JP7086658B2 - Water treatment system and water treatment method - Google Patents

Water treatment system and water treatment method Download PDF

Info

Publication number
JP7086658B2
JP7086658B2 JP2018051350A JP2018051350A JP7086658B2 JP 7086658 B2 JP7086658 B2 JP 7086658B2 JP 2018051350 A JP2018051350 A JP 2018051350A JP 2018051350 A JP2018051350 A JP 2018051350A JP 7086658 B2 JP7086658 B2 JP 7086658B2
Authority
JP
Japan
Prior art keywords
water
treatment
injection rate
raw water
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018051350A
Other languages
Japanese (ja)
Other versions
JP2019162583A (en
Inventor
法光 阿部
諒 難波
寛幸 時本
理 山中
智 竹田
勝史 前田
耕平 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Kubota Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Kubota Corp
Priority to JP2018051350A priority Critical patent/JP7086658B2/en
Publication of JP2019162583A publication Critical patent/JP2019162583A/en
Application granted granted Critical
Publication of JP7086658B2 publication Critical patent/JP7086658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明の実施形態は、水処理システムおよび水処理方法に関する。 Embodiments of the present invention relate to a water treatment system and a water treatment method.

河川や湖沼、貯水池等から取水した被処理水(原水)には、フミン等の溶解性の天然有機物(溶解性有機物)が含まれている。
一方、浄水場では、鉄・マンガン等の金属類の除去や消毒処理を目的として、次亜塩素酸ナトリウム等の薬品剤が注入されるが、溶解性有機物を含む原水の場合、溶解性有機物と薬品剤が化学反応してトリハロメタン類やハロ酢酸類(消毒副生成物)を生成する。これら消毒副生成物は発癌性物質であるため、生成を抑制する必要がある。
The treated water (raw water) taken from rivers, lakes, reservoirs, etc. contains soluble natural organic matter (soluble organic matter) such as fumin.
On the other hand, in water purification plants, chemical agents such as sodium hypochlorite are injected for the purpose of removing and disinfecting metals such as iron and manganese, but in the case of raw water containing soluble organic substances, it is regarded as soluble organic substances. Chemicals chemically react to produce trihalomethanes and haloacetic acids (disinfection by-products). Since these disinfection by-products are carcinogens, their production needs to be suppressed.

多くの浄水場では、原水中の溶解性有機物を除去するために、粉末活性炭を注入している。この粉末活性炭を用いた溶解性有機物の除去方法では、被処理水の水質に応じて粉末活性炭の注入率を決定する必要がある。 Many water purification plants inject powdered activated carbon to remove soluble organic matter in raw water. In this method for removing soluble organic matter using powdered activated carbon, it is necessary to determine the injection rate of powdered activated carbon according to the water quality of the water to be treated.

粉末活性炭の注入率を決定する方法としては、ジャーテスト(ビーカーテスト)が用いられることが多い。ジャーテストとは、被処理水を複数のビーカーに採水し、その採水した複数の被処理水にそれぞれ異なる量の粉末活性炭を注入して、溶解性有機物の除去率などを評価して、良好な効果を得られたものから粉末活性炭の最低限の注入率を求める方法である。 A jar test (beaker test) is often used as a method for determining the injection rate of powdered activated carbon. The jar test is to collect water to be treated in multiple beakers, inject different amounts of powdered activated carbon into each of the collected water to be treated, and evaluate the removal rate of soluble organic substances. This is a method of obtaining the minimum injection rate of powdered activated carbon from those that have obtained good effects.

しかしながら、ジャーテストによって粉末活性炭の注入率を決定する方法は、被処理水の水質の変化に追随した粉末活性炭の注入が非常に難しく、注入率の過不足が生じるおそれがある。またジャーテストは、粉末活性炭の最適な注入率を求めるのに時間を要するため、粉末活性炭の最適な注入率が得られたときには、被処理水の水質が変化している可能性もある。 However, in the method of determining the injection rate of the powdered activated carbon by the jar test, it is very difficult to inject the powdered activated carbon in accordance with the change in the water quality of the water to be treated, and there is a possibility that the injection rate may be excessive or insufficient. In addition, since it takes time to obtain the optimum injection rate of the powdered activated carbon in the jar test, it is possible that the water quality of the water to be treated has changed when the optimum injection rate of the powdered activated carbon is obtained.

また、実際に投入する粉末活性炭の注入率を決定する際は、ジャーテストによって得られた注入率よりも安全側で注入率を決定するため過剰注入となってしまう。
粉末活性炭は、凝集剤、硫酸、次亜塩素酸ナトリウム等の他の薬品に比べ単価が非常に高い。そのため、粉末活性炭の過剰注入は、薬品コストの急騰を招くおそれがあり、経済的な観点からも、粉末活性炭の過剰注入を抑制し、被処理水の水質の変化に応じた粉末活性炭の最適な注入率を制御する方法が望まれている。
Further, when determining the injection rate of the powdered activated carbon to be actually charged, the injection rate is determined on the safer side than the injection rate obtained by the jar test, resulting in excessive injection.
The unit price of powdered activated carbon is much higher than that of other chemicals such as flocculants, sulfuric acid, and sodium hypochlorite. Therefore, over-injection of powdered activated carbon may lead to a sharp rise in chemical costs, and from an economic point of view, it is optimal to suppress over-injection of powdered activated carbon and to respond to changes in the water quality of the water to be treated. A method of controlling the injection rate is desired.

粉末活性炭注入率を制御する方法として、例えば、粉末活性炭注入後の処理水における微粉炭の状態を観察し、その観察結果をフィードバック信号として、前段にある活性炭の注入率の演算部に送ることで、目標とする設定流出濁度となるよう、粉末活性炭の注入率を制御する制御方法がある。
しかしながら、このような従来の方法は、被処理水の水質については考慮されておらず、粉末活性炭の注入率の最適化を図る上で精度が不十分であった。
As a method of controlling the powdered activated carbon injection rate, for example, by observing the state of the pulverized carbon in the treated water after the powdered activated carbon injection, and sending the observation result as a feedback signal to the calculation unit of the activated carbon injection rate in the previous stage. , There is a control method that controls the injection rate of powdered activated carbon so as to achieve the target set runoff turbidity.
However, such a conventional method does not consider the water quality of the water to be treated, and the accuracy is insufficient in optimizing the injection rate of the powdered activated carbon.

特許第4153893号公報Japanese Patent No. 4153893

本発明が解決しようとする課題は、粉末活性炭の注入率の最適化を図ることができる水処理システムおよび水処理方法を提供することである。 An object to be solved by the present invention is to provide a water treatment system and a water treatment method capable of optimizing the injection rate of powdered activated carbon.

本発明の実施形態の水処理システムは、原水中の溶解性有機物を粉末活性炭により吸着除去する第1処理を行う第1処理装置と、前記原水中の濁質を凝集剤により凝集沈降させる第2処理を行う第2処理装置とを備える水処理システムであって、前記第1処理装置に流入する前記原水の水質に基づき、前記第2処理における前記原水に対する前記凝集剤の注入率を求める凝集剤注入率演算手段と、前記第1処理装置に流入する前記原水の紫外線吸光度を測定するUV測定器によって測定された前記原水の紫外線吸光度UVと、前記凝集剤の注入率とに基づき、前記第1処理装置において必要な前記原水に対する前記粉末活性炭の注入率を求める活性炭注入率演算手段とを含むことを特徴とした水処理システムである。 The water treatment system of the embodiment of the present invention includes a first treatment apparatus that performs a first treatment of adsorbing and removing soluble organic substances in raw water with powdered activated carbon, and a second treatment apparatus that aggregates and sediments turbidity in the raw water with a flocculant. A water treatment system including a second treatment device for performing treatment, wherein the coagulant for determining the injection rate of the coagulant into the raw water in the second treatment based on the water quality of the raw water flowing into the first treatment device. The first is based on the ultraviolet absorbance UV 0 of the raw water measured by the injection rate calculating means and the UV measuring device for measuring the ultraviolet absorbance of the raw water flowing into the first treatment apparatus, and the injection rate of the flocculant. 1 It is a water treatment system characterized by including an activated carbon injection rate calculation means for obtaining an injection rate of the powdered activated carbon with respect to the raw water required in the treatment apparatus.

