JP7123481B2 - Acid-resistant cement composition - Google Patents

Acid-resistant cement composition Download PDF

Info

Publication number
JP7123481B2
JP7123481B2 JP2018170222A JP2018170222A JP7123481B2 JP 7123481 B2 JP7123481 B2 JP 7123481B2 JP 2018170222 A JP2018170222 A JP 2018170222A JP 2018170222 A JP2018170222 A JP 2018170222A JP 7123481 B2 JP7123481 B2 JP 7123481B2
Authority
JP
Japan
Prior art keywords
furnace slag
blast furnace
cement
acid
fly ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018170222A
Other languages
Japanese (ja)
Other versions
JP2019059662A (en
Inventor
了 藤原
太朗 小菅
一定 須崎
信和 二戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DC Co Ltd
Original Assignee
DC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DC Co Ltd filed Critical DC Co Ltd
Publication of JP2019059662A publication Critical patent/JP2019059662A/en
Application granted granted Critical
Publication of JP7123481B2 publication Critical patent/JP7123481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、酸性濃度の高い環境下での使用に適した耐酸性セメント組成物に関するものである。 TECHNICAL FIELD The present invention relates to an acid-resistant cement composition suitable for use in an environment with a high acid concentration.

下水道関連施設では、硫酸などの酸とセメントの水和生成物である水酸化カルシウムおよびカルシウムシリケート水和物との中和反応が起こる。この反応により、セメントの水和生成物が分解されることでコンクリート構造物の劣化が起こる。下水道関連施設のみならず化学工場など酸性環境下にあるコンクリートは多い。 In sewerage facilities, a neutralization reaction occurs between an acid such as sulfuric acid and calcium hydroxide and calcium silicate hydrate, which are hydration products of cement. This reaction causes deterioration of the concrete structure by decomposing hydration products of cement. Concrete is often used in acidic environments, not only in sewerage facilities but also in chemical plants.

特許文献1では、普通ポルトランドセメントが30~40質量%、シリカフュームが12~25質量%、高炉水砕スラグ粉が40~58質量%で、これら3成分で100質量%となり、シリカフュームと高炉水砕スラグ粉との割合が、質量比で、高炉水砕スラグ粉/シリカフューム=2.0~3.2であり、普通ポルトランドセメントとシリカフュームとの割合が、質量比で、普通ポルトランドセメント/シリカフューム=1.9~2.5である耐酸性セメント組成物を開示している。 In Patent Document 1, ordinary Portland cement is 30 to 40% by mass, silica fume is 12 to 25% by mass, and blast furnace granulated slag powder is 40 to 58% by mass. The ratio of slag powder is granulated blast furnace slag powder/silica fume = 2.0 to 3.2, and the ratio of ordinary Portland cement to silica fume is ordinary Portland cement/silica fume = 1. .9 to 2.5 acid resistant cement compositions.

特許文献2では、新規な無機バインダー系、水硬性モルタルの製造のための無機バインダー系の使用、及びこのバインダー系を含むモルタルに関する技術を開示している。潜在水硬性バインダーは、高炉スラグ、スラグ砂、粉砕高炉スラグ、電熱式燐スラグまたは鉄鋼スラグから選択されている。 US Pat. No. 6,200,000 discloses a novel inorganic binder system, the use of the inorganic binder system for the production of hydraulic mortars, and technology relating to mortars containing this binder system. The latent hydraulic binder is selected from blast furnace slag, slag sand, ground blast furnace slag, electrothermal phosphorus slag or steel slag.

特許文献3では、コンクリートやモルタルを保護し得る、耐食性モルタル組成物を開示している。(A)セメント、(B)高炉スラグ微粉末、(C)フライアッシュ、(D)膨張材、(E)カルシウムとアルミニウムを化学成分として含む特定の骨材、(F)増粘剤を含有し、セメント用ポリマーを実質的に含まない耐食性モルタル組成物で、(E)の骨材としてスラグ系骨材、例えば高炉スラグ骨材、電気炉酸化スラグ骨材等が挙げられている。 Patent Document 3 discloses a corrosion-resistant mortar composition that can protect concrete and mortar. Contains (A) cement, (B) ground granulated blast furnace slag, (C) fly ash, (D) expansive material, (E) specific aggregate containing calcium and aluminum as chemical components, and (F) thickener , a corrosion-resistant mortar composition substantially free of cement-use polymers, and the aggregate of (E) includes slag-based aggregates such as blast furnace slag aggregates and electric furnace oxidizing slag aggregates.

