JP6185682B1 - Blast furnace slag fine powder and cement composition - Google Patents

Blast furnace slag fine powder and cement composition Download PDF

Info

Publication number
JP6185682B1
JP6185682B1 JP2017020897A JP2017020897A JP6185682B1 JP 6185682 B1 JP6185682 B1 JP 6185682B1 JP 2017020897 A JP2017020897 A JP 2017020897A JP 2017020897 A JP2017020897 A JP 2017020897A JP 6185682 B1 JP6185682 B1 JP 6185682B1
Authority
JP
Japan
Prior art keywords
blast furnace
furnace slag
fine powder
slag fine
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017020897A
Other languages
Japanese (ja)
Other versions
JP2018127375A (en
Inventor
了 藤原
了 藤原
竜也 阿部
竜也 阿部
一定 須崎
一定 須崎
信和 二戸
信和 二戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DC Co Ltd
Original Assignee
DC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DC Co Ltd filed Critical DC Co Ltd
Priority to JP2017020897A priority Critical patent/JP6185682B1/en
Application granted granted Critical
Publication of JP6185682B1 publication Critical patent/JP6185682B1/en
Publication of JP2018127375A publication Critical patent/JP2018127375A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

【課題】従来にない物性を備え、強度発現性が良好でありながら、流動性にも優れ、硬化体の収縮の少ない微粉末度の高い高炉スラグ微粉末およびそれを用いたセメント系組成物の提供。【解決手段】高炉スラグ微粉末として、累積体積率50%の粒子径が1.0〜5.0μmであり、かつ全細孔容積が0.02cm3/g以下である高炉スラグ微粉末。さらに好ましくは、高炉スラグ微粉末累積個数50%の円形度が0.950以上である高炉スラグ微粉末。【選択図】なしA blast furnace slag fine powder having a high degree of fineness and a cementitious composition using the same, which has unprecedented physical properties, good strength development, excellent fluidity and little shrinkage of a cured product. Provided. As a blast furnace slag fine powder, a blast furnace slag fine powder having a cumulative volume fraction of 50% and a particle diameter of 1.0 to 5.0 μm and a total pore volume of 0.02 cm 3 / g or less. More preferably, blast furnace slag fine powder having a circularity of 0.950 or more when the cumulative number of fine blast furnace slag powder is 50%. [Selection figure] None

Description

本発明は、コンクリート用混和材などとして用いられる高炉スラグ微粉末および高炉スラグ微粉末を混合したセメント組成物に関するものである。   The present invention relates to a blast furnace slag fine powder used as an admixture for concrete and a cement composition in which blast furnace slag fine powder is mixed.

JIS A6206:2013では、高炉スラグ微粉末を、比表面積によって、高炉スラグ微粉末3000、高炉スラグ微粉末4000、高炉スラグ微粉末6000、高炉スラグ微粉末8000の4種類に分けている。   According to JIS A6206: 2013, blast furnace slag fine powder is divided into four types of blast furnace slag fine powder 3000, blast furnace slag fine powder 4000, blast furnace slag fine powder 6000, and blast furnace slag fine powder 8000 according to specific surface area.

従来、高炉スラグ微粉末6000よりも細かい高炉スラグ微粉末を製造する場合、一般的には4000程度まで粉砕した後に、分級をして細かい高炉スラグ微粉末を製造している。この場合、より細かい高炉スラグ微粉末を製造するほど、製品の割合が少なくなり収率が悪くなる。   Conventionally, when producing a blast furnace slag fine powder finer than the blast furnace slag fine powder 6000, the powder is generally classified to about 4000 and then classified to produce a fine blast furnace slag fine powder. In this case, as the finer blast furnace slag fine powder is produced, the product ratio decreases and the yield deteriorates.

また、従来のJISに基づく市販の高炉スラグ微粉末では、ブレーン比表面積の大きい高炉スラグ微粉末を用いた場合に強度発現が良好となる。しかし、高炉スラグ微粉末は細かいほど同一フローを得るための高性能AE減水剤の添加量が多く流動性に課題がある。また、一般に、比表面積の大きい細かい高炉スラグ微粉末ほど硬化体の収縮が大きくなるとされている。   Moreover, in the conventional blast furnace slag fine powder based on JIS, strength development becomes favorable when the blast furnace slag fine powder having a large Blaine specific surface area is used. However, the finer the blast furnace slag fine powder, the larger the amount of the high-performance AE water reducing agent for obtaining the same flow, the more the flowability is problematic. In general, the finer blast furnace slag fine powder having a larger specific surface area is said to have a larger shrinkage of the cured body.