実施形態の水処理システムを利用した水処理施設の構成を示す概略図。The schematic diagram which shows the structure of the water treatment facility using the water treatment system of embodiment. 実施形態の、活性炭注入率演算手段の構成図。The block diagram of the activated carbon injection rate calculation means of an embodiment. 実施形態の水処理方法の流れを説明するフローチャート。The flowchart explaining the flow of the water treatment method of embodiment. 原水中のDOC(溶解性有機体炭素濃度)と、原水の波長260nmにおける紫外線吸光度である原水UVの関係を示す図。The figure which shows the relationship between the DOC (soluble organic carbon concentration) of a raw water, and the raw water UV 0 which is the absorbance of ultraviolet rays at a wavelength of 260 nm of the raw water. ろ過処理水中のDOC(溶解性有機体炭素濃度)と、ろ過処理水の波長260nmにおける紫外線吸光度であるろ過水UVの関係を示す図。The figure which shows the relationship between the DOC (soluble organic carbon concentration) of the filtered water and the filtered water UV which is the absorbance of ultraviolet rays at the wavelength of 260 nm of the filtered water. 図5のデータを用いた、UVSVの決定方法(ステップS41)、目標処理率RUVの算出方法(ステップS42)を説明する図。The figure explaining the UV SV determination method (step S41) and the target processing rate RUV calculation method (step S42) using the data of FIG. 凝集剤注入率IPACを変化させた際の、目標処理率RUVと粉末活性炭注入率IACPの関係を示す図。The figure which shows the relationship between the target treatment rate RUV and the powdered activated carbon injection rate IACP when the coagulant injection rate IPAC is changed. 原水pHと目標処理率RUVの関係を示す図。The figure which shows the relationship between the raw water pH R and the target treatment rate RUV. 粉末活性炭単独処理、凝集剤単独処理および両者を併用した処理の3パターンの処理におけるDOC(溶解性有機体炭素濃度)の除去率を示す図。The figure which shows the removal rate of DOC (soluble organic carbon concentration) in 3 patterns of treatments of powdered activated carbon alone treatment, flocculant alone treatment, and treatment which used both.

以下、実施形態の水処理システムおよび水処理方法を、図面を参照して説明する。 Hereinafter, the water treatment system and the water treatment method of the embodiment will be described with reference to the drawings.

図1は、本実施形態の水処理システム1を、急速ろ過方式の水処理施設に適用した例を示す。なお本実施形態の水処理システムは、急速ろ過方式の水処理施設に限らず、如何なる方式の水処理施設にも適用可能である。例えば、膜ろ過方式や砂ろ過方式の水処理設備に適用可能である。
まず、図1に示す水処理システム1の構成について説明する。
FIG. 1 shows an example in which the water treatment system 1 of the present embodiment is applied to a water treatment facility of a rapid filtration method. The water treatment system of the present embodiment is not limited to the water treatment facility of the rapid filtration method, and can be applied to the water treatment facility of any type. For example, it can be applied to water treatment equipment of a membrane filtration method or a sand filtration method.
First, the configuration of the water treatment system 1 shown in FIG. 1 will be described.

本実施形態の水処理システム1は、原水中の溶解性有機物を粉末活性炭により吸着除去する処理(第1処理)を行う第1処理装置と、前記原水中の濁質を凝集剤により凝集沈降させる処理(第2処理)を行う第2処理装置を備えるものである。
具体的には、水処理システム1は、着水井10、粉末活性炭混和池20、粉末活性炭注入装置21、凝集剤混和池30、凝集剤注入装置31、フロック形成池40、沈澱池50、ろ過池60、粉末活性炭注入率演算手段70、凝集剤注入率演算手段80を備えている。
The water treatment system 1 of the present embodiment has a first treatment apparatus that performs a treatment (first treatment) of adsorbing and removing soluble organic substances in the raw water with powdered activated carbon, and the turbidity in the raw water is coagulated and settled by a flocculant. It is provided with a second processing apparatus that performs processing (second processing).
Specifically, the water treatment system 1 includes a landing well 10, a powdered activated carbon admixture 20, a powdered activated carbon injection device 21, a coagulant admixture pond 30, a coagulant injection device 31, a floc forming pond 40, a sedimentation pond 50, and a filtration pond. 60, powdered activated carbon injection rate calculation means 70, and flocculant injection rate calculation means 80 are provided.

着水井10は、水処理システム1によって処理する被処理水(原水)を貯留するものである。着水井10は、配管によって粉炭混和池20に接続されており、原水は、着水井10から配管を介して粉炭混和池20に導かれる。着水井10と粉炭混和池20とを接続する配管には、原水の水質を測定する水質測定装置11、原水の紫外線吸光度を測定するUV計測器12、流量計13が備えられている。
水質測定装置11には、濁度Tb、アルカリ度Alk、水温TR、pHを測定する各計測器11a~11dが備えられており、これら各種水質を測定した後に、測定されたデータを粉末活性炭注入率演算手段70および凝集剤注入率演算手段80に送信する。またUV計測器12も、測定したデータを粉炭注入率演算手段70に送信する。
The landing well 10 stores the water to be treated (raw water) to be treated by the water treatment system 1. The landing well 10 is connected to the pulverized coal mixing pond 20 by a pipe, and raw water is guided from the landing well 10 to the pulverized coal mixing pond 20 via a pipe. The pipe connecting the landing well 10 and the pulverized coal mixing pond 20 is provided with a water quality measuring device 11 for measuring the water quality of the raw water, a UV measuring instrument 12 for measuring the ultraviolet absorbance of the raw water, and a flow meter 13.
The water quality measuring device 11 is equipped with measuring instruments 11a to 11d for measuring turbidity Tb, alkalinity Alk, water temperature TR, and pH R , and after measuring these various water qualities, the measured data is used as powdered activated carbon. It is transmitted to the injection rate calculation means 70 and the coagulant injection rate calculation means 80. The UV measuring instrument 12 also transmits the measured data to the pulverized coal injection rate calculating means 70.

粉末活性炭混和池(以下、粉炭混和池ともいう。)20は、着水井10から供給された原水に含まれる溶解性有機物を、粉末活性炭注入装置(以下、粉炭注入装置ともいう。)21から注入される粉末活性炭によって吸着除去する第1処理を施すものである。 The powdered activated carbon mixing pond (hereinafter, also referred to as a powdered carbon mixing pond) 20 injects soluble organic substances contained in the raw water supplied from the landing well 10 from the powdered activated carbon injection device (hereinafter, also referred to as a powdered carbon injection device) 21. The first treatment is performed by adsorbing and removing the powdered activated carbon.

粉炭注入装置21には、粉末活性炭が貯留されている。また、粉炭注入装置21には後述する粉炭注入率演算手段70が接続されており、この粉炭注入率演算手段70の制御に基づき、粉末活性炭を粉炭混和池20の混和水に対して注入する。 The pulverized carbon injection device 21 stores pulverized activated carbon. Further, a pulverized coal injection rate calculation means 70, which will be described later, is connected to the pulverized coal injection device 21, and based on the control of the pulverized coal injection rate calculating means 70, pulverized activated carbon is injected into the mixed water of the pulverized coal mixing pond 20.

凝集剤混和池30は、原水に含まれる粘土質、細菌、藻類等の懸濁物質(濁質)および粉炭混和池20で注入された粉末活性炭を凝集剤注入装置31から注入される凝集剤によって凝集させ、微細なフロックを生成させるものである。凝集剤混和池20には、撹拌機が設けられている。撹拌機は、例えばフラッシュミキサを用いることができる。 The coagulant admixture pond 30 is formed by a coagulant injecting suspended solids (turbid substances) such as clay, bacteria and algae contained in raw water and powdered activated carbon injected in the pulverized carbon admixture pond 20 from a coagulant injection device 31. It aggregates and produces fine flocs. The coagulant mixing pond 20 is provided with a stirrer. As the stirrer, for example, a flash mixer can be used.

