JP7109258B2 - Method for manufacturing electrode-embedded member - Google Patents

Method for manufacturing electrode-embedded member Download PDF

Info

Publication number
JP7109258B2
JP7109258B2 JP2018099918A JP2018099918A JP7109258B2 JP 7109258 B2 JP7109258 B2 JP 7109258B2 JP 2018099918 A JP2018099918 A JP 2018099918A JP 2018099918 A JP2018099918 A JP 2018099918A JP 7109258 B2 JP7109258 B2 JP 7109258B2
Authority
JP
Japan
Prior art keywords
electrode
internal
base material
embedded
embedded member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018099918A
Other languages
Japanese (ja)
Other versions
JP2019204903A (en
Inventor
淳 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018099918A priority Critical patent/JP7109258B2/en
Publication of JP2019204903A publication Critical patent/JP2019204903A/en
Application granted granted Critical
Publication of JP7109258B2 publication Critical patent/JP7109258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、セラミックス製の基材に内部電極が埋設された電極埋設部材およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to an electrode-embedded member in which internal electrodes are embedded in a ceramic substrate, and a method for manufacturing the same.

従来、セラミックス製の基材に内部電極が埋設された電極埋設部材が知られている(例えば、特許文献1参照)。電極埋設部材では、端子を内部電極に接続させるための端子穴を基材に穿設するときに、内部電極を傷つけないように内部電極と端子とを接続する個所に接続部材を予め配置しておくことがあり、この接続部材によって、内部電極が傷つくことを防止することができる。 2. Description of the Related Art Conventionally, there is known an electrode-embedded member in which internal electrodes are embedded in a ceramic substrate (see, for example, Patent Document 1). In the electrode-embedded member, the connection member is arranged in advance at the location where the internal electrode and the terminal are to be connected so as not to damage the internal electrode when the terminal hole for connecting the terminal to the internal electrode is bored in the substrate. This connecting member can prevent the internal electrodes from being damaged.

特許第5591627号公報Japanese Patent No. 5591627

電極埋設部材においては、接続部材と端子とを接続した接続界面の角部に端子の熱膨張などによって内部応力が誘起されクラックが入り、そのクラックが内部電極や基材の表面まで悪影響を及ぼすことがある。従って、接続部材から基材の表面までの離間距離が短いと、歩留まりが悪くなるという問題がある。 In the electrode-embedded member, internal stress is induced by thermal expansion of the terminal at the corner of the connection interface where the connection member and the terminal are connected, and cracks occur, and the cracks adversely affect the surface of the internal electrode and base material. There is Therefore, if the distance from the connection member to the surface of the base material is short, there is a problem that the yield is poor.

本発明は、以上の点に鑑み、クラック等による内部電極又は基材表面への悪影響を抑制することができる電極埋設部材の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing an electrode-embedded member that can suppress adverse effects of cracks or the like on internal electrodes or substrate surfaces.

[1]上記目的を達成するため、本発明は、
表面(例えば、実施形態の表面2a。以下同一。)及び裏面(例えば、実施形態の裏面2b。以下同一。)を有し、セラミックスからなる板状の基材(例えば、実施形態の基材2。以下同一。)と、
前記基材の表面に沿って延在し、前記基材に埋設される内部電極(例えば、実施形態の内部電極3。以下同一。)と、
前記基材に埋設され、前記基材の厚み方向に延在する前記内部電極と電気的に接続される内部導体部(例えば、実施形態の内部導体部6。以下同一。)と、
前記基材の裏面から前記基材内部に伸長する端子穴(例えば、実施形態の端子穴14。以下同一。)と、
前記端子穴に配置され、前記内部導体部を介して前記内部電極に電気的に接続される端子(例えば、実施形態の端子4。以下同一。)と、
を備える電極埋設部材(例えば、実施形態の電極埋設部材1。以下同一。)の製造方法であって、
貫通孔(例えば、実施形態の貫通孔5a。以下同一。)を有するセラミックス製の中間体(例えば、実施形態の中間絶縁体5。以下同一。)を形成し、前記貫通孔に前記内部導体部を設けて前記内部導体部付き中間体を製造する中間体製造工程と、
前記内部電極及び前記中間体が埋設された前記基材となる成形体(例えば、実施形態の第2層2d、第2成形体22。以下同一。)を作製する成形体作製工程と、
前記成形体をホットプレス焼成する焼成工程と、
を含み、
前記中間体製造工程では、
前記中間体は、平行な2面を備えるものであり、
前記中間体に、前記平行な2面の間を貫通する複数の前記貫通孔を設け、
前記貫通孔の内周面に導電性ペーストを塗布または前記貫通孔に導電性ペーストを充填することにより前記内部導体部を形成すると共に、前記平行な2面のそれぞれの少なくとも一部に前記導電性ペーストを塗布することにより前記内部導体部と接続される表面導体部(例えば、実施形態の表面導体部6a。以下同一。)を形成することを特徴とする。
[1] In order to achieve the above object, the present invention
A plate-like substrate made of ceramics having a front surface (for example, the front surface 2a of the embodiment; the same applies hereinafter) and a rear surface (for example, the rear surface 2b of the embodiment; the same applies hereinafter) (for example, the substrate 2 of the embodiment Same below.) and
an internal electrode extending along the surface of the base material and embedded in the base material (for example, the internal electrode 3 of the embodiment; the same shall apply hereinafter);
an internal conductor embedded in the substrate and electrically connected to the internal electrode extending in the thickness direction of the substrate (for example, the internal conductor 6 of the embodiment; the same shall apply hereinafter);
a terminal hole extending from the back surface of the base material into the base material (for example, the terminal hole 14 of the embodiment; the same shall apply hereinafter);
a terminal arranged in the terminal hole and electrically connected to the internal electrode via the internal conductor (for example, the terminal 4 of the embodiment; the same shall apply hereinafter);
A method for manufacturing an electrode-embedded member (for example, the electrode-embedded member 1 of the embodiment; the same shall apply hereinafter) comprising:
A ceramic intermediate body (for example, the intermediate insulator 5 of the embodiment; the same applies hereinafter) having a through hole (for example, the through hole 5a of the embodiment; the same applies hereinafter) is formed, and the internal conductor portion is formed in the through hole. an intermediate manufacturing step for manufacturing the intermediate with the internal conductor portion by providing
a molded body producing step of producing a molded body (for example, the second layer 2d and the second molded body 22 of the embodiment; the same shall apply hereinafter) that serves as the base material in which the internal electrodes and the intermediate bodies are embedded;
a sintering step of hot-press sintering the compact;
including
In the intermediate manufacturing process,
The intermediate has two parallel faces,
The intermediate body is provided with a plurality of through holes penetrating between the two parallel surfaces,
The inner conductor portion is formed by applying a conductive paste to the inner peripheral surface of the through hole or filling the through hole with a conductive paste, and the conductive paste is formed on at least a part of each of the two parallel surfaces. A surface conductor (for example, the surface conductor 6a of the embodiment; the same shall apply hereinafter) connected to the internal conductor is formed by applying a paste .

