JP7100472B2 - アンモニアセンサ素子、及びガスセンサ - Google Patents

アンモニアセンサ素子、及びガスセンサ Download PDF

Info

Publication number
JP7100472B2
JP7100472B2 JP2018059399A JP2018059399A JP7100472B2 JP 7100472 B2 JP7100472 B2 JP 7100472B2 JP 2018059399 A JP2018059399 A JP 2018059399A JP 2018059399 A JP2018059399 A JP 2018059399A JP 7100472 B2 JP7100472 B2 JP 7100472B2
Authority
JP
Japan
Prior art keywords
ammonia
sensor unit
detection electrode
electrode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018059399A
Other languages
English (en)
Other versions
JP2019174146A (ja
Inventor
吉博 中埜
哲生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018059399A priority Critical patent/JP7100472B2/ja
Priority to US16/297,919 priority patent/US10962516B2/en
Priority to DE102019107420.7A priority patent/DE102019107420A1/de
Publication of JP2019174146A publication Critical patent/JP2019174146A/ja
Application granted granted Critical
Publication of JP7100472B2 publication Critical patent/JP7100472B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0054Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Combustion & Propulsion (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明はアンモニアセンサ素子、及びガスセンサに関する。
近年、ディーゼルエンジンなどの内燃機関から排出される排気ガスに含まれる窒素酸化物(NO)を浄化する技術として、尿素SCR(選択触媒還元)システムが注目されている。尿素SCRシステムは、アンモニア(NH)と窒素酸化物(NO)とを化学反応させて、窒素酸化物を窒素(N)に還元することにより、排気ガスに含まれる窒素酸化物を浄化するシステムである。
この尿素SCRシステムでは、窒素酸化物に対して供給されるアンモニアの量が過剰になると、未反応のアンモニアが排気ガスに含まれたまま外部に放出されるおそれがあった。このようなアンモニアの放出を抑制するために、排気ガスに含まれるアンモニアの濃度を測定するアンモニアセンサ素子が尿素SCRシステムに用いられている(例えば、特許文献1~4参照)。
特開2015-34814号公報 特開2011-75546号公報 特開2013-221931号公報 特開2014-62541号公報
ところで、アンモニアセンサ素子は、車両の過酷な排ガス環境に曝されて使用される。アンモニアセンサ素子については、様々な環境に対応すべく、新規なアンモニア検知手法を用いたアンモニアセンサ素子の開発が望まれているのが現状である。
また、アンモニアセンサ素子では、耐被水性能及び耐被毒性能を担保するため保護層を設ける場合がある。このアンモニアセンサ素子では、触媒活性が低いAuを主成分とした電極を採用している。この電極の融点が低く、焼付時に電極材料の揮発や溶融が起きる恐れがあることから、低温焼成の保護層又は溶射による保護層を採用しなければならず、保護層の十分な強度及び十分な耐被毒性を担保することが困難であった。
本発明は、上記実情に鑑みてなされたものであり、新規なアンモニア検知手法を用いたアンモニアセンサ素子及びガスセンサを提供することを第1の目的とする。また、保護層を備えたアンモニアセンサ素子及びガスセンサに関して、保護層の強度及び耐被毒性を担保することを第2の目的とする。
本発明は、以下の形態として実現することが可能である。
〔1〕2つの混成電位式のアンモニア検知セルを有するアンモニアセンサ素子であって、
前記2つの混成電位式のアンモニア検知セルは、それぞれアンモニア検知電極を有し、
前記アンモニア検知電極のうち、
第1のアンモニア検知電極の金属組成は、Auを主成分とし、
第2のアンモニア検知電極の金属組成は、Auを主成分とし、
前記第1のアンモニア検知電極の金属組成と、前記第2のアンモニア検知電極の金属組成は相違することを特徴とするアンモニアセンサ素子。
本構成では、第1のアンモニア検知電極の金属組成と、第2のアンモニア検知電極の金属組成は相違しているから、アンモニアをNOから精度よく分離して検知できる。
なお、第1のアンモニア検知電極の金属組成と、第2のアンモニア検知電極の金属組成が相違するとは、(1)構成する金属の種類が異なる場合、(2)構成する金属の種類が同種で含有割合が異なる場合、(3)金属の種類及び金属の含有割合の両方とも異なる場合、のいずれの場合も含む意味である。
〔2〕前記第1のアンモニア検知電極を有する第1アンモニアセンサ部、及び前記第2のアンモニア検知電極を有する第2アンモニアセンサ部は、保護層により覆われており、
前記第1のアンモニア検知電極の金属組成には、Auよりも融点が高くAuと合金化する金属が含まれているとともに、
前記第2のアンモニア検知電極の金属組成には、Auよりも融点が高くAuと合金化する金属が含まれていることを特徴とする〔1〕に記載のアンモニアセンサ素子。
第1のアンモニア検知電極を有する第1アンモニアセンサ部、及び第2のアンモニア検知電極を有する第2アンモニアセンサ部は、耐被水性能及び耐被毒性能を担保するため保護層により覆われている場合がある。
ところで、触媒活性が低いAuを主成分とした電極では、融点が低く、焼付時に電極材料の揮発や溶融が起きる恐れがあるため、低温焼成の保護層又は溶射による保護層を採用しなければならず、保護層の十分な強度及び十分な耐被毒性を担保することが困難である。従って、高強度、かつ耐被毒性の優れた保護層を形成には、高温焼成が必要である。
本構成によれば、第1のアンモニア検知電極の金属組成、及び第2のアンモニア検知電極の金属組成には、Auよりも融点が高くAuと合金化する金属が含まれているから、第1のアンモニア検知電極、及び第2のアンモニア検知電極の融点を上げることができる。よって、高温焼成を採用して、保護層の強度及び耐被毒性を担保することができる。
〔3〕前記第1のアンモニア検知電極の金属組成が、AuとPtの合金相からなり、
前記第2のアンモニア検知電極の金属組成が、AuとPdの合金相からなることを特徴とする〔2〕に記載のアンモニアセンサ素子。
本構成によれば、アンモニアをより高精度で検知できるとともに、保護層の強度及び耐被毒性をより良くすることができる。
〔4〕前記第1のアンモニア検知電極の金属組成のPt/(Au+Pt)の値は、重量基準で0.05~0.25であり、
前記第2のアンモニア検知電極の金属組成のPd/(Au+Pd)の値は、重量基準で0.04~0.20であることを特徴とする〔3〕に記載のアンモニアセンサ素子。
本構成のアンモニアセンサ素子を用いると、実用上、十分な出力を得ることができる。
〔5〕前記Pt/(Au+Pt)の値が0.10~0.20であり、
前記Pd/(Au+Pd)の値が0.06~0.15であることを特徴とする〔4〕に記載のアンモニアセンサ素子。
本構成のアンモニアセンサ素子を用いると、実用上、十分な出力を得ることができる。
〔6〕〔1〕~〔5〕のいずれか1項に記載のアンモニアセンサ素子を備えたことを特徴とするガスセンサ。
本構成のガスセンサは、アンモニアをNOから精度よく分離して検知できる。
〔7〕前記ガスセンサは、被測定ガス中の窒素酸化物の濃度を測定するNOセンサ部を更に備えたマルチガスセンサであることを特徴とする〔6〕に記載のガスセンサ。
本構成のガスセンサは、アンモニアをNOから精度よく分離して検知できる。
マルチガスセンサの長手方向に沿う断面図である。 マルチガスセンサ及びガスセンサ制御装置の構成を示すブロック図である。 第1アンモニアセンサ部及び第2アンモニアセンサ部の構成を示す断面図である。 第1アンモニアセンサ部及び第2アンモニアセンサ部と、酸素濃度検出セルとの位置関係を示す平面図である。 第1検知電極の金属組成と、NH感度と、の関係を示すグラフである。 第1検知電極の金属組成と、NO感度と、の関係を示すグラフである。 第1検知電極の金属組成と、NH感度に対するNO感度の比と、の関係を示すグラフである。 第2検知電極の金属組成と、NH感度と、の関係を示すグラフである。 第2検知電極の金属組成と、NO感度と、の関係を示すグラフである。 第2検知電極の金属組成と、NH感度に対するNO感度の比と、の関係を示すグラフである。 マルチガスセンサ及びガスセンサ制御装置の別の構成を示すブロック図である。
