JP7102177B2 - Board detection device and board processing device - Google Patents

Board detection device and board processing device Download PDF

Info

Publication number
JP7102177B2
JP7102177B2 JP2018047446A JP2018047446A JP7102177B2 JP 7102177 B2 JP7102177 B2 JP 7102177B2 JP 2018047446 A JP2018047446 A JP 2018047446A JP 2018047446 A JP2018047446 A JP 2018047446A JP 7102177 B2 JP7102177 B2 JP 7102177B2
Authority
JP
Japan
Prior art keywords
substrate
passage
detection
air
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047446A
Other languages
Japanese (ja)
Other versions
JP2019161082A (en
Inventor
和広 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2018047446A priority Critical patent/JP7102177B2/en
Publication of JP2019161082A publication Critical patent/JP2019161082A/en
Application granted granted Critical
Publication of JP7102177B2 publication Critical patent/JP7102177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Description

本明細書では、搬送部により搬送される基板を検出する技術を開示する。 This specification discloses a technique for detecting a substrate transported by a transport unit.

従来、搬送部により搬送される基板の有無を検出可能な技術が知られている。特許文献1のスクリーン印刷装置は、投光部と、この投光部から投光された光のうち、反射部によって反射された光を受光する受光部とを有する反射型の基板検出センサを備えている。搬送コンベアで搬送された基板が基板停止位置に至ると、投光部から投光された光は基板によって遮光されて受光部に受光されないため、投光部から投光された光が受光部に受光されるか否かによって基板の有無が検出される。 Conventionally, there is known a technique capable of detecting the presence or absence of a substrate transported by a transport unit. The screen printing device of Patent Document 1 includes a reflective substrate detection sensor having a light projecting unit and a light receiving unit that receives the light reflected by the reflecting unit among the light projected from the projecting unit. ing. When the substrate conveyed by the conveyor reaches the substrate stop position, the light projected from the light projecting section is blocked by the substrate and is not received by the light receiving section, so that the light projected from the light projecting section is received by the light receiving section. The presence or absence of a substrate is detected depending on whether or not light is received.

特開2005-93765号公報Japanese Unexamined Patent Publication No. 2005-93765

ところで、特許文献1のように、光の投受光により搬送路上の基板の有無を検出する構成では、投光部から投光された光が基板により遮光される必要があるため、原理的に基板が透明である場合には基板を検出できないという問題がある。 By the way, in a configuration in which the presence or absence of a substrate on a transport path is detected by light emission and reception as in Patent Document 1, the light projected from the light projecting portion needs to be shielded by the substrate. Therefore, in principle, the substrate If is transparent, there is a problem that the substrate cannot be detected.

本明細書に記載された技術は、基板が透明であっても搬送路上の基板を検出することが可能な基板検出装置及び基板処理装置を提供することを目的とする。 An object of the techniques described herein is to provide a substrate detection apparatus and a substrate processing apparatus capable of detecting a substrate on a transport path even if the substrate is transparent.

本明細書に記載された基板検出装置は、基台と、前記基台上の搬送路に沿って基板を搬送する搬送部と、前記搬送路上に搬送された前記基板又は前記基板を支持する基板支持体に対向する対向面、前記対向面に形成される検出穴、及び、前記検出穴に連なる空気の通路を有する通路形成部材と、前記通路の空気を媒体として伝達される物理量に基づいて前記基板を検出する検出部と、を備える。 The substrate detection device described in the present specification includes a base, a transport unit that transports a substrate along a transport path on the base, and the substrate or a substrate that supports the substrate conveyed on the transport path. The passage-forming member having a facing surface facing the support, a detection hole formed in the facing surface, and an air passage connected to the detection hole, and a physical quantity transmitted through the air in the passage as a medium. A detection unit for detecting a substrate is provided.

本構成によれば、基板や基板支持体が検出穴に対向する場合と、基板や基板支持体が検出穴に対向しない場合とで、通路内の空気を媒体として検出部に伝達される物理量が変化するため、基板が透明であっても、通路内の空気を媒体として検出部に伝達された物理量に応じて搬送路上における基板の有無を検出することが可能になる。 According to this configuration, the physical quantity transmitted to the detection unit using the air in the passage as a medium depends on the case where the substrate or the substrate support faces the detection hole and the case where the substrate or the substrate support does not face the detection hole. Because of the change, even if the substrate is transparent, it is possible to detect the presence or absence of the substrate on the transport path according to the physical quantity transmitted to the detection unit using the air in the passage as a medium.

本明細書に記載された技術の実施態様としては以下の態様が好ましい。
前記検出穴は、前記対向面における前記搬送路に沿う方向に複数設けられており、前記検出部は、前記複数の検出穴のうち、前記基板又は前記基板支持体が対向する前記検出穴の位置に応じて異なる物理量に基づいて前記搬送路上における前記基板の位置を検出する。
このようにすれば、基板の有無だけでなく、基板の位置を検出することができる。
The following embodiments are preferred as embodiments of the techniques described herein.
A plurality of the detection holes are provided in the direction along the transport path on the facing surface, and the detection unit is the position of the detection hole with which the substrate or the substrate support faces among the plurality of detection holes. The position of the substrate on the transport path is detected based on different physical quantities.
In this way, not only the presence or absence of the substrate but also the position of the substrate can be detected.

前記検出部は、前記空気の圧力により前記基板を検出する。
前記検出部は、前記空気の流量により前記基板を検出する。
The detection unit detects the substrate by the pressure of the air.
The detection unit detects the substrate by the flow rate of the air.

前記通路は、前記検出穴に連なる第1通路と、前記第1通路とは交差する方向に延びる第2通路と、を備え、前記検出部は、前記第2通路内に音波を発生させる音波発生源と、前記第2通路の空気を介して伝搬される音波を検出する音波検出器と、を備える。
このようにすれば、検出部により空気の圧力や流量を検出しなくても基板を検出することが可能になる。
The passage includes a first passage connected to the detection hole and a second passage extending in a direction intersecting the first passage, and the detection unit generates sound waves for generating sound waves in the second passage. It includes a source and a sound wave detector that detects sound waves propagated through the air in the second passage.
In this way, the substrate can be detected without detecting the air pressure or the flow rate by the detection unit.

前記通路には、加圧された空気が流通する。
このようにすれば、空気の力で基板や基板支持体を通路形成部材の対向面に倣わせることができるため、基板や基板支持体に反りが生じていても安定した搬送が可能になる。
Pressurized air flows through the passage.
In this way, the substrate or the substrate support can be made to imitate the facing surface of the passage forming member by the force of air, so that stable transportation is possible even if the substrate or the substrate support is warped. ..

前記通路形成部材は、加圧された空気が流通する加圧通路と、減圧された空気が流通する減圧通路と、を有し、前記通路形成部材の対向面には、前記加圧通路に連なる加圧穴と、前記減圧通路に連なる減圧穴と、が形成されている。
このようにすれば、基板と対向面との間を流通する空気により、基板や基板支持体と通路形成部材の対向面との間の過度な密着が緩和され、一定のギャップを保つことができるため、基板や基板支持体と通路形成部材の対向面との間のすべり抵抗を小さくすることができ、安定した基板の搬送が可能になる。また、一定のギャップを保つことで、圧力応答、流量応答、周波数応答等が安定するため、基板の検出の精度を高めることが可能になる。
The passage forming member has a pressurized passage through which pressurized air flows and a reduced pressure passage through which decompressed air flows, and the facing surface of the passage forming member is connected to the pressurized passage. A pressure hole and a pressure reducing hole connected to the pressure reducing passage are formed.
In this way, the air flowing between the substrate and the facing surface alleviates excessive adhesion between the substrate or the substrate support and the facing surface of the passage forming member, and a constant gap can be maintained. Therefore, the slip resistance between the substrate or the substrate support and the facing surface of the passage forming member can be reduced, and the substrate can be stably conveyed. Further, by maintaining a constant gap, the pressure response, the flow rate response, the frequency response, and the like are stabilized, so that the accuracy of substrate detection can be improved.

前記通路形成部材は、複数の前記加圧穴と複数の前記減圧穴とが前記基板の搬送方向に間隔を空けて交互に並んでいる。
このようにすれば、基板と通路形成部材の対向面との間に流通する空気について、基板の位置における圧力のばらつきを抑制することができる。
In the passage forming member, the plurality of pressure holes and the plurality of pressure reducing holes are alternately arranged at intervals in the transport direction of the substrate.
In this way, it is possible to suppress the variation in pressure at the position of the substrate with respect to the air flowing between the substrate and the facing surface of the passage forming member.

前記検出部は、前記基板が所定の位置に搬送されたことを検出した時には、前記通路内の空気の加圧を停止し、減圧を行う。
このようにすれば、搬送した基板を所定の位置に保持することができる。
When the detection unit detects that the substrate has been conveyed to a predetermined position, the detection unit stops pressurizing the air in the passage and depressurizes the air.
In this way, the conveyed substrate can be held in a predetermined position.

