-04-01
KR20190026590A (en) 2019-03-13
KR102574673B1 (en) 2023-09-04
CN109427574B (en) 2024-03-15
CN109427574A (en) 2019-03-05

Similar Documents

Publication Publication Date Title
JP6912284B2 (en) Grinding device
US20210043473A1 (en) Edge trimming apparatus
JP6736367B2 (en) Spindle unit
TWI795428B (en) Grinding device
JP7127972B2 (en) Processing method
KR101995597B1 (en) Chuck table in cutting apparatus
CN110576522B (en) Cutting device
KR102555557B1 (en) Grinding apparatus
US20230158628A1 (en) Creep feed grinding apparatus
JP2020116665A (en) Holding surface cleaner
JP6541476B2 (en) Wafer polishing method
CN111438085B (en) Cleaning mechanism
JP6008548B2 (en) Nozzle adjustment jig
JP7433709B2 (en) Cleaning equipment and cleaning method
JP2019089183A (en) End face cleaning method and cutting device
JP2019110165A (en) Cutting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7127972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150