以下、図1~図10を参照し、本発明の実施形態について説明する。図1は、マルチガスセンサの長手方向に沿う断面図、図2はマルチガスセンサ装置の構成を説明するブロック図、図3は第1アンモニアセンサ部42x(本発明の「アンモニア検知セル」に相当)及び第2アンモニアセンサ部42y(本発明の「アンモニア検知セル」に相当)を有するアンモニアセンサ部42(本発明のアンモニアセンサ素子に相当)の構成を示す断面図である。
本実施形態のマルチガスセンサ装置400は、ディーゼルエンジンから排出される排気ガス(被測定ガス)に含まれる窒素酸化物(NO)を浄化する尿素SCRシステムに用いられるものである。より具体的には、排気ガスに含まれるNOと、アンモニア(尿素)とを反応させた後の排気ガスに含まれる一酸化窒素(NO)、二酸化窒素(NO)およびアンモニアの濃度を測定するものである。
なお、本実施形態のマルチガスセンサ装置400が適用されるエンジンは、上述のディーゼルエンジンであってもよいし、ガソリンエンジンにも適用することができ、特にエンジンの形式を限定するものではない。
図1に示すように、マルチガスセンサ200A(本発明の「ガスセンサ」に相当)は、アンモニア濃度及びNO濃度を検出するマルチガスセンサ素子部100Aを組み付けたアッセンブリである。マルチガスセンサ200Aは、軸線方向に延びる板状のマルチガスセンサ素子部100Aと、排気管に固定されるためのねじ部139が外表面に形成された筒状の主体金具138と、マルチガスセンサ素子部100Aの径方向周囲を取り囲むように配置される筒状のセラミックスリーブ106と、軸線方向に貫通するコンタクト挿通孔168の内壁面がマルチガスセンサ素子部100Aの後端部の周囲を取り囲む状態で配置される絶縁コンタクト部材166と、マルチガスセンサ素子部100Aと絶縁コンタクト部材166との間に配置される複数個(図1では2つのみ図示)の接続端子110とを備えている。
主体金具138は、軸線方向に貫通する貫通孔154を有し、貫通孔154の径方向内側に突出する棚部152を有する略筒状形状に構成されている。また、主体金具138は、マルチガスセンサ素子部100Aの先端側を貫通孔154の先端側外部に配置し、電極端子部80A、82Aを貫通孔154の後端側外部に配置する状態で、マルチガスセンサ素子部100Aを貫通孔154に保持している。さらに、棚部152は、軸線方向に垂直な平面に対して傾きを有する内向きのテーパ面として形成されている。
なお、主体金具138の貫通孔154の内部には、マルチガスセンサ素子部100Aの径方向周囲を取り囲む状態で環状形状のセラミックホルダ151、粉末充填層153、156(以下、滑石リング153、156ともいう)、および上述のセラミックスリーブ106がこの順に先端側から後端側にかけて積層されている。また、セラミックスリーブ106と主体金具138の後端部140との間には、加締めパッキン157が配置されており、セラミックホルダ151と主体金具138の棚部152との間には、滑石リング153やセラミックホルダ151を保持し、気密性を維持するための金属ホルダ158が配置されている。なお、主体金具138の後端部140は、加締めパッキン157を介してセラミックスリーブ106を先端側に押し付けるように、加締められている。
一方、主体金具138の先端側(図1における下方)外周には、マルチガスセンサ素子部100Aの突出部分を覆うと共に、複数の孔部を有する金属製(例えば、ステンレスなど)二重の外部プロテクタ142および内部プロテクタ143が、溶接等によって取り付けられている。
そして、主体金具138の後端側外周には、外筒144が固定されている。また、外筒144の後端側(図1における上方)の開口部には、マルチガスセンサ素子部100Aの電極端子部80A,82Aとそれぞれ電気的に接続される複数本のリード線146(図1では3本のみ)が挿通されるリード線挿通孔161が形成されたグロメット150が配置されている。なお、簡略化のため、図1ではマルチガスセンサ素子部100Aの表面と裏面の電極端子部をそれぞれ符号80A,82Aで代表させたが、実際には、後述するNOセンサ部30Aや、第1及び第2アンモニアセンサ部42x、42yが有する電極等の数に応じて、複数の電極端子部が形成されている。
また、主体金具138の後端部140より突出されたマルチガスセンサ素子部100Aの後端側(図1における上方)には、絶縁コンタクト部材166が配置される。なお、この絶縁コンタクト部材166は、マルチガスセンサ素子部100Aの後端側の表裏面に形成される電極端子部80A,82Aの周囲に配置される。この絶縁コンタクト部材166は、軸線方向に貫通するコンタクト挿通孔168を有する筒状形状に形成されると共に、外表面から径方向外側に突出する鍔部167が備えられている。絶縁コンタクト部材166は、鍔部167が保持部材169を介して外筒144に当接することで、外筒144の内部に配置される。そして、絶縁コンタクト部材166側の接続端子110と、マルチガスセンサ素子部100Aの電極端子部80A,82Aとが電気的に接続され、リード線146により外部と導通するようになっている。
図2は、本発明の実施形態に係るマルチガスセンサ装置400の構成を示すブロック図である。なお、図2では説明の便宜のため、マルチガスセンサ200A内に収容されたマルチガスセンサ素子部100Aの長手方向に沿う断面のみを表示している。
マルチガスセンサ装置400は、制御装置(コントロ-ラ)300、及びこれに接続されるマルチガスセンサ200A(マルチガスセンサ素子部100A)を備えている。制御装置300は図示しない内燃機関(エンジン)を備える車両に搭載され、制御装置300はECU220に電気的に接続されている。なお、マルチガスセンサ200Aから伸びるリード線146の端はコネクタに接続され、このコネクタを制御装置300側のコネクタに電気的に接続するようになっている。
次に、マルチガスセンサ素子部100Aの構成について説明する。マルチガスセンサ素子部100Aは、公知のNOセンサと同様な構成を有するNOセンサ部30Aと、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yとを備え、詳しくは後述するように第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yはNOセンサ部30Aの外表面に形成されている。第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yによりアンモニアセンサ部42(本発明の「アンモニアセンサ素子」に相当)が構成されている。
まず、NOセンサ部30Aは、絶縁層23e、第1固体電解質体2a、絶縁層23d、第3固体電解質体6a、絶縁層23c、第2固体電解質体4a、及び絶縁層23b、23aをこの順に積層した構造を有する。第1固体電解質体2aと第3固体電解質体6aとの層間に第1測定室S1が画成され、第1測定室S1の左端(入口)に配置された第1拡散抵抗体8aを介して外部から排気ガスが導入される。なお、第1拡散抵抗体8aの外側には多孔質からなる保護層9が配置されている。
第1測定室S1のうち入口と反対端には第2拡散抵抗体8bが配置され、第2拡散抵抗体8bを介して第1測定室S1の右側には、第1測定室S1と連通する第2測定室(本発明の「NO測定室」に相当)S2が画成されている。第2測定室S2は、第3固体電解質体6aを貫通して第1固体電解質体2aと第2固体電解質体4aとの層間に形成されている。
絶縁層23b、23aの間にはマルチガスセンサ素子部100Aの長手方向に沿って延びる長尺板状の発熱抵抗体21が埋設されている。発熱抵抗体21は、軸線方向(長手方向)の先端側に発熱部が設けられると共に、該発熱部から軸線方向の後端側に向かって一対のリード部が設けられている。発熱抵抗体21、及び絶縁層23b、23aがヒータに相当する。このヒータはガスセンサを活性温度に昇温し、固体電解質体の酸素イオンの伝導性を高めて動作を安定化させるために用いられる。
各絶縁層23a、23b、23c、23d、23eはアルミナを主体とし、第1拡散抵抗体8a及び第2拡散抵抗体8bはアルミナ等の多孔質物質からなる。また、発熱抵抗体21は白金等からなる。また、発熱抵抗体21の発熱部は、例えば蛇行パターン状に形成されるがこれに限られない。
第1ポンピングセル2は、酸素イオン伝導性を有するジルコニアを主体とする第1固体電解質体2aと、これを挟持するように配置された内側第1ポンピング電極2b及び対極となる外側第1ポンピング電極2cとを備え、内側第1ポンピング電極2bは第1測定室S1に面している。内側第1ポンピング電極2b及び外側第1ポンピング電極2cはいずれも白金を主体とし、内側第1ポンピング電極2bの表面は多孔質体からなる保護層11で覆われている。