凝集剤混和池30には、pH測定器32が備えられており、凝集剤が注入された混和水のpHデータが後述する凝集剤注入率演算手段80に送信される。 The coagulant mixing pond 30 is provided with a pH measuring device 32, and the pH data of the coagulant water into which the coagulant is injected is transmitted to the coagulant injection rate calculating means 80 described later.

凝集剤注入装置31には、凝集剤が貯留されている。また、凝集剤注入装置31には後述する凝集剤注入率演算手段80が接続されており、この凝集剤注入率演算手段80の制御に基づき、凝集剤を凝集剤混和池30の混和水に対して注入する。凝集剤としては、アルミニウム系凝集剤及び鉄系凝集剤を用いることが好ましい。アルミニウム系凝集剤の例としては、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)などが挙げられる。また、鉄系凝集剤の例としては、塩化鉄、硫酸鉄、およびポリシリカ鉄などが挙げられる。 The flocculant is stored in the flocculant injection device 31. Further, a coagulant injection rate calculation means 80, which will be described later, is connected to the coagulant injection device 31, and based on the control of the coagulant injection rate calculation means 80, the coagulant is added to the mixed water of the coagulant mixing pond 30. And inject. As the coagulant, it is preferable to use an aluminum-based coagulant and an iron-based coagulant. Examples of the aluminum-based flocculant include aluminum sulfate (aluminum sulfate band) and polyaluminum chloride (PAC). Examples of iron-based flocculants include iron chloride, iron sulfate, and polysilica iron.

フロック形成池40は、凝集剤混和池30から供給された混和水に含まれる微細なフロックのサイズを成長させる。本実施形態では、フロック形成池40は、例えば3つの撹拌池を有している。 The floc forming pond 40 grows the size of fine flocs contained in the admixture water supplied from the flocculant admixture pond 30. In this embodiment, the floc forming pond 40 has, for example, three stirring ponds.

沈澱池50は、フロック形成池40の下流に設けられ、フロック形成池40で成長したフロックを沈澱分離するためのものである。沈澱池50内では所定時間以上フロック混和水を滞留させる。これによってフロック混和水中のフロックが沈降し、沈澱池50の下部に沈澱する。沈澱池50で沈澱したフロックは、汚泥として沈澱池50の底部から排出されて処理される。 The settling pond 50 is provided downstream of the floc forming pond 40 and is for sedimenting and separating the flocs grown in the floc forming pond 40. Flock-mixed water is retained in the settling pond 50 for a predetermined time or longer. As a result, the flocs in the floc-mixed water settle and settle in the lower part of the settling pond 50. The flocs settled in the settling pond 50 are discharged from the bottom of the settling pond 50 as sludge and treated.

ろ過池60は、沈澱池50の下流に設けられている。ろ過池60には、沈澱池50において所定時間以上滞留させて得られた上澄み水が供給される。ろ過池60に供給された上澄み水は、ろ過池60に形成されたろ過層を通過することにより、沈澱池50で沈澱除去されなかった微小なフロックが除去され、ろ過処理水(清浄水)として排水される。
ろ過池60からろ過処理水を排出する配管には、ろ過処理水の紫外線吸光度を測定するUV計測器61が備えられている。
The filtration pond 60 is provided downstream of the settling pond 50. The supernatant water obtained by staying in the settling pond 50 for a predetermined time or longer is supplied to the filtration pond 60. The supernatant water supplied to the filter pond 60 passes through the filter layer formed in the filter pond 60 to remove minute flocs that have not been removed by sedimentation in the settling pond 50, and is used as filtered water (clean water). It is drained.
The pipe for discharging the filtered water from the filter pond 60 is provided with a UV measuring device 61 for measuring the ultraviolet absorbance of the filtered water.

水処理システム1は、粉末活性炭注入率演算手段70と凝集剤注入率演算手段80とを備えている。なお、粉末活性炭注入率演算手段70、凝集剤注入率演算手段80はコンピュータの中央演算装置の機能として実現される。 The water treatment system 1 includes a powdered activated carbon injection rate calculation means 70 and a flocculant injection rate calculation means 80. The powdered activated carbon injection rate calculation means 70 and the coagulant injection rate calculation means 80 are realized as functions of a central processing unit of a computer.

まず、粉末活性炭注入率演算手段70について、図2を参照して説明する。図2は、本実施形態の粉末活性炭注入率演算手段70の構成を示す模式図である。 First, the powdered activated carbon injection rate calculation means 70 will be described with reference to FIG. FIG. 2 is a schematic diagram showing the configuration of the powdered activated carbon injection rate calculation means 70 of the present embodiment.

粉炭注入率演算手段70(以下、粉炭注入率演算手段ともいう。)は、第1処理前の原水の紫外線吸光度を測定するUV測定器によって測定された原水の紫外線吸光度UVと、凝集剤の注入率IPACとに基づき、第1処理において必要な原水に対する粉末活性炭の注入率IACPを求めるものである。 The pulverized coal injection rate calculating means 70 (hereinafter, also referred to as a pulverized coal injection rate calculating means) is a raw water ultraviolet absorbance UV 0 measured by a UV measuring device for measuring the ultraviolet absorbance of the raw water before the first treatment, and a flocculant. Based on the injection rate I PAC , the injection rate I ACP of the powdered activated coal for the raw water required for the first treatment is obtained.

粉末活性炭注入率演算手段70は、第2処理後の目標水質に対応する紫外線吸光度UVSV決定部71、目標処理率RUV算出部72、粉末活性炭注入率IACP演算部73、粉末活性炭注入量qACP演算部74を有する。 The powdered activated carbon injection rate calculation means 70 includes an ultraviolet absorbance UV SV determination unit 71, a target treatment rate RUV calculation unit 72, a powdered activated carbon injection rate I ACP calculation unit 73, and a powdered activated carbon injection amount q corresponding to the target water quality after the second treatment. It has an ACP calculation unit 74.

紫外線吸光度UVSV決定部(UVSV決定部)71は、フロック形成池40にて原水中の濁質を凝集沈降させる処理(第2処理)の後における処理水中の溶解性有機体炭素濃度DOCと紫外線吸光度UVとの関係から、第2処理後の目標水質に対応する紫外線吸光度UVSVを決定し目標処理率算出部72に出力する。ここでいう「目標水質」とは、目標とする第2処理後の原水中の溶解性有機体炭素濃度DOC(目標DOC)を意味する。原水中の溶解性有機体炭素濃度DOCと紫外線吸光度UVとの関係については後述する。 The UV absorbance UV SV determination unit (UV SV determination unit) 71 is a soluble organic carbon concentration DOC in the treated water after the treatment (second treatment) in which the turbidity in the raw water is aggregated and settled in the floc forming pond 40. From the relationship with the ultraviolet absorbance UV, the ultraviolet absorbance UV SV corresponding to the target water quality after the second treatment is determined and output to the target processing rate calculation unit 72. The "target water quality" as used herein means a soluble organic carbon concentration DOC (target DOC) in the raw water after the second treatment, which is the target. The relationship between the soluble organic carbon concentration DOC in raw water and the ultraviolet absorbance UV will be described later.

目標処理率算出部72は、UVSV決定部71で決定されたUVSVと、UV計測器12から送信された原水の紫外線吸光度UVとの比である、目標処理率RUV(UVSV/UV)を算出し、粉末活性炭注入率演算部73に出力する。目標処理率RUVの算出方法は後述する。 The target processing rate calculation unit 72 is a target processing rate RUV (UV SV / UV), which is the ratio of the UV SV determined by the UV SV determination unit 71 to the ultraviolet absorbance UV 0 of the raw water transmitted from the UV measuring instrument 12. 0 ) is calculated and output to the powdered activated carbon injection rate calculation unit 73. The calculation method of the target processing rate RUV will be described later.

