JP7092025B2 - Acid anhydride content measurement method - Google Patents

Acid anhydride content measurement method Download PDF

Info

Publication number
JP7092025B2
JP7092025B2 JP2018246654A JP2018246654A JP7092025B2 JP 7092025 B2 JP7092025 B2 JP 7092025B2 JP 2018246654 A JP2018246654 A JP 2018246654A JP 2018246654 A JP2018246654 A JP 2018246654A JP 7092025 B2 JP7092025 B2 JP 7092025B2
Authority
JP
Japan
Prior art keywords
acid anhydride
sample
measuring
anhydride content
pretreatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018246654A
Other languages
Japanese (ja)
Other versions
JP2020106447A (en
Inventor
梓 石井
貴志 三輪
正満 渡辺
宗一 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2018246654A priority Critical patent/JP7092025B2/en
Priority to PCT/JP2019/048939 priority patent/WO2020137623A1/en
Priority to US17/417,672 priority patent/US20220034828A1/en
Publication of JP2020106447A publication Critical patent/JP2020106447A/en
Application granted granted Critical
Publication of JP7092025B2 publication Critical patent/JP7092025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/088Assessment or manipulation of a chemical or biochemical reaction, e.g. verification whether a chemical reaction occurred or whether a ligand binds to a receptor in drug screening or assessing reaction kinetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、酸無水物含有量測定方法に関し、より詳しくは、劣化したポリエステルにおける酸無水物の含有量を測定する方法に関する。 The present invention relates to a method for measuring an acid anhydride content, and more particularly to a method for measuring the content of acid anhydride in deteriorated polyester.

熱可塑性を有するポリエステル(熱可塑性ポリエステル)は、強度と柔軟性の両方を有し、エンジニアリングプラスチックとして様々な用途に利用されている。例えば、熱可塑性ポリエステルであるポリエチレンテレフタレート(polyethylene terephthalate:PET)は、フィルム、繊維、飲料用ボトル等で利用されており、その一部はリサイクルも実施されている。 Polyester having thermoplasticity (thermoplastic polyester) has both strength and flexibility, and is used as an engineering plastic in various applications. For example, polyethylene terephthalate (PET), which is a thermoplastic polyester, is used in films, fibers, beverage bottles and the like, and some of them are also recycled.

熱可塑性ポリエステルは、熱や光により劣化が進行するが、この劣化の状態を把握することは、工業上重要となる。光や熱により劣化した熱可塑性ポリエステルには、酸無水物構造が含まれる状態となる(非特許文献1)。この酸無水物構造が加水分解されると、分子鎖切断によって材料の強度低下を招くことから、酸無水物構造の含有量は、熱可塑性ポリエステルの劣化を評価する上で重要な指標といえる。 Thermoplastic polyester deteriorates due to heat and light, and it is industrially important to understand the state of this deterioration. The thermoplastic polyester deteriorated by light or heat is in a state of containing an acid anhydride structure (Non-Patent Document 1). When this acid anhydride structure is hydrolyzed, the strength of the material is lowered by breaking the molecular chain. Therefore, the content of the acid anhydride structure can be said to be an important index for evaluating the deterioration of the thermoplastic polyester.

しかしながら、高分子の分子構造の定量測定に有効な赤外分光測定(IR測定)、水素原子を対象とした核磁気共鳴分光法(1H NMR測定)のいずれを用いても、既存の方法では、熱可塑性ポリエステルにおける酸無水物構造の含有量を測定するのは困難である。 However, regardless of whether infrared spectroscopy (IR measurement) or nuclear magnetic resonance spectroscopy (1H NMR measurement), which is effective for quantitative measurement of the molecular structure of a polymer, is used, the existing method can be used. , It is difficult to measure the content of acid anhydride structure in thermoplastic polyester.

IR測定は、劣化した熱可塑性ポリエステルに含まれる酸無水物構造を検出可能である(非特許文献1)。ただし、IR測定で得られる赤外吸収スペクトルのピーク強度を濃度に換算するには、測定対象の分子構造の濃度が既知である標準試料を測定して検量線を得る必要がある(非特許文献2、68,69頁)。熱可塑性ポリエステルの劣化による生成物である酸無水物構造を、任意の濃度で含む熱可塑性ポリエステルの標準試料は、入手することが困難であることから、IR測定による酸無水物構造の含有量の定量は難しい。 The IR measurement can detect the acid anhydride structure contained in the deteriorated thermoplastic polyester (Non-Patent Document 1). However, in order to convert the peak intensity of the infrared absorption spectrum obtained by IR measurement into a concentration, it is necessary to measure a standard sample whose molecular structure to be measured has a known concentration and obtain a calibration curve (Non-Patent Document). 2, 68, 69). Since it is difficult to obtain a standard sample of a thermoplastic polyester containing an acid anhydride structure, which is a product of deterioration of the thermoplastic polyester, at an arbitrary concentration, the content of the acid anhydride structure by IR measurement is determined. Quantification is difficult.

一方、1H NMR測定は、プロトンスペクトルの積分値の比から濃度の算出が可能であり、定量測定のための標準試料を必要としない。しかしながら、劣化した熱可塑性ポリエステル中に含まれる酸無水物構造を、1H NMRで測定した報告例がない。熱可塑性ポリエステルの一般的な測定条件として、試料となる熱可塑性ポリエステルを溶解させる溶媒に、重水素化クロロホルム(CDCl3)と、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール-2d(HFIP-2d)の混合溶媒、あるいは、重水素化クロロホルム(CDCl3)とトリフルオロ酢酸-d(TFA-d)の混合溶媒が用いられている(非特許文献2,86,87頁)。1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール-2d(HFIP-2d)は、重水素化した1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールである。 On the other hand, 1 H NMR measurement can calculate the concentration from the ratio of the integrated values of the proton spectrum, and does not require a standard sample for quantitative measurement. However, there is no report that the acid anhydride structure contained in the deteriorated thermoplastic polyester was measured by 1 H NMR. As a general measurement condition for thermoplastic polyester, deuterated chloroform (CDCl 3 ) and 1,1,1,3,3,3-hexafluoro-2- are used as a solvent for dissolving the thermoplastic polyester as a sample. A mixed solvent of propanol-2d (HFIP-2d) or a mixed solvent of deuterated chloroform (CDCl 3 ) and trifluoroacetic acid-d (TFA-d) is used (Non-Patent Documents 2,86,87). page). 1,1,1,3,3,3-hexafluoro-2-propanol-2d (HFIP-2d) is deuterated 1,1,1,3,3,3-hexafluoro-2-propanol. be.

しかしながら、これらの溶媒を用いた測定では、酸無水物構造に由来するピークが、溶媒の成分に由来する他のピークと重なってしまい、酸無水物構造に由来するピークが検出できない。 However, in the measurement using these solvents, the peak derived from the acid anhydride structure overlaps with other peaks derived from the components of the solvent, and the peak derived from the acid anhydride structure cannot be detected.