特許文献4には、耐塩害性、耐酸性の特性を有する密実な硬化体を短時間に製造できる高炉スラグ粉末を主体とした耐硫酸セメント硬化体が開示されている。高炉スラグを主体としたセメント系結合材で成形したセメント硬化体であって、粗骨材を含む内部コンクリートと、コンクリートの表層に3~10mm未満の層厚でモルタル成分のみで形成した反応保護層とによる二層構造とし、反応保護層にセメント結合材(A)が高炉スラグ粉末(B)と石灰・石膏複合物(C)とセメントとを含み、細骨材のすべてを高炉スラグ細骨材としたモルタルとしている。 Patent Document 4 discloses a sulfuric acid-resistant cement hardened body mainly composed of blast-furnace slag powder, which can be produced in a short period of time into a dense hardened body having salt damage resistance and acid resistance. A hardened cement body formed from a cement-based binding material mainly composed of blast-furnace slag, which is an internal concrete containing coarse aggregate and a reactive protection layer formed on the surface of the concrete with a layer thickness of 3 to less than 10 mm and consisting only of a mortar component. In the reaction protective layer, the cement binder (A) contains blast furnace slag powder (B), lime-gypsum composite (C) and cement, and all of the fine aggregate is blast furnace slag fine aggregate. and mortar.

非特許文献1には、結合材の一部を高炉スラグ微粉末とし、細骨材の全量を高炉スラグ細骨材とすることで、耐酸性の向上が図れたことが記述されている。 Non-Patent Document 1 describes that acid resistance was improved by using granulated blast furnace slag as a part of the binder and using blast furnace slag fine aggregate as the entire amount of the fine aggregate.

非特許文献2には、モルタルの細骨材に高炉スラグ細骨材を使用することで、耐酸性の向上が図れたことが記述されている。 Non-Patent Document 2 describes that acid resistance can be improved by using blast furnace slag fine aggregate for mortar fine aggregate.

特許第5442249号公報Japanese Patent No. 5442249 特許第5730325号公報Japanese Patent No. 5730325 特開2017-132667号公報JP 2017-132667 A 特許第5878258号公報Japanese Patent No. 5878258

藤井隆史、細谷多慶、松永久宏、綾野克紀、「高炉水砕スラグを用いたセメント硬化体の耐硫酸性に関する研究」、コンクリート工学年次論文集、Vol.31、No.1、2009、pp.847-852Takashi Fujii, Takeshi Hosoya, Hiroshi Matsunaga, Katsunori Ayano, "Research on sulfuric acid resistance of hardened cement using granulated blast furnace slag", Proceedings of the Japan Concrete Institute, Vol.31, No.1, 2009, pp.847-852 綾野克紀、小河内誠、藤井隆史、入矢桂史郎、「モルタルの耐硫酸性に細骨材の種類が及ぼす影響」、コンクリート工学年次論文集、Vol.30、No.2、2008、pp.559-564Katsunori Ayano, Makoto Ogouchi, Takashi Fujii, Keishiro Iriya, "Influence of Fine Aggregate Type on Sulfuric Acid Resistance of Mortar", Proceedings of the Japan Concrete Institute, Vol.30, No.2, 2008, pp. 559-564

化学工場などは下水道関連施設より酸性濃度の高い環境である。しかし、耐酸性のセメント材料は5%硫酸で評価することが一般的であり、従来のセメント系材料では15%硫酸に対する耐久性を有しない。 Chemical plants, etc. are environments with a higher acid concentration than sewage-related facilities. However, acid-resistant cement materials are generally evaluated with 5% sulfuric acid, and conventional cement-based materials do not have durability against 15% sulfuric acid.

特許文献1では、シリカフュームが12~25質量%と多く、シリカフュームの増量は材料コストの問題で対応が難しい。そのため、シリカフュームを減量するかまたは使用しない材料で対応することが望まれる。 In Patent Document 1, the amount of silica fume is as large as 12 to 25% by mass, and it is difficult to increase the amount of silica fume due to the problem of material cost. Therefore, it is desirable to reduce the amount of silica fume or use a material that does not use silica fume.

