JP7093766B2 - 検体検出システム - Google Patents

検体検出システム Download PDF

Info

Publication number
JP7093766B2
JP7093766B2 JP2019505788A JP2019505788A JP7093766B2 JP 7093766 B2 JP7093766 B2 JP 7093766B2 JP 2019505788 A JP2019505788 A JP 2019505788A JP 2019505788 A JP2019505788 A JP 2019505788A JP 7093766 B2 JP7093766 B2 JP 7093766B2
Authority
JP
Japan
Prior art keywords
temperature
temperature control
liquid
sensor chip
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019505788A
Other languages
English (en)
Other versions
JPWO2018168308A1 (ja
Inventor
哲也 野田
淳夫 岩下
祐也 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Original Assignee
Otsuka Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd filed Critical Otsuka Pharmaceutical Co Ltd
Publication of JPWO2018168308A1 publication Critical patent/JPWO2018168308A1/ja
Application granted granted Critical
Publication of JP7093766B2 publication Critical patent/JP7093766B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Clinical Laboratory Science (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、センサーチップ内に含まれる測定対象物質の検出を行う検体検出システムに関し、より詳しくは、測定対象物質が固定化されるセンサーチップの反応部の温度を厳密に制御することができる検体検出システムに関する。
従来、極微少な物質の検出を行う場合において、物質の物理的現象を応用することでこのような物質の検出を可能とした様々な検体検出方法が提案されている。
このような検体検出方法としては、例えば、試料液に含まれる測定対象物質である抗原と、標識物質で標識された抗体または抗原との抗原抗体反応を利用して、測定対象物質の有無やその量を測定する免疫測定法(イムノアッセイ)が知られている。
免疫測定法には、標識物質として酵素を用いた酵素免疫測定法(EIA)や、標識物質として蛍光物質を用いた蛍光免疫測定法(FIA)などがある。
例えば、蛍光免疫測定法を利用した検体検出装置としては、ナノメートルレベルなどの微細領域中で電子と光が共鳴することにより、高い光出力を得る現象(表面プラズモン共鳴(SPR:Surface Plasmon Resonance)現象)を応用し、例えば、生体内の極微少なアラナイトの検出を行うようにした表面プラズモン共鳴装置(以下、「SPR装置」とも言う)が挙げられる。
また、表面プラズモン共鳴(SPR)現象を応用した、表面プラズモン励起増強蛍光分光法(SPFS:Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づき、SPR装置よりもさらに高精度にアナライト検出を行えるようにした表面プラズモン励起増強蛍光分光測定装置(以下、「SPFS装置」とも言う)も、このような検体検出装置の一つである。
この表面プラズモン励起増強蛍光分光法(SPFS)は、光源より照射したレーザー光などの励起光が、金属膜表面で全反射減衰(ATR:Attenuated Total Reflectance)する条件において、金属膜表面に表面プラズモン光(疎密波)を発生させることによって、光源より照射した励起光が有するフォトン量を数十倍~数百倍に増やして、表面プラズモン光の電場増強効果を得るようになっている。
このようなSPFS装置では、誘電体部材と、誘電体部材の上面に隣接する金属膜と、金属膜の上面に配置される液保持部材とを備えるセンサーチップが用いられる。このようなセンサーチップでは、金属膜上に、アナライトを捕捉するためのリガンドを有する反応部が設けられている。
液保持部材に、アナライトを含む試料液を供給することにより、アナライトがリガンドにより捕捉される(1次反応)。この状態で、蛍光物質で標識された2次抗体を含む液体(標識液)を液保持部材に導入する。溶液保持部材内では、抗原抗体反応(2次反応)によって、リガンドにより捕捉されているアナライトが蛍光物質で標識される。
この状態で、誘電体部材を介して表面プラズモン共鳴が生じる角度で励起光を金属膜に照射すると、金属膜表面に発生した表面プラズモン光により蛍光物質が励起され、蛍光物質から蛍光が生じる。この蛍光を検出することにより、アナライトの有無やその量を測定することができる。
ところで、1次反応や2次反応等の免疫反応の反応性は、一般的に、反応場の温度に依存して変化する。通常、SPFS装置を用いた検体検査は、SPFS装置を室温に設置して行われるが、免疫反応の促進や、反応効率の安定化の観点から、反応場を所定温度に制御することが求められている。
このため、特許文献1(特開2012-215465号公報)では、センサーチップの周囲の温度を測定する第1温度センサと、センサーチップと温調部との接触部分の温度を測定する第2温度センサとを用いて、センサーチップと接触し該センサーチップの温度を調整する温調部をフィードバック制御することにより、センサーチップの温度を調整することが提案されている。
具体的には、第1温度センサにより測定された周囲の温度と、センサーチップの反応部との間の温度勾配に基づいて、センサーチップと接触する温調部の伝熱体表面の温度を求める。そして、この求めた温度を目標値、第2温度センサにより測定されたセンサーチップと接触する温調部の伝熱体表面の温度を制御値として、伝熱体表面の温度を制御することで、センサーチップの温度を調整している。
特開2012-215465号公報
しかしながら、特許文献1に開示される方法では、例えば、周囲の温度が低い場合には、目標値を高く設定することにより、センサーチップの反応部の温度を一定に制御しようとしているため、センサーチップの温調部に近い部分と遠い部分(もしくは放熱しやすい部分)において、温度勾配や温度ムラが生じてしまう。
また、全自動式の検体検出装置を用いたセンサーチップによる検体検出では、検体検出装置内でセンサーチップに試料液や洗浄液などの液体を順次導入するため、センサーチップの反応部の温度は導入する液体の温度に影響を受けてしまう。
このため、導入する液体の温度に応じて、随時、温調部の制御条件を変更し、反応場の温度を一定に制御することが望ましい。しかし、特許文献1の装置で用いられているような接触型の温調部の場合、熱容量が大きく、温度の変化に対して敏感に追従することが難しい。
本発明では、センサーチップにおける温度勾配や温度ムラを抑制し、また、検体検出装置が設置された環境温度に寄らず、より高精度に反応部の温度を制御することができる検体検出システムを提供することを目的とする。
本発明は、前述したような従来技術における課題を解決するために発明されたものであって、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した検体検出システムは、
アナライトを捕捉する反応場を内部に有するセンサーチップを用いて、アナライトの検出を行う検体検出システムであって、
前記センサーチップに対して接触して配置される接触式温調ユニットと、
前記センサーチップに対して非接触に配置される非接触式温調ユニットと、を備え、
前記接触式温調ユニットは、第1温調手段と、該第1温調手段と前記センサーチップとの間の温度を測定する第1温度センサーとを備え、前記第1温度センサーの出力値と所定の第1温調手段目標温度とに基づき前記第1温調手段がフィードバック制御され、
前記非接触式温調ユニットは、第2温調手段と、前記第2温調手段と前記センサーチップとの間の温度を測定する第2温度センサーとを備え、前記第2温度センサーの出力値と所定の第2温調手段目標温度とに基づき前記第2温調手段がフィードバック制御される。
本発明によれば、温冷風などの非接触の温調手段を用いることにより、センサーチップにおける温度勾配や温度ムラを抑制することができるとともに、液体導入によるセンサーチップの温度変化にも敏感に対応することができ、反応部の温度を高精度に制御することができる。
また、検体検出装置が設置された環境の温度を測定し、この環境温度に基づいて温冷風などの非接触の温調手段の温度目標値を制御しているため、検体検出装置が設置された環境温度に寄らず、反応部の温度を高精度に制御することができる。