本発明によれば、内部電極と端子との間に内部導体部付きの中間体が配置されるため、内部電極と端子との間の距離を大きく確保することができ、内部電極が端子と近接している場合と比較して内部電極及び内部電極と基材表面との間の部分(絶縁層)に及ぼす応力が小さくなり、絶縁層のクラックを抑制できて、端子周辺の耐クラック性が向上し、信頼性の高い端子構造を有する電極埋設部材を製造することができる。 According to the present invention, since the intermediate body with the internal conductor portion is disposed between the internal electrode and the terminal, a large distance can be secured between the internal electrode and the terminal, and the internal electrode is close to the terminal. The stress on the internal electrodes and the portion between the internal electrodes and the base material surface (insulating layer) is reduced compared to the case where the internal electrode and the base material surface are cracked, and the crack resistance around the terminal is improved. Thus, an electrode-embedded member having a highly reliable terminal structure can be manufactured.

また、中間体の貫通孔に設けられた内部導体部を介して、内部電極と端子とが電気的に接続されることにより、電気的な接続における信頼性の高い端子構造を有する電極埋設部材の製造方法を提供できる。 In addition, the electrode-embedded member having a terminal structure with high reliability in electrical connection is produced by electrically connecting the internal electrode and the terminal through the internal conductor portion provided in the through-hole of the intermediate body. A manufacturing method can be provided.

また、本発明においては、
前記中間体製造工程では、
前記中間体は、平行な2面を備えるものであり、
前記中間体に、前記平行な2面の間を貫通する複数の前記貫通孔を設け、
前記貫通孔の内周面に導電性ペーストを塗布または前記貫通孔に導電性ペーストを充填することにより前記内部導体部を形成すると共に、前記平行な2面のそれぞれの少なくとも一部に前記導電性ペーストを塗布することにより前記内部導体部と接続される表面導体部を形成する。
Moreover, in the present invention,
In the intermediate manufacturing process,
The intermediate has two parallel faces,
The intermediate body is provided with a plurality of through holes penetrating between the two parallel surfaces,
The inner conductor portion is formed by applying a conductive paste to the inner peripheral surface of the through hole or filling the through hole with a conductive paste, and the conductive paste is formed on at least a part of each of the two parallel surfaces. Surface conductors connected to the internal conductors are formed by applying paste.

本発明によれば、中間体は、平行な2面間を貫通する貫通孔を備えた成形体を作製し、貫通孔の内周面に導電性ペーストを塗布または充填して内部導体部を形成し、中間体の平行な2面のそれぞれの少なくとも一部に導電性ペーストを塗布して表面導体部を形成することにより、内部電極と端子とを電気的に安定した状態で接続できる内部導体部を備えた中間体を容易に作製することができる。なお、平行な2面とは、厳密な意味での平行な2つの面のみならず、実質的に平行な2つの面といえる程度のほぼ平行な2面も含む。 According to the present invention, the intermediate body is formed by producing a molded body having a through hole penetrating between two parallel surfaces, and applying or filling a conductive paste to the inner peripheral surface of the through hole to form an internal conductor portion. Then, by applying a conductive paste to at least a part of each of the two parallel surfaces of the intermediate body to form a surface conductor portion, the internal conductor portion can electrically connect the internal electrode and the terminal in a stable state. can be easily made. Note that two parallel surfaces include not only two parallel surfaces in a strict sense, but also two substantially parallel surfaces to the extent that they can be said to be two substantially parallel surfaces.

第1実施形態の電極埋設部材を模式的に示す説明図。FIG. 4 is an explanatory view schematically showing the electrode-embedded member of the first embodiment; 第1実施形態の内部導体部を備えた中間体を模式的に示す斜視図。The perspective view which shows typically the intermediate|middle body provided with the internal conductor part of 1st Embodiment. 第1実施形態の電極埋設部材の製造方法を示す説明図。4A to 4C are explanatory diagrams showing a method for manufacturing the electrode-embedded member according to the first embodiment; 第1実施形態の電極埋設部材の端子形成工程を示す説明図。FIG. 4 is an explanatory view showing a terminal forming process of the electrode-embedded member of the first embodiment; 第2実施形態の電極埋設部材の製造方法を示す説明図。FIG. 8 is an explanatory view showing a method of manufacturing an electrode-embedded member according to the second embodiment; 第2実施形態の成形体作製工程を示す説明図。Explanatory drawing which shows the molded object preparation process of 2nd Embodiment. 比較例の電極埋設部材を模式的に示す説明図。FIG. 4 is an explanatory diagram schematically showing an electrode-embedded member of a comparative example;

[第1実施形態]
図を参照して、本発明の第1実施形態の電極埋設部材1の製造方法を説明する。
[First embodiment]
A method of manufacturing the electrode-embedded member 1 according to the first embodiment of the present invention will be described with reference to the drawings.