また、耐酸性にはセメント割合を減少させることが有効であるが、そうすると強度不足となる恐れがある。さらに、セメントの割合の減少のみで15%硫酸などの高濃度の酸に対する耐久性の付与は困難である。 In addition, although it is effective to reduce the cement ratio for acid resistance, there is a risk of insufficient strength. Furthermore, it is difficult to impart durability to high-concentration acids such as 15% sulfuric acid only by reducing the proportion of cement.

本発明は、上述のような課題の解決を図ったものであり、化学工場などにおける酸性濃度の非常に高い環境下でも硬化物の劣化を抑制することができる耐酸性セメント組成物を提供することを目的としている。 The present invention aims to solve the above-mentioned problems, and provides an acid-resistant cement composition that can suppress the deterioration of the hardened material even in an environment with a very high acid concentration such as in a chemical plant. It is an object.

本発明に係る耐酸性セメント組成物は、セメントと、累積体積率50%粒径が1.0~5.0μmの高炉スラグ微粉末および/または累積体積率50%粒径が1.0~5.0μmのフライアッシュを用いたことを特徴とするものである。
本発明において、累積体積率50%粒径が1.0~5.0μmの高炉スラグ微粉末と累積体積率50%粒径が1.0~5.0μmのフライアッシュの合計は、10~85質量%であることが望ましい。
The acid-resistant cement composition according to the present invention comprises cement, ground granulated blast furnace slag having a 50% cumulative volume fraction particle size of 1.0 to 5.0 μm and/or a 50% cumulative volume fraction particle size of 1.0 to 5 0 μm fly ash is used.
In the present invention, the total of ground granulated blast furnace slag with a 50% cumulative volume fraction particle size of 1.0 to 5.0 μm and fly ash with a 50% cumulative volume fraction particle size of 1.0 to 5.0 μm is 10 to 85 % by mass is desirable.

耐酸性セメント組成物として、セメントに、累積体積率50%粒径が1.0~5.0μmの高炉スラグ微粉末および/または累積体積率50%粒径が1.0~5.0μmのフライアッシュを混合することで、耐酸性が向上するが、セメント量が減るとコンクリートあるいはモルタルとしての圧縮強度が低下するため、累積体積率50%粒径が1.0~5.0μmの高炉スラグ微粉末と累積体積率50%粒径が1.0~5.0μmのフライアッシュの合計は、85%以下であることが望ましい。 As the acid-resistant cement composition, cement is added with ground granulated blast furnace slag with a 50% cumulative volume fraction particle size of 1.0 to 5.0 μm and/or fly with a 50% cumulative volume fraction particle size of 1.0 to 5.0 μm. Mixing ash improves acid resistance, but when the amount of cement decreases, the compressive strength of concrete or mortar decreases. The total amount of powder and fly ash having a particle size of 1.0 to 5.0 μm at 50% cumulative volume fraction is preferably 85% or less.

また、累積体積率50%粒径が1.0~5.0μmの高炉スラグ微粉末と累積体積率50%粒径が1.0~5.0μmのフライアッシュの合計が10%以下の場合は、十分な耐酸性効果が得にくい。 In addition, when the total of ground granulated blast furnace slag with a 50% cumulative volume fraction particle size of 1.0 to 5.0 μm and fly ash with a 50% cumulative volume fraction particle size of 1.0 to 5.0 μm is 10% or less , it is difficult to obtain a sufficient acid resistance effect.

累積体積率50%粒径が1.0~5.0μmの高炉スラグ微粉末と、累積体積率50%粒径が1.0~5.0μmのフライアッシュフライアッシュの割合(質量比)においては、概してフライアッシュの割合が多いほど耐酸性効果が大きい反面、高炉スラグ微粉末が多いほど高い強度が得られる。 In the ratio (mass ratio) of ground granulated blast furnace slag with a cumulative volume fraction of 50% particle size of 1.0 to 5.0 μm and fly ash with a cumulative volume fraction of 50% particle size of 1.0 to 5.0 μm, In general, the greater the proportion of fly ash, the greater the acid resistance effect, while the greater the proportion of ground granulated blast furnace slag, the higher the strength obtained.

本発明のセメント組成物におけるセメントの割合としては、15~40質量%が好ましい。15質量%より少ないと、コンクリートまたはモルタルとしての十分な強度が得にくく、40質量%より多くなると十分な耐酸性効果が得にくい。 The proportion of cement in the cement composition of the present invention is preferably 15-40% by mass. If it is less than 15% by mass, it is difficult to obtain sufficient strength as concrete or mortar, and if it is more than 40% by mass, it is difficult to obtain sufficient acid resistance effect.