図1は、本発明の一実施形態に係る表面プラズモン励起増強蛍光分光測定装置(SPFS装置)の構成を説明するための模式図である。 図2は、本実施形態におけるSPFS装置の動作手順の一例を示すフローチャートである。 図3は、検体検出開始からの経過時間と第2温調手段目標温度T2との関係を説明するためのグラフである。 図4は、本実施形態におけるSPFS装置を用いてセンサーチップの温調を行った際の経過時間と反応場温度との関係を示すグラフである。 図5は、比較例1として、センサーチップの温調を行った際の経過時間と反応場温度との関係を示すグラフである。 図6は、比較例2として、センサーチップの温調を行った際の経過時間と反応場温度との関係を示すグラフである。 図7は、比較例3として、センサーチップの温調を行った際の経過時間と反応場温度との関係を示すグラフである。 図8は、接触式温調ユニットの変形例を示す模式図である。 図9は、非接触式温調ユニットの変形例を示す模式図である。 図10は、センサーチップの変形例を示す模式図である。
以下、本発明の実施の形態(実施例)を図面に基づいて、より詳細に説明する。
図1は、本発明の一実施形態に係る表面プラズモン励起増強蛍光分光測定装置(SPFS装置)の構成を説明するための模式図である。
図1に示すように、SPFS装置10は、励起光照射ユニット20、蛍光検出ユニット30、送液ユニット40、搬送ユニット50、接触式温調ユニット60、非接触式温調ユニット70及び制御部80が筐体12内に収容されている。なお、SPFS装置10は、搬送ユニット50のチップホルダー54にセンサーチップ100を装着した状態で使用される。
センサーチップ100は、入射面102a、成膜面102b及び出射面102cを有する誘電体部材102と、成膜面102bに形成された金属膜104と、成膜面102bまたは金属膜104上に固着された液保持部材である流路形成部材106と、試料液や標識液、洗浄液などが貯留される液貯留部材108とを有する。通常、センサーチップ100は、検体検査毎に交換されるものである。
センサーチップ100は、好ましくは各辺の長さが数mm~数cm程度の構造物であるが、「チップ」の範疇に含まれないようなより小型の構造物又はより大型の構造物であっても構わない。
誘電体部材102は、励起光αに対して透明な誘電体からなるプリズムとすることができる。誘電体部材102の入射面102aは、励起光照射ユニット20から照射される励起光αが誘電体部材102の内部に入射される面である。また、成膜面102b上には、金属膜104が形成されている。誘電体部材102の内部に入射した励起光αは、この金属膜104と誘電体部材102の成膜面102bとの界面(以下、便宜上「金属膜104の裏面」という)において反射され、出射面102cを介して、励起光αは誘電体部材102の外部に出射される。
誘電体部材102の形状は特に限定されるものではなく、図1に示す誘電体部材102は、鉛直断面形状が略台形の六面体(截頭四角錐形状)からなるプリズムであるが、例えば、鉛直断面形状を三角形(いわゆる、三角プリズム)、半円形、半楕円形としたプリズムとすることもできる。
入射面102aは、励起光αが励起光照射ユニット20に戻らないように形成される。励起光αの光源が、例えば、レーザーダイオード(以下、「LD」ともいう)である場合、励起光αがLDに戻ると、LDの励起状態が乱れてしまい、励起光αの波長や出力が変動してしまう。このため、理想的な増強角を中心とする走査範囲において、励起光αが入射面102aに対して垂直に入射しないように、入射面102aの角度が設定される。
なお、センサーチップ100の設計により、共鳴角(及びその極近傍にある増強角)が概ね決定される。設計要素は、誘電体部材102の屈折率、金属膜104の屈折率、金属膜104の膜厚、金属膜104の消衰係数、励起光αの波長などである。金属膜104上に固定化されたアナライトによって共鳴角及び増強角がシフトするが、その量は数度未満である。
誘電体部材102は、複屈折特性を少なからず有する。誘電体部材102の材料は、例えば、ガラス、セラミックスなどの各種の無機物、天然ポリマー、合成ポリマーなどが含まれ、化学的安定性、製造安定性、光学的透明性、低複屈折性に優れる材料が好ましい。
少なくとも、励起光αに対して光学的に透明で、かつ低複屈折な材料から形成されていれば、その材質は、上記のように特に限定されないが、安価で取り扱い性に優れるセンサーチップ100を提供する上で、例えば、樹脂材料から形成されていることが好ましい。なお、誘電体部材102の製造方法は、特に限定されるものではないが、製造コストの観点から、金型を用いた射出成形が好ましい。
誘電体部材102を樹脂材料から形成する場合、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、ポリスチレン、ポリカーボネート(PC)、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。
金属膜104は、誘電体部材102の成膜面102b上に形成される。これにより、成膜面102bに全反射条件で入射した励起光αの光子と、金属膜104中の自由電子との間で相互作用(表面プラズモン共鳴)が生じ、金属膜104の表面上に局在場光を生じさせることができる。
金属膜104の材料は、表面プラズモン共鳴を生じさせうる金属であれば、特に限定されるものではなく、例えば、金、銀、アルミニウム、銅、および白金からなる群から選ばれる少なくとも1種の金属からなり、より好ましくは金からなり、さらに、これら金属の合金から構成してもよい。このような金属は、酸化に対して安定であり、かつ、表面プラズモン光による電場増強が大きくなるため、金属膜104として好適である。
また、金属膜104の形成方法としては、特に限定されるものではないが、例えば、スパッタリング法、蒸着法(抵抗加熱蒸着法、電子線蒸着法など)、電解メッキ、無電解メッキ法などが挙げられる。好ましくは、スパッタリング法、蒸着法を使用するのが、金属膜形成条件の調整が容易であるので望ましい。
金属膜104の厚さとしては、特に限定されるものではないが、好ましくは、5~500nmの範囲内とするのが好ましく、電場増強効果の観点から、より好ましくは、金、銀、銅、白金の場合には20~70nm、アルミニウムの場合には、10~50nm、これらの合金の場合には10~70nmの範囲内であることが好ましい。
金属膜104の厚さが上記範囲内であれば、表面プラズモン光が発生し易く好適である。また、このような厚さを有する金属膜104であれば、大きさ(縦×横)の寸法、形状は、特に限定されない。
また、図1では図示しないが、金属膜104の誘電体部材102と対向しない面(以下、便宜上「金属膜104の表面」という)には、アナライトを捕捉するためのリガンドが固定化されている。リガンドを固定化することで、アナライトを選択的に検出することが可能となる。
本実施形態では、金属膜104上の所定の領域(反応場)に、リガンドが均一に固定化されている。リガンドの種類は、アナライトを捕捉することができれば特に限定されない。本実施形態では、リガンドは、アナライトに特異的な抗体またはその断片である。
流路形成部材106は、誘電体部材102の成膜面102bまたは金属膜104上に配置されている。また、流路形成部材106には、成膜面102bまたは金属膜104と対向する面に流路溝110が形成されている。流路形成部材106は、金属膜104上の反応場を覆うように配置され、流路形成部材106と誘電体部材102とにより、試料液や標識液、洗浄液などを送液するための流路112が形成される。
なお、流路形成部材106は、例えば、接着剤や透明な粘着シートによる接着、レーザー溶着、超音波溶着、クランプ部材を用いた圧着などにより誘電体部材102または金属膜104と接合することができる。また、流路溝110を形成せず、貫通孔が形成された粘着シートにより流路形成部材106と誘電体部材102または金属膜104とを接合することで、粘着シートの貫通孔を流路として用いることもできる。
また、流路形成部材106は、流路溝110の一端に形成された第1貫通孔110aと、流路溝110の他端に形成された第2貫通孔110bとを有する。本実施形態において、第1貫通孔110a及び第2貫通孔110bは、それぞれ略円柱形状である。また、第1貫通孔110a及び第2貫通孔110bは、流路112へ試料液や標識液、洗浄液などを注入するための注入口及び試料液や標識液、洗浄液などを取り出すための取出口として機能する。
流路形成部材106の材料としては、少なくとも後述する蛍光γに対して光学的に透明な材料から形成されていれば、特に限定されるものではないが、安価で取り扱い性に優れるセンサーチップ100を提供する上で、例えば、樹脂材料から形成されていることが好ましい。なお、流路形成部材106の製造方法は、特に限定されるものではないが、製造コストの観点から、金型を用いた射出成形が好ましい。
流路形成部材106を樹脂材料から形成する場合、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリスチレン、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。