また、熱可塑性ポリエステルの芳香族カルボン酸末端を定量測定する方法として、重水素化クロロホルム(CDCl3)と1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール-2d(HFIP-2d)との混合溶媒に試料となる熱可塑性ポリエステルを溶解させ、この混合溶液にアミンを添加し、アミンを添加した混合溶液を加温して、熱可塑性ポリエステルの芳香族カルボン酸末端を定量測定に供する方法も知られている。この測定では、酸無水物構造は分解してしまい、この分解生成物に由来するピークを他の成分のピークと区別して検出して定量することは困難である。 Further, as a method for quantitatively measuring the aromatic carboxylic acid terminal of the thermoplastic polyester, dehydrogenated chloroform (CDCl 3 ) and 1,1,1,3,3,3-hexafluoro-2-propanol-2d (HFIP-) are used. A sample thermoplastic polyester is dissolved in a mixed solvent with 2d), amine is added to this mixed solution, and the mixed solution to which the amine is added is heated to quantitatively measure the aromatic carboxylic acid terminal of the thermoplastic polyester. The method of offering to is also known. In this measurement, the acid anhydride structure is decomposed, and it is difficult to detect and quantify the peak derived from this decomposition product separately from the peaks of other components.

T. Grossetete et al., "Photochemical degradation of poly(ethylene terephthalate)-modified copolymer", Polymer, vol. 41, pp. 3541-3554, 2000.T. Grossetete et al., "Photochemical degradation of poly (ethylene terephthalate)-modified copolymer", Polymer, vol. 41, pp. 3541-3554, 2000. 日本分析化学会 編、原口 紘、石田 英之、大谷 肇、鈴木 孝治、関 宏子、渡會 仁編集委員、大谷 肇、佐藤 信之、高山 森、松田 裕生、後藤 幸孝 著、「日本分析化学会 応用分析4」、2013年発行。Japan Society for Analytical Chemistry, edited by Hiroshi Haraguchi, Hideyuki Ishida, Hajime Otani, Koji Suzuki, Hiroko Seki, Hitoshi Watanabe, Editor-in-Chief, Hajime Otani, Nobuyuki Sato, Mori Takayama, Hiroo Matsuda, Yukitaka Goto, "Applied Analysis of the Japan Society for Analytical Chemistry" 4 ”, published in 2013.

以上に説明したように、従来の測定方法では、劣化したポリエステルにおける酸無水物の含有量が測定できないという問題があった。 As described above, the conventional measuring method has a problem that the content of acid anhydride in the deteriorated polyester cannot be measured.

本発明は、以上のような問題点を解消するためになされたものであり、劣化したポリエステルにおける酸無水物の含有量が測定できるようにすることを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to make it possible to measure the content of acid anhydride in deteriorated polyester.

本発明に係る酸無水物含有量測定方法は、ポリエステルまたはポリエステル分解物からなる試料を、2級アミンを含む前処理液に溶解し、試料の反応生成物を得る第1工程と、反応生成物を、重水素化クロロホルムおよび重水素化した1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールを含む溶媒に混合した試料液を作製する第2工程と、水素原子を対象とした核磁気共鳴分光法により試料液の中のアミドの量を測定することで試料中の酸無水物の量を求める第3工程とを備える。 The acid anhydride content measuring method according to the present invention comprises the first step of dissolving a sample made of polyester or a polyester decomposition product in a pretreatment liquid containing a secondary amine to obtain a reaction product of the sample, and the reaction product. In the second step of preparing a sample solution prepared by mixing the above with a solvent containing dehydrogenated chloroform and dehydrogenated 1,1,1,3,3,3-hexafluoro-2-propanol, and for hydrogen atoms. The present invention comprises a third step of determining the amount of acid anhydride in the sample by measuring the amount of amide in the sample solution by the nuclear magnetic resonance spectroscopy.

上記酸無水物含有量測定方法の一構成例において、2級アミンの2つの置換基は、脂肪族炭化水素から構成されている。 In one configuration example of the acid anhydride content measuring method, the two substituents of the secondary amine are composed of an aliphatic hydrocarbon.

上記酸無水物含有量測定方法の一構成例において、2級アミンの2つの置換基は、同一の脂肪族炭化水素から構成されている。 In one configuration example of the acid anhydride content measuring method, the two substituents of the secondary amine are composed of the same aliphatic hydrocarbon.

上記酸無水物含有量測定方法の一構成例において、前処理液は、2級アミンに加えてクロロホルムを含む。 In one configuration example of the acid anhydride content measuring method, the pretreatment liquid contains chloroform in addition to the secondary amine.

上記酸無水物含有量測定方法の一構成例において、前処理液における2級アミンに対するクロロホルムの混合比は、体積比で3以下とされている。 In one configuration example of the acid anhydride content measuring method, the mixing ratio of chloroform to the secondary amine in the pretreatment liquid is set to 3 or less in terms of volume ratio.

上記酸無水物含有量測定方法の一構成例において、第1工程は、前処理液の温度を30℃以上、前処理に含まれる最も低い沸点を有する成分の沸点以下として、試料を前処理液に溶解して試料の反応生成物を得る。 In one configuration example of the acid anhydride content measuring method, in the first step, the temperature of the pretreatment liquid is set to 30 ° C. or higher and the boiling point of the component having the lowest boiling point contained in the pretreatment is set to be lower than the boiling point of the pretreatment liquid. Dissolve in to obtain the reaction product of the sample.

以上説明したように、本発明によれば、ポリエステルまたはポリエステル分解物からなる試料を、2級アミンを含む前処理液に溶解し、試料の反応生成物を得るようにしたので、劣化したポリエステルにおける酸無水物の含有量が測定できるようになる。 As described above, according to the present invention, a sample consisting of polyester or a polyester decomposition product is dissolved in a pretreatment liquid containing a secondary amine to obtain a reaction product of the sample, so that the deteriorated polyester can be used. The content of acid anhydride can be measured.

図1は、本発明の実施の形態に係る酸無水物含有量測定方法を説明するためのフローチャートである。FIG. 1 is a flowchart for explaining the acid anhydride content measuring method according to the embodiment of the present invention.

以下、本発明の実施の形態に係る酸無水物含有量測定方法について図1を参照して説明する。 Hereinafter, the method for measuring the acid anhydride content according to the embodiment of the present invention will be described with reference to FIG.

まず、第1工程S101で、ポリエステルまたはポリエステル分解物からなる試料を、2級アミンを含む前処理液に溶解し、試料の反応生成物(アミド)を得る。2級アミンは、ジエチルアミンなどの、2つの置換基が脂肪族炭化水素(脂肪族系置換基)から構成されているアミンを用いることができる。ジエチルアミンは、2つの置換基が、同一の脂肪族炭化水素[(CH2CH3)]から構成されている。また、前処理液は、2級アミンに加えてクロロホルムを含む構成とすることもできる。なお、後述では、第1工程の処理を「前処理」と称する。 First, in the first step S101, a sample made of polyester or a polyester decomposition product is dissolved in a pretreatment liquid containing a secondary amine to obtain a reaction product (amide) of the sample. As the secondary amine, an amine such as diethylamine in which two substituents are composed of an aliphatic hydrocarbon (aliphatic substituent) can be used. Diethylamine is composed of two substituents of the same aliphatic hydrocarbon [(CH 2 CH 3 )]. Further, the pretreatment liquid may be configured to contain chloroform in addition to the secondary amine. In addition, which will be described later, the process of the first step is referred to as "pre-process".