このように、セメントに対する混和材としての高炉スラグ微粉末については、一般的にブレーン比表面積を基準としての性能評価がなされているが、ブレーン比表面積だけでは必ずしも高炉スラグ微粉末の粉末度や物性を正確に把握することはできず、的確な指標となっているかについては疑問があった(非特許文献1)。   As described above, performance of blast furnace slag fine powder as an admixture for cement is generally evaluated based on the specific surface area of Blaine. Cannot be accurately grasped, and there was a question as to whether it is an accurate index (Non-patent Document 1).

高炉スラグ微粉末の利用に関しては、多数の出願があり、例えば特許文献1には、セメントと、ブレーン比表面積が6000cm/gを超えた高炉スラグ微粉末と、膨張材と、軽量骨材などを含む高流動軽量モルタル組成物が記載されている。 Regarding the use of blast furnace slag fine powder, there are many applications. For example, Patent Document 1 discloses cement, blast furnace slag fine powder having a Blaine specific surface area exceeding 6000 cm 2 / g, an expansion material, a lightweight aggregate, and the like. A high flow lightweight mortar composition is described.

また、特許文献2には、高強度のセメント組成物の構成材料としての無機粉末の選択肢の一つとしてBET比表面積が5〜25m/gであるスラグ微粉末が記載されている。 Patent Document 2 describes slag fine powder having a BET specific surface area of 5 to 25 m 2 / g as one of the options of inorganic powder as a constituent material of a high-strength cement composition.

特許第5964345号公報Japanese Patent No. 5964345 特許第6025452号公報Japanese Patent No. 6025452

近松竜一、山本泰彦、高炉スラグ微粉末の粉末度評価法に関する研究、土木学会論文集、第420号/V−13、pp.71−80、1990.8Ryuichi Chikamatsu, Yasuhiko Yamamoto, Research on fineness evaluation method of fine powder of blast furnace slag, Journal of Japan Society of Civil Engineers, No. 420 / V-13, pp. 71-80, 1990.8

前述のように、従来のJISに基づく市販の高炉スラグ微粉末では、ブレーン比表面積が大きいほど強度発現が良好となる反面、流動性と硬化体の収縮に課題があった。   As described above, in the conventional blast furnace slag fine powder based on JIS, the strength expression is better as the Blaine specific surface area is larger, but there are problems in fluidity and shrinkage of the cured body.

本発明は、このような背景のもとに開発されたものであり、累積体積率と全細孔容積によって評価される従来にない物性を備え、強度発現性が良好でありながら、流動性にも優れ、硬化体の収縮の少ない微粉末度の高い高炉スラグ微粉末およびそれを用いたセメント系組成物を提供することを目的としている。   The present invention was developed based on such a background, has unprecedented physical properties evaluated by the cumulative volume fraction and the total pore volume, has good strength development, and has good fluidity. Another object of the present invention is to provide a ground granulated blast furnace slag with a small degree of shrinkage of a cured product and a high fineness, and a cementitious composition using the same.

本願発明の高炉スラグ微粉末は、粉砕機を用いた複数回の粉砕により、累積体積率50%の粒子径が1.0〜5.0μmであり、かつ全細孔容積が0.02cm/g以下となるまで微粉末化してなることを特徴とするものである。
また、本願発明の高炉スラグ微粉末の製造方法は、累積体積率50%の粒子径が1.0〜5.0μmであり、かつ全細孔容積が0.02cm /g以下となる高炉スラグ微粉末の製造方法であって、粉砕された高炉スラグ微粉末をさらに粉砕機を用いて1回または複数回粉砕することで、累積体積率50%の粒子径が1.0〜5.0μmであり、かつ全細孔容積が0.02cm /g以下に収まるまで微粉末化していくことを特徴とするものである。
The blast furnace slag fine powder of the present invention has a particle diameter of 1.0 to 5.0 μm with a cumulative volume ratio of 50% and a total pore volume of 0.02 cm 3 / It is characterized by being finely powdered until it becomes g or less.
Moreover, the manufacturing method of the blast furnace slag fine powder of this invention is a blast furnace slag in which the particle diameter of 50% of cumulative volume ratio is 1.0-5.0 micrometers, and the total pore volume is 0.02 cm < 3 > / g or less. A method for producing fine powder, wherein the pulverized blast furnace slag fine powder is further pulverized once or a plurality of times by using a pulverizer, so that the particle size with a cumulative volume ratio of 50% is 1.0 to 5.0 μm. It is characterized in that it is finely powdered until the total pore volume falls within 0.02 cm 3 / g.

累積体積率50%の粒子径が1.0〜5.0μmの高炉スラグ微粉末は、後述する表1からも明らかなように、従来の一般的な高炉スラグ微粉末8000と比較した場合でも平均粒径が小さい。なお、累積体積率50%の粒子径で見た場合、従来の市販されている最も細かい高炉スラグ微粉末で3.0〜4.0μm程度である。   The blast furnace slag fine powder having a cumulative volume fraction of 50% and a particle size of 1.0 to 5.0 μm is average even when compared with the conventional general blast furnace slag fine powder 8000, as is clear from Table 1 described later. Small particle size. In addition, when it sees with the particle diameter of 50% of cumulative volume ratio, it is about 3.0-4.0 micrometers in the finest blast furnace slag fine powder conventionally marketed.