液貯留部材108は、試料液や標識液、洗浄液などを貯留するためのウェル108aを有する。本実施形態において、液貯留部材108は流路形成部材106と一体に成形されている。
液貯留部材108のウェル108aには、それぞれ、後述する1次反応及び2次反応に使用される試料液や標識液、洗浄液などが保管される。ウェル108aの形状は、特に限定されるものではなく、保管する試料液や標識液、洗浄液などの量に応じて適宜設定することができる。また、図1に示すSPFS装置10では、ウェル108aは1つだけ示しているが、検体検出で使用する液体の数に応じて複数のウェル108aを設けることもできる。
なお、本実施形態では、液貯留部材108と流路形成部材106とを一体に成形しているが、液貯留部材108を流路形成部材106とは別体のチップとして構成することもできる。
液貯留部材108の材質は、特に限定されるものではないが、安価で取り扱い性に優れるセンサーチップ100を提供する上で、例えば、樹脂材料から形成されていることが好ましい。なお、液貯留部材108の製造方法は、特に限定されるものではないが、製造コストの観点から、金型を用いた射出成形が好ましい。
液貯留部材108を樹脂材料から形成する場合、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリスチレン、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。
このように構成されるセンサーチップ100は、図1に示すように、SPFS装置10の搬送ユニット50のチップホルダー54に装着され、SPFS装置10によって検体検出が行われる。
次に、SPFS装置10の各構成要素について説明する。前述するように、本実施形態におけるSPFS装置10は、励起光照射ユニット20、蛍光検出ユニット30、送液ユニット40、搬送ユニット50、接触式温調ユニット60、非接触式温調ユニット70及び制御部80が筐体12内に収容されている。
励起光照射ユニット20は、チップホルダー54に保持されたセンサーチップ100に励起光αを照射する。後述するように、蛍光γの測定時には、励起光照射ユニット20は、金属膜104に対する入射角が表面プラズモン共鳴を生じさせる角度となるように、金属膜104に対するP波のみを入射面102aに向けて出射する。
ここで「励起光」とは、蛍光物質を直接または間接的に励起させる光である。例えば、励起光αは、誘電体部材102を介して金属膜104に表面プラズモン共鳴が生じる角度で照射されたときに、蛍光物質を励起させる局在場光を金属膜104の表面上に生じさせる光である。
励起光照射ユニット20は、励起光αを誘電体部材102に向けて出射するための構成と、金属膜104の裏面に対する励起光αの入射角度を走査するための構成とを含む。本実施形態では、励起光照射ユニット20は、光源ユニット21、角度調整機構22及び光源制御部23を含む。
光源ユニット21は、コリメートされ、かつ波長及び光量が一定の励起光αを、金属膜104裏面に対して照射スポットの形状が略円形となるように照射する。光源ユニット21は、例えば、励起光αの光源、ビーム整形光学系、APC(Automatic Power-Control)機構及び温度調整機構(いずれも不図示)を含む。
光源の種類は、特に限定されるものではなく、例えば、レーザーダイオード(LD)、発光ダイオード、水銀灯、その他のレーザー光源が含まれる。光源から照射される光がビームでない場合には、光源から照射される光は、レンズや鏡、スリットなどによりビームに変換される。また、光源から照射される光が単色光でない場合には、光源から照射される光は、回折格子などにより単色光に変換される。さらに、光源から照射される光が直線偏光でない場合には、光源から照射される光は、偏光子などにより直線偏光の光に変換される。
ビーム整形光学系は、例えば、コリメーターやバンドパスフィルター、直線偏光フィルター、半波長板、スリット、ズーム手段などを含む。ビーム整形光学系は、これらの全てを含んでいてもよいし、一部のみを含んでいてもよい。
コリメーターは、光源から照射された励起光αをコリメートする。バンドパスフィルターは、光源から照射された励起光αを中心波長のみの狭帯域光にする。光源からの励起光αは、若干の波長分布幅を有しているためである。
直線偏光フィルターは、光源から照射された励起光αを完全な直線偏光の光にする。半波長板は、金属膜104にP波成分が入射するように励起光αの偏光方向を調整する。スリット及びズーム手段は、金属膜104裏面における照射スポットの形状が所定サイズの円形となるように、励起光αのビーム径や輪郭形状などを調整する。
APC機構は、光源の出力が一定となるように光源を制御する。より具体的には、APC機構は、励起光αから分岐させた光の光量を不図示のフォトダイオードなどで検出する。そして、APC機構は、回帰回路で投入エネルギーを制御することで、光源の出力を一定に制御する。
温度調整機構は、例えば、ヒーターやペルチェ素子などである。光源の出射光の波長及びエネルギーは、温度によって変動することがある。このため、温度調整機構で光源の温度を一定に保つことにより、光源の出射光の波長及びエネルギーを一定に制御する。
角度調整機構22は、金属膜104への励起光αの入射角を調整する。角度調整機構22は、誘電体部材102を介して金属膜104の所定の位置に向けて所定の入射角で励起光αを照射するために、励起光αの光軸とチップホルダー54とを相対的に回転させる。
例えば、角度調整機構22は、光源ユニット21を励起光αの光軸と直交する軸(図1の紙面に対して垂直な軸)を中心として回動させる。このとき、入射角を走査しても金属膜104上での照射スポットの位置がほとんど変化しないように、回転軸の位置を設定する。回転中心の位置を、入射角の走査範囲の両端における2つの励起光αの光軸の交点近傍(成膜面102b上の照射位置と入射面102aとの間)に設定することで、照射位置のズレを極小化することができる。
金属膜104に対する励起光αの入射角のうち、プラズモン散乱光の最大光量を得られる角度が増強角である。増強角またはその近傍の角度に励起光αの入射角を設定することで、高強度の蛍光γを測定することが可能となる。
なお、センサーチップ100の誘電体部材102の材料及び形状、金属膜104の膜厚、流路112内の試料液の屈折率などにより、励起光αの基本的な入射条件が決定されるが、流路112内のアナライトの種類及び量、誘電体部材102の形状誤差などにより、最適な入射条件はわずかに変動する。このため、検体検査毎に最適な増強角を求めることが好ましい。
光源制御部23は、光源ユニット21に含まれる各種機器を制御して、光源ユニット21の励起光αの照射を制御する。光源制御部23は、例えば、演算装置、制御装置、記憶装置、入力装置及び出力装置を含む公知のコンピュータやマイコンなどによって構成される。
蛍光検出ユニット30は、金属膜104への励起光αの照射により励起された蛍光物質から生じる蛍光γを検出する。また、必要に応じて、蛍光検出ユニット30は、金属膜104への励起光αの照射によって生じたプラズモン散乱光も検出する。蛍光検出ユニット30は、例えば、受光ユニット31、位置切替機構37及びセンサー制御部38を含む。
受光ユニット31は、センサーチップ100の金属膜104の法線方向(図1におけるz軸方向)に配置される。受光ユニット31は、第1レンズ32、光学フィルター33、第2レンズ34及び受光センサー35を含む。
第1レンズ32は、例えば、集光レンズであり、金属膜104上から生じる光を集光する。第2レンズ34は、例えば、結像レンズであり、第1レンズ32で集光された光を受光センサー35の受光面に結像させる。両レンズ32,34の間の光路は、略平行な光路となっている。光学フィルター33は、両レンズ32,34の間に配置されている。
光学フィルター33は、蛍光成分のみを受光センサー35に導き、高いS/Nで蛍光γを検出するために、励起光成分(プラズモン散乱光)を除去する。光学フィルター33は、例えば、励起光反射フィルター、短波長カットフィルター及びバンドパスフィルターが含まれる。光学フィルター33は、例えば、所定の光成分を反射する多層膜を含むフィルターであるが、所定の光成分を吸収する色ガラスフィルターであってもよい。
受光センサー35は、蛍光γを検出する。受光センサー35は、微少量のアナライトを標識した蛍光物質からの微弱な蛍光γを検出することが可能な、高い感度を有するものであれば、特に限定されるものではないが、例えば、光電子倍増管(PMT)やアバランシェフォトダイオード(APD)、低ノイズのフォロダイオード(PD)などを用いることができる。
位置切替機構37は、光学フィルター33の位置を、受光ユニット31における光路上または光路外に切り替える。具体的には、受光センサー35が蛍光γを検出する時には、光学フィルター33を受光ユニット31の光路上に配置し、受光センサー35がプラズモン散乱光を検出する時には、光学フィルター33を受光ユニット31の光路外に配置する。位置切替機構37は、例えば、回転駆動部と、回転運動を利用して光学フィルター33を水平方向に移動させる公知の機構(ターンテーブルやラックアンドピニオンなど)とによって構成される。