粉末活性炭注入率演算部(以下、粉炭注入率演算部ともいう。)73には、凝集剤注入率IPAC、粉末活性炭混和池における被処理水の滞留時間t、原水pH及び粉末活性炭注入率IACPを変数とする、溶解性有機物の目標処理率RUVの関係式fが予め読み込まれている。この関係式fは、粉末活性炭注入率IACPを演算するにあたり予め求めておくものであり、その詳しい導出方法については後述する。
粉炭注入率演算部73には、水質測定装置11で測定された原水pH、凝集剤注入率演算手段80によって演算された凝集剤注入率IPAC、ならびに滞留時間tが入力される。粉炭注入率演算部73は、これら入力値と、前述の関係式fに基づき、粉末活性炭注入率IACPを求め、粉末活性炭注入量演算手段74に出力する。
The powdered activated carbon injection rate calculation unit (hereinafter, also referred to as the powdered carbon injection rate calculation unit) 73 has a flocculant injection rate IPAC , a residence time t of the water to be treated in the powdered activated carbon mixing pond, raw water pH R , and powdered activated carbon injection rate. I The relational expression f of the target treatment rate RUV for soluble organic matter with ACP as a variable is read in advance. This relational expression f is obtained in advance when calculating the powdered activated carbon injection rate IACP , and the detailed derivation method thereof will be described later.
In the pulverized coal injection rate calculation unit 73, the raw water pH R measured by the water quality measuring device 11, the coagulant injection rate IPAC calculated by the coagulant injection rate calculation means 80, and the residence time t are input. The pulverized carbon injection rate calculation unit 73 obtains the powdered activated carbon injection rate IACP based on these input values and the above-mentioned relational expression f, and outputs the powdered activated carbon injection rate calculation unit 74 to the powdered activated carbon injection amount calculation means 74.

粉末活性炭注入量演算手段(以下、粉炭注入量演算部ともいう。)74は粉炭注入率演算部73によって演算された注入率IACPと、流量計13によって計測された原水流量QRに応じた粉炭注入量qACPを演算し、粉末活性炭注入装置21に送信する。 The powdered activated carbon injection amount calculation means (hereinafter, also referred to as a pulverized coal injection amount calculation unit) 74 is a pulverized coal corresponding to the injection rate IACP calculated by the pulverized coal injection rate calculation unit 73 and the raw water flow rate QR measured by the flow meter 13. Injection amount q ACP is calculated and transmitted to the powdered activated carbon injection device 21.

次に、凝集剤注入率演算手段80について説明する。
凝集剤注入率演算手段80は、第1処理前の原水の水質に基づき、第2処理における原水に対する凝集剤の注入率IPACを求めるものである。具体的には、水質測定装置11およびpH測定器32による測定結果に基づいて凝集剤の注入率IPACを求め、凝集剤注入装置31に送信する。なお、凝集剤注入率演算手段80と凝集剤注入装置31との間に、凝集剤注入量の演算部を設け、凝集剤注入率演算手段80で求めた凝集剤の注入率IPACと、流量計13によって計測された原水流量QRに応じた凝集剤注入量を演算して凝集剤注入装置31に送信する構成としてもよい。
Next, the coagulant injection rate calculation means 80 will be described.
The coagulant injection rate calculation means 80 obtains the coagulant injection rate IPAC for the raw water in the second treatment based on the water quality of the raw water before the first treatment. Specifically, the injection rate IPAC of the coagulant is obtained based on the measurement results by the water quality measuring device 11 and the pH measuring device 32, and is transmitted to the coagulant injecting device 31. A coagulant injection amount calculation unit is provided between the coagulant injection rate calculation means 80 and the coagulant injection device 31, and the coagulant injection rate IPAC obtained by the coagulant injection rate calculation means 80 and the flow rate. The configuration may be such that the coagulant injection amount according to the raw water flow rate QR measured by the total 13 is calculated and transmitted to the coagulant injection device 31.

次に、本実施形態の水処理システムを用いた水処理方法について説明する。
本実施形態の水処理方法は、原水中の溶解性有機物を粉末活性炭により吸着除去する第1処理と、前記原水中の濁質を凝集剤により凝集沈降させる第2処理とを順次行う際に、第2処理における原水に対する凝集剤の注入率IPACを求める凝集剤注入率演算工程と、第1処理において必要な原水に対する粉末活性炭の注入率IACPを求める活性炭注入率演算工程と、を行う。そして、決定された凝集剤の注入率IPAC及び粉末活性炭の注入率IACPに基づき、第1処理及び第2処理を行う。
以下、各工程について図3を参照しながら詳述する。
Next, a water treatment method using the water treatment system of the present embodiment will be described.
In the water treatment method of the present embodiment, when the first treatment of adsorbing and removing the soluble organic substance in the raw water with powdered activated carbon and the second treatment of coagulating and sedimenting the turbidity in the raw water with a coagulant are sequentially performed, The coagulant injection rate calculation step for obtaining the coagulant injection rate IPAC in the raw water in the second treatment and the activated carbon injection rate calculation step for obtaining the powdered activated carbon injection rate IACP in the raw water required in the first treatment are performed. Then, the first treatment and the second treatment are performed based on the determined injection rate IPAC of the flocculant and the injection rate IACP of the powdered activated carbon.
Hereinafter, each step will be described in detail with reference to FIG.

凝集剤注入率演算工程における、凝集剤の注入率IPACの具体的な求め方は特に限定しない。すなわち、第2処理における濁質除去を主眼に決定してよく、その決定方法は、用いる水処理設備や各種装置等によって最適な方法を適宜選択すればよい。
以下、本実施形態の水処理システムに好適な凝集剤注入率IPACの演算方法の一例を説明する。
The specific method for obtaining the coagulant injection rate IPAC in the coagulant injection rate calculation step is not particularly limited. That is, the turbidity removal in the second treatment may be determined mainly, and the optimum method may be appropriately selected as the determination method depending on the water treatment equipment to be used, various devices, and the like.
Hereinafter, an example of a method for calculating the flocculant injection rate IPAC suitable for the water treatment system of the present embodiment will be described.

まず、第1処理前、すなわち粉末活性炭混和池20への導入前の原水の水質に基づき、第2処理における原水に対する前記凝集剤の注入率IPACを求める(凝集剤注入率演算工程:ステップS20)。ステップS20は、凝集剤注入率演算手段80において行われる。
凝集剤注入率IPACに影響を及ぼす因子は、水処理設備や各種装置等によって最適なものが変化する場合がある。そのため、凝集剤注入率IPACを求める場合の指標は適宜決定してよいが、一例として、原水の濁度Tb、アルカリ度Alk及び水温TRと、第1処理後の原水に凝集剤を添加した混和水のpHが挙げられる。
本実施形態では、例えば、下記式(1)に示す演算式によって凝集剤注入率IPACを求めることとする。なお、原水の濁度Tb、アルカリ度Alk及び水温TRは、水質測定装置11で測定されたものである。
First, based on the water quality of the raw water before the first treatment, that is, before the introduction into the powdered activated carbon mixing pond 20, the injection rate IPAC of the coagulant into the raw water in the second treatment is obtained (coagulant injection rate calculation step: step S20). ). Step S20 is performed in the coagulant injection rate calculating means 80.
The optimum factor that affects the coagulant injection rate IPAC may change depending on the water treatment equipment, various devices, and the like. Therefore, the index for determining the flocculant injection rate IPAC may be appropriately determined, but as an example, the flocculant is added to the turbidity Tb, alkalinity Alk, and water temperature TR of the raw water and the raw water after the first treatment. The pH of the admixture can be mentioned.
In the present embodiment, for example, the flocculant injection rate IPAC is determined by the arithmetic formula shown in the following formula (1). The turbidity Tb, alkalinity Alk, and water temperature TR of the raw water were measured by the water quality measuring device 11.

PAC=f(Tb,Alk,TR,pH) ・・・(1) I PAC = f (Tb, Ark, TR, pH) ... (1)

なお、第2処理を行う際、求められた凝集剤の注入率IPACに基づき、凝集剤が注入されるが、具体的には、下記式(2)によってその注入量qPACが算出され、この注入量qPACと原水流量QRに基づき、凝集剤注入装置31から凝集剤が注入される。 When the second treatment is performed, the flocculant is injected based on the obtained injection rate IPAC of the flocculant. Specifically, the injection amount q PAC is calculated by the following formula (2). The flocculant is injected from the flocculant injection device 31 based on the injection amount q PAC and the raw water flow rate QR.