また、外側第1ポンピング電極2cの上面に相当する絶縁層23eはくり抜かれて多孔質体13が充填され、外側第1ポンピング電極2cと外部とを連通させてガス(酸素)の出入を可能としている。
酸素濃度検出セル6は、ジルコニアを主体とする第3固体電解質体6aと、これを挟持するように配置された検知電極6b及び基準電極6cとを備え、検知電極6bは内側第1ポンピング電極2bより下流側で第1測定室S1に面している。検知電極6b及び基準電極6cはいずれも白金を主体としている。
なお、絶縁層23cは、第3固体電解質体6aに接する基準電極6cが内部に配置されるように切り抜かれ、その切り抜き部には多孔質体が充填されて基準酸素室15を形成している。そして、酸素濃度検出セル6にIcp供給回路54を用いて予め微弱な一定値の電流を流すことにより、酸素を第1測定室S1から基準酸素室15内に送り込み、酸素基準とする。
第2ポンピングセル4は、ジルコニアを主体とする第2固体電解質体4aと、第2固体電解質体4aのうち第2測定室S2に面した表面に配置された内側第2ポンピング電極4b及び対極となる第2ポンピング対電極4cとを備えている。内側第2ポンピング電極4b及び第2ポンピング対電極4cはいずれも白金を主体としている。
なお、第2ポンピング対電極4cは、第2固体電解質体4a上における絶縁層23cの切り抜き部に配置され、基準電極6cに対向して基準酸素室15に面している。
そして、内側第1ポンピング電極2b、検知電極6b、内側第2ポンピング電極4bはそれぞれ基準電位に接続されている。
なお、NOセンサ部30Aのうち、発熱抵抗体21、及び絶縁層23b、23aを除く部位(例えば、第1ポンピングセル2、酸素濃度検出セル6、第2ポンピングセル4等)がNO検知部に相当する。
次に、2つのアンモニアセンサ部である第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yについて説明する。
図3に示すように、マルチガスセンサ素子部100Aは、それぞれ幅方向に離間する第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yを有している。
第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yは、NOセンサ部30Aの外表面(下面)をなす絶縁層23a上に形成されている。より詳しくは、第1アンモニアセンサ部42xは、絶縁層23a上に第1基準電極42axが形成され、第1基準電極42axの上面及び側面を覆って第1固体電解質体42dxが形成されている。さらに、第1固体電解質体42dxの表面に第1検知電極42bx(本発明の「第1のアンモニア検知電極」に相当)が形成されている。そして、第1基準電極42ax及び第1検知電極42bxの間の起電力変化によって被測定ガス中のアンモニア濃度を検出するようになっている。同様に、第2アンモニアセンサ部42yは、絶縁層23a上に第2基準電極42ayが形成され、第2基準電極42ayの上面及び側面を覆って第2固体電解質体42dyが形成されている。さらに、第2固体電解質体42dyの表面に第2検知電極42by(本発明の「第2のアンモニア検知電極」に相当)が形成されている。
このように、本実施形態では、ヒータ(発熱抵抗体21、絶縁層23b、及び絶縁層23a)を積層方向に挟むようにNO検知部と、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yとが配置されるので、NO検知部と、両アンモニアセンサ部42x、42yとがいずれもヒータに隣接することとなる(ヒータから略同一距離となる)。その結果、ヒータに対してNO検知部と両アンモニアセンサ部42x、42yとが積層方向の片側に配置される場合と比較して、熱源であるヒータからの距離が略同一である酸素濃度検出セル6の制御温度が、両アンモニアセンサ部42x、42yにも精度よく反映され、両アンモニアセンサ部42x、42yの温度制御をより正確に行うことができる。
また、本実施形態では、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yは、それぞれ固体電解質体42dx、42dyと、該固体電解質体42dx、42dyの対向する両表面にそれぞれ設けられた一対の電極(42ax、42bx)、(42ay、42by)とを備えている。そして、各一対の電極のうち、第1基準電極42ax、及び第2基準電極42ayがNOセンサ部30Aの外表面上に配置されている。このため、固体電解質体42dx、42dyの片面に各一対の電極をそれぞれ備える場合に比べ、固体電解質体42dx、42dyの平面寸法、ひいては第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yの寸法を小さくすることができる。その結果、両アンモニアセンサ部42x、42yを小型化することで、下記に示す配置構造を容易に達成できると共に、両アンモニアセンサ部42x、42yの位置による温度分布を小さくし、第1アンモニアセンサ部42xと第2アンモニアセンサ部42yとの間のアンモニアに対する感度とNOに対する感度との比自体の温度依存性を低減することができ、NOおよびアンモニアの濃度をより正確に求めることができる。
但し、アンモニアセンサ部の小型化が要求されない場合等には、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yは、固体電解質体42dx、42dyの片面に各一対の電極をそれぞれ備えてもよい。
さらに、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yは、多孔質からなる保護層23gによって一体に覆われている。
保護層23gは、第1検知電極42bx及び第2検知電極42byへの被毒物質の付着を防止すると共に、外部から第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yに流入する被測定ガスの拡散速度を調整するものである。保護層23gを形成する材料としては、アルミナ(酸化アルミニウム)、スピネル(MgAl)、シリカアルミナ、および、ムライトの群から選ばれる少なくとも1種の材料を例示できる。保護層23gによる被測定ガスの拡散速度は、保護層23gの厚さや、粒径や、粒度分布や、気孔率や、配合比率などを調整することにより調整される。
また、図3に示すように、保護層23gが、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yの両方を一体で覆っていると、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yをそれぞれ覆う保護層23gの気孔率(ガス透過率)が一定であるため、被測定ガスが同一の割合で各アンモニアセンサ部に導入されるので、保護層23gにより両アンモニアセンサ部42x、42yの感度比がずれることを低減することができ、NOおよびアンモニアの濃度をより正確に求めることができる。
なお、上述の実施形態のように保護層23gを設けてもよいし、保護層23gを設けることなく第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yなどを露出させてもよく、特に限定するものではない。また、保護層23gにより第1アンモニアセンサ部42xと第2アンモニアセンサ部42yとの感度比を調整する場合には、上述の実施形態ではなく、それぞれに保護層を設けても良い。
第1検知電極42bx及び第2検知電極42byは、Auを主成分(例えば70質量%以上)として含有する材料から形成することができる。第1基準電極42ax及び第2基準電極42ayは、Pt単体であるか、Ptを主成分(例えば70質量%以上)として含有する材料から形成することができる。第1検知電極42bx及び第2検知電極42byはアンモニアガスが電極表面では燃焼し難い電極である。アンモニアは、検知電極42bx(42by)を通って検知電極42bx(42by)とその下の基準電極42ax(42ay)との界面で酸素イオンと反応(電極反応)し、アンモニアの濃度を検出する。
第1固体電解質体42dx、第2固体電解質体42dyは、例えば部分安定化ジルコニア(YSZ)で構成されている。
ここで、本発明においては、酸素濃度検出セル6のインピーダンスが測定されており、この測定されたインピーダンスをもとに、ヒータ(発熱抵抗体21)が加熱されている。このため、酸素濃度検出セル6近傍においてマルチガスセンサ素子部100Aの温度が最も安定した値(温度推定可能な値)に保たれることになり、酸素濃度検出セル6から軸線方向に離れるほど、外部温度が変動に影響されてマルチガスセンサ素子部100Aの温度変化が大きくなる。