前記検出部により前記基板が検出されなかったときに報知する報知手段を備える。
このようにすれば、作業者に基板の搬送に異常が生じたことを知らせることができる。
A notification means for notifying when the substrate is not detected by the detection unit is provided.
In this way, it is possible to notify the operator that an abnormality has occurred in the transfer of the substrate.

前記検出部による検出結果に応じて前記基板の搬送速度を検出し、検出した前記搬送速度に応じて前記搬送部を制御する制御手段を備える。
このようにすれば、搬送部により搬送される基板の速度が予め設定されている速度とは異なる場合には、検出部により検出した実際の基板の速度により搬送部の速度を補正すること可能になる。
A control means is provided which detects the transport speed of the substrate according to the detection result by the detection unit and controls the transport unit according to the detected transport speed.
In this way, when the speed of the substrate transported by the transport unit is different from the preset speed, the speed of the transport unit can be corrected by the actual speed of the substrate detected by the detection unit. Become.

前記基板検出装置と、前記検出部により所定位置に搬送されたことが検出された前記基板に対して予め決められた処理を行う処理実行部と、を備える基板処理装置とする。
このようにすれば、基板検出装置の検出結果に基づいて、基板に対して予め決められた電子部品の実装、半田ペーストの塗布、接着剤の塗布、基板検査等の処理を行うことができる。
The substrate processing apparatus includes the substrate detection device and a processing execution unit that performs a predetermined process on the substrate detected to have been conveyed to a predetermined position by the detection unit.
In this way, based on the detection result of the substrate detection device, it is possible to perform processing such as mounting of electronic components, coating of solder paste, coating of adhesive, and substrate inspection on the substrate.

本明細書に記載された技術によれば、基板が透明であっても搬送路上の基板を検出することが可能になる。 According to the technique described herein, it is possible to detect a substrate on a transport path even if the substrate is transparent.

実施形態1の表面実装機を示す平面図Top view showing the surface mounter of the first embodiment 表面実装機の断面図Cross-sectional view of surface mounter 基板がバックアップ装置によりバックアップされた状態を示す表面実装機の断面図Cross-sectional view of the surface mounter showing the state in which the board is backed up by the backup device. 通路形成部材を示す斜視図Perspective view showing a passage forming member 通路形成部材を示す分解斜視図An exploded perspective view showing a passage forming member 通路形成部材を示す平面図Plan view showing a passage forming member 図6のA-A断面図AA cross-sectional view of FIG. 圧力センサ等による基板の検出を説明するための図The figure for demonstrating the detection of a substrate by a pressure sensor or the like. 音波を利用した基板の検出を説明するための図Diagram for explaining substrate detection using sound waves 基板の位置による音波の変化を説明するための図Diagram for explaining changes in sound waves depending on the position of the substrate 表面実装機の電気的構成を示す図Diagram showing the electrical configuration of the surface mounter 表面実装機の動作を示すフローチャートFlowchart showing the operation of the surface mounter 実施形態2の 通路形成部材上に基板が搬送された状態を示す図The figure which shows the state which the substrate was conveyed on the passage forming member of Embodiment 2. 図13に対して搬送速度の検出のために基板表面に検出溝を設けた図FIG. 13 is a diagram in which a detection groove is provided on the surface of the substrate for detecting the transport speed.

<実施形態1>
1.表面実装機10の全体構成
実施形態の表面実装機10(「基板処理装置」の一例)について図1~図12を参照しつつ説明する。以下の説明では、基台11の長辺方向(図1の左右方向)及び搬送コンベア12の搬送方向をX軸方向とし、基台11の短辺方向(図1の上下方向)をY軸方向とし、基台11の高さ方向(図2の上下方向)をZ軸方向とする。図1は表面実装機10の平面図である。
<Embodiment 1>
1. 1. Overall Configuration of Surface Mounter 10 The surface mounter 10 of the embodiment (an example of the "board processing apparatus") will be described with reference to FIGS. 1 to 12. In the following description, the long side direction of the base 11 (horizontal direction in FIG. 1) and the transport direction of the transport conveyor 12 are the X-axis directions, and the short side direction of the base 11 (vertical direction in FIG. 1) is the Y-axis direction. The height direction of the base 11 (vertical direction in FIG. 2) is the Z-axis direction. FIG. 1 is a plan view of the surface mounter 10.

表面実装機10は、図1に示すように、基台11と、プリント基板(「基板」の一例。以下では「基板P」と示す)を搬送方向(X軸方向)に搬送する一対の搬送コンベア12(「搬送部」の一例)と、一方の搬送コンベア12の脇に配され、内部に空気が流通する通路が形成された通路形成部材30と、電子部品Bを吸着して基板P上に実装するヘッドユニット50とを備えている。基台11は、平面視長方形状をなし、平坦な上面を有する。 As shown in FIG. 1, the surface mounter 10 transports a base 11 and a printed circuit board (an example of a “board”; hereinafter referred to as “board P”) in a transport direction (X-axis direction). A conveyor 12 (an example of a "conveying unit"), a passage forming member 30 arranged beside one of the transport conveyors 12 and having a passage through which air flows inside, and an electronic component B are attracted to the substrate P. It is provided with a head unit 50 to be mounted on the. The base 11 has a rectangular shape in a plan view and has a flat upper surface.

搬送コンベア12は、基板Pを基台11上の搬送路LCに沿って搬送するものであって、図2に示すように、Y軸方向に向かい合う一対の側壁体13と、搬送方向に沿って循環駆動する一対の搬送ベルト14とを備えている。基板Pは、両搬送ベルト14に架設する形でセットされる。搬送ベルト14は、一対のローラ16を掛け渡して取り付けられている。基板Pは、搬送方向の一方側(図1の右側)からコンベアモータ15(図11参照)の作動により循環駆動する搬送ベルト14に沿って基台11上において実装作業が行われる実装位置に搬入される。そして、この実装位置に停止した状態で電子部品Bの実装作業がされた後、搬送ベルト14に沿って他方側(図1の左側)に搬出される。一対の搬送コンベア12のうちの一方の内側の隣接する位置には、通路形成部材30が取り付けられている。 The conveyor 12 transports the substrate P along the transport path LC on the base 11, and as shown in FIG. 2, the transport conveyor 12 has a pair of side wall bodies 13 facing the Y-axis direction and along the transport direction. It includes a pair of conveyor belts 14 that are circulated and driven. The substrate P is set so as to be erected on both transport belts 14. The transport belt 14 is attached by hanging a pair of rollers 16. The substrate P is carried from one side in the transport direction (right side in FIG. 1) to a mounting position where mounting work is performed on the base 11 along the transport belt 14 which is circulated and driven by the operation of the conveyor motor 15 (see FIG. 11). Will be done. Then, after the electronic component B is mounted while stopped at this mounting position, it is carried out to the other side (left side in FIG. 1) along the transport belt 14. A passage forming member 30 is attached to an adjacent position inside one of the pair of conveyors 12.

通路形成部材30は、X軸方向に延びる角筒状であって、搬送される基板Pの下側に配されており、図5,図7に示すように、通気路本体31と、通気路本体31を覆う蓋部35とを有する。通気路本体31は、上方側が開放されており、左右に並んだ3つの通気溝32A~32Cが通気路本体31の全長に延びている。3つの通気溝32A~32Cのうち、真ん中の検出溝32Bは、空気を伝達媒体として基板Pを検出するために設けられており、左右方向の一方側の加圧溝32Aは、圧縮機75で加圧された空気が流通するために設けられており、左右方向の他方側の減圧溝32Cは、真空ポンプ76で減圧された空気が流通するために設けられている。通気路本体31が蓋部35で覆われると3本の空気の通路30A~30Cが形成される。 The passage forming member 30 has a square cylinder shape extending in the X-axis direction and is arranged under the substrate P to be conveyed. As shown in FIGS. 5 and 7, the air passage main body 31 and the air passage are provided. It has a lid portion 35 that covers the main body 31. The upper side of the ventilation path main body 31 is open, and three ventilation grooves 32A to 32C arranged side by side extend to the entire length of the ventilation path main body 31. Of the three ventilation grooves 32A to 32C, the detection groove 32B in the middle is provided to detect the substrate P using air as a transmission medium, and the pressure groove 32A on one side in the left-right direction is a compressor 75. It is provided for the flow of pressurized air, and the pressure reducing groove 32C on the other side in the left-right direction is provided for the flow of the air depressurized by the vacuum pump 76. When the air passage main body 31 is covered with the lid portion 35, three air passages 30A to 30C are formed.

