JP7080022B2 - Wind power generation equipment and wind power generation system - Google Patents

Wind power generation equipment and wind power generation system Download PDF

Info

Publication number
JP7080022B2
JP7080022B2 JP2017137059A JP2017137059A JP7080022B2 JP 7080022 B2 JP7080022 B2 JP 7080022B2 JP 2017137059 A JP2017137059 A JP 2017137059A JP 2017137059 A JP2017137059 A JP 2017137059A JP 7080022 B2 JP7080022 B2 JP 7080022B2
Authority
JP
Japan
Prior art keywords
wind power
power generation
wind
frequency
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017137059A
Other languages
Japanese (ja)
Other versions
JP2019022277A (en
Inventor
徹 吉原
守 木村
智行 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017137059A priority Critical patent/JP7080022B2/en
Priority to PCT/JP2018/019941 priority patent/WO2019012814A1/en
Priority to TW107123408A priority patent/TWI701383B/en
Publication of JP2019022277A publication Critical patent/JP2019022277A/en
Application granted granted Critical
Publication of JP7080022B2 publication Critical patent/JP7080022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、風力発電装置、風力発電装置の制御方法、および風力発電システムに関する。 The present invention relates to a wind power generation device, a control method for the wind power generation device, and a wind power generation system.

近年、複数の風力発電装置を設置して統合制御する、いわゆるウインドファームの導入が進んでいる。風力発電装置の発電電力は、風況に強く依存するため、発電電力の変動が大きいという課題がある。しかし、ウインドファームを形成して統合制御することで、平均化効果を得ることができ、これにより、ウインドファーム全体として、発電電力の変動を抑えることができる。 In recent years, the introduction of so-called wind farms, in which a plurality of wind power generation devices are installed and integratedly controlled, is being introduced. Since the generated power of the wind power generation device strongly depends on the wind conditions, there is a problem that the generated power fluctuates greatly. However, by forming a wind farm and performing integrated control, it is possible to obtain an averaging effect, which makes it possible to suppress fluctuations in the generated power of the wind farm as a whole.

一方、ウインドファームの電力系統への連系量が増加し、ウインドファームが電力系統に供給する発電電力が増加すると、電力系統全体の発電電力を一定に保つべく、火力発電所の運転台数を減少させる必要がある。 On the other hand, when the amount of interconnection to the power system of the wind farm increases and the power generated by the wind farm to the power system increases, the number of operating thermal power plants decreases in order to keep the power generated by the entire power system constant. I need to let you.

ここで、火力発電所は、発電出力の制御が容易であるため、電力系統の需要と供給のアンバランスによって発生する、電力系統の周波数変動を抑制するように運転される。しかし、ウインドファームの導入量の増加によって、火力発電所の運転台数が減少すると、電力系統の周波数変動を抑制する能力が低下し、周波数変動が増大するおそれがある。そこで、ウインドファームの発電出力を電力系統の周波数変動抑制のために積極的に制御することが提案されている(特許文献1)。 Here, since the thermal power plant is easy to control the power generation output, it is operated so as to suppress the frequency fluctuation of the power system caused by the imbalance between the supply and demand of the power system. However, if the number of operating thermal power plants decreases due to an increase in the amount of wind farms introduced, the ability to suppress frequency fluctuations in the power system will decrease, and frequency fluctuations may increase. Therefore, it has been proposed to positively control the power generation output of the wind farm in order to suppress the frequency fluctuation of the power system (Patent Document 1).

国際公開第2014/203388号International Publication No. 2014/203888

特許文献1では、再生可能エネルギーを利用する複数の発電設備が通信線を介して制御システムに接続されており、気象情報や電力系統の情報を基に、数分から数十分周期の周波数変動を抑制する。 In Patent Document 1, a plurality of power generation facilities using renewable energy are connected to a control system via a communication line, and frequency fluctuations with a cycle of several minutes to several tens of minutes are performed based on weather information and power system information. Suppress.