ジエチルアミンを含む前処理液に、酸無水物構造を含有する熱可塑性ポリエステルの試料を溶解させることにより、以下に示す反応(A)あるいは反応(B)によって、酸無水物構造(1)を選択的に化学変換させ、酸無水物構造の反応生成物であるアミド(2),(3),(4),(5)を得ることができる。なお、R1は、芳香環,R2は、脂肪族系炭化水素である。また、R3、R4は、2級アミンにおける脂肪族系置換基である。 By dissolving a sample of a thermoplastic polyester containing an acid anhydride structure in a pretreatment solution containing diethylamine, the acid anhydride structure (1) is selectively selected by the reaction (A) or reaction (B) shown below. The amides (2), (3), (4), and (5), which are reaction products having an acid anhydride structure, can be obtained. R1 is an aromatic ring, and R2 is an aliphatic hydrocarbon. Further, R3 and R4 are aliphatic substituents in the secondary amine.

Figure 0007092025000001
Figure 0007092025000001

次に、第2工程S102で、得られた反応生成物であるアミドを、重水素化クロロホルムおよび重水素化した1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールを含む溶媒に混合した試料液を作製する。例えば、生成した反応生成物が溶解している前処理溶液を揮発させて除き,得られる固体を重水素化溶媒に溶解させる。 Next, in the second step S102, a solvent containing deuterated chloroform and deuterated 1,1,1,3,3,3-hexafluoro-2-propanol, which is the reaction product obtained amide. Prepare a sample solution mixed with. For example, the pretreatment solution in which the produced reaction product is dissolved is volatilized and removed, and the obtained solid is dissolved in a deuterated solvent.

次に、第3工程S103で、水素原子を対象とした核磁気共鳴分光法により試料液の中のアミド(反応生成物)の量を測定することで試料中の酸無水物の量を求める。第3工程S103では、前述した酸無水物構造の反応生成物であるアミドの量を、水素原子を対象とした核磁気共鳴分光法で計測することで、試料液中の酸無水物構造の量を求める。求めた酸無水物構造の量(総量)を元に、測定対象の試料(ポリエステル)の劣化を判断する。例えば、劣化判断の対象とする試料の酸無水物構造の測定結果が基準値以上に増加していれば、対象となる試料は劣化しているものと判断できる。 Next, in the third step S103, the amount of acid anhydride in the sample is determined by measuring the amount of amide (reaction product) in the sample solution by nuclear magnetic resonance spectroscopy for hydrogen atoms. In the third step S103, the amount of the acid anhydride structure in the sample liquid is measured by measuring the amount of the amide which is the reaction product of the acid anhydride structure described above by nuclear magnetic resonance spectroscopy for hydrogen atoms. Ask for. Based on the obtained amount (total amount) of the acid anhydride structure, the deterioration of the sample (polyester) to be measured is determined. For example, if the measurement result of the acid anhydride structure of the sample to be deteriorated is increased more than the reference value, it can be judged that the sample to be deteriorated is deteriorated.

[実施例]
以下、実施例を用いてより詳細に説明する。
[Example]
Hereinafter, a more detailed description will be given using examples.

[試料]
・試料1:ポリエチレンテレフタレート、約3mg。
・試料2:以下の化学式(6)で示される酸無水物構造の低分子化合物、約3mg。
・試料3:酸無水物構造を含むポリエチレンテレフタレート(ポリエステル分解物)、約3mg。
[sample]
-Sample 1: Polyethylene terephthalate, about 3 mg.
-Sample 2: A small molecule compound having an acid anhydride structure represented by the following chemical formula (6), about 3 mg.
-Sample 3: Polyethylene terephthalate (polyester decomposition product) containing an acid anhydride structure, about 3 mg.

Figure 0007092025000002
Figure 0007092025000002

[前処理液]
前処理液は、クロロホルムにジエチルアミン(2級アミン)を混合させた構成とした。なお、比較のために、ジエチルアミンに変えて、n-ブチルアミン(1級アミン)、イソプロピルアミン(1級アミン)を用いた前処理液も用意した。
[Pretreatment liquid]
The pretreatment liquid had a structure in which diethylamine (secondary amine) was mixed with chloroform. For comparison, a pretreatment liquid using n-butylamine (primary amine) and isopropylamine (primary amine) instead of diethylamine was also prepared.

[試料液を作製するための測定溶媒]
・測定溶媒1:Me4Siを0.03%(v/v)含有した重水素化クロロホルム(CDCl3)と、重水素化されている1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール-2d(HFIP-2d)とを、体積比1:1で混合した溶液。
・測定溶媒2:Me4Siを0.03%(v/v)含有したCDCl3と、重水素化されているトリフルオロ酢酸-d(TFA-d)とを、体積比10:1で混合した溶液。
・測定溶媒3:Me4Siを0.03%(v/v)含有したCDCl3とHFIP-2dとを、体積比1:1で混合した溶液1.0mLに、約3mgのイソプロピルアミンを添加した溶液。
・測定溶媒4:Me4Siを0.03%(v/v)含有したCDCl3とHFIP-2dとを、体積比1:1で混合した溶液1.0mLに、約3mgのn-ブチルアミンを添加した溶液。
・測定溶媒5:Me4Siを0.03%(v/v)含有したCDCl3とHFIP-2dとを、体積比1:1で混合した溶液1.0mLに、約3mgのジエチルアミンを添加した溶液。
[Measuring solvent for preparing sample liquid]
Measurement solvent 1: Deuterated chloroform (CDCl 3 ) containing 0.03% (v / v) of Me 4 Si and deuterated 1,1,1,3,3,3-hexafluoro A solution prepared by mixing -2-propanol-2d (HFIP-2d) in a volume ratio of 1: 1.
Measurement solvent 2: CDCl 3 containing 0.03% (v / v) of Me 4 Si and deuterated trifluoroacetic acid-d (TFA-d) are mixed at a volume ratio of 10: 1. Solution.
-Measurement solvent 3: About 3 mg of isopropylamine was added to 1.0 mL of a solution in which CDCl 3 containing 0.03% (v / v) of Me 4 Si and HFIP-2d were mixed at a volume ratio of 1: 1. Solution.
Measurement solvent 4: About 3 mg of n-butylamine was added to 1.0 mL of a solution of CDCl 3 containing 0.03% (v / v) of Me 4 Si and HFIP-2d in a volume ratio of 1: 1. The added solution.
-Measurement solvent 5: About 3 mg of diethylamine was added to 1.0 mL of a solution in which CDCl 3 containing 0.03% (v / v) of Me 4 Si and HFIP-2d were mixed at a volume ratio of 1: 1. solution.

[NMR測定]
Varian社の核磁気共鳴装置Oxfordにより、作製した各試料の1H NMR(300MHz)を測定した。各試料は、各測定溶媒(約0.9mL)に溶解させ、T℃で測定した。ケミカルシフトδはppm単位で表し、Me4Siのピークを0ppmとした。
[NMR measurement]
1 H NMR (300 MHz) of each prepared sample was measured by Varian's nuclear magnetic resonance apparatus Oxford. Each sample was dissolved in each measurement solvent (about 0.9 mL) and measured at T ° C. The chemical shift δ was expressed in ppm, and the peak of Me 4 Si was 0 ppm.