本発明では、セメント組成物にさらに繊維を添加することで、耐酸性効果の向上が図れる。繊維の添加量が多いほど硫酸に対する抵抗性が大きく、繊維の添加量としては結合材に対する外割で0.15~0.50質量%が好ましい。 In the present invention, by adding fibers to the cement composition, the acid resistance effect can be improved. The greater the amount of fiber added, the greater the resistance to sulfuric acid, and the amount of fiber added is preferably 0.15 to 0.50% by mass based on the binder.

セメント組成物の細骨材として、高炉水砕スラグ砂などの高炉スラグ細骨材を用いることで、耐酸性を向上させることができる。高炉スラグ細骨材を用いた場合、珪砂の場合と比べて、質量変化や中性化深さが改善される。 Acid resistance can be improved by using blast furnace slag fine aggregate such as granulated blast furnace slag sand as the fine aggregate of the cement composition. When blast-furnace slag fine aggregate is used, mass change and neutralization depth are improved compared to silica sand.

本発明の耐酸性セメント組成物は、従来の耐酸性セメント組成物と比較して、より酸性濃度の高い環境下でも硬化物の劣化を抑制することができ、下水道施設などに限らず化学工場などでも大きな耐酸性効果を発揮することができる。 INDUSTRIAL APPLICABILITY The acid-resistant cement composition of the present invention can suppress the deterioration of the hardened material even in an environment with a higher acid concentration than conventional acid-resistant cement compositions. However, it can exhibit a large acid resistance effect.

〔実験1〕
本発明の効果を確認するため、実験1ではJIS規格のフライアッシュ(フライアッシュ1)と本発明で規定するフライアッシュ(フライアッシュ2)、JIS規格の高炉スラグ微粉末(高炉スラグ微粉末1)と本発明で規定する高炉スラグ微粉末(高炉スラグ微粉末2)を用い、これらを普通セメント(普通ポルトランドセメントを使用)、細骨材(セメント協会強さ試験用標準砂)、及び供試体No.14についてはシリカヒュームと混合してモルタルの供試体を作成し、圧縮強度及び硫酸浸透を比較した。
[Experiment 1]
In order to confirm the effect of the present invention, in Experiment 1, JIS standard fly ash (fly ash 1), fly ash specified in the present invention (fly ash 2), and JIS standard blast furnace slag ground powder (blast furnace slag ground powder 1) and ground granulated blast furnace slag (granulated blast furnace slag 2) specified in the present invention, and these are used as ordinary cement (using ordinary Portland cement), fine aggregate (standard sand for strength test by the Cement Association), and specimen No. For .14, mortar specimens were prepared by mixing with silica fume, and the compressive strength and sulfuric acid penetration were compared.

(1) 供試体の組成
供試体(No.1~No.14)の組成を表1に示す。
(1) Composition of specimens Table 1 shows the composition of the specimens (No.1 to No.14).

Figure 0007123481000001
Figure 0007123481000001

表1における使用材料は以下の通りである。
普通セメント:普通ポルトランドセメント、
フライアッシュ1:JISII種のフライアッシュ、
フライアッシュ2:フライアッシュ1を粉砕したもの(累積体積率50%粒径が3.3μm)、
高炉スラグ微粉末1:高炉スラグ微粉末4000
高炉スラグ微粉末2:高炉スラグ微粉末1を粉砕したもの(累積体積率50%粒径が1.6μm)、
シリカフューム:シリカヒューム(JISA6207)
The materials used in Table 1 are as follows.
Ordinary cement: Ordinary Portland cement,
Fly ash 1: JISII type fly ash,
Fly ash 2: pulverized fly ash 1 (cumulative volume fraction 50% particle size 3.3 μm),
Granulated blast furnace slag 1: Granulated blast furnace slag 4000
Ground blast furnace slag powder 2: pulverized ground blast furnace slag powder 1 (cumulative volume ratio 50% particle size 1.6 μm),
Silica fume: Silica fume (JISA6207)