累積体積率50%の粒子径が1.0〜5.0μmの高炉スラグ微粉末の製造は、従来の高炉スラグ微粉末の製造で一般的なボールミルや竪型ミルなどの粉砕機で、4000程度まで粉砕した後に、分級をして粗い粒子を除去する方法が一般的である。この方法では収率が悪く、製造が困難であり、累積体積率50%の粒子径が1.0〜3.0μm、さらに1.0〜2.0μmでは困難となり実用化されていない。粉砕機を用いて1回および/または複数回の粉砕で累積体積率50%の粒子径が1.0〜5.0μmに収まるよう可能な限り細かく粉砕していく方法が効率的である。   Production of fine blast furnace slag powder with a cumulative volume fraction of 50% and a particle size of 1.0 to 5.0 μm is about 4000 using conventional ball mills and vertical mills for the production of conventional fine blast furnace slag powder. After pulverization to a general level, classification is performed to remove coarse particles. In this method, the yield is poor and the production is difficult, and when the particle size with a cumulative volume ratio of 50% is 1.0 to 3.0 [mu] m, and further 1.0 to 2.0 [mu] m, it becomes difficult and has not been put to practical use. It is efficient to use a pulverizer to pulverize as finely as possible so that the particle size with a cumulative volume ratio of 50% is 1.0 to 5.0 μm by pulverization once and / or multiple times.

本願発明の累積体積率50%の粒子径が1.0〜5.0μmの条件のもと、全細孔容積が0.02cm/g以下の高炉スラグ微粉末は、全細孔容積が0.02cm/gを超える高炉スラグ微粉末に対し、セメント硬化物の製造における強度発現性に顕著な差はみられないが、流動性において大きな差があり、同一フローを得るための高性能AE減水剤の添加量を大幅に減らすことができる。また、長さ変化率で測定される硬化後の収縮も大幅に改善される。 The blast furnace slag fine powder having a total pore volume of 0.02 cm 3 / g or less under the condition that the particle diameter at a cumulative volume ratio of 50% of the present invention is 1.0 to 5.0 μm has a total pore volume of 0. Although there is no significant difference in strength development in the production of hardened cement for blast furnace slag fine powder exceeding 0.02 cm 3 / g, there is a large difference in fluidity and high performance AE for obtaining the same flow. The amount of water reducing agent added can be greatly reduced. In addition, shrinkage after curing as measured by the rate of change in length is greatly improved.

これは、従来のブレーン比表面積に基づく評価の場合に比べ、多孔質である高炉スラグ微粉末の細孔に起因する物性が評価でき、その物性の違いが流動性および硬化後の収縮に影響を与えているものと考えられる。   Compared to the conventional evaluation based on the specific surface area of Blaine, the physical properties attributed to the fine pores of the porous blast furnace slag powder can be evaluated, and the difference in physical properties affects the flowability and shrinkage after curing. It is thought to be given.

また、本願発明の高炉スラグ微粉末において、累積個数50%の円形度が0.950以上であることが望ましい。   In the blast furnace slag fine powder of the present invention, it is desirable that the circularity of the cumulative number of 50% is 0.950 or more.

従来、混和材としての高炉スラグ微粉末は、粒度分布の幅が大きく、円形度は特に考慮されていないが、累積体積率50%の粒子径が1.0〜5.0μmの高炉スラグ微粉末では粒度分布の幅が小さく、セメントに混和してモルタルやコンクリートを製造したときに、円形度が高いほど均質で高品質の硬化物が得られる。   Conventionally, blast furnace slag fine powder as an admixture has a large particle size distribution, and circularity is not particularly considered, but a blast furnace slag fine powder having a cumulative volume fraction of 50% and a particle size of 1.0 to 5.0 μm. The particle size distribution has a small width, and when a mortar or concrete is produced by mixing with cement, the higher the circularity, the more homogeneous and high-quality cured product can be obtained.

本願発明では、円形度に関する評価を累積個数50%の円形度で判断し、0.950以上としたが、これは従来の市販の高炉スラグ微粉末と比較し、十分高い円形度となっている。   In the present invention, the evaluation regarding the circularity is judged by the circularity of the cumulative number of 50% and set to 0.950 or more, which is sufficiently high compared with the conventional commercially available blast furnace slag fine powder. .