[測定するピーク]
・以下の化学式(α)で示されるポリエステルの繰り返し構造における芳香環のプロトン(a)。
・化学式(α)で示されるポリエステルの繰り返し構造におけるエステル結合α位のメチレン基のプロトン(b)。
・以下の化学式(7)で示されるポリエステルのカルボン酸末端のアミン誘導体のプロトン(c),(c’)。
・以下の化学式(6)で示される化合物の芳香環のプロトン(d),(d’)。なお、前述したように、化学式(6)で示される化合物は、試料2の酸無水物構造の低分子化合物である。
・以下の化学式(6)で示される酸無水物構造のα位のプロトン(e)。
・以下の化学式(8)で示されるアミド結合のカルボニル炭素のα位のプロトン(f)。なお、化学式(8)で示されるアミド結合は、化学式(6)で示される化合物のアミド変換生成物である。
・以下の化学式(9)で示される芳香環のプロトン(g)。なお、化学式(9)で示される芳香環は、化学式(6)で示される化合物のアミド変換生成物である。
・化学式(10)で示されるポリエステル中の酸無水物構造の分解生成物における芳香環のプロトン(h),(h’)。
・以下の化学式(11)で示されるポリエステル中の酸無水物構造の分解生成物における置換基R3のプロトン(i)。
・以下の化学式(12)で示されるポリエステル中の酸無水物構造のジエチルアミンによる分解生成物におけるNのβ位のプロトン(j),(j’)。
[Peak to be measured]
-Aromatic ring proton (a) in the repeating structure of polyester represented by the following chemical formula (α).
-Proton (b) of the methylene group at the α-position of the ester bond in the repeating structure of polyester represented by the chemical formula (α).
-Protons (c) and (c') of the amine derivative at the carboxylic acid terminal of the polyester represented by the following chemical formula (7).
-Protons (d) and (d') of the aromatic ring of the compound represented by the following chemical formula (6). As described above, the compound represented by the chemical formula (6) is a small molecule compound having an acid anhydride structure of sample 2.
-Proton (e) at the α-position of the acid anhydride structure represented by the following chemical formula (6).
-The α-position proton (f) of the carbonyl carbon of the amide bond represented by the following chemical formula (8). The amide bond represented by the chemical formula (8) is an amide conversion product of the compound represented by the chemical formula (6).
-Aromatic ring proton (g) represented by the following chemical formula (9). The aromatic ring represented by the chemical formula (9) is an amide conversion product of the compound represented by the chemical formula (6).
-Proton (h), (h') of the aromatic ring in the decomposition product of the acid anhydride structure in the polyester represented by the chemical formula (10).
The proton (i) of the substituent R3 in the decomposition product of the acid anhydride structure in the polyester represented by the following chemical formula (11).
-Proton (j), (j') at the β-position of N in the decomposition product of the acid anhydride structure in the polyester represented by the following chemical formula (12) by diethylamine.

Figure 0007092025000003
Figure 0007092025000003

Figure 0007092025000004
Figure 0007092025000004

Figure 0007092025000005
Figure 0007092025000005

なお、以下では、化学式(6),化学式(7),化学式(8),化学式(9),化学式(10),化学式(11),化学式(12)で示される各々の化合物を、化合物(6),化合物(7),化合物(8),化合物(9),化合物(10),化合物(11),化合物(12)と称する。 In the following, each compound represented by the chemical formula (6), chemical formula (7), chemical formula (8), chemical formula (9), chemical formula (10), chemical formula (11), and chemical formula (12) is referred to as compound (6). ), Compound (7), Compound (8), Compound (9), Compound (10), Compound (11), Compound (12).

[検討1]
次に、酸無水物構造のジエチルアミンによる分解生成物を測定するためのピーク検出位置について検討する。この検討では、既存のNMR測定方法における酸無水物構造由来のプロトンのピーク検出位置と、熱可塑性ポリエステル由来のプロトンのピーク検出位置とを比較する。
[Examination 1]
Next, the peak detection position for measuring the decomposition product of the acid anhydride structure by diethylamine will be examined. In this study, the peak detection position of the proton derived from the acid anhydride structure in the existing NMR measurement method is compared with the peak detection position of the proton derived from the thermoplastic polyester.

試料1および試料2を、それぞれ測定溶媒1,測定溶媒2,測定溶媒3に溶解させる。測定溶媒1および測定溶媒3に溶解させた試料は、T=50℃で,測定溶媒2に溶解させた試料は、T=25℃で,1H NMRの測定を行った。この測定により得られた酸無水物構造由来のプロトンのピーク検出位置と,熱可塑性ポリエステル由来のプロトンのピーク検出位置を比較した結果を表1に示す。 Sample 1 and sample 2 are dissolved in the measurement solvent 1, the measurement solvent 2, and the measurement solvent 3, respectively. 1 H NMR measurement was performed at T = 50 ° C. for the sample dissolved in the measurement solvent 1 and the measurement solvent 3, and at T = 25 ° C. for the sample dissolved in the measurement solvent 2. Table 1 shows the results of comparing the peak detection positions of the protons derived from the acid anhydride structure obtained by this measurement with the peak detection positions of the protons derived from the thermoplastic polyester.

測定溶媒1,測定溶媒2を用いた場合は,酸無水物構造のプロトンのピークは,いずれも熱可塑性ポリエステルのプロトンのピークと同位置に検出された。また,測定溶媒3を用いて試料2を測定した場合は,芳香環のプロトンのピークが複数確認され,酸無水物構造が分解しており,その分解物のピークの多くは熱可塑性ポリエステルのピークと同位置に検出された。これにより,既存のNMR測定条件では,熱可塑性ポリエステル中に含まれる酸無水物構造を検出することは困難であることが分かった。 When the measurement solvent 1 and the measurement solvent 2 were used, the peaks of the protons of the acid anhydride structure were detected at the same positions as the peaks of the protons of the thermoplastic polyester. Further, when the sample 2 was measured using the measurement solvent 3, a plurality of peaks of protons of the aromatic ring were confirmed, the acid anhydride structure was decomposed, and most of the peaks of the decomposition products were the peaks of the thermoplastic polyester. Was detected at the same position as. From this, it was found that it is difficult to detect the acid anhydride structure contained in the thermoplastic polyester under the existing NMR measurement conditions.

Figure 0007092025000006
Figure 0007092025000006

[酸無水物構造の定量法]
上述した検討1による検討および考察の結果、各試料中の全テレフタル酸構造に対する酸無水物構造のmol濃度C[mol%]は、分解生成物を対象としたNMR測定で得られた上述のいずれかのプロトンのピークの積分値を用い、「C={(h)×2+((j)+(j’))×k}/{(a)+(c)+(c’)+(h)+(h’)}×100・・・(濃度算出式)」で算出した。なお、kは、2を(j)のピークのプロトン数で除した値である。
[Method for quantifying acid anhydride structure]
As a result of the examination and consideration according to the above-mentioned examination 1, the mol concentration C [mol%] of the acid anhydride structure with respect to the total terephthalic acid structure in each sample was obtained by the NMR measurement for the decomposition product. Using the integrated value of the peak of the proton, "C = {(h) x 2 + ((j) + (j')) x k} / {(a) + (c) + (c') + (h) ) + (H')} × 100 ... (concentration calculation formula) ”. Note that k is a value obtained by dividing 2 by the number of protons at the peak of (j).