(2) 供試体の作成
モルタル(水/結合材=30%、結合材:細骨材=1:1.4(質量比)、0打フロー:260±10mm、空気量4.0%以下となるように高性能AE減水剤、消泡剤で調整)をφ5×10mmの供試体に成型して、水中養生と蒸気養生にて作成した。
蒸気養生は、前養生2時間、60℃まで2時間で上昇、60℃で3時間保持、17時間かけて20℃まで下降した。
(2) Preparation of test specimen Mortar (water/binder = 30%, binder: fine aggregate = 1:1.4 (mass ratio), 0-stroke flow: 260 ± 10mm, air content: 4.0% or less (Adjusted with a high-performance AE water reducing agent and an antifoaming agent) was molded into a φ5 × 10 mm test piece and prepared by underwater curing and steam curing.
Steam curing consisted of 2 hours of precuring, rising to 60°C in 2 hours, holding at 60°C for 3 hours, and falling to 20°C over 17 hours.

(3) 試験方法
「下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル平成24年4月」に準拠した。ただし、硫酸は5%溶液ではなく15%溶液で浸漬した。
No.1~No.3、No.13、No.14が比較例、No.4~No.12が実施例である。
(3) Test method The test was conducted in accordance with the “Technical Manual for Corrosion Suppression and Prevention of Sewerage Concrete Structures, April 2012”. However, the sulfuric acid was immersed in a 15% solution rather than a 5% solution.
No.1 to No.3, No.13 and No.14 are comparative examples, and No.4 to No.12 are examples.

(4) 試験結果
試験結果を表2に示す。

Figure 0007123481000002
(4) Test results Table 2 shows the test results.
Figure 0007123481000002

表2より、比較例であるNo.1~No.3は、本発明の実施例であるNo.4~No.12と比較して、水中養生の材齢3日と蒸気養生の強度が小さいことが分かる。 From Table 2, Comparative Examples No. 1 to No. 3 have a material age of 3 days in water curing and a lower steam curing strength than No. 4 to No. 12, which are examples of the present invention. I understand.

フライアッシュ(フライアッシュ1またはフライアッシュ2)と高炉スラグ微粉末(高炉スラグ微粉末1または高炉スラグ微粉末2)の割合(質量比)との関係では、概してフライアッシュの割合が多く、高炉スラグ微粉末が少ないほど、硫酸浸漬の結果が良好である反面、フライアッシュの割合が少なく、高炉スラグ微粉末が多いほど圧縮強度が高い。 Regarding the relationship between the ratio (mass ratio) of fly ash (fly ash 1 or fly ash 2) and ground granulated blast furnace slag (granulated blast furnace slag 1 or ground blast furnace slag 2), the percentage of fly ash is generally large, and blast furnace slag The smaller the fine powder, the better the result of the sulfuric acid immersion, while the smaller the proportion of fly ash and the larger the fine powder of blast furnace slag, the higher the compressive strength.

また、フライアッシュ(フライアッシュ1またはフライアッシュ2)と高炉スラグ微粉末(高炉スラグ微粉末1または高炉スラグ微粉末2)の割合(質量比)が同じもの同士を比較した場合、すなわちNo.1とNo.4、No.7、No.10の比較と、No.2とNo.5、No.8、No.11の比較と、No.3とNo.6、No.9、No.12の比較においても、本発明の実施例の方が硫酸浸透の結果が良好であることが分かる。 Also, when comparing fly ash (fly ash 1 or fly ash 2) and granulated blast furnace slag (granulated blast furnace slag 1 or granulated blast furnace slag 2) in the same ratio (mass ratio), that is, No. 1 and No.4, No.7, No.10, No.2 with No.5, No.8, No.11, No.3 with No.6, No.9, No.12 Also in the comparison, it can be seen that the results of sulfuric acid permeation are better in the examples of the present invention.

本発明の実施例であるNo.4~No.12は、比較例であるNo.13とNo.14と比較して、15%硫酸浸漬による供試体の質量減少率、中性化深さ、硫酸イオン浸透深さがかなり小さく、耐酸性に優れていることが分かる。 Compared to comparative examples No. 13 and No. 14, No. 4 to No. 12, which are examples of the present invention, have a mass reduction rate of the specimen by immersion in 15% sulfuric acid, neutralization depth, It can be seen that the penetration depth of sulfate ions is considerably small and the acid resistance is excellent.