図1を参照して、第1実施形態の電極埋設部材1は、ウエハ保持装置であり、セラミックスとして酸化イットリウムを添加した窒化アルミニウムからなる板状の基材2と、基材2に埋設された内部電極3と、端子4と、基材2と主成分が同一(全ての構成成分が同じ場合も含む)材料で成形された円柱状の中間絶縁体5(本発明の中間体に該当)と、内部導体部6(本発明の内部導体部に該当)と、を備える。なお、基材2や中間絶縁体5は、他のセラミックス、例えば、酸化アルミニウム(Al2O3)、炭化珪素(SiC)、窒化珪素(Si3N4)を主成分とするもので成形してもよい。 Referring to FIG. 1, an electrode-embedded member 1 of the first embodiment is a wafer holding device, and includes a plate-like substrate 2 made of aluminum nitride to which yttrium oxide is added as ceramics, and a an internal electrode 3, a terminal 4, and a columnar intermediate insulator 5 (corresponding to the intermediate of the present invention) formed of a material having the same main component as that of the base material 2 (including cases where all constituent components are the same); , and an internal conductor portion 6 (corresponding to the internal conductor portion of the present invention). The base material 2 and the intermediate insulator 5 are molded from other ceramics such as aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), and silicon nitride (Si 3 N 4 ) as main components. may

基材2は、表面2a及び裏面2bを有している。端子4は、内部電極3よりも表面2aから離れた位置に設けられている。中間絶縁体5は、内部電極3と端子4との間に位置させて基材2に埋設されている。図2に示すように、中間絶縁体5には、両端に開口する4つの貫通孔5aが設けられている。内部導体部6は、貫通孔5a及び中間絶縁体5の両端に塗布されて円筒状に形成されている。内部導体部6によって、端子4と内部電極3とが電気的に接続される。なお、内部導体部6は円筒状に限らず、他の形状、例えば、円柱状、角柱状、互いに径の異なる複数の柱状体が高さ方向に一体化された段付きの円柱状や段付きの角柱状に形成してもよい。 The substrate 2 has a front surface 2a and a back surface 2b. The terminal 4 is provided at a position farther from the surface 2a than the internal electrode 3 is. The intermediate insulator 5 is positioned between the internal electrode 3 and the terminal 4 and embedded in the base material 2 . As shown in FIG. 2, the intermediate insulator 5 is provided with four through holes 5a that open at both ends. The inner conductor portion 6 is applied to both ends of the through-hole 5a and the intermediate insulator 5 and formed in a cylindrical shape. The terminal 4 and the internal electrode 3 are electrically connected by the internal conductor portion 6 . In addition, the internal conductor portion 6 is not limited to a cylindrical shape, and other shapes such as a columnar shape, a prismatic shape, a stepped columnar shape in which a plurality of columnar bodies having different diameters are integrated in the height direction, or a stepped shape. may be formed into a prismatic shape.

次に、本実施形態の電極埋設部材1の製造方法を説明する。 Next, a method for manufacturing the electrode-embedded member 1 of this embodiment will be described.

まず、内部導体部付き中間体としての中間絶縁体5の製造工程(本発明の中間体製造工程に該当)について説明する。 First, the manufacturing process of the intermediate insulator 5 as the intermediate body with the internal conductor portion (corresponding to the intermediate body manufacturing process of the present invention) will be described.

本実施形態においては、中間絶縁体5を、窒化アルミニウム原料粉(例えば、窒化アルミニウム粉末95質量%、酸化イットリウム粉末5質量%からなる粉末混合物)を1ton/cmの圧力でCIP成形(冷間静水圧加圧成形)し、成形体のインゴットを得て、これを機械加工により直径8mm、高さ10mmの円柱形状の中間絶縁体5を作製する。 In this embodiment, the intermediate insulator 5 is formed by CIP molding (cold molding) aluminum nitride raw material powder (for example, a powder mixture of 95% by mass of aluminum nitride powder and 5% by mass of yttrium oxide powder) at a pressure of 1 ton/cm 2 . isostatic pressure molding) to obtain a molded ingot, which is machined to produce a cylindrical intermediate insulator 5 having a diameter of 8 mm and a height of 10 mm.

次に、図2に示すように、中間絶縁体5に、円柱の軸方向に直径0.8mmの貫通孔5aを周方向ピッチ4mmで4か所に形成する。そして、貫通孔5aの内周面及び中間絶縁体5の平行な2面(両端面)にタングステン粒子と窒化アルミニウムの粉末を30体積%以下配合したタングステンペーストを塗布、または充填する。このように、タングステンペーストを貫通孔5aに塗布又は充填されたタングステンペーストと連続させて中間絶縁体5の平行な2面にも塗布することにより、本実施形態の表面導体部6aが形成される。図1では、表面導体部6aを見え易くすべく肉厚を厚くして示している。このようにして、中間絶縁体5が作製される。中間絶縁体5は必要に応じて仮焼きする。なお、平行な2面とは、厳密な意味での平行な2つの面のみならず、実質的に平行な2つの面といえる程度のほぼ平行な2面も含む。また、表面導体部6aは中間絶縁体5の平行な2面の全域に形成されていてもよい。 Next, as shown in FIG. 2, four through holes 5a having a diameter of 0.8 mm are formed in the intermediate insulator 5 in the axial direction of the cylinder at a pitch of 4 mm in the circumferential direction. Then, the inner peripheral surface of the through-hole 5a and two parallel surfaces (both end surfaces) of the intermediate insulator 5 are coated or filled with a tungsten paste containing 30% by volume or less of tungsten particles and aluminum nitride powder. In this way, the surface conductor portion 6a of the present embodiment is formed by applying the tungsten paste to the two parallel surfaces of the intermediate insulator 5 so as to be continuous with the tungsten paste applied or filled in the through holes 5a. . In FIG. 1, the thickness of the surface conductor portion 6a is increased so that it can be easily seen. Thus, the intermediate insulator 5 is produced. The intermediate insulator 5 is calcined as necessary. Note that two parallel surfaces include not only two parallel surfaces in a strict sense, but also two substantially parallel surfaces to the extent that they can be said to be two substantially parallel surfaces. Also, the surface conductor portion 6a may be formed over the entire two parallel surfaces of the intermediate insulator 5 .

以上のように、貫通孔5a内に内部導体部としてのタングステンペーストを塗布又は充填することにより、1つの中間絶縁体5を基材2内に埋設させるだけで、タングステンペーストからなる複数の円筒状の内部導体部6を容易に基材2内に埋設することが可能となる。 As described above, by applying or filling the tungsten paste as the internal conductor portion in the through hole 5a, only one intermediate insulator 5 is embedded in the base material 2, and a plurality of cylindrical electrodes made of the tungsten paste are formed. It is possible to easily embed the internal conductor portion 6 in the base material 2 .