[検討2](酸無水物構造の低分子モデル化合物の前処理方法の検討)
次に、第2工程で作製する試料液の検討結果について説明する。発明者らは、前処理によって酸無水物構造を1H NMRの測定で検出可能な化合物へ変換することを検討した。1H NMRの測定で検出可能とするには、熱可塑性ポリエステルおよび測定溶媒のピークとは明瞭に区別できるピークを有する化合物に変換する必要がある。また、上述した変換の過程で,熱可塑性ポリエステルの繰り返し単位に含まれるエステル基、および熱可塑性ポリエステルの末端官能基であるカルボキシル基,水酸基が、酸無水物構造を変換した後の化合物と同じ化合物に変換されてはならない。
[Study 2] (Study of pretreatment method for low molecular weight model compound having acid anhydride structure)
Next, the examination results of the sample liquid prepared in the second step will be described. The inventors considered converting the acid anhydride structure into a compound detectable by 1 H NMR measurement by pretreatment. 1 To be detectable by 1 H NMR measurements, it is necessary to convert to a compound having a peak that is clearly distinguishable from the peaks of the thermoplastic polyester and the measuring solvent. Further, in the process of conversion described above, the ester group contained in the repeating unit of the thermoplastic polyester and the carboxyl group and the hydroxyl group which are the terminal functional groups of the thermoplastic polyester are the same compounds as the compound after converting the acid anhydride structure. Must not be converted to.

発明者らは、上述した要件を満たす化学変換について鋭意検討を重ね,酸無水物構造を反応(A),反応(B)によって化合物(3),化合物(4)に変換し、化合物(3),化合物(4)のプロトンを検出する方法を検討するに至り、実験で検証することとした。 The inventors have made extensive studies on chemical conversions that satisfy the above requirements, and converted the acid anhydride structure into compounds (3) and (4) by reaction (A) and reaction (B), and compound (3). , We came to study the method of detecting the proton of compound (4) and decided to verify it by experiment.

まず,代表的なアミン(ブチルアミン,イソプロピルアミン,ジエチルアミン)を用いて、以下に示す反応(A’)および(B’)が定量的に進行するか否かを確認した。クロロホルムにアミン(ブチルアミン,イソプロピルアミン,ジエチルアミンについてそれぞれ実施)を添加した溶液に、3mgの試料2を加えて5分間撹拌して溶解させ、溶液(溶媒)を揮発させて除き、約3mgの固体を得た。得られた固体を重水素化クロロホルムに溶解させ,T=25℃で,1H NMR測定を行ったところ、いずれのアミンを用いた場合についても、反応(A’)および反応(B’)が定量的に進行したことが確認された。 First, using typical amines (butylamine, isopropylamine, diethylamine), it was confirmed whether or not the following reactions (A') and (B') proceed quantitatively. Add 3 mg of sample 2 to a solution of chloroform supplemented with amines (implemented for butylamine, isopropylamine, and diethylamine, respectively), stir for 5 minutes to dissolve, volatilize the solution (solvent), and remove about 3 mg of solid. Obtained. The obtained solid was dissolved in deuterated chloroform and 1 H NMR measurement was carried out at T = 25 ° C., and the reaction (A') and the reaction (B') were observed regardless of which amine was used. It was confirmed that the progress was quantitative.

Figure 0007092025000007
Figure 0007092025000007

次に、上記測定実施後の試料液の溶媒を揮発させ、試料を回収し、化合物(6)の酸無水物構造の分解に用いたアミンと同一のアミンを添加したHFIPとクロロホルムの混合溶媒を用いてNMR測定を実施した。この測定により、化合物(7),化合物(8),化合物(9)および、反応(B’)による化合物(13)のピーク検出位置と、熱可塑性ポリエステル(試料1)のピーク検出位置を比較し、化合物(7)~(9)、化合物(13)と熱可塑性ポリエステルが混在した場合の化合物(7)~(9)、化合物(13)の定量可否を調べた。 Next, the solvent of the sample solution after the above measurement was volatilized, the sample was recovered, and a mixed solvent of HFIP and chloroform added with the same amine as the amine used for the decomposition of the acid anhydride structure of the compound (6) was used. NMR measurements were performed using. By this measurement, the peak detection position of the compound (7), the compound (8), the compound (9) and the reaction (B') of the compound (13) and the peak detection position of the thermoplastic polyester (sample 1) are compared. , (7) to (9), and the quantification of the compounds (7) to (9) and the compound (13) when the compound (13) and the thermoplastic polyester were mixed were investigated.

化合物(7)は、熱可塑性ポリエステルのカルボン酸末端のアミン塩と同一の分子構造であり、熱可塑性ポリエステルのカルボン酸末端のアミン塩と区別して化合物(7)を定量することはできない。 The compound (7) has the same molecular structure as the amine salt at the carboxylic acid terminal of the thermoplastic polyester, and the compound (7) cannot be quantified separately from the amine salt at the carboxylic acid terminal of the thermoplastic polyester.

化合物(8)については後述する。 Compound (8) will be described later.

化合物(9)は、いずれの測定条件においても、芳香環のプロトン(g)のピークが、熱可塑性ポリエステルのピークとは重ならない位置に検出され、定量できることが分かった。 It was found that the compound (9) can be quantified by detecting the peak of the proton (g) of the aromatic ring at a position where the peak of the proton (g) of the aromatic ring does not overlap with the peak of the thermoplastic polyester under any of the measurement conditions.

化合物(13)のピークは、いずれも熱可塑性ポリエステルの他のピークと重なり、化合物(13)は定量できないことが分かった。 It was found that the peak of compound (13) overlapped with the other peaks of the thermoplastic polyester, and compound (13) could not be quantified.

以上の検討結果より、化合物(8)が定量できる条件であれば、化合物(9)の定量結果と合わせて、酸無水物構造の定量が可能といえる。 From the above examination results, it can be said that the acid anhydride structure can be quantified together with the quantification result of the compound (9) under the condition that the compound (8) can be quantified.

化合物(8)のアミド結合のカルボニル炭素のα位の炭素上のプロトン(f)のピークは、いずれの測定条件でも熱可塑性ポリエステルの(b)のピークとピーク位置が一致し、プロトン(f)のピークを用いた定量はできないことが分かった。 The peak of the proton (f) on the α-carbon of the carbonyl carbon of the amide bond of the compound (8) coincides with the peak of the (b) of the thermoplastic polyester under any measurement condition, and the proton (f) It was found that the quantification using the peak of was not possible.

化合物(8)の置換基R3のプロトンのピーク、および置換基R4のプロトンのピークについて、用いたアミン毎の検出可否を表2に示す。ブチルアミン、イソプロピルアミンでは測定系中のアミン塩のプロトンピークと重なり検出不可であったが、ジエチルアミンを用いた場合は、測定系中のアミン塩と区別して検出可能であることが分かった。 Table 2 shows whether or not the proton peak of the substituent R 3 and the proton peak of the substituent R 4 of the compound (8) can be detected for each amine used. It was not possible to detect butylamine and isopropylamine because they overlapped with the proton peak of the amine salt in the measurement system, but when diethylamine was used, it was found that it could be detected separately from the amine salt in the measurement system.