本願発明のセメント系組成物は、セメント(セメントの種類は限定されない)に加え、上述した本願発明の高炉スラグ微粉末が混和されていることを特徴とするものである。   The cementitious composition of the present invention is characterized in that, in addition to cement (the type of cement is not limited), the above-described fine powder of blast furnace slag of the present invention is mixed.

このセメント系組成物は、モルタル、コンクリートその他のセメント系硬化物の製造に用いられ、一般のモルタルやコンクリートの製造の場合と同様に、各種、混和材、混和剤を配合して使用することができる。   This cementitious composition is used in the production of mortar, concrete and other cement-based hardened products, and can be used by mixing various admixtures and admixtures as in the case of production of general mortar and concrete. it can.

本願発明の高炉スラグ微粉末およびセメント系組成物を用いて硬化物を製造した場合、従来のブレーン比表面積の大きい高炉スラグ微粉末を用いた場合と同等の高い強度発現性を発揮しつつ、流動性にも優れ、硬化体の収縮を抑える効果も高い。   When producing a cured product using the blast furnace slag fine powder and cementitious composition of the present invention, while exhibiting the same high strength expression as when using a conventional blast furnace slag fine powder with a large Blaine specific surface area, It has excellent properties and has a high effect of suppressing shrinkage of the cured product.

また、流動性に優れるため、同一フローを得るための高性能AE減水剤の添加量を大幅に減らすことができ、経済性が高い。   Moreover, since it is excellent in fluidity | liquidity, the addition amount of the high performance AE water reducing agent for obtaining the same flow can be reduced significantly, and economical efficiency is high.

本願発明の効果を確認するために、以下の実験を行った。
〔試料〕
表1は、実験に用いた高炉スラグ微粉末試料の物性をまとめたものである。
実施例:高炉スラグ微粉末A、高炉スラグ微粉末B
比較例:高炉スラグ微粉末C
In order to confirm the effect of the present invention, the following experiment was conducted.
〔sample〕
Table 1 summarizes the physical properties of the blast furnace slag fine powder samples used in the experiments.
Example: Blast furnace slag fine powder A, Blast furnace slag fine powder B
Comparative Example: Blast Furnace Slag Fine Powder C

また、表1には、比較のため、JISの高炉スラグ微粉末4000、高炉スラグ微粉末6000、高炉スラグ微粉末8000に相当する市販の高炉スラグ微粉末について測定した物性を併せて表示している。   For comparison, Table 1 also shows physical properties measured for commercially available blast furnace slag fine powder equivalent to JIS blast furnace slag fine powder 4000, blast furnace slag fine powder 6000, and blast furnace slag fine powder 8000. .

Figure 0006185682
Figure 0006185682

表1のブレーン比表面積は、非特許文献1に基づく空隙率に依存しない比表面積の測定方法で測定をした。   The Blaine specific surface area in Table 1 was measured by a specific surface area measurement method that does not depend on the porosity based on Non-Patent Document 1.

表1では、レーザー回折・散乱法を測定原理とするレーザー回折・散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製MT3000EXII)を用い粒子屈折率1.81の条件で測定した値から算定した累積体積率50%の粒子径を表示しており、本願発明の実施例となる高炉スラグ微粉末A、高炉スラグ微粉末Bでは累積体積率50%の粒子径がそれぞれ3.4μm、1.8μmであった。これに対し、ブレーン比表面積では高炉スラグ微粉末Aより大きい値、すなわち粒径が小さいと評価される比較例の高炉スラグ微粉末Cでは累積体積率50%の粒子径が3.7μmであった。   In Table 1, it calculated from the value measured on the conditions of particle | grain refractive index 1.81 using the laser diffraction and scattering type particle size distribution measuring device (Microtrack Bell Co., Ltd. MT3000EXII) which uses a laser diffraction and scattering method as a measurement principle. The particle diameter of the cumulative volume fraction 50% is displayed, and in the blast furnace slag fine powder A and the blast furnace slag fine powder B, which are examples of the present invention, the particle diameter of the cumulative volume fraction 50% is 3.4 μm and 1.8 μm, respectively. Met. On the other hand, in the Blaine specific surface area, a value larger than the blast furnace slag fine powder A, that is, the blast furnace slag fine powder C of the comparative example evaluated as having a small particle diameter, had a particle diameter of 3.7 μm with a cumulative volume ratio of 50%. .

なお、高炉スラグ微粉末4000、高炉スラグ微粉末6000、高炉スラグ微粉末8000との対比でみると、従来のJIS規格の高炉スラグ微粉末では、最も小さい高炉スラグ微粉末8000の場合で、5.1μmであった。   In comparison with the blast furnace slag fine powder 4000, the blast furnace slag fine powder 6000, and the blast furnace slag fine powder 8000, the conventional JIS standard blast furnace slag fine powder is the smallest blast furnace slag fine powder 8000. It was 1 μm.