センサー制御部38は、受光センサー35の出力値の検出や、検出した出力値による受光センサー35の感度の管理、適切な出力値を得るための受光センサー35の感度の変更などを制御する。センサー制御部38は、例えば、演算装置、制御装置、記憶装置、入力装置及び出力装置を含む公知のコンピュータやマイコンなどによって構成される。
送液ユニット40は、チップホルダー54に装着されたセンサーチップ100の流路112内に、試料液や標識液、洗浄液などを供給する。送液ユニット40は、シリンジポンプ41、ピペットノズル46、ピペットチップ45及び送液ポンプ駆動機構44を含む。
送液ユニット40は、ピペットノズル46の先端にピペットチップ45を装着した状態で使用される。ピペットチップ45が交換可能であると、ピペットチップ45の洗浄が不要となり、不純物の混入などを防止することができる。
シリンジポンプ41は、シリンジ42と、シリンジ42内を往復動作可能なプランジャー43とによって構成される。プランジャー43の往復運動によって、液体の吸引及び排出が定量的に行われる。
送液ポンプ駆動機構44は、シリンジポンプ41の駆動装置及びピペットチップ45が装着されたピペットノズル46の移動装置を含む。シリンジポンプ41の駆動装置は、プランジャー43を往復運動させるための装置であり、例えば、ステッピングモーターを含む。ステッピングモーターを含む駆動装置は、シリンジポンプ41の送液量や送液速度を管理できるため、センサーチップ100の残液量を管理する観点から好ましい。ピペットノズル46の移動装置は、例えば、ピペットノズル46を、ピペットノズル46の軸方向(例えば垂直方向)と、軸方向を横断する方向(例えば水平方向)との二方向に自在に移動させる。ピペットノズル46の移動装置は、例えば、ロボットアーム、2軸ステージまたは上下動自在なターンテーブルによって構成される。
ピペットチップ45とセンサーチップ100との相対的な高さを一定に調整し、センサーチップ100内での残液量を一定に管理する観点からは、送液ユニット40は、ピペットチップ45の先端の位置を検出する機構をさらに有することが好ましい。
送液ユニット40は、液貯留部材108より各種液体を吸引し、センサーチップ100の流路112内に供給する。このとき、プランジャー43を動かすことで、センサーチップ100の流路112内を液体が往復し、流路112内の液体が攪拌される。これにより、液体の濃度の均一化や、流路112内における反応(例えば抗原抗体反応)の促進などを実現することができる。
このような操作を行うことから、センサーチップ100の注入口(第1貫通孔110a)は、多層フィルム111等により保護されており、かつピペットチップ45がこの多層フィルムを貫通した時に第1貫通孔110aを密閉できるように、センサーチップ100及びピペットチップ45が構成されていることが好ましい。
流路112内の液体は、再びシリンジポンプ41により吸引され、液貯留部材108などに排出される。これらの動作の繰り返しにより、各種液体による反応、洗浄などを実施し、流路112内の反応場に、蛍光物質で標識されたアナライトを固定化することができる。
搬送ユニット50は、ユーザーによりチップホルダー54に装着されたセンサーチップ100を送液位置または測定位置に搬送し、固定する。ここで「送液位置」とは、送液ユニット40がセンサーチップ100の流路112内に液体を供給したり、流路112内の液体を除去したりする位置である。また、「測定位置」とは、励起光照射ユニット20がセンサーチップ100に励起光αを照射し、それに伴い発生する蛍光γを蛍光検出ユニット30が検出する位置である。
なお、搬送ユニット50は、後述する位置検出及び位置調整工程において、センサーチップ100と励起光照射ユニット20の光源ユニット21との距離を変化させるためにも用いられる。
搬送ユニット50は、搬送ステージ52及びチップホルダー54を含む。チップホルダー54は、搬送ステージ52に固定されており、センサーチップ100を着脱可能に保持する。チップホルダー54の形状は、センサーチップ100を保持することが可能であり、かつ、励起光α及び蛍光γの光路を妨げない形状であれば、特に限定されるものではない。例えば、チップホルダー54には、励起光α及び蛍光γが通過するための開口が設けられている。
搬送ステージ52は、チップホルダー54を一方向(図1におけるx軸方向)及びその逆方向に移動可能に構成される。搬送ステージ52は、例えば、ステッピングモーターなどにより駆動される。
接触式温調ユニット60は、センサーチップ100に接触して配置される第1温調手段61と、第1温調手段61とセンサーチップ100の反応場との間に配置される第1温度センサー62とを有する。
第1温調手段61は、後述する制御部80により所定の温度となるように制御される。本実施形態において、第1温調手段61は、温調素子61aと、伝熱部材61bとを有している。
温調素子61aは、加熱素子であっても冷却素子であってもよい。このような温調素子61aとしては、特に限定されるものではないが、例えば、電気抵抗素子、カートリッジヒーター、ラバーヒーター、セラミックヒーターなどの赤外線ヒーター、ペルチェ素子などを用いることができる。
伝熱部材61bは、励起光α及び蛍光γの光路を妨げない形状を有しており、温調素子61aからセンサーチップ100へ熱を伝達する。このような伝熱部材61bの材料としては、特に限定されるものではないが、例えば、銅やアルミニウムなど熱伝導率の高い金属を用いることができる。
本実施形態において、伝熱部材61bは、誘電体部材102の下面102dと接触するとともに、液貯留部材108のウェル108aとも接触するような形状としている。これにより、センサーチップ100の反応場の温調と同時に、液貯留部材108のウェル108aに保管された液体の温調も行うことができる。このため、センサーチップ100の流路112に導入する液体を事前に温調することができ、流路112への液体導入に伴う反応場の温度の変化を抑制することができる。
第1温度センサー62は、測定された温度に応じた信号(出力値)を後述する制御部80へ送信可能なものであれば、特に限定されるものではないが、例えば、サーミスタや熱電対などを用いることができる。
第1温度センサー62は、第1温調手段61とセンサーチップ100との間の温度を測定可能な位置にあればよく、反応場を有するセンサーチップ100に、より近接した位置に配置することが好ましい。例えば、伝熱部材61b上の誘電体部材102のいずれかの面に接触する位置、または、誘電体部材12に近接した伝熱部材61bの内部に設けることができる。
非接触式温調ユニット70は、センサーチップ100から離間して配置される第2温調手段71と、第2温調手段71とセンサーチップ100との間に配置される第2温度センサー72と、第2温調手段71によって加熱または冷却された空気をセンサーチップ100に送る送風手段73とを有する。本実施形態において、非接触式温調ユニット70は、センサーチップ100が送液位置にある状態で、センサーチップ100の温調が可能なように設けられている。
第2温調手段71は、後述する制御部80により所定の温度となるように制御される。なお、第2温調手段71は、加熱素子であっても冷却素子であってもよい。このような第2温調手段71としては、特に限定されるものではないが、例えば、電気抵抗素子、カートリッジヒーター、ラバーヒーター、セラミックヒーターなどの赤外線ヒーター、ペルチェ素子などを用いることができる。
第2温調手段71により加熱または冷却された空気は、送風手段73によりセンサーチップ100に吹き付けられる。これにより、センサーチップ100は非接触により加熱または冷却されることになる。送風手段73としては、特に限定されるものではないが、例えば、軸流送風機や遠心送風機など公知の送風機を用いることができる。なお、送風手段73としては、後述する制御部80により圧力比を変更可能に構成されることが好ましい。
第2温度センサー72は、測定された温度に応じた信号(出力値)を後述する制御部80へ送信可能なものであれば、特に限定されるものではないが、例えば、サーミスタや熱電対などを用いることができる。なお、第2温度センサー72は、センサーチップ100に吹き付けられる空気の温度が測定される。
制御部80は、角度調整機構22、光源制御部23、位置切替機構37、センサー制御部38、搬送ステージ52、第1温調手段61、第2温調手段71及び送風手段73を制御する。制御部80は、例えば、演算装置、制御装置、記憶装置、入力装置及び出力装置を含む公知のコンピュータやマイコンなどによって構成される。
筐体12は、励起光照射ユニット20、蛍光検出ユニット30、送液ユニット40、搬送ユニット50、接触式温調ユニット60、非接触式温調ユニット70及び制御部80を収容可能なものであれば、特に限定されるものではない。筐体12には、吸気口13a及び排気口13bが設けられている。これにより、筐体12内に熱が蓄積されることを防止することができる。また、排熱の観点からは、吸気口13a及び/または排気口13bにファン14を設けることが好ましい。これにより、筐体12内の空気が排出され、筐体12外の空気が吸引されることで、筐体12内に熱が蓄積されることを防止することができる。
また、筐体12の吸気口13aには、第3温度センサー15が設けられる。このように、第3温度センサー15を吸気口13aに設けることにより、第3温度センサー15では、SPFS装置10が設置される環境の温度(筐体12外の温度)を測定することができる。