このようなことから、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yが、酸素濃度検出セル6の軸線O方向における両端によって幅方向に区切られた第1領域6sに、それぞれの少なくとも一部が重なるように配置されていると、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yの温度が所定範囲内で一定に保たれ、アンモニアの測定精度が向上する。
なお、第1領域6sとは、酸素濃度検出セル6を構成する検知電極6b及び基準電極6cのうち、軸線O方向における先端側(図2参照)と後端側(図2参照)とによって幅方向に区切られた(図4に示す点線)領域をいう。また、後述する第2領域6xとは、第1領域6sのうち、酸素濃度検出セル6の幅方向における両端によって軸線方向に区切られた領域であり、具体的には酸素濃度検出セル6を構成する検知電極6b及び基準電極6cの幅方向における両端によって軸線方向に区切られた(図4に示す二点鎖線)領域をいう。
なお、本実施形態では、検知電極6b及び基準電極6cは同一寸法で同一の位置に配置されているため、第1領域6sは、両電極の軸線O方向先端側と軸線O方向後端側とによって区切られた領域であり、第2領域6xは、両電極の幅方向の両端によって区切られた領域である。
また、例えば、酸素濃度検出セル6を構成する検知電極6b及び基準電極6cの寸法が異なる場合、または検知電極6b及び基準電極6cがずれて配置されている場合は、マルチガスセンサ素子部100Aを積層方向に見たときに(具体的には、図4のように見たときに)、両電極が配置された部位の軸線方向先端側、軸線方向後端側、及び幅方向両端を、第1領域6s、第2領域6xの境界の基準として採用する。
つまり、検知電極6b及び基準電極6cのうち、軸線O方向先端側に配置された電極の先端と軸線O方向後端側に配置された電極の後端とを第1領域の境界の基準とし、検知電極6b及び基準電極6cのうち、幅方向外側に配置された電極の幅方向の端を第2領域の境界の基準とする。
なお、各アンモニアセンサ部の位置についても同様であり、例えば本実施形態のように、固体電解質体の両表面に検知電極及び基準電極が形成されている場合、マルチガスセンサ素子部100Aの積層方向に見たときに、両電極が配置された部位の軸線O方向先端側、軸線O方向後端側、及び幅方向両端を、各アンモニアセンサ部の位置の基準として採用する。
また、各アンモニアセンサ部が、固体電解質体の一方の表面に検知電極及び基準電極が形成されている場合においても、両電極が配置された部位の軸線O方向先端側、軸線O方向後端側、及び幅方向両端を、各アンモニアセンサ部の位置の基準として採用する。
なお、図2の例では、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yと、酸素濃度検出セル6との位置関係は図4のようになっている。つまり、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yが軸線方向において、第1領域6sに、それぞれの全部位が重なっている。また、酸素濃度検出セル6は、マルチガスセンサ素子部100Aの幅方向(軸線方向と垂直な方向)における中央部に配置され、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yは、第2領域6xを挟んで幅方向の両側に配置されている。さらに、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yは、第1領域6s内において、他方に対して全部位が軸線方向に重なっている(特に、図4の例では、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yが軸線方向に一致している)。
このように、本実施形態では、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yが、第1領域6sに、それぞれの少なくとも一部と重なるように、NOセンサ部30Aの外表面上に配置されている。マルチガスセンサ素子部100Aの温度制御が酸素濃度検出セル6を基準にして行われるので、この酸素濃度検出セル6近傍においてマルチガスセンサ素子部100Aの温度が最も安定した値(温度推定可能な値)に保たれることになる。よって、第1アンモニアセンサ部42xと第2アンモニアセンサ部42yとが酸素濃度検出セル6の近傍である第1領域6sに配置されることで、両アンモニアセンサ部42x、42yの温度が安定した値に保たれるため、上記感度比自体の温度依存性を低減することができる。
また、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yは、第1領域6sに、それぞれの全部位が重なっているので、第1アンモニアセンサ部42xの全部位及び第2アンモニアセンサ部42yの全部位を酸素濃度検出セル6に確実に近接して配置させることができ、上記感度比自体の温度依存性をさらに低減することができる。
また、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yは、第2領域6xを挟んで幅方向の両側に配置されるので、各アンモニアセンサ部42x、42yがいずれも酸素濃度検出セル6に隣接することとなる。その結果、酸素濃度検出セル6に対して両アンモニアセンサ部42x、42yが幅方向の片側に配置され、一方のアンモニアセンサ部のみが酸素濃度検出セル6に隣接する場合に比べて両アンモニアセンサ部42x、42yの温度差が抑制され、上記感度比自体の温度依存性をさらに低減することができる。
さらに、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yは、それぞれ第2領域6xから幅方向に離間しているので、両アンモニアセンサ部42x、42yの第2領域からの距離を略同距離とすることができるため、両アンモニアセンサ部42x、42yの温度差が抑制され、上記感度比自体の温度依存性をさらに低減することができる。
ここで、本実施形態では、ヒータ(具体的には発熱抵抗体21)が軸線方向に発熱部とリード部とを有するため、軸線方向にヒータの発熱に分布が生じる。そこで、本実施形態では、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yの少なくとも一部が軸線方向に重なっていることで、当該重なり部分では両アンモニアセンサ部42x、42yがヒータから軸線方向に均等に加熱されるので、上記感度比自体の温度依存性をさらに低減することができる。特に、本実施形態では、両アンモニアセンサ部42x、42yが軸線方向に一致する(完全に重なる)ため、ヒータから軸線方向により均等に加熱されるので、上記感度比自体の温度依存性をより一層低減することができる。
さらに本実施形態では、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yの軸線方向の長さは、第1領域6sの軸線方向の長さよりも小さく、両アンモニアセンサ部42x、42yは軸線方向に第1領域6sの内側に位置する。このように、両アンモニアセンサ部42x、42yの軸線方向の寸法を小さくすることで、センサの小型化と共に、両アンモニアセンサ部42x、42yの軸線方向の温度分布を小さくして上記感度比自体の温度依存性をさらに低減することができる。
次に、図2に戻り、制御装置(特許請求の範囲の「演算部」に相当)300の構成の一例について説明する。制御装置300は、回路基板上に(アナログ)制御回路59とマイクロコンピュータ(マイコン)60とを備えている。マイクロコンピュータ60は制御装置300全体を制御し、CPU(中央演算処理装置)61、RAM62、ROM63、信号入出力部64、A/Dコンバータ65、及び図示しないクロックを備え、ROM等に予め格納されたプログラムがCPUにより実行される。
制御回路59は、詳しくは後述する基準電圧比較回路51、Ip1ドライブ回路52、Vs検出回路53、Icp供給回路54、Ip2検出回路55、Vp2印加回路56、ヒータ駆動回路57、それぞれ第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yの起電力を検出する第1起電力検出回路58a及び第2起電力検出回路58bを備える。
制御回路59は、NOセンサ部30Aを制御し、NOセンサ部30Aに流れる第1ポンピング電流Ip1、第2ポンピング電流Ip2を検出してマイクロコンピュータ60に出力する。
第1起電力検出回路58a及び第2起電力検出回路58bは、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yの各電極間のアンモニア濃度出力(起電力)を検出してマイクロコンピュータ60に出力する。
詳細には、NOセンサ部30Aの外側第1ポンピング電極2cはIp1ドライブ回路52に接続され、基準電極6cはVs検出回路53及びIcp供給回路54に並列に接続されている。また、第2ポンピング対電極4cはIp2検出回路55及びVp2印加回路56に並列に接続されている。ヒータ回路57はヒータ(具体的には発熱抵抗体21)に接続されている。