BET比表面積は、高速比表面積/細孔分布測定装置(カンタクローム・インスツルメンツ社製NOVA4200e)を用いた。105℃、5時間(真空脱気)で脱気して前処理をした試料を測定温度が77.3K、相対圧力が0.05から0.30の6点の圧力範囲において固体表面に吸着した窒素ガス量の測定から得た吸着等温線(直線)から求めた。   For the BET specific surface area, a high-speed specific surface area / pore distribution measuring device (NOVA4200e manufactured by Cantachrome Instruments) was used. A sample pretreated by degassing at 105 ° C. for 5 hours (vacuum degassing) was adsorbed on the solid surface at a measurement temperature of 77.3 K and a relative pressure of 0.05 to 0.30 in a pressure range of 6 points. It was determined from the adsorption isotherm (straight line) obtained from the measurement of the amount of nitrogen gas.

BET比表面積は、1点法または多点法により測定される。多点法は、相対圧力が0.05から0.30の複数(3点以上)の圧力範囲において固体表面に吸着したガス量の測定から得た吸着等温線から求める。1点法は、吸着等温線の直線を示す範囲で相対圧力ができるだけ高いところを用いる。ミクロ細孔を持つ試料を1点法の測定では、相対圧力が0.1を超えると吸着等温線が直線を示さない場合がある。   The BET specific surface area is measured by a one-point method or a multipoint method. The multipoint method is obtained from an adsorption isotherm obtained from measurement of the amount of gas adsorbed on the solid surface in a plurality (three or more points) of pressure range where the relative pressure is 0.05 to 0.30. The one-point method uses a place where the relative pressure is as high as possible within the range showing the straight line of the adsorption isotherm. When measuring a sample having micropores by the one-point method, if the relative pressure exceeds 0.1, the adsorption isotherm may not show a straight line.

また、表1から明らかなように、各試料のブレーン比表面積の大小とBET多点法比表面積の大小には、粒子内部に空隙を有するまたは粒子の形状が異なるため、1対1の対応関係ではない。たとえば、高炉スラグ微粉末Bは高炉スラグ微粉末Cよりブレーン比表面積が大きいが、BET多点法比表面積が小さい。ブレーン比表面積またはBET多点法比表面積単独では、高炉スラグ微粉末の粒子の大きさなどの特性の評価が困難であることを示している。   Further, as apparent from Table 1, there is a one-to-one correspondence relationship between the size of the Blaine specific surface area and the size of the BET multipoint method specific surface area of each sample because there are voids inside the particles or the shape of the particles is different. is not. For example, although the blast furnace slag fine powder B has a larger Blaine specific surface area than the blast furnace slag fine powder C, it has a smaller BET multipoint specific surface area. It shows that it is difficult to evaluate characteristics such as the particle size of blast furnace slag fine powder by using Blaine specific surface area or BET multipoint specific surface area alone.

全細孔容積および細孔径(容積平均、微分最大値)は、高速・比表面積/細孔分布測定装置(カンタクローム・インスツルメンツ社製NOVA4200e)を用いた。105℃、5時間(真空脱気)で脱気して前処理をした試料を測定温度が77.3K、相対圧力が0.05から0.995の圧力範囲において固体表面に吸着した窒素ガス量の測定から得た吸着脱離等温線からBJH法によるメソ細孔分布計算から求めた。   For the total pore volume and pore diameter (volume average, differential maximum value), a high speed / specific surface area / pore distribution measuring device (NOVA4200e manufactured by Cantachrome Instruments) was used. The amount of nitrogen gas adsorbed on the solid surface at 105 ° C for 5 hours (vacuum degassing) and pretreated at a measurement temperature of 77.3K and a relative pressure of 0.05 to 0.995 From the adsorption / desorption isotherm obtained from the above measurement, the mesopore distribution was calculated by the BJH method.

高炉スラグ微粉末の円形度は、フロー式粒子像分析装置(シスメックス株式会社製FPIA−3000S)を用いて、試料懸濁液(50ccビーカーに試料0.04gと0.2%ヘキサメタリン酸ナトリウムを加えて35mlに定容した液を100Wの超音波で3分間分散処理して作成)を扁平な試料流に形成させてストロボ光を照射することにより個々の粒子を静止画像として撮像させる。撮像した画像を画像処理により粒子画像の投影した部分の面積と周囲長から下記の式(1)による算出によって測定した。例えば、円の場合で円形度は1.000、正六角形で0.952、正五角形で0.930、正方形で0.886となり、1.000に近づくほど円形に近づく。   The circularity of the blast furnace slag fine powder was determined by adding a sample suspension (0.04 g of sample and 0.2% sodium hexametaphosphate to a 50 cc beaker) using a flow type particle image analyzer (FPIA-3000S manufactured by Sysmex Corporation). Each liquid is imaged as a still image by forming a liquid with a constant volume of 35 ml by dispersion treatment with ultrasonic waves of 100 W for 3 minutes to form a flat sample flow and irradiating with strobe light. The captured image was measured by calculation according to the following equation (1) from the area and circumference length of the projected portion of the particle image by image processing. For example, in the case of a circle, the degree of circularity is 1.000, a regular hexagon is 0.952, a regular pentagon is 0.930, a square is 0.886, and the closer to 1.000, the closer to a circle.