PAC=IPAC×QR ・・・(2) q PAC = I PAC × QR ・ ・ ・ (2)

次に、第1処理前の原水の波長260nmにおける紫外線吸光度UVをUV計測器12によって測定する(UV測定工程:ステップS30)。 Next, the ultraviolet absorbance UV 0 at a wavelength of 260 nm of the raw water before the first treatment is measured by the UV measuring instrument 12 (UV 0 measuring step: step S30).

原水やろ過処理水中の溶解性有機物の代表的な指標であるDOC(溶解性有機体炭素濃度(mg/l))と、原水またはろ過処理水の波長260nmにおける紫外線吸光度である原水UV、ろ過水UV(abs/cm)は、図4、5に示すように、強い相関関係があり、直線で近似できるとの知見を得た。そのため、本実施形態では、この相関関係に基づき、粉末活性炭の注入率IACPを求める際の指標の1つとして、この原水UV、ろ過水UVを用いることとする。なお、図4は、第1処理前の原水のデータであり、縦軸は原水のDOC(溶解性有機体炭素濃度(mg/l))、横軸はUV計測器12で測定された原水UV(abs/cm)を示している。図5は、第2処理後のろ過処理水のデータであり、縦軸はろ過処理水のDOC(溶解性有機体炭素濃度(mg/l))、横軸はUV計測器61で測定されたろ過水UV(abs/cm)を示している。 DOC (soluble organic carbon concentration (mg / l)), which is a typical index of soluble organic substances in raw water and filtered water, and raw water UV 0 , which is the ultraviolet absorbance of raw water or filtered water at a wavelength of 260 nm, are filtered. As shown in FIGS. 4 and 5, it was found that water UV (abs / cm) has a strong correlation and can be approximated by a straight line. Therefore, in the present embodiment, based on this correlation, the raw water UV 0 and the filtered water UV are used as one of the indexes for obtaining the injection rate IACP of the powdered activated carbon. In addition, FIG. 4 is the data of the raw water before the first treatment, the vertical axis is the DOC (soluble organic carbon concentration (mg / l)) of the raw water, and the horizontal axis is the raw water UV measured by the UV measuring instrument 12. It shows 0 (abs / cm). FIG. 5 shows the data of the filtered water after the second treatment, the vertical axis is the DOC (soluble organic carbon concentration (mg / l)) of the filtered water, and the horizontal axis is measured by the UV measuring instrument 61. Shows filtered water UV (abs / cm).

以下、原水UVと、凝集剤の注入率IPACとに基づいた粉末活性炭の注入率IACPの演算方法(活性炭注入率演算工程:ステップS40)について説明する。 Hereinafter, a method for calculating the injection rate IACP of powdered activated carbon based on the raw water UV 0 and the injection rate IPAC of the flocculant (activated carbon injection rate calculation step: step S40) will be described.

活性炭注入率演算工程(ステップS40)は具体的には、第2処理後におけるろ過処理水の目標水質に対応する紫外線吸光度UVSV(目標UVSV)を決定する工程(ステップS41)と、原水UVと、目標UVSVとの比である目標処理率RUV(UVSV/UV)を算出する工程(ステップS42)と、目標処理率RUV、凝集剤注入率IPAC等に基づき粉末活性炭注入率IACPを求める工程(ステップS43)とを有する。 Specifically, the activated carbon injection rate calculation step (step S40) includes a step (step S41) of determining the ultraviolet absorbance UV SV (target UV SV ) corresponding to the target water quality of the filtered treated water after the second treatment, and the raw water UV. Powdered activated carbon injection rate based on the step (step S42) of calculating the target treatment rate RUV (UV SV / UV 0 ), which is the ratio of 0 to the target UV SV , the target treatment rate RUV, the flocculant injection rate IPAC, etc. It has a step of obtaining I ACP (step S43).

まず、ステップS41にて、第2処理後におけるろ過処理水の目標水質に対応する目標UVSVを決定する。ステップS41は、紫外線吸光度UVSV決定部71にて行う。
ろ過水の水質を評価する指標(目標水質)は種々あるが、上記でも説明したように、溶解性有機物の代表的な指標であるDOCと、原水UVまたはろ過水UVには相関関係があることから、この相関関係に基づき目標UVSVを決定する。すなわち、本実施形態では、図6に示すように、予め取得したDOCとUVとの関係を示すデータ(図5)に基づいて、ろ過水の目標DOC値に対応するろ過水の目標UVSVを決定することとする。
具体的には、図5のデータを用いてUVSVを決定する場合、図6に示すように、例えば目標とする溶解性有機体炭素濃度DOC(目標DOC)が「1mg/l」の場合、ろ過水の目標UVSVは「0.014abs/cm」となる。
First, in step S41, the target UV SV corresponding to the target water quality of the filtered water after the second treatment is determined. Step S41 is performed by the ultraviolet absorbance UV SV determination unit 71.
There are various indexes (target water quality) for evaluating the water quality of filtered water, but as explained above, there is a correlation between DOC, which is a typical index of soluble organic substances, and raw water UV 0 or filtered water UV. Therefore, the target UV SV is determined based on this correlation. That is, in the present embodiment, as shown in FIG. 6, the target UV SV of the filtered water corresponding to the target DOC value of the filtered water is determined based on the data (FIG. 5) showing the relationship between the DOC and UV acquired in advance. I will decide.
Specifically, when the UV SV is determined using the data of FIG. 5, for example, when the target soluble organic carbon concentration DOC (target DOC) is “1 mg / l” as shown in FIG. The target UV SV of the filtered water is "0.014 abs / cm".

次に、ステップS41で決定した目標UVSVと、UV計測器12で測定した原水UVとの比である目標処理率RUV(UVSV/UV)を算出する(ステップS42)。ステップS42は、目標処理率算出部72にて行う。 Next, the target processing rate RUV (UV SV / UV 0 ), which is the ratio of the target UV SV determined in step S41 to the raw water UV 0 measured by the UV measuring instrument 12, is calculated (step S42). Step S42 is performed by the target processing rate calculation unit 72.

ここで、活性炭注入率演算工程(ステップS40)では、予め、凝集剤注入率IPAC、粉末活性炭の滞留時間t、原水pH及び粉末活性炭注入率IACPを変数とする、目標処理率RUVの関係式f(下記式(3))を求めておく。 Here, in the activated carbon injection rate calculation step (step S40), the target treatment rate RUV is set in advance with the coagulant injection rate IPAC , the residence time t of the powdered activated carbon, the raw water pH R , and the powdered activated carbon injection rate IACP as variables. The relational expression f (the following equation (3)) is obtained.

RUV=f(IACP,t,pH,IPAC) ・・・(3) RUV = f ( IACP , t, pH R , IPAC ) ... (3)

目標処理率RUVの関係式fの変数として、凝集剤注入率IPACを用いる理由について説明する。
これまで、粉末活性炭による溶解性有機物の除去率の評価(除去特性)は、原水の水質や、活性炭の注入率等の第1処理でのみで行われており、後段で注入する凝集剤による影響は未知であった。しかし、本発明者の鋭意調査の結果、図7に示すように、凝集剤の注入率の変化によって、同じ粉炭注入率であっても溶解性有機物の除去率(処理率RUV)も変化するとの新たな知見を得た。すなわち、溶解性有機物を粉末活性炭により吸着除去する第1処理と、濁質を凝集剤により凝集沈降させる第2処理とを順次行うような、粉炭・凝集剤併用による水処理方法の場合、溶解性有機物の除去性能に対し、粉末活性炭の注入量は勿論、凝集剤およびその量も影響を及ぼすことが分かった。換言するに、本来、粉末活性炭によって除去していた溶解性有機物を、凝集剤による第2処理段階でも除去できることを見出した。具体的には、図7から読み取れるように、凝集剤の注入率IPACが大きくなるほど、溶解性有機物の除去性能への影響は顕著となり、目標に設定したRUVを達成すべく、従来まで必要とされてきた粉炭の量が、凝集剤による除去性能向上によって、大幅に削減することができ、粉炭注入率IACPの適切かつ高精度な制御が可能となる。
The reason why the flocculant injection rate IPAC is used as a variable of the relational expression f of the target processing rate RUV will be described.
Until now, the evaluation (removal characteristics) of the removal rate of soluble organic matter by powdered activated carbon has been performed only in the first treatment such as the water quality of raw water and the injection rate of activated carbon, and the influence of the coagulant injected in the subsequent stage. Was unknown. However, as a result of diligent investigation by the present inventor, as shown in FIG. 7, the removal rate of soluble organic matter (treatment rate RUV) also changes depending on the change in the injection rate of the flocculant, even if the injection rate of pulverized coal is the same. I got new knowledge. That is, in the case of a water treatment method using a combination of pulverized carbon and an aggregating agent, the first treatment of adsorbing and removing the soluble organic substance with the powdered activated carbon and the second treatment of coagulating and sedimenting the turbidity with the aggregating agent are sequentially performed. It was found that not only the injection amount of powdered activated carbon but also the flocculant and its amount affect the removal performance of organic substances. In other words, it has been found that the soluble organic matter originally removed by powdered activated carbon can be removed even in the second treatment step with a flocculant. Specifically, as can be read from FIG. 7, the larger the injection rate IPAC of the flocculant, the more remarkable the effect on the removal performance of the soluble organic matter, and it has been necessary until now to achieve the target RUV. The amount of pulverized coal that has been produced can be significantly reduced by improving the removal performance by the flocculant, and the pulverized coal injection rate IACP can be controlled appropriately and with high accuracy.