また、第1アンモニアセンサ部42xの一対の電極42ax、42bxがそれぞれ第1起電力検出回路58aに接続されている。同様に、第2アンモニアセンサ部42yの一対の電極42ay、42byがそれぞれ第2起電力検出回路58bに接続されている。
各回路51~57は、以下のような機能を有する。
Ip1ドライブ回路52は、内側第1ポンピング電極2b及び外側第1ポンピング電極2cの間に第1ポンピング電流Ip1を供給しつつ、その際の第1ポンピング電流Ip1を検出する。
Vs検出回路53は、検知電極6b及び基準電極6cの間の電圧Vsを検出し、検出結果を基準電圧比較回路51に出力する。
基準電圧比較回路51は、基準電圧(例えば、425mV)とVs検出回路53の出力(電圧Vs)とを比較し、比較結果をIp1ドライブ回路52に出力する。そして、Ip1ドライブ回路52は、電圧Vsが上記基準電圧に等しくなるようにIp1電流の流れる向き及び大きさを制御し、第1測定室S1内の酸素濃度をNOが分解しない程度の所定値に調整する。
Icp供給回路54は、検知電極6b及び基準電極6cの間に微弱な電流Icpを流し、酸素を第1測定室S1から基準酸素室15内に送り込み、基準電極6cを基準となる所定の酸素濃度に晒させる。
Vp2印加回路56は、内側第2ポンピング電極4b及び第2ポンピング対電極4cの間に、被測定ガス中のNOガスが酸素とNガスに分解する程度の一定電圧Vp2(例えば、450mV)を印加し、NOを窒素と酸素に分解する。
Ip2検出回路55は、NOの分解により生じた酸素が第2測定室S2から第2固体電解質体4aを介して第2ポンピング対電極4c側に汲み出される際に、第2ポンピングセル4に流れる第2ポンピング電流Ip2を検出する。
Ip1ドライブ回路52は、検出した第1ポンピング電流Ip1の値をA/Dコンバータ65に出力する。また、Ip2検出回路55は、検出した第2ポンピング電流Ip2の値をA/Dコンバータ65に出力する。
A/Dコンバータ65はこれらの値をデジタル変換し、信号入出力部64を介してCPU61に出力する。
次に、制御回路59を用いた制御の一例について説明する。まず、エンジンが始動されて外部電源から電力の供給を受けると、ヒータ回路57を介してヒータが作動し、第1ポンピングセル2、酸素濃度検出セル6、第2ポンピングセル4を活性化温度まで加熱する。また、Icp供給回路54は、検知電極6b及び基準電極6cの間に微弱な電流Icpを流し、酸素を第1測定室S1から基準酸素室15内に送り込み、酸素基準とする。
また、ヒータによってNOセンサ部30Aが適温まで加熱されると、それに伴ってNOセンサ部30A上の第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yも所望の温度に昇温される。
そして、各セルが活性化温度まで加熱されると、第1ポンピングセル2は、第1測定室S1に流入した被測定ガス(排ガス)中の酸素を内側第1ポンピング電極2bから外側第1ポンピング電極2cへ向かって汲み出す。
このとき、第1測定室S1内の酸素濃度は、酸素濃度検出セル6の電極間電圧(端子間電圧)Vsに対応したものとなるため、この電極間電圧Vsが上記基準電圧になるように、Ip1ドライブ回路52が第1ポンピングセル2に流れる第1ポンピング電流Ip1を制御し、第1測定室S1内の酸素濃度をNOが分解しない程度に調整する。
酸素濃度が調整された被測定ガスは第2測定室S2に向かってさらに流れる。そして、Vp2印加回路56は、第2ポンピングセル4の電極間電圧(端子間電圧)として、被測定ガス中のNOガスが酸素とNガスに分解する程度の一定電圧Vp2(酸素濃度検出セル6の制御電圧の値より高い電圧、例えば450mV)を印加し、NOを窒素と酸素に分解する。そして、NOの分解により生じた酸素が第2測定室S2から汲み出されるよう、第2ポンピングセル4に第2ポンピング電流Ip2が流れる。この際、第2ポンピング電流Ip2とNO濃度の間には直線関係があるため、Ip2検出回路55が第2ポンピング電流Ip2を検出することにより、被測定ガス中のNO濃度を検出することができる。
また、第1起電力検出回路58aが一対の電極42ax、42bx間のアンモニア濃度出力(起電力)を検出し、第2起電力検出回路58bが一対の電極42ay、42by間のアンモニア濃度出力(起電力)を検出することにより、後述するように被測定ガス中のアンモニア濃度を検出することができる。
次に、制御装置300のマイクロコンピュータ60による、各種ガス濃度を算出する処理を説明する。
まず、第1アンモニアセンサ部42x、第2アンモニアセンサ部42yの2つのアンモニアセンサ部を設けた理由は以下のとおりである。すなわち、アンモニアセンサ部は、アンモニアだけでなく、NOをも検出してしまうので、被検出ガス中にアンモニア以外のNOガスが含まれているとアンモニアの検出精度が低下する。そこで、アンモニアに対する感度とNOに対する感度との比がそれぞれ異なるアンモニアセンサ部を2つ設けると、アンモニアガスとNOガスの2つの未知濃度に対し、2つのアンモニアセンサ部から別々の感度による値を検出するので、アンモニアガスとNOの濃度を算出できることになる。ここで、「アンモニアセンサ部のアンモニアに対する感度とNOに対する感度との比」とは、そのアンモニアセンサ部が検出する全感度(アンモニア、及びNO)に対する、アンモニアの検出感度の比をいう。なお、本実施例においては、アンモニアセンサ部はNOガスを検出しないので、「アンモニアセンサ部のアンモニアに対する感度とNOに対する感度の比」=「アンモニアセンサ部のアンモニアに対する感度とNOに対する感度の比」として判断している。また、アンモニアセンサ部がNOガスを検出しない場合には、アンモニアセンサ部のアンモニアに対する感度とNOに対する感度の比」=「アンモニアセンサ部のアンモニアに対する感度とNOに対する感度の比」として判断してもよい。
つまり、アンモニアセンサ部のセンサ出力は、x:アンモニア濃度、y:NOガス濃度、D:O濃度に対し、F(x、y、D)で表されるが、上記感度比が異なる2つのNOセンサ部を用いると、F(mx、ny、D)、F(sx、ty、D)(m、n、s、tは係数)の2つの式が得られる。F、F、Dはセンサ出力から得られるので、2つの式から2つの未知数(x、y)を解けばよいことになる。具体的には、上記二つの式からyを除去し、後述の式(1)~(3)のようにxの式を得ることによって計算できる。
なお、第1アンモニアセンサ部42x、第2アンモニアセンサ部42yのアンモニアに対する感度比は、これら第1アンモニアセンサ部42xと第2アンモニアセンサ部42yの温度が互いに異なることによっても変化してしまう。そこで、上述のように、軸線方向に見て、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yが、酸素濃度検出セル6の第1領域6sの少なくとも一部に重なるように配置し、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yの温度を所定範囲内で一定に保つことで、上記感度比の温度による変化を少なくする。
次に、第1アンモニアセンサ部42x及び第2アンモニアセンサ部42yによるNO及びアンモニアの検出、並びにNOとアンモニアの濃度の算出の詳細について説明する。
第1アンモニアセンサ部42xの第1基準電極42axと第1検知電極42bxとの間には、被測定ガスに含まれるアンモニア濃度に応じて起電力が発生する。第1起電力検出回路58aは、第1基準電極42axと第1検知電極42bxとの間の起電力を第1アンモニア起電力として検出する。同様に、第2アンモニアセンサ部42yの第2基準電極42ayと第2検知電極42byとの間にも、アンモニア濃度に応じて起電力が発生する。第2起電力検出回路58bは、第2基準電極42ayと第2検知電極42byとの間の起電力を第2アンモニア起電力として検出する。
ここで、マイクロコンピュータ60のROM63には、以下に説明する各種のデータ(関係式)が格納されている。CPU61は、ROM63から当該各種データを読み込み、第1ポンピング電流Ip1の値、第2ポンピング電流Ip2の値、第1アンモニア起電力および第2アンモニア起電力から種々の演算処理を行う。
ここで、ROM63には、「第1アンモニア起電力-第1アンモニア濃度出力関係式」、「第2アンモニア起電力-第2アンモニア濃度出力関係式」、「第1ポンピング電流Ip1-O濃度出力関係式」、「第2ポンピング電流Ip2-NO濃度出力関係式」、「第1アンモニア濃度出力&第2アンモニア濃度出力&O濃度出力-補正アンモニア濃度出力関係式」(補正式(1):下記参照)、「第1アンモニア濃度出力&第2アンモニア濃度出力&O濃度出力-補正NO濃度出力関係式」(補正式(2))、「NO濃度出力&補正アンモニア濃度出力&補正NO濃度出力-補正NO濃度出力関係式」(補正式(3))が格納されている。
なお、各種データは、上述のように所定の関係式として設定されていてもよいし、センサの出力から各種ガス濃度を算出するものであればよく、例えばテーブルとして設定されていてもよい。その他にも、予めガス濃度が既知のガスモデルを用いて得られた値(関係式やテーブルなど)とされていてもよい。