次に、図3A~図3Cを参照して、電極埋設部材1の作製工程(本実施形態の成形体作製工程)及びホットプレス焼成による焼成工程について説明する。 Next, referring to FIGS. 3A to 3C, the manufacturing process of the electrode-embedded member 1 (the molding manufacturing process of the present embodiment) and the firing process by hot press firing will be described.

まず、図3Aに示すように、絶縁層としての第1層2c(第1成形体21)を成形すべく、窒化アルミニウム粉末95質量%、酸化イットリウム粉末5質量%からなる粉末混合物を有底円筒状のカーボン製の型19に充填して一軸加圧処理を施す。これにより、直径340mm、厚さ5mmの円板状の第1層2c(絶縁層、第1成形体21)が形成される。 First, as shown in FIG. 3A, a powder mixture of 95% by mass aluminum nitride powder and 5% by mass yttrium oxide powder is poured into a cylinder with a bottom in order to form a first layer 2c (first compact 21) as an insulating layer. It is filled in a shaped carbon mold 19 and subjected to uniaxial pressure treatment. As a result, a disc-shaped first layer 2c (insulating layer, first compact 21) having a diameter of 340 mm and a thickness of 5 mm is formed.

次に、図3Bに示すように、第1層2cの上に、内部電極3としての直径290mmのモリブデン製のメッシュ構造体(線径0.1mm、目開き50メッシュ)を載置する。 Next, as shown in FIG. 3B, a molybdenum mesh structure (wire diameter: 0.1 mm, mesh size: 50 meshes) with a diameter of 290 mm is placed as the internal electrode 3 on the first layer 2c.

そして、内部電極3と端子4とを電気的に接続するための中間絶縁体5を、内部電極3の所定の端子4を接続する位置に対応させて、内部電極3に配置する。 Then, an intermediate insulator 5 for electrically connecting the internal electrode 3 and the terminal 4 is arranged on the internal electrode 3 so as to correspond to the position where the predetermined terminal 4 of the internal electrode 3 is connected.

更に、直径10mm、厚さ0.5mmのタングステン製又はモリブデン製のペレットからなる接続部材16を中間絶縁体5の上に載せる。このとき、タングステンペーストなどの導電性ペーストを内部電極3の中間絶縁体5と接続される部分や中間絶縁体5の接続部材16と接続される部分に塗布してもよい。 Furthermore, a connection member 16 made of tungsten or molybdenum pellets having a diameter of 10 mm and a thickness of 0.5 mm is placed on the intermediate insulator 5 . At this time, a conductive paste such as tungsten paste may be applied to the portion of the internal electrode 3 that is connected to the intermediate insulator 5 or the portion of the intermediate insulator 5 that is to be connected to the connection member 16 .

次に、上述の工程で出来た構造体の上に上述の粉末混合物を円筒状のカーボン製の型19の中に充填して一軸加圧し円板状の第2層2d(第2成形体22)を成形する。 Next, the above-mentioned powder mixture is filled in a cylindrical carbon mold 19 on the structure formed by the above-mentioned steps, and uniaxially pressed to form a disk-shaped second layer 2d (second molded body 22). ) is molded.

次に、ヒータ電極としての発熱抵抗体31を設置する工程を説明する。電極埋設部材1自体を加熱する目的で所定のパターンに形成したモリブデンメッシュからなる発熱抵抗体31(線径0.1mm、目開き50メッシュ。)を第2層2d(第2成形体22)の上に配置し、所定のヒータ端子位置に中間絶縁体5と接続部材33(タングステンペレット、直径10mm、厚さ0.5mm)を載せる。 Next, the process of installing the heating resistor 31 as a heater electrode will be described. A heating resistor 31 (wire diameter: 0.1 mm, opening: 50 mesh) made of molybdenum mesh formed in a predetermined pattern for the purpose of heating the electrode-embedded member 1 itself is attached to the second layer 2d (second compact 22). The intermediate insulator 5 and the connection member 33 (tungsten pellet, diameter 10 mm, thickness 0.5 mm) are placed on predetermined heater terminal positions.

次に、上述の工程で出来た構造体の上に上述の粉末混合物を有底円筒状のカーボン製の型19の中に充填して一軸加圧し円板状の第3層2eを成形して、焼成前の成形体を作製する。 Next, the above-described powder mixture is filled in a bottomed cylindrical carbon mold 19 on the structure formed by the above-described steps, and uniaxially pressed to form a disk-shaped third layer 2e. , to produce a compact before firing.

次に、図3Cを参照して、焼成工程に進む。焼成工程では、上記の成形体を、カーボン製の型19に嵌合するカーボン製の押し板(図示省略)を介して、10MPaの圧力で加圧した状態で、焼成温度1800℃、焼成時間2時間でホットプレス焼成を行い、直径340mm、厚さ30mmの基材2となるセラミックス焼結体を形成する。 Next, referring to FIG. 3C, the firing process proceeds. In the firing process, the molded body is pressurized at a pressure of 10 MPa through a carbon push plate (not shown) fitted to the carbon mold 19, and the firing temperature is 1800 ° C. and the firing time is 2. A ceramic sintered body having a diameter of 340 mm and a thickness of 30 mm, which is to be the base material 2, is formed by hot-press firing at a time of 300 mm.

次に、図4を参照して、焼成後の加工工程に進む。焼成されたセラミックス焼結体の全面を研削、研磨加工し、内部電極3から表面2aまでの基材2の部分である絶縁層が厚さ0.3mm、表面2aの粗さがRa0.4μmのウエハ載置面(表面2a)を形成し、総厚25mmの電極埋設部材1を形成した。 Next, referring to FIG. 4, the process proceeds to the processing step after firing. The entire surface of the fired ceramic sintered body is ground and polished, and the insulating layer, which is the portion of the base material 2 from the internal electrode 3 to the surface 2a, has a thickness of 0.3 mm and the roughness of the surface 2a is Ra 0.4 μm. A wafer mounting surface (surface 2a) was formed, and an electrode-embedded member 1 having a total thickness of 25 mm was formed.