第3温度センサー15は、測定された温度に応じた信号(出力値)を制御部80へ送信可能なものであれば、特に限定されるものではないが、例えば、サーミスタや熱電対などを用いることができる。なお、第3温度センサー15では、SPFS装置10が設置される環境の温度が測定できればよく、本実施形態では、第3温度センサー15を筐体12内に設けているが、第3温度センサー15を筐体12外に設けることもできる。
以下、SPFS装置10を用いた検体検出の流れについて説明する。図2は、SPFS装置10の動作手順の一例を示すフローチャート、図3は、検体検出開始からの経過時間と第2温調手段目標温度T2との関係を説明するためのグラフである。
先ずユーザーは、液貯留部材108にアナライトを含む試料液や標識液、洗浄液などが保管されるセンサーチップ100を、搬送ユニット50のチップホルダー54に装着する(S100)。
なお、ここで用いられる試料液は、検体を用いて調製された液体であり、例えば、検体と試薬とを混合して検体中に含有されるアナライトに蛍光物質を結合させるための処理をしたものが挙げられる。このような検体としては、例えば、血液、血清、血漿、尿、鼻孔液、唾液、便、体腔液(髄液、腹水、胸水等)などが挙げられる。
また、検体中に含有されるアナライトは、例えば、核酸(一本鎖であっても二本鎖であってもよいDNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等、またはヌクレオシド、ヌクレオチドおよびそれらの修飾分子)、タンパク質(ポリペプチド、オリゴペプチド等)、アミノ酸(修飾アミノ酸も含む。)、糖質(オリゴ糖、多糖類、糖鎖等)、脂質、またはこれらの修飾分子、複合体などが挙げられ、具体的には、AFP(αフェトプロテイン)等のがん胎児性抗原や腫瘍マーカー、シグナル伝達物質、ホルモンなどであってもよく、特に限定されない。
制御部80は、搬送ステージ52を操作して、チップホルダー54に装着されたセンサーチップ100を送液位置まで移動する(S110)。
次いで、制御部80は、接触式温調ユニット60及び非接触式温調ユニット70を操作して、センサーチップ100の温調を開始する(S120)。センサーチップ100の温調は以下のように行われる。
制御部80には、反応場目標温度T、第1温調手段目標温度T1、第2温調手段目標温度T2が事前に記憶される。
反応場目標温度Tは、反応場に固定化されたリガンドの種類や、アナライトの種類などによって適宜変更される。反応場目標温度Tは、一般的には、24℃~26℃、もしくは、35℃~37℃に設定することができる。本実施形態において、反応場目標温度Tは36℃である。また、SPFS装置10は室温に設置され、本実施形態において環境温度t3は25℃である。
本実施形態において、接触式温調ユニット60は、主に接触部を介した熱伝達により、センサーチップ100の反応場を温調する役割を果たす。
第1温調手段目標温度T1は、反応場目標温度Tと近い温度に設定することが望ましい。第1温調手段目標温度T1と反応場目標温度Tとの差|T-T1|は、誘電体部材102や伝熱部材61bの材質及び形状などにより、熱伝達の温度勾配を考慮して適宜設定することができる。第1温調手段目標温度T1と反応場目標温度Tとの差|T-T1|を熱伝達の温度勾配程度として、反応場目標温度Tと第1温調手段目標温度T1とを近い温度に設定することで、センサーチップ100が第1温調手段61により過剰に温調されることを防ぎ、反応場を反応場目標温度Tに安定して制御することができる。本実施形態において、第1温調手段目標温度T1は36.5℃であり、第1温調手段目標温度T1と反応場目標温度Tとの差|T-T1|は0.5℃である。
非接触式温調ユニット70は、温風や冷風等をセンサーチップ100に吹き付けることで、主にセンサーチップ100が設置された部分の環境温度を制御し、これによりセンサーチップ100を温調する効果や、センサーチップ100からの放熱量を制御する効果により、反応場をより安定して温調する役割を果たす。さらには、流路112に導入される液体の温度が、導入時あるいは往復送液時に反応場目標温度Tにできるだけ近づくように、液体に対しても温調する役割を果たす。
第2温調手段目標温度T2は、後述するように、検体検出のステップ毎に変更することができる。第2温調手段目標温度T2の初期値としては、センサーチップ100の反応場の温度を反応場目標温度Tへと迅速に近づけるため、第2温調手段目標温度T2と反応場目標温度Tとの差|T-T2|が大きい方が好ましい。本実施形態において、第2温調手段目標温度T2は、後述するように、37℃~41℃の範囲としている。
なお、第3温度センサー15で測定された温度と反応場目標温度Tとの差|T-T3|が大きい場合には、第2温調手段目標温度T2と反応場目標温度Tとの差|T-T2|を、より大きくすることにより、センサーチップ100の反応場の温度を反応場目標温度Tへと迅速に近づけることができる。
第2温調手段目標温度T2の初期値は、第3温度センサー15で測定された温度t3とした場合、下記式(1)となるように設定することができる。
Figure 0007093766000001
また、第2温調手段目標温度T2と反応場目標温度Tとの差|T-T2|と、第1温調手段目標温度T1と反応場目標温度Tとの差|T-T1|とが、下記式(2)となるように設定することが好ましい。
Figure 0007093766000002
このように設定することにより、例えば、センサーチップ100が設置された部分の環境温度を制御し、センサーチップ100からの放熱量を制御する効果により、反応場をより安定して温調することができる。また、流路112内に液体を送液する際、導入する液体の温度が反応場目標温度Tと異なる場合や、往復送液中にピペットチップ45内で液体の温度が変化する場合など、送液により反応場の温度を変化させてしまう可能性があるが、このような場合にも、非接触式温調ユニット70により液体に対して温調することで、反応場の温度を安定して制御することができる。
制御部80は、第1温度センサー62からの信号(出力値)に基づき、第1温度センサー62で測定される温度が第1温調手段目標温度T1となるように、第1温調手段61をフィードバック制御する。
また、制御部80は、第2温度センサー72からの信号(出力値)に基づき、第2温度センサー72で測定される温度が第2温調手段目標温度T2となるように、第2温調手段71や送風手段73をフィードバック制御する。
このようにセンサーチップ100の温調が行われた状態で、制御部80は、送液ユニット40を操作して、液貯留部材108のウェル108c内の洗浄液を流路112内に導入し、流路112を洗浄し、流路112内の保存試薬を除去する(S130)。洗浄に用いられた洗浄液は、送液ユニット40により排出され、代わりに液貯留部材108のウェル108d内の測定液を流路112内に導入する。なお、後工程の増強角検出(S150)の結果に影響がなければ、保存試薬洗浄液と測定液を兼用し、洗浄液を排出せずそのまま増強角測定を行うこともできる。
次いで、制御部80は、搬送ステージ52を操作して、チップホルダー54に装着されたセンサーチップ100を測定位置まで搬送する(S140)。そして、制御部80は、励起光照射ユニット20及び蛍光検出ユニット30を操作して、センサーチップ100に励起光αを照射するとともに、励起光αと同一波長のプラズモン散乱光を検出して、増強角を検出する(S150)。
具体的には、制御部80は、励起光照射ユニット20を操作して、金属膜104に対する励起光αの入射角を走査しつつ、蛍光検出ユニット30を操作してプラズモン散乱光を検出する。この時、制御部80は、位置切替機構37を操作して、光学フィルター33を受光ユニット31の光路外に配置する。そして、制御部80は、プラズモン散乱光の光量が最大の時の励起光αの入射角を増強角として決定する。
次いで、制御部80は、励起光照射ユニット20及び蛍光検出ユニット30を操作して、適切な測定位置に配置されたセンサーチップ100に励起光αを照射するとともに、受光センサー35の出力値(光学ブランク値)を記録する(S160)。
この時、制御部80は、角度調整機構22を操作して、励起光αの入射角を増強角に設定する。また、制御部80は、位置切替機構37を操作して、光学フィルター33を受光ユニット31の光路内に配置する。
次いで、制御部80は、搬送ステージ52を操作して、センサーチップ100を送液位置に移動させる(S170)。
そして制御部80は、送液ユニット40を操作して、流路112内の測定液を排出し、液貯留部材108のウェル108a内の試料液を流路112内に導入する(S180)。流路112内では、抗原抗体反応(1次反応)によって、金属膜104上の反応場にアナライトが捕捉される。
図3に示すように、1次反応工程では、流路112内の液交換がなく、かつ、反応時間が長いため、試料液は流路112内で反応場目標温度Tに温調される十分な時間が存在する。このため、制御部80は、第2温調手段目標温度T2と反応場目標温度Tとの差|T-T2|が、初期値よりも小さくなるように第2温調手段目標温度T2を変更し、液体導入時あるいは往復送液時に試料液に対して温調する効果を小さくする。