円形度=2×(S×π)1/2/C … (1)
ここで、
C:粒子画像の投影した部分の周囲長
S:粒子画像の投影した部分の面積
Circularity = 2 × (S × π) 1/2 / C (1)
here,
C: Perimeter of the projected part of the particle image S: Area of the projected part of the particle image

高炉スラグ微粉末A、高炉スラグ微粉末Bでは累積個数50%の円形度がそれぞれ0.954、0.953であるのに対し、比較例となる高炉スラグ微粉末Cでは累積個数50%の円形度は0.943であった。   In the blast furnace slag fine powder A and the blast furnace slag fine powder B, the circularity of the cumulative number 50% is 0.954 and 0.953, respectively, whereas in the blast furnace slag fine powder C which is a comparative example, the circular number of the cumulative number 50%. The degree was 0.943.

〔試験内容〕
表1の高炉スラグ微粉末A〜Cを、表2に示す配合でセメント(普通ポルトランドセメント)に加え試験を行った。
〔contents of the test〕
Blast furnace slag fine powders A to C shown in Table 1 were added to cement (ordinary Portland cement) with the formulation shown in Table 2 and tested.

Figure 0006185682
Figure 0006185682

高炉スラグ微粉末A、高炉スラグ微粉末Bを配合したNo.1〜No.6が本実施発明の実施例であり、高炉スラグ微粉末Cを配合したNo.7〜No.9は比較例である。   No.1 to No.6 containing blast furnace slag fine powder A and blast furnace slag fine powder B are examples of the present invention, and No.7 to No.9 containing blast furnace slag fine powder C are comparative examples. is there.

モルタルの配合は、水結合材比が30%、砂/結合材(質量比)=1.4、砂はJIS R 5201「セメント物理試験方法」で使用する標準砂とした。練り混ぜはJASS 5M-701に準拠して5分間の静置後に試験した。   The mortar was mixed with a water binder ratio of 30%, sand / binder (mass ratio) = 1.4, and the sand was standard sand used in JIS R 5201 “Cement physical test method”. The kneading was tested after standing for 5 minutes according to JASS 5M-701.

モルタルのフロー値が15打フローで160±10mm、空気量が4.0±0.8%になるように、高性能AE減水剤(BASFジャパン株式会社製SP8SV)と消泡剤(BASFジャパン株式会社製No.404)を使用した。   High-performance AE water reducing agent (BASF Japan Co., Ltd. SP8SV) and antifoaming agent (BASF Japan Co., Ltd.) so that the mortar flow value is 160 ± 10mm and the air volume is 4.0 ± 0.8% at 15 strokes. Company No. 404) was used.

試験は圧縮強度と長さ変化率について行い、圧縮強度は、φ50×100mm円柱供試体を水中養生で材齢1日(24時間で脱型後に測定)、7日、28日で行った。長さ変化率は、40×40×160mm角柱供試体を材齢48時間後に脱型して、脱型後20℃、相対湿度60%気中養生で脱型後から3日、7日、14日、21日、28日で測定を行った。   The test was performed on the compressive strength and the rate of change in length, and the compressive strength was measured at a material age of 1 day (measured after demolding at 24 hours), 7 days, and 28 days on a φ50 × 100 mm cylindrical specimen. The rate of change in length was determined by removing the 40 × 40 × 160 mm prism specimen 48 hours after the material age, 3 days, 7 days, 14 days after demolding at 20 ° C. and 60% relative humidity in air. Measurements were taken on days 21, 21 and 28.

〔試験結果〕
圧縮強度に関する試験結果を表3に示す。
〔Test results〕
Table 3 shows the test results regarding the compressive strength.

Figure 0006185682
Figure 0006185682

同一割合の高炉スラグ微粉末の添加において高炉スラグ微粉末Cを用いたNo.7、No.8は、同じフロー値を得るための高性能AE減水剤の添加率が高くなった。特に、No.9においては、練り混ぜができなかった。   No. 7 and No. 8 using blast furnace slag fine powder C in the addition of the same proportion of blast furnace slag fine powder had a higher addition rate of high-performance AE water reducing agent to obtain the same flow value. In particular, in No. 9, kneading was not possible.