次に、端子形成工程に進む。図4に示すように、セラミックス製の基材2の裏面2bから夫々の端子が配置される位置に接続部材16、33に到達するまで穴あけ加工を行い、裏面2bから接続部材16、33に達する円柱状の端子穴14を形成する。次に接続部材16、33の上にAu-Ni系のロウ材を介して、直径5mm長さ200mmの円柱状のニッケル製の端子4を設置する。その後、真空炉により1050℃で加熱することによってロウ付けを行い、電極埋設部材1が完成する。なお、ロウ材には活性金属としてTiを添加してもよく、Ag系ロウ材の使用も可能である。 Next, the process proceeds to the terminal forming step. As shown in FIG. 4, holes are drilled from the rear surface 2b of the ceramic substrate 2 until the connection members 16 and 33 are reached at the positions where the respective terminals are arranged, and the connection members 16 and 33 are reached from the rear surface 2b. A cylindrical terminal hole 14 is formed. Next, a cylindrical nickel terminal 4 having a diameter of 5 mm and a length of 200 mm is placed on the connection members 16 and 33 via an Au—Ni brazing material. After that, brazing is performed by heating at 1050° C. in a vacuum furnace, and the electrode-embedded member 1 is completed. Note that Ti may be added to the brazing filler metal as an active metal, and Ag-based brazing filler metal may also be used.

以上のようにして作製された電極埋設部材1を、次の方法で評価した。 The electrode-embedded member 1 produced as described above was evaluated by the following method.

まず、室温から600℃まで加熱した後、室温まで冷却する温度サイクルを10回繰り返すサイクリック加熱試験と、600℃で300時間放置する高温放置試験とを、順に行った後、目視でクラックの発生の有無を確認した。 First, after heating from room temperature to 600 ° C. and then cooling to room temperature, a cyclic heating test that repeats the temperature cycle 10 times, and a high temperature storage test in which the sample is left at 600 ° C. for 300 hours, are performed in order. Checked for the presence of

この結果、第1実施形態の電極埋設部材1では、電極埋設部材1の表面のクラックは認められず、また、電極埋設部材1の断面においても、クラック等の不具合が発生しないことが確認できた。 As a result, in the electrode-embedded member 1 of the first embodiment, no cracks were observed on the surface of the electrode-embedded member 1, and it was confirmed that defects such as cracks did not occur in the cross section of the electrode-embedded member 1 as well. .

以上のことから明らかなように、第1実施形態の電極埋設部材1によれば、中間絶縁体5と基材2との密着性を向上させて、且つ、内部電極3から端子4を十分離隔させることにより、絶縁層のクラックなどの不具合を抑制することができる。 As is clear from the above, according to the electrode-embedded member 1 of the first embodiment, the adhesion between the intermediate insulator 5 and the substrate 2 is improved, and the terminals 4 are sufficiently separated from the internal electrodes 3. By doing so, problems such as cracks in the insulating layer can be suppressed.

また、本実施形態の電極埋設部材1の製造方法によれば、複数の内部導体部6を中間絶縁体5でまとめて配置することができるため、複数の内部導体部6を容易に配置することができ、電極埋設部材1を容易に製造することができる。 Further, according to the method of manufacturing the electrode-embedded member 1 of the present embodiment, the plurality of internal conductors 6 can be arranged collectively by the intermediate insulator 5, so that the plurality of internal conductors 6 can be easily arranged. , and the electrode-embedded member 1 can be easily manufactured.

また、中間絶縁体5を基材2内に埋め込んで電極埋設部材1が作製されるため、基材2の径方向の大きさに対応させて中間絶縁体5の大きさを変更する必要がない。従って、様々な大きさの電極埋設部材1を製造するときであっても1種類の中間絶縁体5で対応することができ、電極埋設部材1の大きさによって中間絶縁体5の大きさを変更する必要があるものと比較して、製造の容易化を図ることができる。 In addition, since the electrode-embedded member 1 is produced by embedding the intermediate insulator 5 in the base material 2, there is no need to change the size of the intermediate insulator 5 in accordance with the size of the base material 2 in the radial direction. . Therefore, even when electrode-embedded members 1 of various sizes are manufactured, one type of intermediate insulator 5 can be used, and the size of the intermediate insulator 5 can be changed according to the size of the electrode-embedded member 1. facilitating manufacturing compared to what would otherwise have to be done.

なお、図1では、第3成形体23(第3層2e)と、発熱抵抗体31を省略している。 1, the third molded body 23 (third layer 2e) and the heating resistor 31 are omitted.

[第2実施形態]
第2実施形態の電極埋設部材1の製造方法は、電極埋設部材1の作製工程(本実施形態の成形体作製工程)が異なるのみで、他の中間絶縁体5の製造工程及び焼成工程は、第1実施形態と同一である。
[Second embodiment]
The manufacturing method of the electrode-embedded member 1 of the second embodiment differs only in the manufacturing process of the electrode-embedded member 1 (the molding manufacturing process of this embodiment). It is the same as the first embodiment.

図5A及び図5Bを参照して、第2実施形態の電極埋設部材1の成形工程は、まず、窒化アルミニウム粉末95質量%、酸化イットリウム粉末5質量%からなる粉末混合物をCIP成形(圧力1ton/cm)し、成形体のインゴットを得て、これを機械加工により、直径340mm、厚み15mmの第2層2dとしての円板状の第2成形体22と、直径340mm、厚み5mmの第1層2cとしての円板状の第1成形体21と(図6B参照)、直径340mm、厚み15mmの第3層2eとしての円板状の第3成形体23(図6A参照)と、を作製する。 5A and 5B, the molding process of the electrode-embedded member 1 of the second embodiment includes first CIP molding (pressure 1 ton/ cm 2 ) to obtain a compact ingot, which is machined to form a disc-shaped second compact 22 as a second layer 2d having a diameter of 340 mm and a thickness of 15 mm, and a first compact having a diameter of 340 mm and a thickness of 5 mm. A disc-shaped first compact 21 (see FIG. 6B) as the layer 2c and a disc-shaped third compact 23 (see FIG. 6A) as the third layer 2e having a diameter of 340 mm and a thickness of 15 mm are produced. do.