「第1アンモニア起電力-第1アンモニア濃度出力関係式」及び「第2アンモニア起電力-第2アンモニア濃度出力関係式」は、第1アンモニアセンサ部42xおよび第2アンモニアセンサ部42yから出力されたアンモニア起電力と、被測定ガスのアンモニア濃度に係るアンモニア濃度出力との関係を表す式である。
「第1ポンピング電流Ip1-O濃度出力関係式」は、第1ポンピング電流Ip1と、被測定ガスのO濃度との関係を表す式である。
「第2ポンピング電流Ip2-NO濃度出力関係式」は、第2ポンピング電流Ip2と、被測定ガスのNO濃度との関係を表す式である。
「第1アンモニア濃度出力&第2アンモニア濃度出力&O濃度出力-補正アンモニア濃度出力関係式」は、酸素濃度及びNO濃度の影響を受けたアンモニア濃度出力(第1、第2)と、酸素濃度及びNO濃度の影響を除去した補正アンモニア濃度出力の関係を表す式である。
「第1アンモニア濃度出力&第2アンモニア濃度出力&O濃度出力-補正NO濃度出力関係式」は、酸素濃度及びアンモニア濃度の影響を受けたNO濃度出力と、酸素濃度及びアンモニア濃度の影響を除去した補正NO濃度出力の関係を表す式である。
「NO濃度出力&補正アンモニア濃度出力&補正NO濃度出力-補正NO濃度出力関係式」は、アンモニア濃度及びNO濃度の影響を受けたNO濃度出力と、アンモニア濃度及びNO濃度の影響を除去、修正した正確な補正NO濃度出力の関係を表す式である。
次に、マイクロコンピュータ60のCPU61において実行される、第1ポンピング電流Ip1、第2ポンピング電流Ip2、第1アンモニア起電力EMFおよび第2アンモニア起電力EMFから、NO濃度およびアンモニア濃度を求める演算処理について説明する。
CPU61は、第1ポンピング電流Ip1、第2ポンピング電流Ip2、第1アンモニア起電力および第2アンモニア起電力が入力されると、O濃度出力、NO濃度出力、第1アンモニア濃度出力および第2アンモニア濃度出力、を求める演算処理を行う。具体的には、ROM63から「第1アンモニア起電力-第1アンモニア濃度出力関係式」、「第2アンモニア起電力-第2アンモニア濃度出力関係式」、「第1ポンピング電流Ip1-O濃度出力関係式」、「第2ポンピング電流Ip2-NO濃度出力関係式」を呼び出し、当該関係式を用いて各濃度出力を算出する処理を行う。
尚、「第1アンモニア起電力-第1アンモニア濃度出力関係式」、「第2アンモニア起電力-第2アンモニア濃度出力関係式」は、第1アンモニアセンサ部42xと第2アンモニアセンサ部42yが使用環境中で出力し得るEMFの全範囲において、被測定ガス中のアンモニア濃度とセンサのアンモニア濃度換算出力とが概ね直線関係になるように設定された式である。このような換算式でもって換算することによって、後の補正式において、傾き及びオフセットの変化を利用した計算を可能とする。
濃度出力、NO濃度出力、第1アンモニア濃度出力および第2アンモニア濃度出力が求められると、CPUは、以下に説明する補正式を用いた演算を行うことで、被測定ガスのアンモニア濃度及びNO濃度を求める。
補正式(1):x =F (A、B、D)
= (eA-c)*(jB-h-fA+d)/(eA-c-iB+g) + fA-d
補正式(2):y = F'(A、B、D)
= (jB-h-fA+d)/(eA-c-iB+g)
補正式(3):z = C - ax + by
ここで、xはアンモニア濃度であり、yはNO濃度であり、zはNO濃度である。また、Aは第1アンモニア濃度出力であり、Bは第2アンモニア濃度出力であり、CはNO濃度出力であり、DはO濃度出力である。そして、式(1),(2)のF及びF’は、xが(A,B、D)の関数であることを表す。さらに、a,bは補正係数、c,d,e,f,g,h,i,jはO濃度出力Dを用いて計算される係数である(Dによって決まる係数)。
上述の補正式(1)~(3)に、第1アンモニア濃度出力(A)、第2アンモニア濃度出力(B)、NO濃度出力(C)およびO濃度出力(D)、を各代入して演算することによって、被測定ガスのアンモニア濃度及びNO濃度を求める。
なお、補正式(1)及び(2)は第1アンモニアセンサ部42x、第2アンモニアセンサ部42yの特性に基づいて定まる式であり、補正式(3)はNOセンサ部の特性に基づいて定まる式である。なお、式(1)~(3)は、あくまでも補正式の一例を示したものであり、ガス検知特性に応じて、他の補正式や、係数等を適宜変更しても良い。
次に、本実施形態の特徴である第1検知電極42bx、第2検知電極42byについて詳細に説明する。
第1検知電極42bxの金属組成は、Auを主成分(例えば70質量%以上)としている。第1検知電極42bxの金属組成には、Auよりも融点が高くAuと合金化する金属が含まれていることが好ましい。この合金化する金属は特に限定されないが、Ptが好ましい。
第2検知電極42byの金属組成は、Auを主成分(例えば70質量%以上)としている。第2検知電極42byの金属組成には、Auよりも融点が高くAuと合金化する金属が含まれていることが好ましい。この合金化する金属は特に限定されないが、Pdが好ましい。
ここで、第1検知電極42bxの金属組成が、AuとPtの合金相からなる場合について、Pt/〔Au+Pt〕(重量基準)とNH感度との関係、Pt/〔Au+Pt〕(重量基準)とNO感度との関係を、図5,6に示す。また、図7には、Pt/〔Au+Pt〕(重量基準)と、NH感度に対するNO感度の比(〔NO感度/NH感度〕)との関係を示す。なお、図7は、図5,6から求めたものである。
同様に、第2検知電極42byの金属組成が、AuとPdの合金相からなる場合について、Pd/〔Au+Pd〕(重量基準)とNH感度との関係、Pd/〔Au+Pd〕(重量基準)とNO感度との関係を、図8,9に示す。また、図10には、Pd/〔Au+Pd〕(重量基準)と、NH感度に対するNO感度の比(〔NO感度/NH感度〕)との関係を示す。なお、図10は、図8,9から求めたものである。
図7,10から、第1検知電極42bxにおいてPt/〔Au+Pt〕が5~25wt%であり、第2検知電極42byにおいてPd/〔Au+Pd〕が4~20wt%である場合には、実用上、十分な出力を得ることができることが分かる。なお、第1検知電極42bxにおいてPt/〔Au+Pt〕が5~25wt%であることは、特許請求の範囲において、Pt/(Au+Pt)の値が重量基準で0.05~0.25であることと同義である。また、第2検知電極42byにおいてPd/〔Au+Pd〕が4~20wt%であることは、特許請求の範囲において、Pd/(Au+Pd)の値が重量基準で0.04~0.20であることと同義である。
なお、第1検知電極42bx及び第2検知電極42byの金属組成がこの範囲内であれば、融点が高いから、高温焼成を採用できる。
また、図7,10から第1検知電極42bxにおいてPt/〔Au+Pt〕が10~20wt%であり、第2検知電極42byにおいてPd/〔Au+Pd〕が6~15wt%である場合には、実用上、より十分な出力を得ることができることが分かる。なお、第1検知電極42bxにおいてPt/〔Au+Pt〕が10~20wt%であることは、特許請求の範囲において、Pt/(Au+Pt)の値が重量基準で0.10~0.20であることと同義である。また、第2検知電極42byにおいてPd/〔Au+Pd〕が6~15wt%であることは、特許請求の範囲において、Pd/(Au+Pd)の値が重量基準で0.06~0.15であることと同義である。
以上の構成によれば、新規なアンモニア検知手法を用いたアンモニアセンサ素子(アンモニアセンサ部)42、及びガスセンサ(マルチガスセンサ)200Aを提供することができる。
さらに、上記構成では、第1検知電極42bxの金属組成、及び第2検知電極42byの金属組成には、Auよりも融点が高くAuと合金化する金属が含まれているから、第1検知電極42bx、及び第2検知電極42byの融点を上げることができる。よって、高温焼成を採用して、保護層23gの強度及び耐被毒性を担保することができる。
<他の実施形態(変形例)>
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
上記実施形態では、アンモニアセンサ部42x、42yは絶縁層23aの表面上に設けられていたが、これに限られない。例えば、図11に示すように、アンモニアセンサ部42x1、42y1を、NOセンサ部30Aの外表面(上面)をなす絶縁層23eの表面上に設けても良い。なお、図11のマルチガスセンサ装置402は、アンモニアセンサ部42x1、42y1の位置が異なり、マルチガスセンサ素子部100A1の構成が異なること以外は、図2のマルチガスセンサ装置400と同様であるので、マルチガスセンサ装置400と同一構成部分に同一符号を付して説明を省略する。
42 …アンモニアセンサ部(アンモニアセンサ素子)
42x …第1アンモニアセンサ部(アンモニア検知セル)
42y …第2アンモニアセンサ部(アンモニア検知セル)
42bx …第1検知電極(第1のアンモニア検知電極)
42by …第2検知電極(第2のアンモニア検知電極)
23g …保護層
200A …マルチガスセンサ(ガスセンサ)