実施例の高炉スラグ微粉末A、Bがセメント中のCS、間隙質相の水和反応を促進させたと推定されるため、同一割合の高炉スラグ微粉末の添加で材齢1日の圧縮強度が比較例よりも実施例が高くなった。
すなわち、本発明の高炉スラグ微粉末を用いることで、特に材齢1日といった早期強度が向上することがわかる。
Since it is presumed that the blast furnace slag fine powders A and B of the examples promoted the hydration reaction of C 3 S and the interstitial phase in the cement, the addition of the same proportion of the blast furnace slag fine powder resulted in a compression of one day of age. The strength of the example was higher than that of the comparative example.
That is, it can be seen that the use of the blast furnace slag fine powder of the present invention improves the early strength, particularly the age of one day.

長さ変化率に関する試験結果を表4に示す。   Table 4 shows the test results regarding the rate of change in length.

Figure 0006185682
Figure 0006185682

同一の高炉スラグ微粉末の添加において高炉スラグ微粉末Cを用いたNo.7は、実施例であるNo.1、No.4より長さ変化率が大きくなった。同様に同一の高炉スラグ微粉末の添加において高炉スラグ微粉末Cを用いたNo.8は、実施例であるNo.2、No.5より長さ変化率が大きくなった。   In the addition of the same blast furnace slag fine powder, No. 7 using the blast furnace slag fine powder C had a larger rate of change in length than No. 1 and No. 4 in the examples. Similarly, in the addition of the same blast furnace slag fine powder, No. 8 using the blast furnace slag fine powder C had a larger rate of change in length than No. 2 and No. 5 of the examples.

平均粒径(累積体積率50%の粒子径)が同等である高炉スラグ微粉末Cより高炉スラグ微粉末Aを用いた水準が小さい長さ変化率となった。また、平均粒径(累積体積率50%の粒子径)が高炉スラグ微粉末Cより小さい高炉スラグ微粉末Bを用いた水準が小さい長さ変化率となった。従来の高炉スラグ微粉末Cように微粒部分の粒子が持つ多孔質による細孔は、高炉スラグ微粉末Aと高炉スラグ微粉末Bが少ないためと推測される。
以上より、本発明の高炉スラグ微粉末を用いれば、硬化体の収縮が少なくなることがわかる。
The length change rate of the level using the blast furnace slag fine powder A was smaller than that of the blast furnace slag fine powder C having the same average particle diameter (particle diameter having a cumulative volume ratio of 50%). Moreover, the level using the blast furnace slag fine powder B smaller than the blast furnace slag fine powder C having an average particle diameter (particle diameter having a cumulative volume ratio of 50%) was a small length change rate. It is assumed that the fine pores of the fine particles as in the conventional blast furnace slag fine powder C are because the blast furnace slag fine powder A and the blast furnace slag fine powder B are small.
From the above, it can be seen that if the blast furnace slag fine powder of the present invention is used, the shrinkage of the cured body is reduced.

Claims (4)

粉砕機を用いた複数回の粉砕により、累積体積率50%の粒子径が1.0〜5.0μmであり、かつ全細孔容積が0.02cm/g以下となるまで微粉末化してなることを特徴とする高炉スラグ微粉末。 By pulverizing a plurality of times using a pulverizer, the powder is finely powdered until the particle diameter at a cumulative volume ratio of 50% is 1.0 to 5.0 μm and the total pore volume is 0.02 cm 3 / g or less. blast furnace slag, characterized by comprising. 請求項1記載の高炉スラグ微粉末において、累積個数50%の円形度が0.950以上であることを特徴とする高炉スラグ微粉末。   The blast furnace slag fine powder according to claim 1, wherein the circularity of the cumulative number of 50% is 0.950 or more. セメントに加え、請求項1または2記載の高炉スラグ微粉末が混和されていることを特徴とするセメント系組成物。   A cementitious composition comprising the blast furnace slag fine powder according to claim 1 or 2 in addition to cement. 累積体積率50%の粒子径が1.0〜5.0μmであり、かつ全細孔容積が0.02cmThe particle size with a cumulative volume ratio of 50% is 1.0 to 5.0 μm, and the total pore volume is 0.02 cm. 3 /g以下となる高炉スラグ微粉末の製造方法であって、粉砕された高炉スラグ微粉末をさらに粉砕機を用いて1回または複数回粉砕することで、累積体積率50%の粒子径が1.0〜5.0μmであり、かつ全細孔容積が0.02cm/ G or less of blast furnace slag fine powder manufacturing method, wherein the pulverized blast furnace slag fine powder is further pulverized once or a plurality of times using a pulverizer, so that the particle size with a cumulative volume ratio of 50% is 1 0.0-5.0 μm and the total pore volume is 0.02 cm 3 /g以下に収まるまで微粉末化していくことを特徴とする高炉スラグ微粉末の製造方法。A method for producing blast furnace slag fine powder, characterized in that it is finely powdered until it is less than / g.
JP2017020897A 2017-02-08 2017-02-08 Blast furnace slag fine powder and cement composition Active JP6185682B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017020897A JP6185682B1 (en) 2017-02-08 2017-02-08 Blast furnace slag fine powder and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017020897A JP6185682B1 (en) 2017-02-08 2017-02-08 Blast furnace slag fine powder and cement composition