〔実験2〕
実験2では繊維を添加した場合、及びセメントの割合を変えた場合について実験を行った。繊維以外の使用材料および試験方法は実験1と同じである。ただし、蒸気養生は行っていない。
[Experiment 2]
In Experiment 2, experiments were conducted in the case of adding fibers and in the case of changing the ratio of cement. The materials used and test methods other than the fibers are the same as in Experiment 1. However, no steam curing was performed.

(1) 供試体の組成
供試体(No.15~No.35)の組成を表3に示す。
(1) Composition of specimens Table 3 shows the composition of the specimens (No.15 to No.35).

Figure 0007123481000003
Figure 0007123481000003

(2) 繊維の性質および繊維の組成
繊維の性質を表4に、繊維の組成を表5に示す。
なお、表4の「タフバインダー」は東レ・アムテックス株式会社の登録商標、「パルチップ」は萩原工業株式会社の登録商標である。
表5の数値は、結合材に対する割合(%)である。細骨材の内割添加。
(2) Fiber properties and fiber composition Table 4 shows the fiber properties, and Table 5 shows the fiber composition.
In addition, "Toughbinder" in Table 4 is a registered trademark of Toray Amtex Co., Ltd., and "Palchip" is a registered trademark of Hagiwara Industry Co., Ltd.
The numerical values in Table 5 are percentages (%) relative to the binder. Inner division addition of fine aggregate.

Figure 0007123481000004
Figure 0007123481000004

Figure 0007123481000005
Figure 0007123481000005

(3) 試験結果
試験結果を表6に示す。
(3) Test results Table 6 shows the test results.

Figure 0007123481000006
Figure 0007123481000006

表6より、セメントの割合が少ない場合に硫酸に対する抵抗性が大きいことが分かる。また、本発明に規定するフライアッシュを用いた場合に硫酸に対する抵抗性が大きい。 From Table 6, it can be seen that the resistance to sulfuric acid is high when the proportion of cement is small. Moreover, when the fly ash specified in the present invention is used, the resistance to sulfuric acid is high.

繊維の添加により硫酸に対する抵抗性が大きくなった。特にナイロンの効果が大きい。また、繊維の添加量が多いほど硫酸に対する抵抗性が大きい。同一の繊維添加量のとき繊維長が異なるものの組み合わせた場合では硫酸に対する抵抗性が小さくなる傾向となる。 The addition of fiber increased the resistance to sulfuric acid. Nylon is particularly effective. Also, the greater the amount of fiber added, the greater the resistance to sulfuric acid. When fibers with different lengths are combined with the same amount of added fiber, the resistance to sulfuric acid tends to decrease.

〔実験3〕
実験3では細骨材(珪砂)を高炉水砕スラグ砂に変えた場合について実験を行った。
(1) 供試体の組成
供試体(No.14、36、37)の組成を表7に示す。No.14は、実験1で示したものと同じである。

Figure 0007123481000007
[Experiment 3]
In experiment 3, an experiment was conducted in which the fine aggregate (silica sand) was changed to granulated blast furnace slag sand.
(1) Composition of specimens Table 7 shows the composition of the specimens (Nos. 14, 36, and 37). No. 14 is the same as that shown in Experiment 1.
Figure 0007123481000007

表7における使用材料は以下の通りである。
普通セメント:普通ポルトランドセメント
高炉スラグ微粉末1:高炉スラグ微粉末4000
高炉スラグ微粉末2:高炉スラグ微粉末1を粉砕したもの(累積体積率50%粒径が1.6μm)
珪砂1:日瓢礦業株式会社製 3号珪砂
珪砂2:日瓢礦業株式会社製 6号珪砂
珪砂1と珪砂2は、質量比が7対3の割合で混合した。
高炉水砕スラグ砂:JFEスチール株式会社製の水砕スラグを300μmふるいにかけた。300μmふるいの通過分と残留分を質量比で1対1の割合で混合した。
The materials used in Table 7 are as follows.
Ordinary cement: Ordinary Portland cement Blast furnace slag ground powder 1: Blast furnace slag ground powder 4000
Ground granulated blast furnace slag 2: Pulverized ground granulated blast furnace slag 1 (cumulative volume fraction 50% particle size 1.6 μm)
Silica sand 1: No. 3 silica sand manufactured by Nihon Gyo Co., Ltd. Silica sand 2: No. 6 silica sand manufactured by Nihon Gyo Co., Ltd. Silica sand 1 and silica sand 2 were mixed at a mass ratio of 7:3.
Granulated blast furnace slag sand: Water granulated slag manufactured by JFE Steel Corporation was passed through a 300 μm sieve. The fraction passed through the 300 μm sieve and the residue were mixed in a mass ratio of 1:1.