Claims (4)

  1. 2つの混成電位式のアンモニア検知セルを有するアンモニアセンサ素子であって、
    前記2つの混成電位式のアンモニア検知セルは、それぞれアンモニア検知電極を有し、
    前記アンモニア検知電極のうち、
    第1のアンモニア検知電極の金属組成は、Auを主成分とし、
    第2のアンモニア検知電極の金属組成は、Auを主成分とし、
    前記第1のアンモニア検知電極の金属組成と、前記第2のアンモニア検知電極の金属組成は相違し、
    前記第1のアンモニア検知電極を有する第1アンモニアセンサ部、及び前記第2のアンモニア検知電極を有する第2アンモニアセンサ部は、保護層により覆われており、
    前記第1のアンモニア検知電極の金属組成には、Auよりも融点が高くAuと合金化する金属が含まれているとともに、
    前記第2のアンモニア検知電極の金属組成には、Auよりも融点が高くAuと合金化する金属が含まれており、
    前記第1のアンモニア検知電極の金属組成が、AuとPtの合金相からなり、
    前記第2のアンモニア検知電極の金属組成が、AuとPdの合金相からなり、
    前記第1のアンモニア検知電極の金属組成のPt/(Au+Pt)の値は、重量基準で0.05~0.25であり、
    前記第2のアンモニア検知電極の金属組成のPd/(Au+Pd)の値は、重量基準で0.04~0.20であることを特徴とするアンモニアセンサ素子。
  2. 前記Pt/(Au+Pt)の値が0.10~0.20であり、
    前記Pd/(Au+Pd)の値が0.06~0.15であることを特徴とする請求項に記載のアンモニアセンサ素子。
  3. 請求項1又は請求項2に記載のアンモニアセンサ素子を備えたことを特徴とするガスセンサ。
  4. 前記ガスセンサは、被測定ガス中の窒素酸化物の濃度を測定するNOセンサ部を更に備えたマルチガスセンサであることを特徴とする請求項に記載のガスセンサ。
JP2018059399A 2018-03-27 2018-03-27 アンモニアセンサ素子、及びガスセンサ Active JP7100472B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018059399A JP7100472B2 (ja) 2018-03-27 2018-03-27 アンモニアセンサ素子、及びガスセンサ
US16/297,919 US10962516B2 (en) 2018-03-27 2019-03-11 Ammonia sensor element and gas sensor
DE102019107420.7A DE102019107420A1 (de) 2018-03-27 2019-03-22 Ammoniaksensorelement und Gassensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059399A JP7100472B2 (ja) 2018-03-27 2018-03-27 アンモニアセンサ素子、及びガスセンサ