加圧溝32A及び減圧溝32Cは、例えば、通路形成部材30の端部(通気溝32A~32Cの端部)に接続された図示しないホース又は配管を介してそれぞれ圧縮機75及び真空ポンプ76に接続されている。 The pressurizing groove 32A and the depressurizing groove 32C are connected to the compressor 75 and the vacuum pump 76, respectively, via hoses or pipes (not shown) connected to the ends of the passage forming members 30 (ends of the ventilation grooves 32A to 32C), respectively. It is connected.

蓋部35は、第1蓋体36~第3蓋体38が重ねられて構成されている。各蓋体36~38は、共に帯状に延びる平板状であって、下側の第1蓋体36は、それぞれ加圧溝32A及び減圧溝32Cに連通する2列の貫通穴36A,36Cが等間隔に並んで設けられている。真ん中の第2蓋体37は、斜めに延びる貫通穴37Aが並行に並んで設けられている。上側の第3蓋体38は、第1蓋体36の半分の間隔で二倍の数の貫通穴38A,38Cが2列に並んで設けられている。第3蓋体38の上面は、搬送路LC上に搬送された基板Pに対向する対向面39とされる。対向面39の貫通穴38A,38Cは、加圧された空気が上方に排出される加圧穴38Aと、上方の空気を減圧する減圧穴38Cとされる。2列の貫通穴38A,38Cは、各列ごとに、加圧穴38Aと減圧穴38Cとは前後方向に交互に並んで配置されている。また、対向面39には、基板Pの有無を検出するための空気が流通する検出穴38Bが形成されており、検出穴38Bは、2列の貫通穴38A,38Cの間に所定間隔ごとに配置されている。第1蓋体36及び第2蓋体37には、図7に示すように、検出穴38Bに連なる貫通穴36B,37Bが形成されている。 The lid portion 35 is configured by stacking the first lid body 36 to the third lid body 38. Each of the lids 36 to 38 has a flat plate shape extending in a strip shape, and the lower first lid 36 has two rows of through holes 36A and 36C communicating with the pressure groove 32A and the pressure reduction groove 32C, respectively. They are provided side by side at intervals. The second lid 37 in the center is provided with through holes 37A extending diagonally side by side in parallel. The upper third lid 38 is provided with twice the number of through holes 38A and 38C arranged side by side in two rows at half the intervals of the first lid 36. The upper surface of the third lid 38 is a facing surface 39 facing the substrate P transported on the transport path LC. The through holes 38A and 38C of the facing surface 39 are a pressure hole 38A in which the pressurized air is discharged upward and a pressure reducing hole 38C in which the air above is depressurized. The two rows of through holes 38A and 38C are arranged so that the pressure holes 38A and the pressure reducing holes 38C are alternately arranged in the front-rear direction in each row. Further, a detection hole 38B through which air for detecting the presence or absence of the substrate P flows is formed on the facing surface 39, and the detection holes 38B are formed at predetermined intervals between the two rows of through holes 38A and 38C. Have been placed. As shown in FIG. 7, through holes 36B and 37B connected to the detection holes 38B are formed in the first lid body 36 and the second lid body 37.

通路形成部材30は、通気路本体31上に第1蓋体36~第3蓋体38が積層されることにより検出溝32Bに、貫通穴36B,37B及び検出穴38Bに連なり、空気の通路30Bが形成される。また、加圧溝32Aは、貫通穴36A,37A及び加圧穴38Aに連なる空気の加圧通路30Aを形成し、減圧溝32Cは、貫通穴36C,37A及び減圧穴38Cに連なる空気の減圧通路30Cを形成する。通路形成部材30には、通路30Bの空気を媒体として伝達される物理量を受信するセンサ41が取り付けられている。 The passage forming member 30 is connected to the through holes 36B and 37B and the detection holes 38B in the detection groove 32B by laminating the first lid body 36 to the third lid body 38 on the ventilation path main body 31, and the air passage 30B. Is formed. Further, the pressure groove 32A forms a pressure passage 30A for air connected to the through holes 36A, 37A and the pressure hole 38A, and the pressure reducing groove 32C forms a pressure reduction passage 30C for air connected to the through holes 36C, 37A and the pressure reducing hole 38C. To form. A sensor 41 that receives a physical quantity transmitted through the air in the passage 30B as a medium is attached to the passage forming member 30.

センサ41は、例えば、圧力センサ、流量センサ等を用いることができる。センサ41の取付位置は、例えば、図8に示すように、通路30Bに貫通形成された通気穴43を介して連通した通路形成部材30の外部に取り付けることができる。なお、図8では、第2蓋体37及び第3蓋体38を設けず、第1蓋体36の上面を基板Pに対向する対向面42としている。 As the sensor 41, for example, a pressure sensor, a flow rate sensor, or the like can be used. As shown in FIG. 8, the mounting position of the sensor 41 can be mounted on the outside of the passage forming member 30 communicating with the passage 30B through the ventilation hole 43 formed through the passage 30B, for example. In FIG. 8, the second lid 37 and the third lid 38 are not provided, and the upper surface of the first lid 36 is a facing surface 42 facing the substrate P.

ここで、基板Pを検出する検出部40として、上記したセンサ41に限られず、図9に示すように、音波発生源45及び音波検出器46を用いて音波の変化を利用してもよい。具体的には、通路形成部材30の通路30Bは、検出穴38Bに連なる第1通路33と、第1通路33とは交差する方向に延びる第2通路34と、を備える。第2通路34の一端側には、音波を発生する音波発生源45が設けられ、第2通路34の他端側には、音波を検出する音波検出器46が設けられる。なお、図9では、第2蓋体37及び第3蓋体38を設けず、第1蓋体36の上面を基板Pに対向する対向面42としている。音波発生源45は、例えば、リード(楽器)、スピーカー、圧電振動子等を用いることができる。音波検出器46としては、マイクロホン等の集音器や圧電センサを用いることができる。このようにすれば、基板Pの位置により、基板Pによって塞がれる(基板が対向する)貫通穴36B(検出穴)の位置が異なるため、通路30Bと、貫通孔36Bとによって形成される音波が伝わる領域の共振周波数が変化する。この結果、検出される波長及び周波数が変化する。これにより、図10(A),(B)に示すように、基板Pが貫通穴36B(検出穴38B)の塞いだ状態の共振周波数が変化し、音波WA2は、音波WA1よりも波長が長くなっている(周波数が低くなっている)。 Here, the detection unit 40 for detecting the substrate P is not limited to the sensor 41 described above, and as shown in FIG. 9, a sound wave generation source 45 and a sound wave detector 46 may be used to utilize changes in sound waves. Specifically, the passage 30B of the passage forming member 30 includes a first passage 33 connected to the detection hole 38B and a second passage 34 extending in a direction intersecting the first passage 33. A sound wave generation source 45 for generating sound waves is provided on one end side of the second passage 34, and a sound wave detector 46 for detecting sound waves is provided on the other end side of the second passage 34. In FIG. 9, the second lid 37 and the third lid 38 are not provided, and the upper surface of the first lid 36 is a facing surface 42 facing the substrate P. As the sound wave generation source 45, for example, a reed (musical instrument), a speaker, a piezoelectric vibrator, or the like can be used. As the sound wave detector 46, a sound collector such as a microphone or a piezoelectric sensor can be used. In this way, since the position of the through hole 36B (detection hole) closed by the substrate P (the substrate faces) differs depending on the position of the substrate P, the sound wave formed by the passage 30B and the through hole 36B The resonance frequency in the region where is transmitted changes. As a result, the detected wavelength and frequency change. As a result, as shown in FIGS. 10A and 10B, the resonance frequency of the substrate P in the closed through hole 36B (detection hole 38B) changes, and the sound wave WA2 has a longer wavelength than the sound wave WA1. (The frequency is low).

図1に示すように、搬送コンベア12の両側(図1の上下両側)には、X軸方向に並んで2箇所ずつ、計4箇所にフィーダ型供給装置18が配されている。フィーダ型供給装置18には、複数のフィーダ19が横並び状に整列して取り付けられている。各フィーダ19は、複数の電子部品Bが収容された電子部品供給テープ(不図示)が巻回されたリール(不図示)、及びリールから電子部品供給テープを引き出す電動式の送出装置(不図示)等を備えており、搬送コンベア12側に位置する端部から電子部品Bが一つずつ供給されるようになっている。供給された電子部品Bは、実装位置にてバックアップ装置20によりバックアップされた基板P上に実装される。 As shown in FIG. 1, feeder type feeders 18 are arranged on both sides of the conveyor 12 (upper and lower sides of FIG. 1) at two locations arranged in the X-axis direction, for a total of four locations. A plurality of feeders 19 are arranged side by side and attached to the feeder type supply device 18. Each feeder 19 has a reel (not shown) around which an electronic component supply tape (not shown) containing a plurality of electronic components B is wound, and an electric sending device (not shown) that pulls out the electronic component supply tape from the reel. ) And the like, and electronic components B are supplied one by one from the end located on the transfer conveyor 12 side. The supplied electronic component B is mounted on the substrate P backed up by the backup device 20 at the mounting position.