Figure 0007092025000008
Figure 0007092025000008

1級アミンであるブチルアミン、イソプロピルアミンを用いた場合に生成する1級アミドとは異なり、ジエチルアミンを用いた場合に生成する2級アミドは、アミド結合の回転障壁によりピークが***することによると考えられる。アミン塩のピークとアミドのピークを区別するために、アミドの回転によるピーク***を利用する手法は報告例がなく、容易に発想できる方法ではない。 Unlike the primary amides produced when butylamine and isopropylamine, which are primary amines, are used, the secondary amides produced when diethylamine is used are considered to be due to the splitting of the peak due to the rotational barrier of the amide bond. Be done. In order to distinguish between the peak of the amine salt and the peak of the amide, the method using the peak splitting due to the rotation of the amide has not been reported and is not an easily conceivable method.

[実験]
次に、実験の結果を用いて説明する。
[experiment]
Next, the results of the experiment will be used for explanation.

ジエチルアミンとクロロホルムの体積混合比が1:1である溶液に,試料5酸無水物構造を含む、3mgのPETを投入し、40℃で4時間撹拌して溶解させる。この後、溶液中の溶媒を揮発させて除いた。これを測定溶媒1に溶解させ,50℃で1H NMR測定を行ったところ、(h)および(j),(j’)のピークが検出された。 3 mg of PET containing the sample 5-acid anhydride structure is added to a solution having a volumetric mixture ratio of diethylamine and chloroform of 1: 1 and dissolved by stirring at 40 ° C. for 4 hours. After this, the solvent in the solution was volatilized and removed. When this was dissolved in the measuring solvent 1 and 1 H NMR measurement was performed at 50 ° C., peaks (h), (j) and (j') were detected.

(h):δ7.72
(j),(j’):δ1.13,1.22
(H): δ7.72
(J), (j'): δ1.13, 1.22

検出されたピークの積分値を、濃度算出式に代入すると、「C={(h)×2+((j)+(j’))×2÷3}/{(a)+(c)+(c’)+(h)+(h’)}×100={0.15×2+(1.56+1.50)×2÷3}+ /(42.73)×100=5.47」となり、 全芳香環に対する酸無水物構造のmol濃度は,約5.5mol%であると算出された。 Substituting the integrated value of the detected peak into the concentration calculation formula, "C = {(h) x 2 + ((j) + (j')) x 2 ÷ 3} / {(a) + (c) + (C') + (h) + (h')} x 100 = {0.15 x 2 + (1.56 + 1.50) x 2 ÷ 3} + / (42.73) x 100 = 5.47 " The mol concentration of the acid anhydride structure with respect to the total aromatic ring was calculated to be about 5.5 mol%.

なお、この実験では、熱可塑性ポリエステルとして、ポリエチレンテレフタレートを試料としたが,上述した測定方法は、ポリブチレンテレフタレート(PBT),ポリネオペンチルテレフタレート(PNT),ポリネオペンチルイソフタレートや、これらの共重合体においても適用可能な方法であることは容易に類推できる。 In this experiment, polyethylene terephthalate was used as a sample as the thermoplastic polyester, but the above-mentioned measurement method is polybutylene terephthalate (PBT), polyneopentyl terephthalate (PNT), polyneopentyl isophthalate, or a copolymer thereof. It can be easily inferred that the method is also applicable to polymers.

上述では、2級アミンとしてジエチルアミンを用いたが、ジメチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジイソブチルアミンなども使用可能であることは容易に類推できる。前処理で用いる2級アミンと,測定溶媒に添加するアミンの種類は同一であることが望ましい。 In the above, diethylamine was used as the secondary amine, but it can be easily inferred that dimethylamine, dipropylamine, diisopropylamine, dibutylamine, diisobutylamine and the like can also be used. It is desirable that the type of secondary amine used in the pretreatment and the type of amine added to the measurement solvent are the same.

なお、熱可塑性ポリエステルの芳香環ピークと区別しやすくするため,2級アミンのNの置換基R3,置換基R4は、脂肪族基が好適に用いられる。また,定量対象のピーク数を減らすため,置換基R3,置換基R4は同一の分子構造が望ましい。 In order to make it easier to distinguish from the aromatic ring peak of the thermoplastic polyester, an aliphatic group is preferably used as the substituent R 3 and the substituent R 4 of N of the secondary amine. In addition, in order to reduce the number of peaks to be quantified, it is desirable that the substituent R 3 and the substituent R 4 have the same molecular structure.

前処理における温度(反応温度)および時間は、酸無水物構造の化学変換が完了するよう適宜設定する。熱可塑性ポリエステルのアミンおよびクロロホルムへの溶解性は低いことから,加温しながら,数時間撹拌することで溶解させることが望ましい。前処理工程(第1工程)では、前処理液の温度(反応温度)を30℃以上、前処理に含まれる最も低い沸点を有する成分の沸点以下として、試料を前処理液に溶解する。具体的には、前処理液の温度を30℃以上、2級アミンの沸点またはクロロホルムの沸点のうちより低い方の沸点以下として、試料を前処理液に溶解する。 The temperature (reaction temperature) and time in the pretreatment are appropriately set so that the chemical conversion of the acid anhydride structure is completed. Since the solubility of thermoplastic polyester in amines and chloroform is low, it is desirable to dissolve it by stirring for several hours while heating. In the pretreatment step (first step), the sample is dissolved in the pretreatment liquid by setting the temperature (reaction temperature) of the pretreatment liquid to 30 ° C. or higher and lower than the boiling point of the component having the lowest boiling point contained in the pretreatment. Specifically, the sample is dissolved in the pretreatment liquid by setting the temperature of the pretreatment liquid to 30 ° C. or higher and lower than the boiling point of the secondary amine or the boiling point of chloroform, whichever is lower.

次に、反応温度による1H NMR測定結果への影響について説明する。前述した実験と同じ条件で、前処理液および前処理工程における反応温度を変更し前処理を実施し、NMR測定を行った。測定の結果として得られた(h)および(j),(j’)のピークを、実験の結果と比較した。比較した結果を表3に示す。なお、この比較では、表3中に示すように、前処理液における2級アミンとクロロホルムとの混合比(体積比)も変化させている。 Next, the effect of the reaction temperature on the 1 H NMR measurement results will be described. Under the same conditions as in the above-mentioned experiment, the pretreatment liquid and the reaction temperature in the pretreatment step were changed, the pretreatment was performed, and the NMR measurement was performed. The peaks (h) and (j), (j') obtained as a result of the measurement were compared with the results of the experiment. The results of the comparison are shown in Table 3. In this comparison, as shown in Table 3, the mixing ratio (volume ratio) of the secondary amine and chloroform in the pretreatment liquid is also changed.

実験と同等に(h)および(j),(j’)のピークが検出されたものは〇,実施例よりも(h)および(j),(j’)のピーク強度が小さかったものは×を記した。なお,ジエチルアミンの沸点は55℃であることから,反応温度を、20,30,40,50℃とした場合について検討した。また、前処理液における2級アミンとクロロホルムとの混合比は、1:0.2,1:1,1:2,1:3,1:4とした場合について検討した。 The peaks of (h), (j), and (j') were detected as in the experiment, and the peak intensities of (h), (j), and (j') were smaller than those of the examples. × is marked. Since the boiling point of diethylamine is 55 ° C., the case where the reaction temperature is 20, 30, 40, 50 ° C. was examined. Further, the case where the mixing ratio of the secondary amine and chloroform in the pretreatment liquid was 1: 0.2, 1: 1, 1: 2, 1: 3, 1: 4 was examined.