凝集剤による溶解性有機物の除去性能向上のメカニズムは、以下のように推察される。
図9に、<1>粉末活性炭単独処理(5mg/l注入;処理時間1hr)、<2>凝集剤(PAC)単独処理(10mg/l注入;処理時間1hr)、および<3>粉末活性炭5(mg/l)注入⇒急速撹拌5分混和⇒凝集剤(PAC)10(mg/l)注入⇒25分緩速撹拌⇒30分静置処理、の3パターンの処理における、DOC(溶解性有機体炭素濃度)除去率(=1-処理後DOC/処理前DOC)を示す。なお図中において処理<1>は「粉炭5単独(1h)」、処理<2>は「PAC10単独(1h)」、処理<3>は「粉炭5⇒急撹⇒PAC10⇒緩撹⇒沈殿」と記載している。
図示したように、<1>粉末活性炭単独処理および<2>凝集剤単独処理では溶解性有機物の除去は軽微であるのに対し、両者を併用した<3>の場合にはDOC除去率は大幅に向上する結果となった。これは、粉末活性炭の存在下においては、溶解性有機物は活性炭の表面に濃化して存在すると推測され、その表面濃化した溶解性有機物は、凝集剤による凝集沈降において、粉末活性炭とともに除去されるものと考えらえる。ちなみに、凝集剤による凝集沈降は一般的に、主として濁質を凝集沈降させるものであり、溶解性有機物は除去対象ではない。しかし、粉末活性炭を用いた吸着除去と凝集剤による凝集沈降を併用すると、溶解性有機物の一部を凝集剤による凝集沈降により除去できる。これにより、従来まで必要とされていた粉末活性炭の量を、凝集沈降で除去できる分だけ削減することができる。
The mechanism for improving the removal performance of soluble organic matter by the flocculant is inferred as follows.
In FIG. 9, <1> powdered activated carbon single treatment (5 mg / l injection; treatment time 1 hr), <2> flocculant (PAC) single treatment (10 mg / l injection; treatment time 1 hr), and <3> powdered activated carbon 5 DOC (soluble) in 3 patterns of (mg / l) injection ⇒ rapid stirring 5 minutes mixing ⇒ flocculant (PAC) 10 (mg / l) injection ⇒ 25 minutes slow stirring ⇒ 30 minutes standing treatment The carbon concentration of the machine) removal rate (= 1-DOC after treatment / DOC before treatment) is shown. In the figure, the treatment <1> is "pulverized coal 5 alone (1h)", the treatment <2> is "PAC10 alone (1h)", and the treatment <3> is "pulverized coal 5 ⇒ rapid stirring ⇒ PAC10 ⇒ slow stirring ⇒ precipitation". It is described as.
As shown in the figure, the removal of soluble organic matter is slight in <1> powdered activated carbon single treatment and <2> flocculant single treatment, whereas in the case of <3> in which both are used in combination, the DOC removal rate is large. The result was improved. It is presumed that the soluble organic matter is concentrated on the surface of the activated carbon in the presence of the powdered activated carbon, and the surface-concentrated soluble organic matter is removed together with the powdered activated carbon in the coagulation sedimentation by the flocculant. Think of it as a thing. By the way, the coagulation sedimentation by the coagulant generally mainly coagulates and sediments the turbidity, and the soluble organic matter is not the target of removal. However, when adsorption removal using powdered activated carbon and coagulation sedimentation with a flocculant are used in combination, a part of the soluble organic matter can be removed by coagulation sedimentation with a flocculant. As a result, the amount of powdered activated carbon, which has been conventionally required, can be reduced by the amount that can be removed by coagulation sedimentation.

本実施形態における目標処理率RUVの関係式fは、上記説明してきた、本発明者らによって得られた、粉炭・凝集剤併用による、溶解性有機物の除去性能向上効果が得られるとの新たな知見に基づき導出されたものである。 The relational expression f of the target treatment rate RUV in the present embodiment is a new effect described above, in which the effect of improving the removal performance of soluble organic substances by the combined use of pulverized coal and a flocculant obtained by the present inventors can be obtained. It was derived based on the knowledge.

なお、図8に示すように、原水pHとRUVの関係から、粉末活性炭による溶解性有機物の吸着性能は、pHが低いほど高くなることも明らかになった。このことから、目標処理率RUVの関係式fの変数として、pHも用いることとする。 As shown in FIG. 8, from the relationship between the pH R of the raw water and the RUV, it was also clarified that the adsorption performance of the soluble organic matter by the powdered activated carbon increases as the pH R decreases. Therefore, pH R is also used as a variable of the relational expression f of the target processing rate RUV.

次に、ステップS42で算出した前記目標処理率RUV、凝集剤注入率IPAC、滞留時間t、原水pHに基づき、関係式fから粉末活性炭注入率IACPの演算式(下記式(4))を導出し、粉末活性炭注入率IACPを求める(ステップS43)。ステップS43は、粉末活性炭注入率演算部73にて行う。 Next, based on the target treatment rate RUV , the flocculant injection rate IPAC, the residence time t, and the raw water pH R calculated in step S42, the calculation formula of the powdered activated carbon injection rate IACP from the relational expression f (the following formula (4)). ) Is derived, and the powdered activated carbon injection rate I ACP is obtained (step S43). Step S43 is performed by the powdered activated carbon injection rate calculation unit 73.

ACP=f(RUV,t,pH,IPAC) ・・・(4) I ACP = f (RUV, t, pH R , IPAC ) ... (4)

なお、第1処理を行う際、求められた粉末活性炭注入率IACPに基づき、粉末活性炭が注入されるが、具体的には、下記式(5)によってその注入量qACPが算出され、この注入量qACPと原水流量QRに基づき、粉炭注入装置21から粉末活性炭が注入される。 When the first treatment is performed, powdered activated carbon is injected based on the obtained powdered activated carbon injection rate IACP. Specifically, the injection amount q ACP is calculated by the following formula (5). Injection amount q Based on the ACP and the raw water flow rate QR, the powdered activated carbon is injected from the powdered carbon injection device 21.

ACP=IACP×QR ・・・(5) q ACP = I ACP × QR ・ ・ ・ (5)

本実施形態の水処理方法は、以上説明した凝集剤注入率演算工程と、活性炭注入率演算工程によって求められた、凝集剤注入率IPACと粉末活性炭注入率IACPに基づき、第1処理及び第2処理を行うものである。 The water treatment method of the present embodiment is based on the coagulant injection rate IPAC and the powdered activated carbon injection rate IACP obtained by the coagulant injection rate calculation step and the activated carbon injection rate calculation step described above, and the first treatment and The second process is performed.