ここで、周波数変動は、電力系統の運用状況によって絶えず変化するものであり、変動周期が遅い成分から早い成分まで、様々な変動周期の成分を含むが、一般に、周波数変動の変動周期が長いほど、周波数変動の幅は大きいことが知られている。 Here, the frequency fluctuation constantly changes depending on the operating condition of the electric power system, and includes various fluctuation cycle components from a component having a slow fluctuation cycle to a component having a fast fluctuation cycle. Generally, the longer the fluctuation cycle of the frequency fluctuation, the longer the fluctuation cycle. , It is known that the range of frequency fluctuation is large.

電力系統の運用の観点からは、数秒程度の短周期の周波数変動から、数十分周期の長周期の変動まで、網羅的に周波数変動を抑制できるのが望ましい。しかし、特許文献1には、数秒程度の短周期の周波数変動の抑制について全く言及されていない。 From the viewpoint of power system operation, it is desirable to be able to comprehensively suppress frequency fluctuations from short-period frequency fluctuations of several seconds to long-period fluctuations of several tens of minutes. However, Patent Document 1 does not mention the suppression of frequency fluctuations having a short period of about several seconds at all.

特に、風車間の距離や地形などに依存して、各風車に流入する風速や風向は絶えず変化する。したがって、数秒程度の短周期の周波数変動を抑制するために、特許文献1の方法を適用するには、風力発電装置と制御システムを高速な通信手段で結ぶ必要がある。 In particular, the wind speed and direction flowing into each wind turbine constantly change depending on the distance between the wind turbines and the terrain. Therefore, in order to apply the method of Patent Document 1 in order to suppress a frequency fluctuation having a short cycle of about several seconds, it is necessary to connect the wind power generation device and the control system by a high-speed communication means.

また、流入する風速の大きい風力発電装置は、周波数変動の抑制のための調整容量を大きく確保することができる。しかし、高速に発電電力を変化させると、発電機やギアなど風力発電装置内の機械系に大きな負荷がかかるため、風力発電装置の寿命が劣化するおそれがある。 In addition, a wind power generator having a large inflowing wind speed can secure a large adjustment capacity for suppressing frequency fluctuations. However, if the generated power is changed at high speed, a large load is applied to the mechanical system in the wind power generation device such as a generator and gears, so that the life of the wind power generation device may be deteriorated.

本発明は、上述の課題に鑑みてなされたもので、その目的は、自律的に風力発電機の動作を制御し、系統周波数の変動を補償できるようにした風力発電装置、風力発電装置の制御方法、および風力発電システムを提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object thereof is control of a wind power generator and a wind power generator capable of autonomously controlling the operation of a wind power generator and compensating for fluctuations in system frequency. The method, and the provision of a wind power generation system.

上記課題を解決すべく、本発明に従う風力発電装置は、電力系統に接続される風力発電装置であって、自装置の備える風力発電機の作動量である自端作動量と、自端作動量と他の風力発電機の作動量との平均値と、風力発電機と電力系統との電気的接続点の電圧値から得られる系統周波数とに基づいて、系統周波数の変動を補償する電力指令値を算出する第1制御部と、第1制御部から与えられる電力指令値に従って、風力発電機の動作を制御する第2制御部とを備える。 In order to solve the above problems, the wind power generator according to the present invention is a wind power generator connected to an electric power system, and has a self-end operating amount, which is the operating amount of the wind generator included in the own device, and a self-ending operating amount. A power command value that compensates for fluctuations in the system frequency based on the average value of the operating amount of the wind power generator and other wind power generators and the system frequency obtained from the voltage value at the electrical connection point between the wind power generator and the power system. It is provided with a first control unit for calculating the above and a second control unit for controlling the operation of the wind power generator according to the power command value given from the first control unit.

本発明によれば、風力発電装置は、自端作動量と作動量の平均値と系統周波数とに基づいて、系統周波数の変動を補償する電力指令値を算出し、電力指令値にしたがって風力発電機の動作を制御することができる。 According to the present invention, the wind power generation device calculates a power command value for compensating for fluctuations in the system frequency based on the self-end operation amount, the average value of the operation amount, and the system frequency, and wind power generation is performed according to the power command value. You can control the operation of the machine.