バックアップ装置20は、図2,図3に示すように、基台11の中央部に取り付けられており、多数個のバックアップピン22を起立状態に保持したバックアッププレート21と、バックアッププレート21を昇降させる昇降軸26を備えた昇降装置25とから構成されている。バックアッププレート21は昇降装置25の作動により、図2に示す下降位置と、図3に示す上昇位置とに変位可能となっている。バックアッププレート21を下降位置に位置させると、搬送コンベア12上を搬送される基板Pの下方において、各バックアップピン22が、基板Pから所定距離隔てた離間状態となる。バックアッププレート21を上昇位置に移動させると、バックアップピン22が基板Pを下から持ち上げてバックアップしつつ、実装位置に停止した基板Pを側壁体13の上部に取り付けられたガイド片28との間に挟み付けて保持する。 As shown in FIGS. 2 and 3, the backup device 20 is attached to the central portion of the base 11, and raises and lowers the backup plate 21 holding a large number of backup pins 22 in an upright state and the backup plate 21. It is composed of an elevating device 25 provided with an elevating shaft 26. The backup plate 21 can be displaced to the descending position shown in FIG. 2 and the ascending position shown in FIG. 3 by the operation of the elevating device 25. When the backup plate 21 is positioned in the lowered position, the backup pins 22 are separated from the substrate P by a predetermined distance below the substrate P conveyed on the conveyor 12. When the backup plate 21 is moved to the raised position, the backup pin 22 lifts the substrate P from below to back up, and the substrate P stopped at the mounting position is placed between the guide piece 28 attached to the upper part of the side wall body 13. Hold by sandwiching.

ヘッドユニット50には、図1に示すように、電子部品Bの実装動作を行う実装用ヘッド51が列状をなして複数個搭載されている。各実装用ヘッド51の先端には電子部品Bを負圧によって吸着する吸着ノズルがそれぞれ設けられている。基台11上であって搬送コンベア12のY方向の両側には、部品認識カメラ29が一対設置されている。この部品認識カメラ29は、実装用ヘッド51の吸着ノズルにより吸着保持された電子部品Bを撮影するためのものである。 As shown in FIG. 1, a plurality of mounting heads 51 for mounting the electronic component B are mounted in a row on the head unit 50. At the tip of each mounting head 51, a suction nozzle for sucking the electronic component B by a negative pressure is provided. A pair of component recognition cameras 29 are installed on both sides of the transfer conveyor 12 in the Y direction on the base 11. The component recognition camera 29 is for photographing the electronic component B that is attracted and held by the suction nozzle of the mounting head 51.

2.表面実装機10の電気的構成
表面実装機10は、図11に示すように、実装機本体10A内に、全体を制御するコントローラ60を備える。コントローラ60は、CPU等により構成される演算処理部61、記憶部62、検出処理部63、モータ制御部64、画像処理部65、及び入出力部66を備えている。実装機本体10Aの外部には、ユーザが操作可能な操作部68及びディスプレイ等のユーザが視認可能な表示部69が設けられており、演算処理部61は、操作部68及び表示部69に接続されている。
2. Electrical configuration of the surface mounter 10 As shown in FIG. 11, the surface mounter 10 includes a controller 60 that controls the entire surface mounter body 10A. The controller 60 includes an arithmetic processing unit 61, a storage unit 62, a detection processing unit 63, a motor control unit 64, an image processing unit 65, and an input / output unit 66, which are composed of a CPU or the like. A user-operable operation unit 68 and a user-visible display unit 69 such as a display are provided outside the mounting machine main body 10A, and the arithmetic processing unit 61 is connected to the operation unit 68 and the display unit 69. Has been done.

記憶部62には表面実装機10の実装動作を制御するための実装プログラム、及び、搬送コンベア12等を制御するための各種データが格納されている。また、演算処理部61が各種演算を行う際の情報を一時記憶させておくための作業領域が割り当てられている。 The storage unit 62 stores a mounting program for controlling the mounting operation of the surface mounting machine 10, and various data for controlling the conveyor 12 and the like. In addition, a work area is allocated for temporarily storing information when the arithmetic processing unit 61 performs various arithmetic operations.

また、記憶部62には、検出処理部63に伝達された基板Pの検出情報に基づき、基板Pの有無や位置を判断するためのデータが記憶されている。具体的には、予め基板Pの位置に応じてセンサ41等の検出部40で検出される検出信号の波形(波長、周波数、波高値等)を学習させておき、検出信号の波形と基板Pの位置との関係の検出データを記憶する。 Further, the storage unit 62 stores data for determining the presence / absence and position of the substrate P based on the detection information of the substrate P transmitted to the detection processing unit 63. Specifically, the waveform (waveform, frequency, peak value, etc.) of the detection signal detected by the detection unit 40 such as the sensor 41 is learned in advance according to the position of the substrate P, and the waveform of the detection signal and the substrate P are learned. Stores the detection data of the relationship with the position of.

検出処理部63は、入出力部66を介してセンサ41から現在の検出信号が入力されるとともに、記憶部62に記憶された過去の検出信号の波形と基板Pの有無や位置との関係の検出データを読み出し、検出信号と検出データとの関係により各検出穴38Bの位置における基板Pの有無や基板Pの位置を判断する。検出処理部63は、センサ41と共に、基板Pを検出する検出部40を構成する。 The detection processing unit 63 receives the current detection signal from the sensor 41 via the input / output unit 66, and the relationship between the waveform of the past detection signal stored in the storage unit 62 and the presence / absence and position of the substrate P. The detection data is read out, and the presence / absence of the substrate P and the position of the substrate P at the positions of the detection holes 38B are determined based on the relationship between the detection signal and the detection data. The detection processing unit 63, together with the sensor 41, constitutes a detection unit 40 that detects the substrate P.

モータ制御部64は演算処理部61の指令の下、各モータ71~74を通電制御するものであり、搬送コンベア12を駆動するためのコンベアモータ15と、電子部品Bの実装作業を行うためのX軸モータ71、Y軸モータ72、Z軸モータ73及びR軸モータ74が電気的に接続されている。画像処理部65には、部品認識カメラ29に電気的に接続されている。入出力部66には圧縮機75、真空ポンプ76及びセンサ41が電気的に接続されている。 The motor control unit 64 energizes and controls each of the motors 71 to 74 under the command of the arithmetic processing unit 61, and mounts the conveyor motor 15 for driving the transport conveyor 12 and the electronic component B. The X-axis motor 71, the Y-axis motor 72, the Z-axis motor 73, and the R-axis motor 74 are electrically connected. The image processing unit 65 is electrically connected to the component recognition camera 29. A compressor 75, a vacuum pump 76, and a sensor 41 are electrically connected to the input / output unit 66.

3.表面実装機10の動作
図12に示すように、ユーザにより操作部68が操作されると、コントローラ60は、圧縮機75及び真空ポンプ76に駆動信号を出力し、圧縮機75及び真空ポンプ76を駆動する(S1)。また、搬送コンベア12に駆動信号を出力し、搬送コンベア12を循環駆動する(S2)。圧縮機75及び真空ポンプ76が駆動すると、加圧穴38Aから加圧された空気が噴出され、減圧穴38C内に負圧が生じ、減圧穴38C内に空気が吸入される。搬送コンベア12が駆動すると、搬送路LC上の基板Pが搬送方向に搬送される。基板Pが通路形成部材30の上を通ると、基板Pは、通路形成部材30の対向面39(上面)に対して空気が流通する隙間を空けた状態で搬送され、基板Pと対向面39との間のすべり抵抗が少なくなる。
3. 3. Operation of Surface Mounter 10 As shown in FIG. 12, when the operation unit 68 is operated by the user, the controller 60 outputs a drive signal to the compressor 75 and the vacuum pump 76, and causes the compressor 75 and the vacuum pump 76 to operate. Drive (S1). Further, a drive signal is output to the conveyor 12, and the conveyor 12 is circulated and driven (S2). When the compressor 75 and the vacuum pump 76 are driven, pressurized air is ejected from the pressure reducing hole 38A, a negative pressure is generated in the pressure reducing hole 38C, and air is sucked into the pressure reducing hole 38C. When the transfer conveyor 12 is driven, the substrate P on the transfer path LC is conveyed in the transfer direction. When the substrate P passes over the passage forming member 30, the substrate P is conveyed with a gap through which air flows with respect to the facing surface 39 (upper surface) of the passage forming member 30, and the substrate P and the facing surface 39. The slip resistance between and is reduced.