Publications (2)

Publication Number Publication Date
JP6185682B1 true JP6185682B1 (en) 2017-08-23
JP2018127375A JP2018127375A (en) 2018-08-16

Family

ID=59678278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017020897A Active JP6185682B1 (en) 2017-02-08 2017-02-08 Blast furnace slag fine powder and cement composition

Country Status (1)

Country Link
JP (1) JP6185682B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059662A (en) * 2017-09-22 2019-04-18 株式会社デイ・シイ Acid resistance cement composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7384636B2 (en) * 2019-11-06 2023-11-21 浩巳 藤原 How to improve the fire resistance of high-strength mortar or high-strength concrete

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236059A (en) * 1985-08-06 1987-02-17 電気化学工業株式会社 High strength cement composition
JP2005119935A (en) * 2003-09-25 2005-05-12 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement concrete
JP2012171805A (en) * 2011-02-17 2012-09-10 Ohbayashi Corp High toughness, high strength mortar composition
WO2014030610A1 (en) * 2012-08-21 2014-02-27 大成建設株式会社 Cement-based matrix and fiber-reinforced cement-based mixture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236059A (en) * 1985-08-06 1987-02-17 電気化学工業株式会社 High strength cement composition
JP2005119935A (en) * 2003-09-25 2005-05-12 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement concrete
JP2012171805A (en) * 2011-02-17 2012-09-10 Ohbayashi Corp High toughness, high strength mortar composition
WO2014030610A1 (en) * 2012-08-21 2014-02-27 大成建設株式会社 Cement-based matrix and fiber-reinforced cement-based mixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059662A (en) * 2017-09-22 2019-04-18 株式会社デイ・シイ Acid resistance cement composition
JP7123481B2 (en) 2017-09-22 2022-08-23 株式会社デイ・シイ Acid-resistant cement composition

Also Published As

Publication number Publication date
JP2018127375A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
Nasution et al. Improvement of concrete durability by nanomaterials
Kwan et al. Adding fly ash microsphere to improve packing density, flowability and strength of cement paste
Xiang et al. Effect of Fuller-fine sand on rheological, drying shrinkage, and microstructural properties of metakaolin-based geopolymer grouting materials
Kirgiz Advancements in mechanical and physical properties for marble powder–cement composites strengthened by nanostructured graphite particles
Le et al. Effect of macro-mesoporous rice husk ash on rheological properties of mortar formulated from self-compacting high performance concrete
Garg et al. Modifications in water resistance and engineering properties of β-calcium sulphate hemihydrate plaster-superplasticizer blends
JP2008254963A (en) Admixture for cement/concrete and low shrinkage high strength concrete, and high strength cement composition
JP6530890B2 (en) High strength cement mortar composition and method of producing hardened high strength cement mortar
JP6185682B1 (en) Blast furnace slag fine powder and cement composition
JP2017149638A (en) Fly ash mixed cement composition and production method therefor
Shi et al. Effect of tuff powder mineral admixture on the macro-performance and micropore structure of cement-based materials
Felekoğlu Effects of PSD and surface morphology of micro-aggregates on admixture requirement and mechanical performance of micro-concrete
JP6185681B1 (en) Blast furnace slag fine powder and cement composition
Sakai et al. Effects of shape and packing density of powder particles on the fluidity of cement pastes with limestone powder
JP6597274B2 (en) Slag powder and method for producing slag powder
Zhang et al. Effect of size fraction of ground granulated blast furnace slag on its strength contribution and hydraulic activity
JP3215516B2 (en) Hydraulic composition and method for producing concrete pile using the composition
Oppelt et al. Analysis and evaluation of different influencing factors in processing of hollow and full beads based on TRIP steel
Baroninsh et al. Influence of the dosage of super plasticizer on properties of high performance concrete
KR101221031B1 (en) Very low plastic viscosity composition for concrete, mortar and paste
JP2014088294A (en) Cement composition
JP2015190949A (en) Method for evaluating quality of fly ash, concrete fly ash and method for manufacturing cement mixed with fly ash
JP2010195602A (en) Cement additive and cement composition
JP2006298667A (en) Calcium carbonate fine powder for concrete, method of manufacturing the same and fresh concrete
Nagendra et al. EFFECTS OF SILICA FUME ON THE PROPERTIES OF CONCRETE

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170727

R150 Certificate of patent or registration of utility model

Ref document number: 6185682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250