その後、流路112内の試料液は除去され、流路112内は洗浄液で洗浄される(S190)。洗浄液は、他の工程で使用する液よりもウェル108c内の液量、流路に導入する液量が多いため、洗浄液はウェル108c内で加温されにくく、洗浄液の導入により、反応場の温度が低下しやすい。このため、図3に示すように、制御部80は、第2温調手段目標温度T2と反応場目標温度Tとの差|T-T2|が、1次反応工程の時よりも大きくなるように第2温調手段目標温度T2を変更する。
このように、検体検出の各工程において、第2温調手段目標温度T2を適宜変更することによって、反応場の温度を迅速に反応場目標温度Tに近づけることができるとともに、反応場に導入される各種液体の液量や液温の違いの影響を低減させ、反応場の温度が反応場目標温度Tから外れてしまうようなことを防ぐことができる。なお、第2温調手段目標温度T2の変更は、各工程が始まるタイミングで行ってもよいし、各工程の途中で行ってもよい。
次いで、制御部80は、送液ユニット40を操作して、液貯留部材108のウェル108b内の標識液を流路112内に導入する(S200)。流路112内では、抗原抗体反応(2次反応)によって、金属膜104上に捕捉されているアナライトが蛍光物質で標識される。なお、標識液としては、蛍光物質で標識された2次抗体を含む液体を用いることができる。その後、流路112内の標識液は除去され、流路112内は洗浄液で洗浄され、洗浄液除去後、流路112内に測定液を導入する(S210)。
次いで、制御部80は、搬送ステージ52を操作して、センサーチップ100を測定位置に移動させる(S220)。
次いで、制御部80は、励起光照射ユニット20及び蛍光検出ユニット30を操作して、測定位置に配置されたセンサーチップ100に励起光αを照射するとともに、リガンドに捕捉されているアナライトを標識する蛍光物質から放出された蛍光γを検出する(S230)。検出された蛍光γの強度に基づき、必要に応じて、アナライトの量や濃度などに換算することができる。
以上の手順により、試料溶液中のアナライトの存在またはその量を検出することができる。
なお、本実施形態では、1次反応(S180)の前に、増強角検出(S150)、光学ブランク値測定(S160)を実施しているが、1次反応(S180)の後に、増強角検出(S150)、光学ブランク値測定(S160)を実施するようにしてもよい。
また、励起光αの入射角があらかじめ決まっている場合は、増強角の検出(S150)を省略してもよい。
また、上記の説明では、アナライトとリガンドとを反応させる1次反応(S180)の後に、アナライトを蛍光物質で標識する2次反応(S200)を行っている(2工程方式)。しかしながら、アナライトを蛍光物質で標識するタイミングは、特に限定されるものではない。
例えば、流路112内に試料液を導入する前に、試料液に標識液を添加してアナライトを予め蛍光物質で標識しておくこともできる。また、流路112内に試料液と標識液を同時に注入することで、蛍光物質で標識されたアナライトがリガンドに捕捉されることとなる。この場合、アナライトが蛍光物質で標識されるとともに、アナライトがリガンドに捕捉される。
いずれの場合も、流路112内に試料溶液を導入することで、1次反応及び2次反応の両方を完了することができる(1工程方式)。このように1工程方式を採用する場合は、抗原抗体反応の前に増強角検出(S150)が実施される。
また、本実施形態では、上述するように、1次反応工程(S180)と、2次反応工程(S200)及び洗浄工程(S130,S190,S210)とでは、第2温調手段目標温度T2を変更している。より具体的には、流路112内に液体を導入する時間が短い工程ほど、第2温調手段目標温度T2と反応場目標温度Tとの差|T-T2|が大きくなるように変更する。
このように、流路112内に液体を導入する時間が短い工程、すなわち、頻繁に液交換する工程では、液貯留部材108に保管された液体の温度と、反応場目標温度Tとの温度差が大きくなるため、第2温調手段目標温度T2と反応場目標温度Tとの差|T-T2|を大きくすることで、この温度差を迅速に解消することができる。
また、本実施形態では、上述するように、制御部80により、第1温調手段61や第2温調手段71、送風手段73をフィードバック制御しているが、接触式温調ユニット60及び非接触式温調ユニット70にそれぞれ温度制御部を設け、各温度制御部により第1温調手段61や第2温調手段71、送風手段73をフィードバック制御するように構成することもできる。
(実施例)
図4は、本実施形態におけるSPFS装置を用いてセンサーチップの温調を行った際の経過時間と反応場温度との関係を示すグラフである。
この実施例では、下記表1に示す条件でSPFS装置10を動作させ、経過時間と反応場温度を測定した。
なお、以下に示す実施例及び比較例において、第2温調手段目標温度T2は、検体検出開始~1次反応の途中(領域1)、1次反応の途中~1次反応終了(領域2)、1次反応後の洗浄開始~検体検出終了(領域3)でそれぞれ変更可能なように設定した。
Figure 0007093766000003
実施例1-1では、環境温度が比較的高く、反応場目標温度Tとの差が小さいため、第2温調手段目標温度T2は一定としている。
実施例1-2及び実施例1-3では、環境温度と反応場目標温度Tとの差が大きいため、検体検出の初期段階である領域1と、2次反応や洗浄など各工程に要する時間が短く、液交換の頻度が高い領域3において、第2温調手段目標温度T2を領域2よりも高く設定している。
また、実施例1-1,1-2,1-3のいずれの環境温度でも、反応場の温度がほぼ同一になった時点で領域1から領域2に移行し、領域2では第2温調手段目標温度T2を同一に設定している。
本実施例では、領域1及び領域3での第2温調手段目標温度T2は、第3温度センサー15で測定された温度t3を用いて、下記式(1)となるように設定している。
Figure 0007093766000004
本実施例では、
領域1では、a=0,b=-0.15,c=41.5
領域3では、a=-0.01,b=0.2,c=40となる条件で第2温調手段目標温度T2を設定し、制御している。
このように、環境温度に応じて第2温調手段目標温度T2を変更することにより、反応場の温度を反応場目標温度Tに迅速に近づけることができ、かつ、頻繁に液交換が生じても反応場の温度を安定させることができる。
また、接触式温調ユニット60では、第1温調手段61自身の熱容量が大きく、設定温度の変更に対して敏感に追従することが難しいが、非接触式温調ユニット70では、設定温度の変更に対して敏感に追従した温風をセンサーチップ100に吹き付けることが可能となり、反応途中で設定温度を変更する手段として好ましい。
さらに、SPFS装置10とセンサーチップ100とが同一環境に置かれていた場合には、環境温度t3を測定することで、SPFS装置10に導入されるセンサーチップ100の初期温度がおおよそt3であると類推することができる。したがって、環境温度に応じて第2温調手段目標温度T2を設定することで、直接センサーチップ100の温度を測定しなくとも、センサーチップ100の反応場の初期温度を反映した温調制御が可能となり、センサーチップ100の温度測定手段が不要で簡便な方法にて、反応場の温度を反応場目標温度Tにより迅速に、かつ安定して制御することができる。
(比較例1)
図5は、比較例1として、センサーチップの温調を行った際の経過時間と反応場温度との関係を示すグラフである。
この比較例1で使用したSPFS装置は、上記実施形態におけるSPFS装置10と同一の装置構成であり、下記表2に示すように、各工程における第2温調手段目標温度T2を変更せずに温調を行っている。また、第2温調手段目標温度T2の設定値は、最も厳密な温度制御が必要な領域3において、反応場が反応場目標温度Tとなる値に設定した。
Figure 0007093766000005
比較例1-1は、実施例1-1と同一条件であるため、問題なく温調が行われた。
比較例1-2、比較例1-3では、第2温調手段目標温度T2が反応場目標温度Tよりも比較的高い値であるため、反応時間が長い1次反応中(領域2)において、非接触式温調ユニット70による過度な加熱となり、反応場の温度が反応場目標温度Tよりも高くなりすぎてしまった。
(比較例2)
図6は、比較例2として、センサーチップの温調を行った際の経過時間と反応場温度との関係を示すグラフである。
この比較例2で使用したSPFS装置は、上記実施形態におけるSPFS装置10と同一の装置構成であり、下記表3に示すように、環境温度によらず、第2温調手段目標温度T2を一定として温調を行っている。
Figure 0007093766000006
比較例2-1は、実施例1-1と同一条件であるため、問題なく温調が行われた。
比較例2-2、比較例2-3では、反応場目標温度Tと比較して環境温度が低いため、比較例2-1に比べて各領域での昇温速度が遅く、2次反応中(領域3)の反応場の温度は、反応場目標温度Tに達していない。
(比較例3)
図7は、比較例3として、センサーチップの温調を行った際の経過時間と反応場温度との関係を示すグラフである。
この比較例3で使用したSPFS装置は、上記実施形態におけるSPFS装置10と同一の装置構成であり、下記表4に示すように、非接触式温調ユニット70を動作させずに、接触式温調ユニット60のみで温調を行っている。