そして、通路形成部材30の対向面39上を移動する基板Pは、検出穴38Bの上を通ると複数の検出穴38Bを順番に覆っていく。検出穴38B内の空気は、検出穴38Bの上を基板Pが通らず、開放された状態では、大気圧とほぼ同じとされているが、検出穴38Bの上を基板Pが通ると、検出穴38Bが基板Pにより覆われるため、検出穴38Bに連なる通路30B内の気圧及び空気の流れが変化する。これにより、通路30B内の空気を媒体としてセンサ41に伝達される物理量(圧力、流量、周波数等)が変化し、センサ41からの検出信号を受けた検出処理部63は、記憶部62に記憶された検出データに基づき基板Pの位置を検知し、基板Pが電子部品Bを実装する実装位置まで移動したか否かを判断する(S3)。基板Pが実装位置に到達していないと判断したときには(S3で「NO」)、検出処理部63は、記憶部62に記憶されている所定時間(予め設定した基板Pが実装位置に到達しているべき時間)が経過した後に(S9で「YES」)、表示部69の表示や音声等により、基板P検出の異常を報知し(S10)、搬送コンベア12の駆動を停止する(S11)。 Then, when the substrate P moving on the facing surface 39 of the passage forming member 30 passes over the detection holes 38B, it covers the plurality of detection holes 38B in order. The air in the detection hole 38B is almost the same as the atmospheric pressure when the substrate P does not pass over the detection hole 38B and is open, but when the substrate P passes over the detection hole 38B, it is detected. Since the hole 38B is covered with the substrate P, the air pressure and the air flow in the passage 30B connected to the detection hole 38B change. As a result, the physical quantity (pressure, flow rate, frequency, etc.) transmitted to the sensor 41 using the air in the passage 30B as a medium changes, and the detection processing unit 63 that receives the detection signal from the sensor 41 stores in the storage unit 62. The position of the board P is detected based on the detected detection data, and it is determined whether or not the board P has moved to the mounting position where the electronic component B is mounted (S3). When it is determined that the board P has not reached the mounting position (“NO” in S3), the detection processing unit 63 reaches the mounting position for a predetermined time stored in the storage unit 62 (the preset board P reaches the mounting position). After the elapse of time (“YES” in S9) (“YES” in S9), the abnormality of the substrate P detection is notified by the display or voice of the display unit 69 (S10), and the drive of the transfer conveyor 12 is stopped (S11). ..

S3にて、検出処理部63は、基板Pが実装位置に到達したと判断したときには(S3で「YES」)、搬送コンベア12及び圧縮機75を停止し、真空ポンプ76の駆動を継続する(S4)。これにより、基板Pの搬送が停止されるとともに、真空ポンプ76の駆動により基板Pの位置が実装位置に保持される。 When the detection processing unit 63 determines in S3 that the substrate P has reached the mounting position (“YES” in S3), the transfer conveyor 12 and the compressor 75 are stopped, and the vacuum pump 76 is continued to be driven (“YES” in S3). S4). As a result, the transfer of the substrate P is stopped, and the position of the substrate P is held at the mounting position by driving the vacuum pump 76.

次に、検出処理部63は、基板Pの所定の移動距離及び所定の移動距離の移動にかかる時間に基づいて搬送速度を検知し(S5)、基板Pの搬送速度が予め設定されている速度に対して所定範囲内の速度が検出されているか否かを判断する(S6)。具体的な基板Pの搬送速度の検知は、例えば、図10の複数の検出穴38Bのうち、1つの上流側の検出穴38B上を基板が通過したこと検出してから、下流側の検出穴38B上を通過するまでの時間と、この時間での基板の移動距離である上流側の検出穴38Bと下流側の検出穴38Bの距離とから搬送速度を求めることができる。そして、基板Pの搬送速度が設定されている速度に対して所定範囲内の速度と判断した場合には(S6で「YES」)、電子部品Bの実装作業を行う(S7)。一方、基板Pの搬送速度が設定されている速度に対して所定範囲内の速度でないと判断した場合には(S6で「NO」)、基板Pの搬送速度に所定以上の誤差を生じているため、誤差に応じて補正した搬送コンベア12の速度を記憶部62に記憶し(S12)、電子部品Bの実装作業を行う(S7)。電子部品Bの実装作業では、バックアップ装置20を作動する。これにより、基板Pがバックアップされ、各種モータ71~74を駆動してバックアップされた基板Pに対する電子部品Bの実装作業を行う。実装作業が完了すると、バックアップ装置20が基板Pを下降させる。そして、圧縮機75,真空ポンプ76及び搬送コンベア12を駆動して部品実装済みの基板Pを搬出する(S8)。 Next, the detection processing unit 63 detects the transfer speed based on the predetermined movement distance of the substrate P and the time required for the movement of the predetermined movement distance (S5), and the transfer speed of the substrate P is set in advance. It is determined whether or not a speed within a predetermined range is detected with respect to (S6). Specific detection of the transport speed of the substrate P is, for example, after detecting that the substrate has passed over one of the detection holes 38B on the upstream side of the plurality of detection holes 38B in FIG. The transport speed can be obtained from the time required for passing over 38B and the distance between the detection hole 38B on the upstream side and the detection hole 38B on the downstream side, which is the moving distance of the substrate at this time. Then, when it is determined that the transfer speed of the substrate P is within a predetermined range with respect to the set speed (“YES” in S6), the mounting work of the electronic component B is performed (S7). On the other hand, when it is determined that the transfer speed of the substrate P is not within a predetermined range with respect to the set speed (“NO” in S6), an error of a predetermined value or more occurs in the transfer speed of the substrate P. Therefore, the speed of the transport conveyor 12 corrected according to the error is stored in the storage unit 62 (S12), and the mounting work of the electronic component B is performed (S7). In the mounting work of the electronic component B, the backup device 20 is operated. As a result, the substrate P is backed up, and various motors 71 to 74 are driven to mount the electronic component B on the backed up substrate P. When the mounting work is completed, the backup device 20 lowers the substrate P. Then, the compressor 75, the vacuum pump 76, and the conveyor 12 are driven to carry out the board P on which the components are mounted (S8).

4.本実施形態の作用、効果
表面実装機10(基板処理装置)は、基台11と、基台11上の搬送路LCに沿って基板Pを搬送する搬送コンベア12(搬送部)と、搬送路LC上に搬送された基板Pに対向する対向面39(42)、対向面39(42)に形成される検出穴38B(36B)、及び、検出穴38B(36B)に連なる空気の通路30A~30Cを有する通路形成部材30と、通路30A~30Cの空気を媒体として伝達される物理量に基づいて基板Pを検出する検出部40と、を備える。
本実施形態によれば、基板Pが検出穴38B(36B)に対向する場合と、基板Pが検出穴38B(36B)に対向しない場合とにより、通路30A~30Cの通路の空気を媒体として検出部40に伝達される物理量が変化するため、空気を媒体として検出部40に伝達された物理量に応じて搬送路LC上における基板Pの有無を検出することが可能になる。これにより、例えば光学的なセンサを用いる場合のように、基板Pが透明な場合や、基板Pの形状(基板の反り)等により、基板に投光した光が基板P上で乱反射することがないため、基板Pの検出精度を向上させることが可能になる。
4. Actions and effects of this embodiment The surface mounter 10 (board processing device) includes a base 11, a transport conveyor 12 (transport section) that transports the substrate P along a transport path LC on the base 11, and a transport path. The facing surface 39 (42) facing the substrate P conveyed on the LC, the detection holes 38B (36B) formed in the facing surfaces 39 (42), and the air passages 30A to connect to the detection holes 38B (36B). A passage forming member 30 having 30C and a detection unit 40 for detecting a substrate P based on a physical quantity transmitted through air in the passages 30A to 30C are provided.
According to the present embodiment, the air in the passages 30A to 30C is detected as a medium depending on whether the substrate P faces the detection hole 38B (36B) or the substrate P does not face the detection hole 38B (36B). Since the physical quantity transmitted to the unit 40 changes, it is possible to detect the presence or absence of the substrate P on the transport path LC according to the physical quantity transmitted to the detection unit 40 using air as a medium. As a result, the light projected on the substrate may be diffusely reflected on the substrate P due to the transparency of the substrate P or the shape of the substrate P (warp of the substrate), for example, when an optical sensor is used. Therefore, it is possible to improve the detection accuracy of the substrate P.