(2) 供試体の作成
モルタル(水/結合材=30%、結合材:細骨材=1:1.4(質量比)、15打フロー:170±10mmとなるように高性能AE減水剤で調整)をΦ5×10mmの供試体に成型して、水中養生にて作成した。
(2) Preparation of test specimen Mortar (water / binding material = 30%, binding material: fine aggregate = 1: 1.4 (mass ratio), 15 shots flow: high performance AE water reducing agent so that it becomes 170 ± 10 mm ) was molded into a Φ5×10 mm test piece and cured in water.

(3) 試験方法
「下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル平成24年4月」に準拠した。硫酸は当該規格の通りの5%溶液に浸漬した。
(3) Test method The test was conducted in accordance with the “Technical Manual for Corrosion Suppression and Prevention of Sewerage Concrete Structures, April 2012”. Sulfuric acid was soaked in a 5% solution as specified.

(4) 試験結果
試験結果を表8に示す。
(4) Test results Table 8 shows the test results.

Figure 0007123481000008
Figure 0007123481000008

表8より、細骨材として高炉水砕スラグ砂を用いたNo.37は、比較例であるNo.14とNo.36と比較して、水中養生の材齢3日の圧縮強度が大きいことが分かる。材齢28日のNo.37の圧縮強度は、No.36よりも小さいが、No.14よりは大きく、良好な結果であるといえる。 Table 8 shows that No. 37, which uses granulated blast furnace slag sand as fine aggregate, has a higher compressive strength after 3 days of water curing compared to No. 14 and No. 36, which are comparative examples. I understand. The compressive strength of No. 37 at a material age of 28 days is lower than that of No. 36, but higher than that of No. 14, which is a good result.

また、細骨材として高炉水砕スラグ砂を用いたNo.37は、比較例であるNo.14とNo.36と比較して、5%硫酸浸漬による供試体の質量変化率、中性化深さが小さく、耐酸性に優れていることが分かる。 In addition, No.37, which uses granulated blast furnace slag sand as the fine aggregate, compared to No.14 and No.36, which are comparative examples, showed that the mass change rate and neutralization of the specimen after immersion in 5% sulfuric acid were It can be seen that the depth is small and the acid resistance is excellent.

Claims (2)

セメントと、累積体積率50%粒径が1.0~5.0μmの高炉スラグ微粉末および/または累積体積率50%粒径が1.0~5.0μmのフライアッシュを用い、前記累積体積率50%粒径が1.0~5.0μmの高炉スラグ微粉末と累積体積率50%粒径が1.0~5.0μmのフライアッシュの合計が10~85質量%であり、前記セメントの割合が15~40質量%であり、さらに繊維を外割で0.15~0.50質量%添加してあることを特徴とする耐酸性セメント組成物。 Using cement, ground granulated blast furnace slag with a 50% cumulative volume fraction particle size of 1.0 to 5.0 μm and/or fly ash with a 50% cumulative volume fraction particle size of 1.0 to 5.0 μm, the cumulative volume A total of ground granulated blast furnace slag with a 50% volume fraction particle size of 1.0 to 5.0 μm and fly ash with a cumulative volume fraction 50% particle size of 1.0 to 5.0 μm is 10 to 85% by mass, and the cement is 15 to 40% by mass, and 0.15 to 0.50% by mass of fiber is added as the outer percent of the acid-resistant cement composition. 請求項記載の耐酸性セメント組成物において、細骨材として高炉スラグ細骨材を用いることを特徴とする耐酸性セメント組成物。 2. The acid -resistant cement composition according to claim 1 , wherein the fine aggregate is blast-furnace slag fine aggregate.
JP2018170222A 2017-09-22 2018-09-12 Acid-resistant cement composition Active JP7123481B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182055 2017-09-22
JP2017182055 2017-09-22

Publications (2)

Publication Number Publication Date
JP2019059662A JP2019059662A (en) 2019-04-18
JP7123481B2 true JP7123481B2 (en) 2022-08-23

Family

ID=66176219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018170222A Active JP7123481B2 (en) 2017-09-22 2018-09-12 Acid-resistant cement composition