Figure 0007093766000007
比較例3-1、比較例3-2、比較例3-3において、液交換時に反応場の温度が大きく下がってしまった。また、センサーチップ100周辺の空気温度が低いため、往復送液時にピペットチップ45内で液温が低下するとともに、接触式温調ユニット60と接していない面側からの放熱が大きく、環境温度が低い比較例3-2や比較例3-3では、反応場の温度は反応場目標温度Tと大きく相違している。また、センサーチップ100内で加熱側と放熱側との温度勾配も大きく発生してしまう。
(接触式温調ユニットの変形例)
図8は、接触式温調ユニットの変形例を示す模式図である。図8に示す接触式温調ユニット60は、基本的には、図1に示す接触式温調ユニット60と同様な構成であるため、同一の構成部材には同一の符号を付して、その詳細な説明を省略する。
図8(a)に示すように、伝熱部材61bは、流路形成部材106の上面106a、側面106b、下面106cを覆うように構成することもできる。この場合、伝熱部材61bは、複数に分割された部材により、流路形成部材106の上面106a、側面106b、下面106cを挟み込むように配置してもよいし、一体の部材により、流路形成部材106に嵌め込むように配置してもよい。
図8(b)に示すように、伝熱部材61bは、誘電体部材102を覆うように構成することもできる。この場合、励起光αの光路を妨げないように、伝熱部材61bは、誘電体部材102の入射面102a及び出射面102cと接触する部分に孔部61b'が設けられている。
図8(c)に示すように、伝熱部材61bは、誘電体部材102の下面102dのみと接触するように構成することもできる。
また、図示しないが、伝熱部材61bを用いず、誘電体部材102の下面102dに温調素子61aを接触するように構成することもできる。
(非接触式温調ユニットの変形例)
図9は、非接触式温調ユニットの変形例を示す模式図である。図9に示す非接触式温調ユニット70は、基本的には、図1に示す非接触式温調ユニット70と同様な構成であるため、同一の構成部材には同一の符号を付して、その詳細な説明を省略する。
図9(a)に示すように、非接触式温調ユニット70は、センサーチップ100に対して水平方向から、加熱または冷却された空気を吹き付けるように配置することもできる。このように、励起光照射ユニット20や蛍光検出ユニット30、搬送ユニット50などと干渉しないように配置されれば、センサーチップ100に対して、どのような方向から加熱または冷却された空気を吹き付けるようにしても構わない。
図9(b)に示すように、非接触式温調ユニット70は、ピペットチップ45に対して、加熱または冷却された空気を吹き付けるとともに、センサーチップ100にも、加熱または冷却された空気が当たるように配置することもできる。
この場合、図9(b)に示すように、非接触式温調ユニット70は、ピペットチップ用筐体74をさらに備える。ピペットチップ用筐体74は、ピペットチップ45が貫通するピペットチップ用孔74aを有する。ピペットチップ45は、ピペットチップ用孔74aを貫通した状態で、センサーチップ100の第1貫通孔110aに挿入される。
この状態で、非接触式温調ユニット70から、加熱または冷却された空気を吹き付けることにより、ピペットチップ45及びピペットチップ45内に採取された液体を温調することができる。このため、センサーチップ100の流路112に導入する液体を事前に温調する、あるいは、往復送液中にピペットチップ45内の液体を温調することができ、流路112への液体導入に伴う反応場の温度の変化を抑制することができる。
また、ピペットチップ45に吹き付けられた空気は、ピペットチップ45とピペットチップ用孔74aとの隙間から吹き出し、センサーチップ100を加熱または冷却する。
このように、ピペットチップ45、ピペットチップ45内に採取された液体、センサーチップ100を同時に加熱または冷却することにより、反応場の温度を迅速に反応場目標温度Tに近づけ、かつ、反応場目標温度Tに維持することが容易となる。
図9(c)に示すように、非接触式温調ユニット70は、赤外線を放射することでセンサーチップ100を加熱する赤外線ヒーターからなる第2温調手段71と第2温度センサー72とにより構成することもできる。この場合、非接触式温調ユニット70として送風手段73が不要となるため、風の影響を考慮する必要がない。
(センサーチップの変形例)
図10は、センサーチップの変形例を示す模式図である。図10に示すセンサーチップ100は、基本的には、図1に示すセンサーチップ100と同様な構成であるため、同一の構成部材には同一の符号を付して、その詳細な説明を省略する。
図10に示すように、センサーチップ100の液保持部材はウェル部材107とすることもできる。ウェル部材107のウェル107aは、本実施形態のように1つでもよいし、ウェル107aをマトリックス状に複数配置した構成としてもよい。
このようにウェル部材107を用いた場合、非接触式温調ユニット70によってウェル107a内の液体に、加熱した空気を直接吹き付けると、液体が蒸発してしまい、試料液などの濃度が変化してしまう恐れがある。
このため、非接触式温調ユニット70は、ウェル107a内の液体に風が直接当たらないように配置するか、もしくは、ウェル107aの上面開口部を多層フィルム等により保護し、ピペットチップ45はこの多層フィルムを貫通した状態で採取した液体をウェル107a内に導入するように構成することが好ましい。
以上、本発明の好ましい実施の態様を説明してきたが、本発明はこれに限定されることはなく、例えば、上記実施例ではSPFS装置について説明したが、本発明に係る検体検出システムは、SPR装置などの蛍光免疫測定法(FIA)を利用した検体検出システムや酵素免疫測定法(EIA)を利用した検体検出システムなどにも適用することもできるなど、本発明の目的を逸脱しない範囲で種々の変更が可能である。
10 SPFS装置
12 筐体
13a 吸気口
13b 排気口
14 ファン
15 第3温度センサー
20 励起光照射ユニット
21 光源ユニット
22 角度調整機構
23 光源制御部
30 蛍光検出ユニット
31 受光ユニット
32 レンズ
33 光学フィルター
34 レンズ
35 受光センサー
37 位置切替機構
38 センサー制御部
40 送液ユニット
41 シリンジポンプ
42 シリンジ
43 プランジャー
44 送液ポンプ駆動機構
45 ピペットチップ
46 ピペットノズル
50 搬送ユニット
52 搬送ステージ
54 チップホルダー
60 接触式温調ユニット
61 第1温調手段
61a 温調素子
61b 伝熱部材
61b' 孔部
62 第1温度センサー
70 非接触式温調ユニット
71 第2温調手段
72 第2温度センサー
73 送風手段
74 シリンジ用筐体
74a シリンジ用孔
80 制御部
100 センサーチップ
102 誘電体部材
102a 入射面
102b 成膜面
102c 出射面
102d 下面
104 金属膜
106 流路形成部材
106a 上面
106b 側面
106c 下面
107 ウェル部材
107a ウェル
108 液貯留部材
108a ウェル
110 流路溝
110a 第1貫通孔
110b 第2貫通孔
111 多層フィルム
112 流路

Claims (6)

  1. アナライトを捕捉する反応場を内部に有するセンサーチップを用いて、アナライトの検出を行う検体検出システムであって、
    前記センサーチップに対して接触して配置される接触式温調ユニットと、
    前記センサーチップに対して非接触に配置される非接触式温調ユニットと、を備え、
    前記接触式温調ユニットは、第1温調手段と、該第1温調手段と前記センサーチップとの間の温度を測定する第1温度センサーとを備え、前記第1温度センサーの出力値と所定の第1温調手段目標温度とに基づき前記第1温調手段がフィードバック制御され、
    前記非接触式温調ユニットは、第2温調手段と、該第2温調手段と前記センサーチップとの間の温度を測定する第2温度センサーとを備え、前記第2温度センサーの出力値と所定の第2温調手段目標温度とに基づき前記第2温調手段がフィードバック制御され
    前記検体検出システムが設置される環境の温度が測定される第3温度センサーをさらに備え、
    前記第3温度センサーの出力値に基づき、前記第2温調手段目標温度が設定され、
    前記第3温度センサーで測定された温度t3と、前記第2温調手段目標温度T2とが、下記式(1)となるように設定される検体検出システム。
    Figure 0007093766000008
  2. 前記反応場の目標温度Tと前記第1温調手段目標温度T1との差|T-T1|と、前記反応場の目標温度Tと前記第2温調手段目標温度T2との差|T-T2|とが、下記式(2)となるように設定される請求項1に記載の検体検出システム。
    Figure 0007093766000009
  3. 前記検体検出システムが、複数の工程からなる検体検出手順を実行するように構成され、
    前記第2温調手段目標温度T2は、各工程において変更可能である請求項1または2に記載の検体検出システム。