また、検出穴38Bは、対向面39における搬送路LCに沿う方向に複数設けられており、検出部40は、複数の検出穴38Bのうち、基板Pが対向する検出穴38Bの位置に応じて異なる物理量に基づいて搬送路LC上における基板Pの位置を検出する。
このようにすれば、複数の検出穴38Bにより、検出部40で検出される物理量を変化させることができるため、基板Pの有無だけでなく、基板Pの位置を検出することができる。
Further, a plurality of detection holes 38B are provided in a direction along the transport path LC on the facing surface 39, and the detection unit 40 is provided according to the position of the detection hole 38B on which the substrate P faces, among the plurality of detection holes 38B. The position of the substrate P on the transport path LC is detected based on different physical quantities.
In this way, since the physical quantity detected by the detection unit 40 can be changed by the plurality of detection holes 38B, not only the presence / absence of the substrate P but also the position of the substrate P can be detected.

また、通路30Bは、検出穴38B(36B)に連なる第1通路33と、第1通路33とは交差する方向に延びる第2通路34と、を備え、検出部40は、第2通路34内に音波を発生させる音波発生源45と、第2通路34の空気を介して伝搬される音波を検出する音波検出器46と、を備える。
このようにすれば、検出部40により空気の圧力や流量を検出しなくても基板Pを検出することが可能になる。
Further, the passage 30B includes a first passage 33 connected to the detection hole 38B (36B) and a second passage 34 extending in a direction intersecting the first passage 33, and the detection unit 40 is inside the second passage 34. A sound wave generation source 45 for generating sound waves and a sound wave detector 46 for detecting sound waves propagated through the air in the second passage 34 are provided.
In this way, the substrate P can be detected without the detection unit 40 detecting the air pressure or the flow rate.

また、通路30A~30Cには、加圧された空気が流通する。
このようにすれば、空気の力で基板Pを通路形成部材30の対向面39に倣わせることができるため、基板Pに反りが生じていても安定した搬送が可能になる。
In addition, pressurized air flows through the passages 30A to 30C.
In this way, since the substrate P can be made to imitate the facing surface 39 of the passage forming member 30 by the force of air, stable transportation is possible even if the substrate P is warped.

また、通路形成部材30は、加圧された空気が流通する加圧通路30Aと、減圧された空気が流通する減圧通路30Cと、を有し、通路形成部材30の対向面39には、加圧通路30Aに連なる加圧穴38Aと、減圧通路30Cに連なる減圧穴38Cと、が形成されている。
このようにすれば、基板Pと対向面39との間を流通する空気により、基板Pと対向面39との間の過度な密着が緩和され、基板Pと対向面39との間に一定のギャップを保つことができるため、安定した基板Pの搬送が可能になる。また、基板Pと対向面39との間に一定のギャップを保つことで、圧力応答、流量応答、周波数応答等が安定するため、基板Pの検出の精度を高めることが可能になる。
Further, the passage forming member 30 has a pressurized passage 30A through which pressurized air flows and a reduced pressure passage 30C through which depressurized air flows, and is added to the facing surface 39 of the passage forming member 30. A pressure hole 38A connected to the pressure passage 30A and a pressure reducing hole 38C connected to the pressure reducing passage 30C are formed.
In this way, the air flowing between the substrate P and the facing surface 39 alleviates excessive adhesion between the substrate P and the facing surface 39, and is constant between the substrate P and the facing surface 39. Since the gap can be maintained, stable transfer of the substrate P becomes possible. Further, by maintaining a constant gap between the substrate P and the facing surface 39, the pressure response, the flow rate response, the frequency response, and the like are stabilized, so that the detection accuracy of the substrate P can be improved.

また、通路形成部材30は、複数の加圧穴38Aと複数の減圧穴38Cとが基板Pの搬送方向に間隔を空けて交互に並んでいる。
このようにすれば、基板Pと通路形成部材30の対向面39との間に流通する空気について、基板Pの位置における圧力のばらつきを抑制することができる。
Further, in the passage forming member 30, a plurality of pressure holes 38A and a plurality of pressure reducing holes 38C are alternately arranged at intervals in the transport direction of the substrate P.
In this way, it is possible to suppress variations in pressure at the position of the substrate P with respect to the air flowing between the substrate P and the facing surface 39 of the passage forming member 30.

また、検出部40は、基板Pが実装位置(所定の位置)に搬送されたことを検出した時には、通路30A,30C内の空気の加圧を停止し、減圧を行う。
このようにすれば、搬送した基板Pを実装位置に保持することができる。
Further, when the detection unit 40 detects that the substrate P has been conveyed to the mounting position (predetermined position), the detection unit 40 stops the pressurization of the air in the passages 30A and 30C and depressurizes the air.
In this way, the conveyed substrate P can be held at the mounting position.

また、検出部40により基板Pが検出されなかったときに報知する表示部69(報知手段)を備える。
このようにすれば、作業者に基板Pの搬送に異常が生じたことを知らせることができる。
Further, the detection unit 40 includes a display unit 69 (notification means) for notifying when the substrate P is not detected.
In this way, it is possible to notify the operator that an abnormality has occurred in the transfer of the substrate P.

また、検出部40による検出結果に応じて基板Pの搬送速度を検出し、検出した搬送速度に応じて搬送コンベア12(搬送部)を制御するコントローラ60(制御手段)を備える。
このようにすれば、搬送コンベア12により搬送される基板Pの速度が予め設定されている速度とは異なる場合には、検出部40により検出した実際の基板Pの速度により搬送コンベア12の速度を補正すること可能になる。
Further, the controller 60 (control means) is provided, which detects the transfer speed of the substrate P according to the detection result by the detection unit 40 and controls the transfer conveyor 12 (conveyor unit) according to the detected transfer speed.
In this way, when the speed of the substrate P conveyed by the transfer conveyor 12 is different from the preset speed, the speed of the transfer conveyor 12 is increased by the actual speed of the substrate P detected by the detection unit 40. It becomes possible to correct.

表面実装機10(基板処理装置)は、基台11、搬送コンベア12、通路形成部材30及び検出部40を有する基板検出装置と、検出部40により所定位置に搬送されたことが検出された基板Pに対して予め決められた処理を行うコントローラ60(処理実行部)とを備える。
このようにすれば、基板検出装置の検出結果に基づいて、基板Pに対して予め決められた電子部品Bの実装、半田ペーストの塗布、接着剤の塗布、基板P検査等の処理を行うことができる。
The surface mounter 10 (board processing device) includes a substrate detection device having a base 11, a transfer conveyor 12, a passage forming member 30, and a detection unit 40, and a substrate detected by the detection unit 40 to be transported to a predetermined position. It includes a controller 60 (process execution unit) that performs predetermined processing on P.
In this way, based on the detection result of the substrate detection device, processing such as mounting a predetermined electronic component B on the substrate P, applying a solder paste, applying an adhesive, and inspecting the substrate P can be performed. Can be done.

<実施形態2>
実施形態2について、図13,図14及び図11を参照しつつ説明する。実施形態1の通路形成部材30は、検出用の通路30Bと、加圧及び減圧用の通路30A,30Cとを別々に構成したが、実施形態2では、通路形成部材80の通路81,82は、検出用の通路と加圧又は減圧用の通路との一部を共用するものである。以下では、実施形態1と同一の構成については同一の符号を付して説明を省略する。
<Embodiment 2>
The second embodiment will be described with reference to FIGS. 13, 14, and 11. In the passage forming member 30 of the first embodiment, the passage 30B for detection and the passages 30A and 30C for pressurization and depressurization are separately configured, but in the second embodiment, the passages 81 and 82 of the passage forming member 80 are , A part of the passage for detection and the passage for pressurization or depressurization are shared. Hereinafter, the same configurations as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

通路形成部材80の通路81,82は、通路形成部材80の上下方向に貫通形成された検出用通路81と、検出用通路81に対して分岐し、基板Pの搬送方向に沿って延びる送風用通路82とを有する。検出用通路81は、対向面80Aに貫通形成された検出穴38Bと、対向面80Aとは反対側の下面80Bとの間に貫通形成されている。下面80Bには、センサ41が取り付けられている。 The passages 81 and 82 of the passage forming member 80 are for blowing air that branches from the detection passage 81 formed through the passage forming member 80 in the vertical direction and the detection passage 81 and extends along the conveying direction of the substrate P. It has a passage 82. The detection passage 81 is formed through the detection hole 38B formed through the facing surface 80A and the lower surface 80B on the opposite side of the facing surface 80A. A sensor 41 is attached to the lower surface 80B.