Country Status (1)

Country Link
JP (1) JP7123481B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460065B2 (en) * 2019-11-11 2024-04-02 住友大阪セメント株式会社 Coating material, tubular molded body, manufacturing method for tubular molded body, and coating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336813A (en) 2001-05-11 2002-11-26 Electric Power Dev Co Ltd Multifunctional fly ash and method of manufacturing the same
JP2011207669A (en) 2010-03-30 2011-10-20 Ube Industries Ltd Hydraulic composition and hardened body thereof
JP2017132667A (en) 2016-01-29 2017-08-03 太平洋マテリアル株式会社 Corrosion resistant mortar composition
JP6185682B1 (en) 2017-02-08 2017-08-23 株式会社デイ・シイ Blast furnace slag fine powder and cement composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3662052B2 (en) * 1995-09-19 2005-06-22 電気化学工業株式会社 Mixed cement composition
JP4649873B2 (en) * 2004-05-17 2011-03-16 株式会社大林組 Acid resistant concrete repair material
JP5589258B2 (en) * 2008-03-26 2014-09-17 宇部興産株式会社 Hydraulic composition and cured body thereof
DE102008055064A1 (en) * 2008-12-22 2010-06-24 Wacker Chemie Ag Acid-resistant, hydraulically setting compounds
JP5442249B2 (en) * 2008-12-26 2014-03-12 株式会社大林組 Acid resistant cement composition
JP2011088800A (en) * 2009-10-26 2011-05-06 Chugoku Electric Power Co Inc:The Concrete member
JP5924612B2 (en) * 2010-10-29 2016-05-25 米倉 亜州夫 Acid-resistant cement composition and acid-resistant mortar or concrete containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336813A (en) 2001-05-11 2002-11-26 Electric Power Dev Co Ltd Multifunctional fly ash and method of manufacturing the same
JP2011207669A (en) 2010-03-30 2011-10-20 Ube Industries Ltd Hydraulic composition and hardened body thereof
JP2017132667A (en) 2016-01-29 2017-08-03 太平洋マテリアル株式会社 Corrosion resistant mortar composition
JP6185682B1 (en) 2017-02-08 2017-08-23 株式会社デイ・シイ Blast furnace slag fine powder and cement composition

Also Published As

Publication number Publication date
JP2019059662A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP5688073B2 (en) Calcium ferroaluminate compound, cement admixture and method for producing the same, cement composition
KR101309612B1 (en) Composition for cross-section repairment of reinforced concrete structures and repairing method for cross-section of reinforced concrete structures using the same
JP6530890B2 (en) High strength cement mortar composition and method of producing hardened high strength cement mortar
CN104176964A (en) Concrete composite antiseptic
Yang et al. An experimental investigation into the effects of Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortar
JP6755730B2 (en) Method for suppressing neutralization of hardened cement and suppressing chloride ion permeation
JP7123481B2 (en) Acid-resistant cement composition
JP5259094B6 (en) Hydrated hardened body excellent in neutralization resistance with rebar
JP4796424B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP6735624B2 (en) Concrete surface modifier and method for improving surface quality of concrete using the same
JP2013227185A (en) Composition for mortar or concrete and molding produced by molding the composition
KR101626860B1 (en) High Strength concreat with hybrid fiber
JP2014189437A (en) Cracking-reduced type blast furnace cement composition and production method thereof
JP4796402B2 (en) Hydrated cured body and method for producing the same
JP4791200B2 (en) Hydrated cured body and method for producing the same
JP4796419B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JPS61256952A (en) Steel material preventive concret, mortar and cement
JP4827580B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4882259B2 (en) Hydrated hardened body with rebar having excellent salt resistance
JP4827548B2 (en) Hydrated cured body
JP4882257B2 (en) Hydrated hardened body with rebar having excellent salt resistance
Kirthini et al. Effect of incorporating metakaolin on the properties of high performance concrete
JP2006273692A (en) Hydrated hardened body containing reinforcing bar excellent in salt damage resistance
JP2006273689A (en) Hydrated hardened body containing reinforcing bar excellent in salt damage resistance
KELEŞTEMUR et al. Effect of marble dust on the corrosion resistance of glass fiber reinforced mortars

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220809

R150 Certificate of patent or registration of utility model

Ref document number: 7123481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150