Figure 0007092025000009
Figure 0007092025000009

前処理工程における反応温度を20℃とすると反応時間を延長しても,実験よりも(h)および(j),(j’)のピーク強度が小さく,アミド化反応が十分に進行せず,前処理温度として低すぎることが分かった。また,反応温度を50℃とすると、(h)および(j),(j’)のピーク強度は実験と同程度定度であった。ジエチルアミンの沸点である55℃に上げても、アミンが蒸発しきらないよう留意すれば,問題なく目的の前処理が実施できると考えられる。よって,前処理工程における反応温度は、30以上、前処理に含まれる最も低い沸点を有する成分の沸点以下が、好適に用いられるといえる。 When the reaction temperature in the pretreatment step was 20 ° C., even if the reaction time was extended, the peak intensities of (h), (j), and (j') were smaller than in the experiment, and the amidation reaction did not proceed sufficiently. It turned out that the pretreatment temperature was too low. When the reaction temperature was 50 ° C., the peak intensities of (h), (j), and (j') were as constant as in the experiment. It is considered that the desired pretreatment can be carried out without any problem if care is taken not to completely evaporate the amine even if the temperature is raised to 55 ° C., which is the boiling point of diethylamine. Therefore, it can be said that the reaction temperature in the pretreatment step is preferably 30 or more and lower than the boiling point of the component having the lowest boiling point contained in the pretreatment.

次に,前処理液におけるジエチルアミンとクロロホルムとの混合比について説明する。混合比が1:4となると,反応時間を延ばしても実験よりも(h)および(j),(j’)のピーク強度が小さく,アミド化反応が十分に進行せず、アミンの濃度が低すぎることが分かった。このように、前処理液におけるアミン濃度が低いと反応に長時間要することから、前処理液は、クロロホルムも加えて用いる場合、2級アミンに対するクロロホルムの混合比は、体積比で3以下とする。 Next, the mixing ratio of diethylamine and chloroform in the pretreatment liquid will be described. When the mixing ratio is 1: 4, the peak intensities of (h), (j), and (j') are smaller than in the experiment even if the reaction time is extended, the amidation reaction does not proceed sufficiently, and the amine concentration becomes high. It turned out to be too low. As described above, when the amine concentration in the pretreatment liquid is low, the reaction takes a long time. Therefore, when chloroform is also used in the pretreatment liquid, the mixing ratio of chloroform to the secondary amine is 3 or less in volume ratio. ..

以上に説明したように、本発明では、ポリエステルまたはポリエステル分解物からなる試料を、2級アミンを含む前処理液に溶解し、試料の反応生成物を得るようにしたので、劣化したポリエステルにおける酸無水物の含有量が測定できるようになる。 As described above, in the present invention, a sample consisting of polyester or a polyester decomposition product is dissolved in a pretreatment liquid containing a secondary amine to obtain a reaction product of the sample, so that the acid in the deteriorated polyester is obtained. The content of anhydride can be measured.

既存の測定方法では、熱可塑性ポリエステルに含まれる酸無水物構造の含有量を測定することは困難であった。直接測定が困難な分子構造を検出するには、検出対象としていた子構造を、検出可能な分子構造に変換することが考えられるが、この変換反応の選択は重要である。これは、熱可塑性ポリエステルは、酸無水物構造以外にも化学変換されうる官能基として、カルボン酸、水酸基を含んでいるためである。 It has been difficult to measure the content of the acid anhydride structure contained in the thermoplastic polyester by the existing measuring method. In order to detect a molecular structure that is difficult to measure directly, it is conceivable to convert the child structure to be detected into a detectable molecular structure, but the selection of this conversion reaction is important. This is because the thermoplastic polyester contains a carboxylic acid and a hydroxyl group as functional groups that can be chemically converted in addition to the acid anhydride structure.

発明者らは、代表的なアミンを用いて酸無水物構造のアミドへの変換を行ったところ、生成物である脂肪族アミドのピークは、系中のアミン塩のピークと重なりやすく、検出が容易でないことを明らかにした。この結果より、発明者らは鋭意検討を重ねた結果、2級アミンを利用することで、脂肪族アミドが検出可能となることを見出した。これは、2級アミドのN上置換基のプロトンピークが、アミド結合の回転障壁によって分離して検出されることを利用したものと考えることができる。化学変換を用いた酸無水物構造の検出で、2級アミドのN上置換基のプロトンピークの***を利用する例はこれまでになく、本発明は、容易に類推できるものではない。 When the inventors converted the acid anhydride structure into an amide using a typical amine, the peak of the product aliphatic amide easily overlapped with the peak of the amine salt in the system and could be detected. It was revealed that it was not easy. From this result, the inventors have found that the aliphatic amide can be detected by using the secondary amine as a result of repeated diligent studies. It can be considered that this utilizes the fact that the proton peak of the N-top substituent of the secondary amide is separated and detected by the rotational barrier of the amide bond. There has never been an example of utilizing the splitting of the proton peak of the N-top substituent of a secondary amide in the detection of an acid anhydride structure using chemical conversion, and the present invention cannot be easily inferred.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be carried out by a person having ordinary knowledge in the art within the technical idea of the present invention. That is clear.

Claims (6)