次に、図5Aに示すように、第2成形体22に、中央に位置させて直径8mm、深さ11mmの平底穴を形成する。そして、図5Bに示すように、第2成形体22の平底穴に直径8mm、厚み0.5mmのタングステンペレットからなる接続部材16を配置する。そして、タングステンペレットからなる接続部材16の上に中間絶縁体5を載せる。 Next, as shown in FIG. 5A, a flat-bottomed hole having a diameter of 8 mm and a depth of 11 mm is formed in the center of the second compact 22 . Then, as shown in FIG. 5B, the connection member 16 made of tungsten pellets having a diameter of 8 mm and a thickness of 0.5 mm is placed in the flat bottom hole of the second compact 22 . Then, the intermediate insulator 5 is placed on the connection member 16 made of tungsten pellets.

そして、第2成形体22の平底穴が開口する側の面に平面状のモリブデンメッシュ製の内部電極3(線径0.1mm、メッシュサイズ#50、平織りを直径294mmに裁断したもの)を載せる。 Then, a planar internal electrode 3 made of molybdenum mesh (wire diameter 0.1 mm, mesh size #50, plain weave cut to a diameter of 294 mm) is placed on the surface of the second molded body 22 on the side where the flat bottom hole opens. .

そして、内部電極3の上に第1成形体21を載せる。 Then, the first compact 21 is placed on the internal electrode 3 .

次に、電極埋設部材1自体を加熱する目的で所定のパターンに形成したモリブデンメッシュからなるヒータ電極としての発熱抵抗体31を設置する工程を説明する。まず、図6Aに示すように、第3成形体23の発熱抵抗体31と端子4とが接続される箇所に対応する位置に、直径8mm、深さ11mmの平底穴を形成する。そして、第3成形体23の平底穴に直径8mm、厚み0.5mmのタングステンペレットからなる接続部材33を配置する。そして、接続部材33の上に中間絶縁体5を載せる。 Next, for the purpose of heating the electrode-embedded member 1 itself, the process of installing the heating resistor 31 as a heater electrode made of a molybdenum mesh formed in a predetermined pattern will be described. First, as shown in FIG. 6A, a flat-bottom hole having a diameter of 8 mm and a depth of 11 mm is formed at a position corresponding to the connection between the heating resistor 31 and the terminal 4 of the third compact 23 . A connection member 33 made of tungsten pellets having a diameter of 8 mm and a thickness of 0.5 mm is placed in the flat-bottomed hole of the third compact 23 . Then, the intermediate insulator 5 is placed on the connection member 33 .

そして、第3成形体23の上に発熱抵抗体31(線径0.1mm、目開き50メッシュ。)を端子4との接続位置が合うように配置する。そして、図6Bに示すように、発熱抵抗体31の上に第1成形体21を載せた第2成形体22を載置する。 Then, the heating resistor 31 (wire diameter: 0.1 mm, opening: 50 mesh) is arranged on the third molded body 23 so that the connecting position with the terminal 4 is matched. Then, as shown in FIG. 6B, the second compact 22 with the first compact 21 placed thereon is placed on the heating resistor 31 .

このようにして、作製された成形体を第1実施形態と同様に焼成して、端子穴14を穿設して接続部材16,33に端子4を接合することにより、図6Cに示す電極埋設部材1が得られる。 The molded body thus produced is fired in the same manner as in the first embodiment, and the terminal holes 14 are bored and the terminals 4 are joined to the connecting members 16 and 33, thereby embedding the electrodes shown in FIG. 6C. A member 1 is obtained.

なお、図示しないが、内部電極3と発熱抵抗体31を挟む成形体の表面には、内部電極3と発熱抵抗体31の外形及び厚みに対応する凹部が設けられ、この凹部に内部電極3や発熱抵抗体31が配置されている。 Although not shown, a recess corresponding to the outer shape and thickness of the internal electrode 3 and the heat generating resistor 31 is provided on the surface of the molding sandwiching the internal electrode 3 and the heat generating resistor 31. A heating resistor 31 is arranged.

以上のようにして作製された電極埋設部材1を、第1実施形態と同じ方法で評価した。 The electrode-embedded member 1 produced as described above was evaluated by the same method as in the first embodiment.

この結果、第2実施形態の電極埋設部材1では、電極埋設部材1の表面のクラックは認められず、また、電極埋設部材1の断面においても、クラック等の不具合が発生しないことが確認できた。 As a result, in the electrode-embedded member 1 of the second embodiment, no cracks were observed on the surface of the electrode-embedded member 1, and it was also confirmed that defects such as cracks did not occur in the cross section of the electrode-embedded member 1. .

以上のことから明らかなように、第2実施形態の電極埋設部材1によれば、中間絶縁体5と基材2との密着性を向上させて、絶縁層のクラックなどの不具合を抑制することができる。 As is clear from the above, according to the electrode-embedded member 1 of the second embodiment, the adhesiveness between the intermediate insulator 5 and the base material 2 is improved, and defects such as cracks in the insulating layer can be suppressed. can be done.

また、本実施形態の電極埋設部材1の製造方法によれば、複数の内部導体部6を中間絶縁体5でまとめて配置することができるため、複数の内部導体部6を容易に配置することができ、電極埋設部材1を容易に製造することができる。 Further, according to the method of manufacturing the electrode-embedded member 1 of the present embodiment, the plurality of internal conductors 6 can be arranged collectively by the intermediate insulator 5, so that the plurality of internal conductors 6 can be easily arranged. , and the electrode-embedded member 1 can be easily manufactured.

また、中間絶縁体5を基材2内に埋め込んで電極埋設部材1が作製されるため、基材2の径方向の大きさに対応させて中間絶縁体5の大きさを変更する必要がない。従って、様々な大きさの電極埋設部材1を製造するときであっても1種類の中間絶縁体5で対応することができ、電極埋設部材1の大きさによって中間絶縁体5の大きさを変更する必要があるものと比較して、製造の容易化を図ることができる。 In addition, since the electrode-embedded member 1 is produced by embedding the intermediate insulator 5 in the base material 2, there is no need to change the size of the intermediate insulator 5 in accordance with the size of the base material 2 in the radial direction. . Therefore, even when electrode-embedded members 1 of various sizes are manufactured, one type of intermediate insulator 5 can be used, and the size of the intermediate insulator 5 can be changed according to the size of the electrode-embedded member 1. facilitating manufacturing compared to what would otherwise have to be done.

[比較例]
次に、図7を参照して、比較例として中間絶縁体5を用いることなく製造された電極埋設部材1’の製造方法を説明する。
[Comparative example]
Next, referring to FIG. 7, as a comparative example, a method of manufacturing an electrode-embedded member 1' manufactured without using the intermediate insulator 5 will be described.