Publications (2)

Publication Number Publication Date
JP2019174146A JP2019174146A (ja) 2019-10-10
JP7100472B2 true JP7100472B2 (ja) 2022-07-13

Family

ID=67910234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059399A Active JP7100472B2 (ja) 2018-03-27 2018-03-27 アンモニアセンサ素子、及びガスセンサ

Country Status (3)

Country Link
US (1) US10962516B2 (ja)
JP (1) JP7100472B2 (ja)
DE (1) DE102019107420A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862400B2 (ja) * 2018-10-30 2021-04-21 株式会社デンソー アンモニア検出装置
JP7270565B2 (ja) * 2020-02-17 2023-05-10 日本特殊陶業株式会社 センサ素子及びガスセンサ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083817A (ja) 2003-09-05 2005-03-31 Ngk Spark Plug Co Ltd アンモニアセンサ
JP2014062541A (ja) 2012-08-30 2014-04-10 Ngk Spark Plug Co Ltd 酸化触媒の劣化診断装置
JP2015034814A (ja) 2013-07-09 2015-02-19 日本特殊陶業株式会社 マルチガスセンサ及びマルチガスセンサ装置
JP2016153781A (ja) 2015-02-16 2016-08-25 日本特殊陶業株式会社 ガスセンサ
JP2017194439A (ja) 2016-04-15 2017-10-26 日本碍子株式会社 アンモニアガスセンサおよびアンモニアガスの濃度測定方法
US20180067073A1 (en) 2016-09-08 2018-03-08 Ngk Spark Plug Co., Ltd. Concentration computation apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450084B2 (ja) * 1995-03-09 2003-09-22 日本碍子株式会社 可燃ガス成分の測定方法及び測定装置
JP5204160B2 (ja) * 2009-09-03 2013-06-05 日本特殊陶業株式会社 マルチガスセンサの制御方法及びマルチガスセンサの制御装置
JP5745455B2 (ja) 2012-04-19 2015-07-08 日本特殊陶業株式会社 マルチガスセンサおよびマルチガスセンサ装置
JP6672120B2 (ja) 2016-03-31 2020-03-25 株式会社クボタ 作業機の油圧システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083817A (ja) 2003-09-05 2005-03-31 Ngk Spark Plug Co Ltd アンモニアセンサ
JP2014062541A (ja) 2012-08-30 2014-04-10 Ngk Spark Plug Co Ltd 酸化触媒の劣化診断装置
JP2015034814A (ja) 2013-07-09 2015-02-19 日本特殊陶業株式会社 マルチガスセンサ及びマルチガスセンサ装置
JP2016153781A (ja) 2015-02-16 2016-08-25 日本特殊陶業株式会社 ガスセンサ
JP2017194439A (ja) 2016-04-15 2017-10-26 日本碍子株式会社 アンモニアガスセンサおよびアンモニアガスの濃度測定方法
US20180067073A1 (en) 2016-09-08 2018-03-08 Ngk Spark Plug Co., Ltd. Concentration computation apparatus
JP2018040723A (ja) 2016-09-08 2018-03-15 日本特殊陶業株式会社 濃度算出装置

Also Published As

Publication number Publication date
JP2019174146A (ja) 2019-10-10
US20190302077A1 (en) 2019-10-03
DE102019107420A1 (de) 2019-10-02
US10962516B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
JP6088463B2 (ja) マルチガスセンサ及びマルチガスセンサ装置
JP5416686B2 (ja) マルチガスセンサ
JP5204160B2 (ja) マルチガスセンサの制御方法及びマルチガスセンサの制御装置
JP6061790B2 (ja) 酸化触媒の劣化診断装置
JP5209401B2 (ja) マルチガスセンサ及びガスセンサ制御装置
JP5745455B2 (ja) マルチガスセンサおよびマルチガスセンサ装置
JP5215500B2 (ja) マルチガスセンサ及びガスセンサ制御装置
JP5134399B2 (ja) ガスセンサ及びガスセンサ制御装置
JP7100472B2 (ja) アンモニアセンサ素子、及びガスセンサ
JP6517686B2 (ja) ガスセンサ
JP2009198346A (ja) アンモニアガスセンサ
JP2019191148A (ja) ガスセンサ素子、ヒータ、及びガスセンサ
JP2019174147A (ja) アンモニアセンサ素子、及びガスセンサ
JP6726604B2 (ja) ガスセンサ
JP2020169817A (ja) ガスセンサ
JP7252921B2 (ja) ガスセンサ制御装置、ガスセンサ装置及び内燃機関制御装置
JP7270565B2 (ja) センサ素子及びガスセンサ
CN112505127B (zh) 气体传感器控制装置、气体传感器装置和内燃机控制装置
US11391194B2 (en) Gas sensor control apparatus, gas sensor apparatus, and internal combustion engine control apparatus
JP6753786B2 (ja) 濃度算出装置およびガス検出装置
JP2020201207A (ja) ガスセンサ
JP2020176918A (ja) センサ素子の製造方法、センサ素子及びガスセンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220701

R150 Certificate of patent or registration of utility model

Ref document number: 7100472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150