送風用通路82における外部に露出する開口82Aには、圧縮機75が接続されており、送風用通路82には、圧縮機75により加圧された空気が流通する。通路形成部材80の対向面80A上を移動する基板Pは、検出穴38Bの上を通ると検出穴38Bを覆って基板Pと対向面80Aとの間に空気が流通する。検出穴38Bに連なる通路81内の空気は、検出穴38Bの上を基板Pが通らず、開放された状態では、大気圧とほぼ同じとされるが、検出穴38Bの上を基板Pが通ると、基板Pにより検出穴38Bが覆われ、基板Pと対向面80Aとの間を流通する空気の影響を受けて、通路81,82の気圧及び空気の流れが変化する。これにより、空気を媒体としてセンサ41に伝達される物理量(圧力、流量、周波数等)が変化し、センサ41からの検出信号を受けた検出処理部63は、基板Pの有無を検出することができる。 A compressor 75 is connected to the opening 82A exposed to the outside in the blower passage 82, and the air pressurized by the compressor 75 flows through the blower passage 82. When the substrate P moving on the facing surface 80A of the passage forming member 80 passes over the detection hole 38B, the substrate P covers the detection hole 38B and air flows between the substrate P and the facing surface 80A. The air in the passage 81 connected to the detection hole 38B is almost the same as the atmospheric pressure in the open state where the substrate P does not pass over the detection hole 38B, but the substrate P passes over the detection hole 38B. The detection hole 38B is covered with the substrate P, and the air pressure and the air flow of the passages 81 and 82 are changed under the influence of the air flowing between the substrate P and the facing surface 80A. As a result, the physical quantities (pressure, flow rate, frequency, etc.) transmitted to the sensor 41 using air as a medium change, and the detection processing unit 63 that receives the detection signal from the sensor 41 can detect the presence or absence of the substrate P. can.

図13では、1つの検出穴38Bが図示されているが、これに限られず、通路形成部材80には、複数の検出穴38Bが搬送方向に並んでいるようにしてもよい。また、通路82には真空ポンプ76を接続してもよく、この場合、例えば、基板Pが実装位置に移動したときには、通路82に減圧された空気を流通させて基板Pの位置を保持するようにしてもよい。
ここで、検出穴38Bが1つの場合であり、基板Pが検出穴38Bに到達して一定の速度で検出穴38Bを通過するときの基板Pの搬送速度の検出は、次のようにすることができる。例えば、基板Pが検出穴38Bに到達し、基板有りが検出されてから基板Pが搬送されて基板Pが検出穴38Bを通過し、基板無しが検出されるまでの時間T1及び基板Pの搬送方向の寸法L1を用いて、基板の寸法L1÷時間T1から搬送速度を算出することができる。又は、図14に示すように、通路形成部材80の対向面80Aに、基板搬送方向に沿って延びる検出溝83を検出穴38Bに連通するように形成し、予め基板Pを検出溝83上で搬送させて、基板Pの位置と検出圧力との関係を確認し、この関係と基板Pの搬送時の検出圧力の変化とから基板Pが異なる2つの位置に到達したそれぞれの時点を検出し、それぞれの時点の時間差T2と2つの位置の距離L2とを用いて、距離L2÷時間差T2から基板Pの搬送速度を算出するようにしてもよい。
実施形態2によれば、実施形態1と比較して通路81,82の一部を共用することができるため、通路形成部材80の構成を簡素化することが可能になる。
Although one detection hole 38B is shown in FIG. 13, the present invention is not limited to this, and a plurality of detection holes 38B may be arranged in the passage forming member 80 in the transport direction. Further, a vacuum pump 76 may be connected to the passage 82. In this case, for example, when the substrate P moves to the mounting position, decompressed air is circulated through the passage 82 to hold the position of the substrate P. It may be.
Here, when there is only one detection hole 38B, the transfer speed of the substrate P when the substrate P reaches the detection hole 38B and passes through the detection hole 38B at a constant speed is detected as follows. Can be done. For example, the time T1 from when the substrate P reaches the detection hole 38B and the presence of the substrate is detected until the substrate P is conveyed, the substrate P passes through the detection hole 38B, and the absence of the substrate is detected, and the substrate P is conveyed. Using the dimension L1 in the direction, the transport speed can be calculated from the dimension L1 ÷ time T1 of the substrate. Alternatively, as shown in FIG. 14, a detection groove 83 extending along the substrate transport direction is formed on the facing surface 80A of the passage forming member 80 so as to communicate with the detection hole 38B, and the substrate P is formed in advance on the detection groove 83. By transporting, the relationship between the position of the substrate P and the detected pressure is confirmed, and from this relationship and the change in the detected pressure during the transport of the substrate P, the respective time points when the substrate P reaches two different positions are detected. The transfer speed of the substrate P may be calculated from the distance L2 ÷ the time difference T2 by using the time difference T2 at each time point and the distance L2 at the two positions.
According to the second embodiment, since a part of the passages 81 and 82 can be shared as compared with the first embodiment, the configuration of the passage forming member 80 can be simplified.

<他の実施形態>
本明細書に記載された技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書に記載された技術の技術的範囲に含まれる。
(1)上記実施形態では、基板処理装置として表面実装機10としたが、これに限られず、例えば、基板Pに半田ペーストを印刷する印刷機や、基板P上に接着剤を塗布する塗布装置としてもよい。
<Other embodiments>
The techniques described herein are not limited to the embodiments described above and in the drawings, and for example, the following embodiments are also included in the technical scope of the techniques described herein.
(1) In the above embodiment, the surface mounter 10 is used as the substrate processing device, but the present invention is not limited to this, for example, a printing machine for printing solder paste on the substrate P or a coating apparatus for applying an adhesive on the substrate P. May be.

(2)上記実施形態では、基板Pを検出する構成としたが、上面に載置された基板Pを支持して基板Pと共に移動する例えば板状或いはブロック状の治具を基板支持体とし、この基板支持体を検出する構成としてもよい。 (2) In the above embodiment, the substrate P is detected, but a plate-shaped or block-shaped jig that supports the substrate P placed on the upper surface and moves together with the substrate P is used as the substrate support. It may be configured to detect this substrate support.

(3)センサ41や音波検出器46の位置は、上記実施形態の位置に限られず、異なる位置に設けることができる。例えば通路30B,82の内部にセンサ41や音波検出器46を設けてもよい。
(4)基板Pは、リジッド基板に限られず、フレキシブル基板としてもよい。
(3) The positions of the sensor 41 and the sound wave detector 46 are not limited to the positions of the above-described embodiment, and may be provided at different positions. For example, a sensor 41 or a sound wave detector 46 may be provided inside the passages 30B and 82.
(4) The substrate P is not limited to a rigid substrate, and may be a flexible substrate.

(5)通路形成部材30,80の位置、形状、大きさは適宜変更することができる。例えば、バックアップ装置20に代えて通路形成部材を設けてもよく、通路形成部材の通路の減圧穴により基板Pを吸着し、通路形成部材にバックアップ装置(吸着ステージ)の機能を持たせるようにしてもよい。
(6)複数の検出手段を組み合わせて基板Pの位置を検出してもよい。例えば、空気を媒体とする検出部以外の検出手段(例えば光電センサによる基板の検出)を組み合わせてもよい。
(5) The positions, shapes, and sizes of the passage forming members 30 and 80 can be changed as appropriate. For example, a passage forming member may be provided instead of the backup device 20, and the substrate P is sucked by the pressure reducing hole of the passage of the passage forming member so that the passage forming member has the function of the backup device (suction stage). May be good.
(6) The position of the substrate P may be detected by combining a plurality of detection means. For example, a detection means other than the detection unit using air as a medium (for example, detection of the substrate by a photoelectric sensor) may be combined.

10:表面実装機(基板処理装置)、11:基台、12:搬送コンベア(搬送部)、30,80:通路形成部材、30A~30C,81,82:通路、36B:貫通孔(検出穴)、39,42,80A:対向面、38A:加圧穴、38B: 検出穴、38C:減圧穴、40:検出部、41:センサ(検出部)、45:音波発生源(検出部)、46:音波検出器(検出部)、60:コントローラ(制御手段、処理実行部)、63:検出処理部(検出部)、75:圧縮機、76:真空ポンプ、P:基板 10: Surface mounter (board processing device), 11: Base, 12: Conveyance conveyor (conveyor), 30, 80: Passage forming member, 30A to 30C, 81, 82: Passage, 36B: Through hole (detection hole) ), 39, 42, 80A: Facing surface, 38A: Pressurized hole, 38B: Detection hole, 38C: Pressure reducing hole, 40: Detection unit, 41: Sensor (detection unit), 45: Sound source (detection unit), 46 : Sound detector (detection unit), 60: Controller (control means, processing execution unit), 63: Detection processing unit (detection unit), 75: Compressor, 76: Vacuum pump, P: Substrate

Claims (10)