  4. 前記センサーチップに液体を導入する時間が短い工程ほど、前記反応場の目標温度Tと前記第2温調手段目標温度T2との差|T-T2|が大きくなるように、前記第2温調手段目標温度T2が設定される請求項に記載の検体検出システム。
  5. 前記センサーチップに液体を導入する送液ユニットをさらに備え、
    前記送液ユニットは、前記液体を採取して、前記センサーチップに該液体を供給するノズル及びシリンジポンプを少なくとも含み、
    前記非接触式温調ユニットは、内部に液体を吸排する前記ノズルの加熱または冷却を行う請求項1からのいずれかに記載の検体検出システム。
  6. 前記センサーチップが、
    誘電体部材と、
    前記誘電体部材の上面に隣接する金属膜と、
    前記金属膜の上面に隣接する反応場と、
    前記反応の上面に配置される液保持部材と、を備えるとともに、
    前記検体検出システムが、
    前記金属膜に前記誘電体部材を介して励起光を照射する励起光照射ユニットと、
    前記金属膜に照射された励起光に基づき、前記反応場に捕捉された蛍光標識された前記アナライトから生じる蛍光を検出する蛍光検出ユニットと、を備える請求項1からのいずれかに記載の検体検出システム。
JP2019505788A 2017-03-17 2018-02-15 検体検出システム Active JP7093766B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017052777 2017-03-17
JP2017052777 2017-03-17
PCT/JP2018/005166 WO2018168308A1 (ja) 2017-03-17 2018-02-15 検体検出システム

Publications (2)

Publication Number Publication Date
JPWO2018168308A1 JPWO2018168308A1 (ja) 2020-01-16
JP7093766B2 true JP7093766B2 (ja) 2022-06-30

Family

ID=63523470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019505788A Active JP7093766B2 (ja) 2017-03-17 2018-02-15 検体検出システム

Country Status (4)

Country Link
US (1) US20200124531A1 (ja)
EP (1) EP3598129A4 (ja)
JP (1) JP7093766B2 (ja)
WO (1) WO2018168308A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170653B2 (ja) * 2017-10-16 2022-11-14 大塚製薬株式会社 反応方法
WO2019230222A1 (ja) * 2018-06-01 2019-12-05 コニカミノルタ株式会社 表面プラズモン励起増強蛍光測定法
JP7249989B2 (ja) * 2020-12-16 2023-03-31 日本電子株式会社 荷電粒子線装置
CN117074423B (zh) * 2023-10-16 2023-12-12 江苏图恩视觉科技有限公司 一种薄膜缺陷检测***及其工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093835A1 (fr) 2002-04-30 2003-11-13 Arkray, Inc. Procede de reglage de la temperature d'un outil d'analyse et dispositif d'analyse dote d'une fonction de reglage de la temperature
JP2006226780A (ja) 2005-02-16 2006-08-31 Fuji Photo Film Co Ltd 全反射減衰を利用した測定装置及びその測定方法
JP2009002801A (ja) 2007-06-21 2009-01-08 Olympus Corp 分注方法及び、それを用いた分注装置
WO2012070557A1 (ja) 2010-11-26 2012-05-31 株式会社日立ハイテクノロジーズ 自動分析装置
JP2012215473A (ja) 2011-03-31 2012-11-08 Fujifilm Corp 分析装置および分析チップ、並びに分析装置における温度測定方法
WO2014103744A1 (ja) 2012-12-26 2014-07-03 株式会社 日立ハイテクノロジーズ 自動分析装置
WO2015064757A1 (ja) 2013-10-31 2015-05-07 コニカミノルタ株式会社 検出装置、当該検出装置を用いた検出方法および当該検出装置に用いられる検出チップ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076372A2 (en) * 2007-12-10 2009-06-18 Molecular Sensing, Inc. Temperature-stable interferometer
JP5575043B2 (ja) * 2011-03-31 2014-08-20 富士フイルム株式会社 分析装置
US11079331B2 (en) * 2015-11-13 2021-08-03 Konica Minolta, Inc. Inspection system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093835A1 (fr) 2002-04-30 2003-11-13 Arkray, Inc. Procede de reglage de la temperature d'un outil d'analyse et dispositif d'analyse dote d'une fonction de reglage de la temperature
JP2006226780A (ja) 2005-02-16 2006-08-31 Fuji Photo Film Co Ltd 全反射減衰を利用した測定装置及びその測定方法
JP2009002801A (ja) 2007-06-21 2009-01-08 Olympus Corp 分注方法及び、それを用いた分注装置
WO2012070557A1 (ja) 2010-11-26 2012-05-31 株式会社日立ハイテクノロジーズ 自動分析装置
JP2012215473A (ja) 2011-03-31 2012-11-08 Fujifilm Corp 分析装置および分析チップ、並びに分析装置における温度測定方法
WO2014103744A1 (ja) 2012-12-26 2014-07-03 株式会社 日立ハイテクノロジーズ 自動分析装置
WO2015064757A1 (ja) 2013-10-31 2015-05-07 コニカミノルタ株式会社 検出装置、当該検出装置を用いた検出方法および当該検出装置に用いられる検出チップ

Also Published As

Publication number Publication date
EP3598129A1 (en) 2020-01-22
WO2018168308A1 (ja) 2018-09-20
EP3598129A4 (en) 2020-03-11
US20200124531A1 (en) 2020-04-23
JPWO2018168308A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP7093766B2 (ja) 検体検出システム
JP6337905B2 (ja) 表面プラズモン共鳴蛍光分析方法および表面プラズモン共鳴蛍光分析装置
EP3674694B1 (en) Analysis method and analysis device
JP6424890B2 (ja) 表面プラズモン増強蛍光測定方法、表面プラズモン増強蛍光測定装置および分析チップ
JP6648764B2 (ja) 反応方法
JP6848878B2 (ja) 検出装置、検出方法および検出システム
JP7050776B2 (ja) 検体検出装置及び検体検出方法
JP6885458B2 (ja) 検体検出システム用センサーチップ
JPWO2019221040A1 (ja) 検体検出チップ及びこれを用いた検体検出装置
JP7121742B2 (ja) 回折光除去スリットを用いた光学式検体検出システム
JP7093727B2 (ja) 光学式検体検出システムにおけるセンサーチップの位置検出方法及び位置検出装置
JP6658752B2 (ja) 検出チップ、検出方法、検出装置および検出システム
JP6399089B2 (ja) 表面プラズモン共鳴蛍光分析方法、表面プラズモン共鳴蛍光分析装置および位置合わせ方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7093766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150