ポリエステルまたはポリエステル分解物からなる試料を、2級アミンを含む前処理液に溶解し、前記試料の反応生成物を得る第1工程と、
前記反応生成物を、重水素化クロロホルムおよび重水素化した1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールを含む溶媒に混合した試料液を作製する第2工程と、
水素原子を対象とした核磁気共鳴分光法により前記試料液の中のアミドの量を測定することで前記試料の中の酸無水物の量を求める第3工程と
を備える酸無水物含有量測定方法。
The first step of dissolving a sample consisting of polyester or a polyester decomposition product in a pretreatment liquid containing a secondary amine to obtain a reaction product of the sample, and
The second step of preparing a sample solution in which the reaction product is mixed with a solvent containing deuterated chloroform and deuterated 1,1,1,3,3,3-hexafluoro-2-propanol.
Acid anhydride content measurement comprising a third step of determining the amount of acid anhydride in the sample by measuring the amount of amide in the sample solution by nuclear magnetic resonance spectroscopy for hydrogen atoms. Method.
請求項1記載の酸無水物含有量測定方法において、
前記2級アミンの2つの置換基は、脂肪族炭化水素から構成されていることを特徴とする酸無水物含有量測定方法。
In the acid anhydride content measuring method according to claim 1,
A method for measuring an acid anhydride content, wherein the two substituents of the secondary amine are composed of an aliphatic hydrocarbon.
請求項2記載の酸無水物含有量測定方法において、
前記2級アミンの2つの置換基は、同一の脂肪族炭化水素から構成されていることを特徴とする酸無水物含有量測定方法。
In the acid anhydride content measuring method according to claim 2,
A method for measuring an acid anhydride content, wherein the two substituents of the secondary amine are composed of the same aliphatic hydrocarbon.
請求項1~3のいずれか1項に記載の酸無水物含有量測定方法において、
前記前処理液は、前記2級アミンに加えてクロロホルムを含むことを特徴とする酸無水物含有量測定方法。
In the acid anhydride content measuring method according to any one of claims 1 to 3, in the method for measuring an acid anhydride content.
A method for measuring an acid anhydride content, wherein the pretreatment liquid contains chloroform in addition to the secondary amine.
請求項4記載の酸無水物含有量測定方法において、
前記前処理液における前記2級アミンに対するクロロホルムの混合比は、体積比で3以下とされている
ことを特徴とする酸無水物含有量測定方法。
In the acid anhydride content measuring method according to claim 4,
A method for measuring an acid anhydride content, wherein the mixing ratio of chloroform to the secondary amine in the pretreatment liquid is 3 or less by volume.
請求項1~5のいずれか1項に記載の酸無水物含有量測定方法において、
前記第1工程は、前記前処理液の温度を30℃以上、前記前処理液に含まれる最も低い沸点を有する成分の沸点以下として、前記試料を前記前処理液に溶解して前記反応生成物を得ることを特徴とする酸無水物含有量測定方法。
In the acid anhydride content measuring method according to any one of claims 1 to 5,
In the first step, the temperature of the pretreatment liquid is set to 30 ° C. or higher and lower than the boiling point of the component having the lowest boiling point contained in the pretreatment liquid, and the sample is dissolved in the pretreatment liquid to dissolve the reaction product. A method for measuring an acid anhydride content, which comprises obtaining.
JP2018246654A 2018-12-28 2018-12-28 Acid anhydride content measurement method Active JP7092025B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018246654A JP7092025B2 (en) 2018-12-28 2018-12-28 Acid anhydride content measurement method
PCT/JP2019/048939 WO2020137623A1 (en) 2018-12-28 2019-12-13 Method for measuring acid anhydride content
US17/417,672 US20220034828A1 (en) 2018-12-28 2019-12-13 Method for Measuring Acid Anhydride Content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018246654A JP7092025B2 (en) 2018-12-28 2018-12-28 Acid anhydride content measurement method

Publications (2)

Publication Number Publication Date
JP2020106447A JP2020106447A (en) 2020-07-09
JP7092025B2 true JP7092025B2 (en) 2022-06-28

Family

ID=71127647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018246654A Active JP7092025B2 (en) 2018-12-28 2018-12-28 Acid anhydride content measurement method

Country Status (3)

Country Link
US (1) US20220034828A1 (en)
JP (1) JP7092025B2 (en)
WO (1) WO2020137623A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201471A (en) 2000-01-18 2001-07-27 Polyplastics Co Method for determining terminal group of polyester resin and forming method using the same for polyester resin
US20030157722A1 (en) 1999-10-06 2003-08-21 Gardella Joseph A. Method for testing the degradation of polymeric materials
JP2011163797A (en) 2010-02-05 2011-08-25 Sumitomo Chemical Co Ltd Analyzing method
JP2017219517A (en) 2016-06-10 2017-12-14 日本電信電話株式会社 Method of estimating number-average molecular weight and maximum stress of thermoplastic polyester
JP2017219519A (en) 2016-06-10 2017-12-14 日本電信電話株式会社 Method of estimating life of thermoplastic polyester due to ductility reduction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306507B1 (en) * 1999-05-18 2001-10-23 General Electric Company Thermally stable polymers, method of preparation, and articles made therefrom
US20050159542A1 (en) * 2004-01-17 2005-07-21 General Electric Company Compositions useful as coatings, their preparation, and articles made therefrom
US20050159543A1 (en) * 2004-01-17 2005-07-21 General Electric Company Coating compositions, their preparation, and coated articles made therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157722A1 (en) 1999-10-06 2003-08-21 Gardella Joseph A. Method for testing the degradation of polymeric materials
JP2001201471A (en) 2000-01-18 2001-07-27 Polyplastics Co Method for determining terminal group of polyester resin and forming method using the same for polyester resin
JP2011163797A (en) 2010-02-05 2011-08-25 Sumitomo Chemical Co Ltd Analyzing method
JP2017219517A (en) 2016-06-10 2017-12-14 日本電信電話株式会社 Method of estimating number-average molecular weight and maximum stress of thermoplastic polyester
JP2017219519A (en) 2016-06-10 2017-12-14 日本電信電話株式会社 Method of estimating life of thermoplastic polyester due to ductility reduction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Georgios Stamatakis,Analysis and aging of unsaturated polyester resins in contemporary art installations by NMR spectroscopy,Anal Bioanal Chem,2010年,Vol.398,pp.3203-3214

Also Published As

Publication number Publication date
JP2020106447A (en) 2020-07-09
WO2020137623A1 (en) 2020-07-02
US20220034828A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
Chrissafis et al. Effect of molecular weight on thermal degradation mechanism of the biodegradable polyester poly (ethylene succinate)
Sadler et al. Isosorbide as the structural component of bio-based unsaturated polyesters for use as thermosetting resins
Chrissafis et al. Thermal decomposition of poly (propylene sebacate) and poly (propylene azelate) biodegradable polyesters: Evaluation of mechanisms using TGA, FTIR and GC/MS
JP7092025B2 (en) Acid anhydride content measurement method
EA031024B1 (en) Polylactic acid and method of its manufacture
Berti et al. Transamidations in melt-mixed MXD6 and PA6I-6T polyamides: 1. Determination of the degree of randomness and block length by 1H-NMR analysis
Geyer et al. Designing oligomeric ethylene terephtalate building blocks by chemical recycling of polyethylene terephtalate
Samperi et al. Characterization of copolyesteramides from reactive blending of PET and MXD6 in the molten state
JP2521297B2 (en) Method for producing polyarylate
Safapour et al. Reactive blending as a tool for obtaining poly (ethylene terephthalate)-based engineering materials with tailored properties
JP7092024B2 (en) Acid anhydride content measurement method
Parcheta et al. Influence of chemical structure on physicochemical properties and thermal decomposition of the fully bio-based poly (propylene succinate-co-butylene succinate) s
JP2010518377A (en) Measurement method of vinyl end
JP3836284B2 (en) Method for quantifying terminal groups of polyester resin and method for producing polyester resin using the same
Zahedi et al. Optimizing synthesis of PET oligomers end capped with phthalic/maleic anhydride via recycling of off grade PET using design of experiments
Gubbels et al. Phase separation in poly (butylene terephthalate)-based materials prepared by solid-state modification
Alessi et al. A Possible Means to Assist the Processing of PET, PTT and PBT
Rusu et al. Structural investigations of amines treated polyester thin films by FTIR-ATR spectroscopy
WO2019225357A1 (en) Molecular weight measurement method and solvent for use in measurement
JP2011163797A (en) Analyzing method
JPS638133B2 (en)
Samperi et al. Reactive melt mixing of PC/PEN blend. Structural characterization of reaction products
Fenouillot et al. Reaction and miscibility of two diepoxides with poly (ethylene terephthalate)
JP6969495B2 (en) Terephthalic acid content measuring method and measuring solvent
JP7364116B2 (en) Manufacturing method of modified polyester resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R150 Certificate of patent or registration of utility model

Ref document number: 7092025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150