以上説明した少なくともひとつの実施形態によれば、粉炭・凝集剤併用によって溶解性有機物を除去する場合に、まず、粉炭注入率演算手段で、原水UVと、目標UVSVとの比である目標処理率RUV(UVSV/UV)を算出し、この算出した目標処理率RUV、凝集剤注入率IPAC、粉炭の滞留時間t、原水pHに基づき、予め求めておいた関係式fから粉末活性炭注入率IACPを演算し、その注入率に基づいて粉炭の注入量を制御するため、処理水の水質の変化に応じた粉末活性炭の最適な注入率を制御できるとともに、無駄な粉末活性炭注入を抑制でき、経済性に優れた水処理システムおよび水処理方法を実現できる。
すなわち、本実施形態の水処理方法および水処理システムによれば、上記してきた、溶解性有機物除去に対する粉炭と凝集剤の併用効果を考慮した粉炭注入を行うことで、従来まで必要とされてきた粉炭量を大幅に削減することができるとともに、粉炭注入率の適切かつ高精度な制御が可能となる。
According to at least one embodiment described above, when the soluble organic substance is removed by the combined use of pulverized carbon and a flocculant, first, the target is the ratio of the raw water UV 0 and the target UV SV by the pulverized carbon injection rate calculation means. The treatment rate RUV (UV SV / UV 0 ) is calculated, and based on the calculated target treatment rate RUV , coagulant injection rate IPAC, pulverized carbon residence time t, and raw water pH R , the relational expression f obtained in advance is used. Powdered activated carbon injection rate I ACP is calculated and the injection amount of powdered carbon is controlled based on the injection rate. Therefore, the optimum injection rate of powdered activated carbon can be controlled according to changes in the water quality of the treated water, and wasteful powdered activated carbon It is possible to suppress injection and realize an economical water treatment system and water treatment method.
That is, according to the water treatment method and the water treatment system of the present embodiment, it has been conventionally required by injecting the pulverized coal in consideration of the combined effect of the pulverized coal and the flocculant on the removal of the soluble organic matter described above. The amount of pulverized coal can be significantly reduced, and the pulverized coal injection rate can be controlled appropriately and with high accuracy.

なお、本実施形態では、粉末活性炭の残存状態の評価指標として波長260nmにおける紫外線吸光度(UV)を用いている。本発明者らは、本実施形態のような、粉末活性炭表面に濃化した溶解性有機物を、凝集剤によって粉末活性炭を捉えることで除去する方法の下では、当該評価指標としてUVを採用することで、適切かつ高精度の評価を実施できることを見出した。つまり、UVを用いて原水または被処理水の状態を評価した上で粉炭注入率を求めることで、原水の水質変動に追随した高精度の粉炭注入および溶解性有機物の除去が可能になる。また結果的に、粉炭の注入不足によるろ過水の溶解性有機物濃度の目標超過や、過剰注入による薬品費の無駄を防止することができる。 In this embodiment, the ultraviolet absorbance (UV) at a wavelength of 260 nm is used as an evaluation index of the residual state of the powdered activated carbon. The present inventors adopt UV as the evaluation index under the method of removing the soluble organic substance concentrated on the surface of the powdered activated carbon by catching the powdered activated carbon with a flocculant as in the present embodiment. It was found that appropriate and highly accurate evaluation can be carried out. That is, by evaluating the state of the raw water or the water to be treated using UV and then determining the pulverized coal injection rate, it is possible to inject the pulverized coal and remove the soluble organic matter with high accuracy in accordance with the fluctuation of the water quality of the raw water. As a result, it is possible to prevent the target of the concentration of soluble organic matter in the filtered water from being excessively injected due to insufficient injection of pulverized coal and the waste of chemical costs due to excessive injection.

上述した実施形態における水処理システムの機能をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 The function of the water treatment system in the above-described embodiment may be realized by a computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be further realized by combining the above-mentioned functions with a program already recorded in the computer system.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.

1…水処理システム、10…着水井、11…水質測定装置、11a…濁度計、11b…pH測定器、11c…アルカリ度計、11d…水温計、12…UV計測器、13…流量計、20…粉末活性炭混和池(粉炭混和池)、21…粉末活性炭注入装置(粉炭注入装置)、30…凝集剤混和池、31…凝集剤注入装置、32…pH測定器、40…フロック形成池、50…沈澱池、60…ろ過池、61…UV計測器、70…粉末活性炭注入率演算手段(粉炭注入率演算手段)、71…紫外線吸光度UVSV決定部、72…目標処理率(RUV)算出部、73…粉末活性炭注入率演算部(粉炭注入率演算部)、74…粉末活性炭注入量演算部、80…凝集剤注入率演算手段 1 ... water treatment system, 10 ... water well, 11 ... water quality measuring device, 11a ... turbidity meter, 11b ... pH measuring instrument, 11c ... alkalinity meter, 11d ... water temperature gauge, 12 ... UV measuring instrument, 13 ... flow meter , 20 ... Powdered activated carbon admixture pond (powdered carbon admixture), 21 ... Powdered activated carbon injection device (powdered carbon injection device), 30 ... Coagulant admixture pond, 31 ... Coagulant injection device, 32 ... pH measuring device, 40 ... Flock forming pond , 50 ... sedimentation pond, 60 ... filtration pond, 61 ... UV measuring instrument, 70 ... powdered activated carbon injection rate calculation means (powdered carbon injection rate calculation means), 71 ... ultraviolet absorbance UV SV determination unit, 72 ... target processing rate (RUV) Calculation unit, 73 ... Powdered activated carbon injection rate calculation unit (powdered carbon injection rate calculation unit), 74 ... Powdered activated carbon injection amount calculation unit, 80 ... Coagulant injection rate calculation means

Claims (8)