初めに、絶縁層の成形工程を説明する。 First, the process of forming the insulating layer will be described.

まず、窒化アルミニウム粉末95質量%、酸化イットリウム粉末5質量%からなる粉末混合物を、カーボン製の有底円筒状の型に充填して一軸加圧処理を施し、直径340mm、厚さ5mmの絶縁層としての第1層2c(第1成形体21)を形成した。 First, a powder mixture consisting of 95% by mass of aluminum nitride powder and 5% by mass of yttrium oxide powder was filled in a cylindrical mold made of carbon with a bottom and subjected to uniaxial pressure treatment to form an insulating layer having a diameter of 340 mm and a thickness of 5 mm. A first layer 2c (first molded body 21) was formed as.

次に、内部電極3の設置工程を説明する。第1層2cの上に、直径290mmのモリブデンメッシュ製の内部電極3(線径0.1mm、目開き50メッシュ)を載置した。 Next, the process of installing the internal electrodes 3 will be described. An internal electrode 3 made of molybdenum mesh with a diameter of 290 mm (wire diameter: 0.1 mm, opening: 50 mesh) was placed on the first layer 2c.

次に、直径8mm、厚み0.5mmのタングステンペレットからなる接続部材16を内部電極3の上に載置する。 Next, a connection member 16 made of tungsten pellets having a diameter of 8 mm and a thickness of 0.5 mm is placed on the internal electrode 3 .

そして、第1層2c及び内部電極3の上に上述の粉末混合物を充填して第2層2d(第2成形体22)を形成する。 Then, the above powder mixture is filled on the first layer 2c and the internal electrodes 3 to form the second layer 2d (second compact 22).

そして、電極埋設部材1’自体を加熱する目的で所定のパターンに形成されたモリブデンメッシュ製(線径0.1mm、目開き50メッシュ)の発熱抵抗体(図示省略)を設置し、所定のヒータ端子位置にタングステンペレットからなる接続部材(図示省略)を載せる。 Then, for the purpose of heating the electrode-embedded member 1' itself, a heating resistor (not shown) made of molybdenum mesh (wire diameter: 0.1 mm, mesh size: 50 mesh) formed in a predetermined pattern is installed. A connection member (not shown) made of tungsten pellets is placed on the terminal position.

そして、上記構造体を有底円筒状のカーボン製の型に入れ、上記構造体の上にセラミックス粉末を充填し、一軸加圧して成形体とする。その後、第1実施形態と同様に焼成工程及び端子形成工程を経て、比較例の電極埋設部材1’が完成する。 Then, the structure is placed in a bottomed cylindrical carbon mold, the structure is filled with ceramic powder, and the structure is pressed uniaxially to form a molded body. After that, the electrode-embedded member 1' of the comparative example is completed through the firing process and the terminal forming process in the same manner as in the first embodiment.

以上のようにして作製された電極埋設部材1’を、第1実施形態と同じ方法で評価した。 The electrode-embedded member 1' manufactured as described above was evaluated by the same method as in the first embodiment.

この結果、比較例の電極埋設部材1では、電極埋設部材1の表面のクラックが発生した。 As a result, in the electrode-embedded member 1 of the comparative example, cracks occurred on the surface of the electrode-embedded member 1 .

[他の実施形態]
第1及び第2の両実施形態においては、基材2と中間絶縁体5とが同一材料で成形されたものを説明した。しかしながら、本発明の基材と中間絶縁体とは、セラミックスであり、加圧処理及び焼成処理によって、互いの一体化が図れるものであれば、同一材料でなくてもよい。例えば、基材と中間絶縁体との主成分を同一にして、添加物を異なるものとしたものでも本発明の基材と中間絶縁体との一体性の向上を図ることができる。このように構成することにより中間絶縁体と基材との境界をはっきりとさせることもできる。
[Other embodiments]
In both the first and second embodiments, the substrate 2 and the intermediate insulator 5 are made of the same material. However, the base material and the intermediate insulator of the present invention are ceramics and do not have to be made of the same material as long as they can be integrated with each other by pressure treatment and firing treatment. For example, even if the main components of the base material and the intermediate insulator are the same, but the additives are different, the integration between the base material and the intermediate insulator of the present invention can be improved. By configuring in this way, the boundary between the intermediate insulator and the substrate can be made clear.

また、中間絶縁体は成形体を仮焼した仮焼体または焼結体であってもよい。 Also, the intermediate insulator may be a calcined body or a sintered body obtained by calcining a molded body.

また、内部電極3及び内部導体部6をモリブデンで成形し、接続部材16をタングステンで成形し、端子4をニッケルで成形したものを説明した。しかしながら、本発明の内部電極、内部導体部、接続部材、端子の材質は、これに限らない。例えば、内部電極をタングステン又はタングステン合金で成形してもよいし、内部導体部をタングステン合金、モリブデン又はモリブデン合金で成形してもよいし、接続部材をモリブデン又はモリブデン合金、タングステン合金、コバール、ニッケル系合金で成形してもよいし、端子をコバール、ニッケル系合金、チタン又はチタン合金で成形してもよい。 Also, the internal electrode 3 and the internal conductor 6 are made of molybdenum, the connection member 16 is made of tungsten, and the terminal 4 is made of nickel. However, the materials of the internal electrodes, internal conductors, connection members, and terminals of the present invention are not limited to these. For example, the internal electrodes may be made of tungsten or tungsten alloys, the internal conductors may be made of tungsten alloys, molybdenum or molybdenum alloys, and the connection members may be made of molybdenum or molybdenum alloys, tungsten alloys, kovar or nickel. The terminal may be formed of Kovar, a nickel-based alloy, titanium, or a titanium alloy.