基台と、
前記基台上の搬送路に沿って基板を搬送する搬送部と、
前記搬送路上に搬送された前記基板又は前記基板を支持する基板支持体に対向する対向面、前記対向面に形成される検出穴、及び、前記検出穴に連なる空気の通路を有する通路形成部材と、
前記通路の空気を媒体として伝達される物理量に基づいて前記基板を検出する検出部と、を備え、
前記通路形成部材は、加圧された空気が流通する加圧通路と、減圧された空気が流通する減圧通路と、を有し、前記通路形成部材の対向面には、前記加圧通路に連なる加圧穴と、前記減圧通路に連なる減圧穴と、が形成されており、
前記加圧穴から噴出された前記空気が前記減圧穴内に吸入されることで、前記通路形成部材の上を通る前記基板と前記対向面との間に前記空気が流通し、
前記検出部は、前記基板が所定の位置に搬送されたことを検出した時には、前記通路内の空気の加圧を停止し、減圧を行う、基板検出装置。
Base and
A transport unit that transports the substrate along the transport path on the base, and
A passage forming member having a facing surface facing the substrate or a substrate support supporting the substrate transported on the transport path, a detection hole formed in the facing surface, and an air passage connected to the detection hole. ,
A detection unit that detects the substrate based on a physical quantity transmitted using air in the passage as a medium is provided.
The passage forming member has a pressurized passage through which pressurized air flows and a reduced pressure passage through which decompressed air flows, and the facing surface of the passage forming member is connected to the pressurized passage. A pressure hole and a pressure reducing hole connected to the pressure reducing passage are formed.
When the air ejected from the pressure hole is sucked into the pressure reducing hole, the air flows between the substrate passing over the passage forming member and the facing surface .
When the detection unit detects that the substrate has been conveyed to a predetermined position, the detection unit stops pressurizing the air in the passage and depressurizes the substrate.
前記検出穴は、前記対向面における前記搬送路に沿う方向に複数設けられており、
前記検出部は、前記複数の検出穴のうち、前記基板又は前記基板支持体が対向する前記検出穴の位置に応じて異なる物理量に基づいて前記搬送路上における前記基板の位置を検出する請求項1に記載の基板検出装置。
A plurality of the detection holes are provided in the direction along the transport path on the facing surface.
The detection unit detects the position of the substrate on the transport path based on a physical quantity different depending on the position of the detection hole facing the substrate or the substrate support among the plurality of detection holes. The board detection device according to.
前記検出部は、前記空気の圧力により前記基板を検出する請求項1又は請求項2に記載の基板検出装置。 The substrate detection device according to claim 1 or 2, wherein the detection unit detects the substrate by the pressure of the air. 前記検出部は、前記空気の流量により前記基板を検出する請求項1又は請求項2に記載の基板検出装置。 The substrate detection device according to claim 1 or 2, wherein the detection unit detects the substrate by the flow rate of the air. 前記通路は、前記検出穴に連なる第1通路と、前記第1通路とは交差する方向に延びる第2通路と、を備え、
前記検出部は、前記第2通路内に音波を発生させる音波発生源と、前記第2通路の空気を介して伝搬される音波を検出する音波検出器と、を備える請求項1又は請求項2に記載の基板検出装置。
The passage includes a first passage connected to the detection hole and a second passage extending in a direction intersecting the first passage.
The detection unit includes a sound wave generation source that generates sound waves in the second passage and a sound wave detector that detects sound waves propagated through the air in the second passage according to claim 1 or 2. The substrate detection device according to.
前記通路には、加圧された空気が流通する請求項1から請求項5のいずれか一項に記載の基板検出装置。 The substrate detection device according to any one of claims 1 to 5, wherein pressurized air flows through the passage. 前記通路形成部材は、複数の前記加圧穴と複数の前記減圧穴とが前記基板の搬送方向に間隔を空けて交互に並んでいる請求項1から請求項6のいずれか一項に記載の基板検出装置。 The substrate according to any one of claims 1 to 6, wherein the passage forming member has a plurality of the pressurizing holes and a plurality of the decompression holes arranged alternately at intervals in the transport direction of the substrate. Detection device. 前記検出部により前記基板が検出されなかったときに報知する報知手段を備える請求項1から請求項のいずれか一項に記載の基板検出装置。 The substrate detection device according to any one of claims 1 to 7 , further comprising a notification means for notifying when the substrate is not detected by the detection unit. 前記検出部による検出結果に応じて前記基板の搬送速度を検出し、検出した前記搬送速度に応じて前記搬送部を制御する制御手段を備える請求項1から請求項のいずれか一項に記載の基板検出装置。 The invention according to any one of claims 1 to 8 , further comprising a control means for detecting the transport speed of the substrate according to the detection result by the detection unit and controlling the transport unit according to the detected transport speed. Board detector. 請求項1から請求項のいずれか一項に記載の基板検出装置と、前記検出部により所定位置に搬送されたことが検出された前記基板に対して予め決められた処理を行う処理実行部と、を備える基板処理装置。 The substrate detection device according to any one of claims 1 to 9 , and a processing execution unit that performs predetermined processing on the substrate detected to have been conveyed to a predetermined position by the detection unit. And a substrate processing device.
JP2018047446A 2018-03-15 2018-03-15 Board detection device and board processing device Active JP7102177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047446A JP7102177B2 (en) 2018-03-15 2018-03-15 Board detection device and board processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047446A JP7102177B2 (en) 2018-03-15 2018-03-15 Board detection device and board processing device

Publications (2)

Publication Number Publication Date
JP2019161082A JP2019161082A (en) 2019-09-19
JP7102177B2 true JP7102177B2 (en) 2022-07-19

Family

ID=67994088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047446A Active JP7102177B2 (en) 2018-03-15 2018-03-15 Board detection device and board processing device

Country Status (1)

Country Link
JP (1) JP7102177B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093961A (en) 1999-09-27 2001-04-06 Dainippon Screen Mfg Co Ltd Apparatus and method for detecting object and substrate treating apparatus
JP2006199483A (en) 2005-01-24 2006-08-03 Tokyo Electron Ltd Stage device and coating device
JP2009256002A (en) 2008-04-11 2009-11-05 Hitachi Plant Technologies Ltd Tabular body carrying device and its control method
JP2010045072A (en) 2008-08-08 2010-02-25 Ihi Corp Floating-carrying device
JP2012191029A (en) 2011-03-11 2012-10-04 Hitachi High-Tech Instruments Co Ltd Semiconductor element attachment device and attachment method thereof
WO2016035195A1 (en) 2014-09-04 2016-03-10 富士機械製造株式会社 Component mounting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140498A (en) * 1992-02-16 1994-05-20 Ulvac Japan Ltd Electrostatic attracting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093961A (en) 1999-09-27 2001-04-06 Dainippon Screen Mfg Co Ltd Apparatus and method for detecting object and substrate treating apparatus
JP2006199483A (en) 2005-01-24 2006-08-03 Tokyo Electron Ltd Stage device and coating device
JP2009256002A (en) 2008-04-11 2009-11-05 Hitachi Plant Technologies Ltd Tabular body carrying device and its control method
JP2010045072A (en) 2008-08-08 2010-02-25 Ihi Corp Floating-carrying device
JP2012191029A (en) 2011-03-11 2012-10-04 Hitachi High-Tech Instruments Co Ltd Semiconductor element attachment device and attachment method thereof
WO2016035195A1 (en) 2014-09-04 2016-03-10 富士機械製造株式会社 Component mounting device

Also Published As

Publication number Publication date
JP2019161082A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP4578299B2 (en) Component mounting equipment
JP2001199541A (en) Device and method of handling parts
JP4978398B2 (en) Component mounting system and component mounting method
KR101683711B1 (en) Flatness level inspection apparatus of metal thin plate
JP5303129B2 (en) Coating apparatus and coating method
JP7102177B2 (en) Board detection device and board processing device
WO2021152840A1 (en) Board working machine
US20030183167A1 (en) Substrate processing apparatus and slit nozzle
JP6890438B2 (en) Floating amount calculation device, coating device and coating method
JP2003279495A (en) Inspection device for glass substrate
JP2020032364A (en) Stage measuring jig, coating device, and stage measuring method
JP6907281B2 (en) Coating device, height detection method and coating method
KR102525265B1 (en) Substrate processing apparatus and substrate processing method
JP6738373B2 (en) Substrate processing apparatus and substrate processing method
JP2007050657A (en) Screen printing device
JP2008017571A (en) Linear motor and parts mounter
JP2021180237A (en) Component mounting apparatus
TW201730075A (en) Swing detection device for electronic component holder and operation apparatus for its application by making the sensor keep detecting whether the electronic component in the holder protrudes from the reference surface and swings abnormally to improve the accuracy of detection
JP2020150055A (en) Component mounting device
JP5047856B2 (en) Substrate processing equipment
JP7057174B2 (en) Position confirmation method, position adjustment method, position confirmation device and position adjustment device
WO2019012576A1 (en) Image pickup device, surface mounting machine, and inspection device
JP2014093441A (en) Wafer transfer device and wafer inspection apparatus comprising the same
JP7504714B2 (en) Bowl Feeder
JP5400082B2 (en) Substrate transport apparatus and substrate transport method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R150 Certificate of patent or registration of utility model

Ref document number: 7102177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150