原水中の溶解性有機物を粉末活性炭により吸着除去する第1処理を行う第1処理装置と、前記原水中の濁質を凝集剤により凝集沈降させる第2処理を行う第2処理装置とを備える水処理システムであって、
前記第1処理装置に流入する前記原水の水質に基づき、前記第2処理における前記原水に対する前記凝集剤の注入率を求める凝集剤注入率演算手段と、
前記第1処理装置に流入する前記原水の紫外線吸光度を測定するUV測定器によって測定された前記原水の紫外線吸光度UVと、前記凝集剤の注入率とに基づき、前記第1処理装置において必要な前記原水に対する前記粉末活性炭の注入率を求める活性炭注入率演算手段と、
を含む、水処理システム。
Water provided with a first treatment device for performing a first treatment for adsorbing and removing soluble organic substances in the raw water with powdered activated carbon, and a second treatment device for performing a second treatment for coagulating and sedimenting the turbidity in the raw water with a flocculant. It ’s a processing system,
A coagulant injection rate calculation means for obtaining the injection rate of the coagulant into the raw water in the second treatment based on the water quality of the raw water flowing into the first treatment apparatus.
Necessary in the first treatment apparatus based on the ultraviolet absorbance UV 0 of the raw water measured by a UV measuring device for measuring the ultraviolet absorbance of the raw water flowing into the first treatment apparatus and the injection rate of the flocculant. Activated carbon injection rate calculation means for obtaining the injection rate of the powdered activated carbon into the raw water, and
Including water treatment system.
前記活性炭注入率演算手段は、
前記第2処理装置の処理水の目標水質に対応する紫外線吸光度UVSVを決定するUVSV決定部と、
前記原水の紫外線吸光度UVと、前記目標水質に対応する紫外線吸光度UVSVとの比である目標処理率(UVSV/UV)を算出する目標処理率算出部と、
算出した前記目標処理率、前記凝集剤注入率、前記第1処理装置における前記原水の滞留時間、ならびに前記第1処理前の前記原水のpHに基づき前記粉末活性炭注入率を求める粉末活性炭注入率演算部と、を有する、
請求項1に記載の水処理システム。
The activated carbon injection rate calculation means is
A UV SV determination unit that determines the ultraviolet absorbance UV SV corresponding to the target water quality of the treated water of the second treatment apparatus, and
A target processing rate calculation unit for calculating a target processing rate (UV SV / UV 0 ), which is a ratio between the ultraviolet absorbance UV 0 of the raw water and the ultraviolet absorbance UV SV corresponding to the target water quality.
Calculation of the powdered activated carbon injection rate to obtain the powdered activated carbon injection rate based on the calculated target treatment rate, the flocculant injection rate, the residence time of the raw water in the first treatment device, and the pH of the raw water before the first treatment. With a part,
The water treatment system according to claim 1.
前記第2処理装置の処理水の溶解性有機体炭素濃度を目標水質とする
請求項1または2に記載の水処理システム。
The target water quality is the soluble organic carbon concentration of the treated water of the second treatment device .
The water treatment system according to claim 1 or 2.
前記第1処理装置に流入する前記原水の水質である、濁度、アルカリ度または水温の少なくとも1つを計測する水質測定装置と、
前記第1処理装置の処理水に前記凝集剤を添加した混和水のpHを測定するpH測定器と、をさらに備え、
前記凝集剤注入率演算手段は、
前記水質測定装置および前記pH測定器による測定結果に基づき、前記第2処理装置における前記原水に対する前記凝集剤の注入率を求める、
請求項1から3のいずれか一項に記載の水処理システム。
A water quality measuring device that measures at least one of turbidity, alkalinity, or water temperature, which is the quality of the raw water flowing into the first treatment device.
Further equipped with a pH measuring device for measuring the pH of the admixture water to which the flocculant is added to the treated water of the first treatment apparatus.
The coagulant injection rate calculation means is
Based on the measurement results of the water quality measuring device and the pH measuring device, the injection rate of the flocculant into the raw water in the second treatment device is determined.
The water treatment system according to any one of claims 1 to 3.
原水中の溶解性有機物を粉末活性炭により吸着除去する第1処理と、前記原水中の濁質を凝集剤により凝集沈降させる第2処理とを行う水処理方法であって、
前記第1処理前の原水の水質に基づき、前記第2処理における前記原水に対する前記凝集剤の注入率を求め、
前記第1処理前の原水の紫外線吸光度UVと、前記凝集剤の注入率に基づき、前記第1処理において必要な前記原水に対する前記粉末活性炭の注入率を求める、水処理方法。
A water treatment method in which a first treatment of adsorbing and removing soluble organic substances in raw water with powdered activated carbon and a second treatment of coagulating and sedimenting turbid substances in the raw water with a flocculant are performed.
Based on the water quality of the raw water before the first treatment, the injection rate of the flocculant into the raw water in the second treatment was determined.
A water treatment method for obtaining the injection rate of the powdered activated carbon into the raw water required in the first treatment based on the ultraviolet absorbance UV 0 of the raw water before the first treatment and the injection rate of the flocculant.
前記第2処理の目標水質に対応する紫外線吸光度UVSVを決定し、
前記原水の紫外線吸光度UVと、前記UVSVとの比である目標処理率(UVSV/UV)を算出し、
算出した前記目標処理率、前記凝集剤注入率、前記第1処理における前記原水の滞留時間、前記原水pHに基づき、前記粉末活性炭注入率を求める、
請求項5に記載の水処理方法。
The ultraviolet absorbance UV SV corresponding to the target water quality of the second treatment was determined.
The target processing rate (UV SV / UV 0 ), which is the ratio of the ultraviolet absorbance UV 0 of the raw water to the UV SV , was calculated.
The powdered activated carbon injection rate is obtained based on the calculated target treatment rate, the flocculant injection rate, the residence time of the raw water in the first treatment, and the raw water pH.
The water treatment method according to claim 5.
前記第2処理装置の処理水の溶解性有機体炭素濃度を目標水質とする
請求項5または6に記載の水処理方法。
The target water quality is the soluble organic carbon concentration of the treated water of the second treatment device .
The water treatment method according to claim 5 or 6.
前記第1処理前の原水の水質である濁度、アルカリ度または水温の少なくとも1つを計測し、
前記第1処理の処理水に前記凝集剤を添加した混和水のpHを計測し、
前記濁度、前記アルカリ度または前記水温の少なくとも1つと、前記混和水のpHに基づき、前記第2処理における前記原水に対する前記凝集剤の注入率を求める、
請求項5から7のいずれか一項に記載の水処理方法。
At least one of the turbidity, alkalinity or water temperature, which is the water quality of the raw water before the first treatment, is measured.
The pH of the admixture water to which the flocculant was added to the treated water of the first treatment was measured.
Based on at least one of the turbidity, the alkalinity or the water temperature, and the pH of the miscible water, the injection rate of the flocculant into the raw water in the second treatment is determined.
The water treatment method according to any one of claims 5 to 7.
JP2018051350A 2018-03-19 2018-03-19 Water treatment system and water treatment method Active JP7086658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018051350A JP7086658B2 (en) 2018-03-19 2018-03-19 Water treatment system and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018051350A JP7086658B2 (en) 2018-03-19 2018-03-19 Water treatment system and water treatment method

Publications (2)

Publication Number Publication Date
JP2019162583A JP2019162583A (en) 2019-09-26
JP7086658B2 true JP7086658B2 (en) 2022-06-20

Family

ID=68064460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051350A Active JP7086658B2 (en) 2018-03-19 2018-03-19 Water treatment system and water treatment method

Country Status (1)

Country Link
JP (1) JP7086658B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7258606B2 (en) * 2019-03-06 2023-04-17 株式会社東芝 Control device, control method and computer program
DE102021131310A1 (en) * 2021-11-29 2023-06-01 Mecana Umwelttechnik Gmbh Process for removing dissolved organic substances in liquids using a superfine adsorbent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166265A (en) 2000-11-30 2002-06-11 Toshiba Corp Water treatment control system using fluorometric analyzer
JP2005288309A (en) 2004-03-31 2005-10-20 Toshiba Corp Water treatment method and water treatment system
JP2011189287A (en) 2010-03-15 2011-09-29 Toshiba Corp Monitoring control system for water purification membrane filtration
JP2013094686A (en) 2011-10-28 2013-05-20 Meidensha Corp Chemical injection control method and chemical injection controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309109A (en) * 1995-05-15 1996-11-26 Hitachi Ltd Controlling device for pouring chemical in water purification plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166265A (en) 2000-11-30 2002-06-11 Toshiba Corp Water treatment control system using fluorometric analyzer
JP2005288309A (en) 2004-03-31 2005-10-20 Toshiba Corp Water treatment method and water treatment system
JP2011189287A (en) 2010-03-15 2011-09-29 Toshiba Corp Monitoring control system for water purification membrane filtration
JP2013094686A (en) 2011-10-28 2013-05-20 Meidensha Corp Chemical injection control method and chemical injection controller

Also Published As

Publication number Publication date
JP2019162583A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP4862576B2 (en) Aggregation apparatus and aggregation method
JP4793193B2 (en) Aggregation apparatus and aggregation method
JP7086658B2 (en) Water treatment system and water treatment method
JP2008055299A (en) Flocculating sedimentation treating equipment
KR101197392B1 (en) The phosphorus removal system regarding the automatic determination of coagulant dosing rate using artificial intelligence
JP2002159805A (en) Flocculant injection control method of water purification plant
JP3312507B2 (en) Water treatment equipment
JP6599704B2 (en) Flocculant injection rate determination method and flocculant injection rate determination device
KR100636265B1 (en) Apparatus and method for removing the algae using ozonation
JPWO2016006419A1 (en) Aggregation method and apparatus
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
JP6486799B2 (en) MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX
JP7258606B2 (en) Control device, control method and computer program
JP4249768B2 (en) Water quality control system
JP4170610B2 (en) Water quality control system
JP4037615B2 (en) Aggregation condition determination method
JP2022026969A (en) Water treatment system and water treatment method
JP5711692B2 (en) Water treatment method by stirring control
JPH10118411A (en) Method and device for controlling injection of flocculant in water purification plant
KR100736514B1 (en) A suction pressure/time detector by continuous type for water supply and a treating method of water using the same
KR100736513B1 (en) A suction pressure/time detector by batch type for water supply and a treating method of water using the same
JP2007326047A (en) Water treatment control device
JP6385860B2 (en) Aggregation state determination method and aggregation state determination device
JP2011115738A (en) Flocculant injection control method of purification plant
JP7496786B2 (en) Water purification method and water purification device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220608

R150 Certificate of patent or registration of utility model

Ref document number: 7086658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150