1、1’ 電極埋設部材
2 基材
2a 表面
2b 裏面
2c 第1層
2d 第2層
2e 第3層
3 内部電極
4 端子
5 中間絶縁体(中間体)
5a 貫通孔
6 内部導体部
6a 表面導体部
14 端子穴
16 接続部材
19 カーボン製の型
21 第1成形体
22 第2成形体
23 第3成形体
31 発熱抵抗体
33 接続部材
1, 1' electrode embedded member 2 base material 2a front surface 2b back surface 2c first layer 2d second layer 2e third layer 3 internal electrode 4 terminal 5 intermediate insulator (intermediate)
5a through-hole 6 internal conductor 6a surface conductor 14 terminal hole 16 connecting member 19 carbon mold 21 first molded body 22 second molded body 23 third molded body 31 heating resistor 33 connecting member

Claims (1)

表面及び裏面を有し、セラミックスからなる板状の基材と、
前記基材の表面に沿って延在し、前記基材に埋設される内部電極と、
前記基材に埋設され、前記基材の厚み方向に延在する前記内部電極と電気的に接続される内部導体部と、
前記基材の裏面から前記基材内部に伸長する端子穴と、
前記端子穴に配置され、前記内部導体部を介して前記内部電極に電気的に接続される端子と、
を備える電極埋設部材の製造方法であって、
貫通孔を有するセラミックス製の中間体を形成し、前記貫通孔に前記内部導体部を設けて前記内部導体部付き中間体を製造する中間体製造工程と、
前記内部電極及び前記中間体が埋設された前記基材となる成形体を作製する成形体作製工程と、
前記成形体をホットプレス焼成する焼成工程と、
を含み、
前記中間体製造工程では、
前記中間体は、平行な2面を備えるものであり、
前記中間体に、前記平行な2面の間を貫通する複数の前記貫通孔を設け、
前記貫通孔の内周面に導電性ペーストを塗布または前記貫通孔に導電性ペーストを充填することにより前記内部導体部を形成すると共に、前記平行な2面のそれぞれの少なくとも一部に前記導電性ペーストを塗布することにより前記内部導体部と接続される表面導体部を形成することを特徴とする電極埋設部材の製造方法。
a plate-shaped substrate having a front surface and a back surface and made of ceramics;
an internal electrode extending along the surface of the base material and embedded in the base material;
an internal conductor embedded in the base material and electrically connected to the internal electrode extending in the thickness direction of the base material;
a terminal hole extending from the back surface of the base material into the interior of the base material;
a terminal disposed in the terminal hole and electrically connected to the internal electrode via the internal conductor;
A method for manufacturing an electrode-embedded member comprising
an intermediate manufacturing step of forming a ceramic intermediate having a through hole, providing the internal conductor in the through hole, and manufacturing the intermediate with the internal conductor;
a molded body producing step of producing a molded body to be the base material in which the internal electrode and the intermediate body are embedded;
a sintering step of hot-press sintering the compact;
including
In the intermediate manufacturing process,
The intermediate has two parallel faces,
The intermediate body is provided with a plurality of through holes penetrating between the two parallel surfaces,
The inner conductor portion is formed by applying a conductive paste to the inner peripheral surface of the through hole or filling the through hole with a conductive paste, and the conductive paste is formed on at least a part of each of the two parallel surfaces. A method of manufacturing an electrode-embedded member, comprising forming a surface conductor connected to the internal conductor by applying a paste.
JP2018099918A 2018-05-24 2018-05-24 Method for manufacturing electrode-embedded member Active JP7109258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018099918A JP7109258B2 (en) 2018-05-24 2018-05-24 Method for manufacturing electrode-embedded member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018099918A JP7109258B2 (en) 2018-05-24 2018-05-24 Method for manufacturing electrode-embedded member

Publications (2)

Publication Number Publication Date
JP2019204903A JP2019204903A (en) 2019-11-28
JP7109258B2 true JP7109258B2 (en) 2022-07-29

Family

ID=68727348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018099918A Active JP7109258B2 (en) 2018-05-24 2018-05-24 Method for manufacturing electrode-embedded member

Country Status (1)

Country Link
JP (1) JP7109258B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344584A (en) 1999-06-01 2000-12-12 Ngk Insulators Ltd Joint structure for jointing ceramics and metal and intermediate insert used in the joint structure
JP2004146393A (en) 2002-08-27 2004-05-20 Kyocera Corp Wiring board and its manufacturing method
JP2008305968A (en) 2007-06-07 2008-12-18 Sei Hybrid Kk Electrode connection structure of wafer holder
JP2009060103A (en) 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
JP2017022284A (en) 2015-07-13 2017-01-26 住友電気工業株式会社 Wafer holder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697677B2 (en) * 1987-04-21 1994-11-30 東陶機器株式会社 Electrostatic chuck substrate manufacturing method
JPS63193844U (en) * 1987-05-30 1988-12-14

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344584A (en) 1999-06-01 2000-12-12 Ngk Insulators Ltd Joint structure for jointing ceramics and metal and intermediate insert used in the joint structure
JP2004146393A (en) 2002-08-27 2004-05-20 Kyocera Corp Wiring board and its manufacturing method
JP2008305968A (en) 2007-06-07 2008-12-18 Sei Hybrid Kk Electrode connection structure of wafer holder
JP2009060103A (en) 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
JP2017022284A (en) 2015-07-13 2017-01-26 住友電気工業株式会社 Wafer holder

Also Published As

Publication number Publication date
JP2019204903A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
KR101099891B1 (en) Body having a junction and method of manufacturing the same
JP6867550B2 (en) Holding device and manufacturing method of holding device
JP6461300B1 (en) Ceramic equipment
JP7109258B2 (en) Method for manufacturing electrode-embedded member
JP7125299B2 (en) Electrode embedded member and manufacturing method thereof
US10849221B2 (en) Electrode embedded member
US11869796B2 (en) Electrode-embedded member and method for manufacturing same, electrostatic chuck, and ceramic heater
JP7284560B2 (en) Electrode embedded material
US10750611B2 (en) Electrode embedded member
JP2020126913A (en) Ceramic member
JP7227806B2 (en) holding device
JP7280059B2 (en) Method for manufacturing electrode-embedded member
JP7284561B2 (en) Electrode embedded material
JP2019212668A (en) Electrode embedding member
JP2020177735A (en) Manufacturing method of electrode embedded member
JP7125265B2 (en) Substrate heating device and manufacturing method thereof
JP6898792B2 (en) Ceramic members and their manufacturing methods
JP2023050778A (en) Joined body, production method of the same, and electrode-embedded member
JP2020109725A (en) Holding device
JP2019201013A (en) Component for semiconductor manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220719

R150 Certificate of patent or registration of utility model

Ref document number: 7109258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150