風力発電システムの全体概要を示す説明図である。It is explanatory drawing which shows the whole outline of a wind power generation system. 風力発電システムの機能構成を示す図である。It is a figure which shows the functional composition of a wind power generation system. 補償電力指令値演算制御部の機能構成を示す図である。It is a figure which shows the functional structure of the compensation power command value calculation control part. 周波数変動抽出器の動作例を示す図である。It is a figure which shows the operation example of a frequency fluctuation extractor. 第2実施例に係り、風力発電システムの機能構成を示す図である。FIG. 5 is a diagram showing a functional configuration of a wind power generation system according to a second embodiment. 補償電力指令値演算制御部の機能構成を示す図である。It is a figure which shows the functional structure of the compensation power command value calculation control part. 周波数変動抽出器の機能構成を示す図である。It is a figure which shows the functional structure of a frequency fluctuation extractor.

以下、図面に基づいて、本発明の実施の形態を説明する。本実施形態では、以下に詳述するように、複数の風力発電装置を風力発電装置ごとの風の状況に応じて、自律的に制御させる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, as described in detail below, a plurality of wind power generation devices are autonomously controlled according to the wind conditions of each wind power generation device.

本実施形態は、複数の風力発電装置から風力発電装置群を形成する風力発電システムであって、風力発電装置群を制御する制御装置は、風力発電装置群を形成する各風力発電装置のそれぞれに流入する空気の風速の平均値を演算し、各風力発電装置へ送信する。各風力発電装置は、電力系統との電気的接続端子の電圧情報から電力系統の系統周波数を計測し、風力発電装置に流入する空気の風速(あるいは発電電力)の情報と、系統周波数と、風力発電装置群の平均風速ないし総発電電力の情報とに基づいて、系統周波数の変動を補償するための電力指令値を演算する。各風力発電装置は、演算した電力指令値に基づいて風力発電機の動作を制御する。 This embodiment is a wind power generation system that forms a wind power generation device group from a plurality of wind power generation devices, and a control device that controls the wind power generation device group is assigned to each wind power generation device that forms the wind power generation device group. The average value of the wind speed of the inflowing air is calculated and transmitted to each wind power generator. Each wind power generator measures the system frequency of the power system from the voltage information of the electrical connection terminal with the power system, and the information on the wind speed (or generated power) of the air flowing into the wind power generator, the system frequency, and the wind power. Based on the information of the average wind speed or the total generated power of the power generation device group, the power command value for compensating for the fluctuation of the system frequency is calculated. Each wind power generator controls the operation of the wind power generator based on the calculated power command value.

本実施形態によれば、各風力発電装置は、自端の風速情報(あるいは発電電力情報)に基づいて、出力指令値を補正することができる。これにより、本実施形態では、制御装置と各風力発電装置との間の通信量を少なくでき、風力発電装置群の全体として電力系統の周波数変動を抑制することができる。 According to the present embodiment, each wind power generation device can correct the output command value based on the wind speed information (or the generated power information) at its own end. As a result, in the present embodiment, the amount of communication between the control device and each wind power generation device can be reduced, and the frequency fluctuation of the power system as a whole of the wind power generation device group can be suppressed.

図1~図4を用いて第1実施例を説明する。以下の説明は、本発明の内容の具体例を示すものであり、本発明は以下の説明に限定されず、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。 The first embodiment will be described with reference to FIGS. 1 to 4. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to the following description, and various changes and various changes by those skilled in the art within the scope of the technical idea disclosed in the present specification are made. It can be modified.

以下、風力発電装置群を構成する風力発電装置が2台である場合を例に示すが、3台以上の風力発電装置から風力発電装置群を構成することもできる。また、各風力発電装置間の電気的な接続構成、およびウインドファームと電力系統との電気的な接続構成は、本発明の要旨を逸脱しない範囲で、他の形態を含むものである。ここでのウインドファームとは、風力発電装置群を有する風力発電施設を意味する。 Hereinafter, the case where the number of wind power generation devices constituting the wind power generation device group is two is shown as an example, but the wind power generation device group can also be configured from three or more wind power generation devices. Further, the electrical connection configuration between the wind power generation devices and the electrical connection configuration between the wind farm and the electric power system include other forms without departing from the gist of the present invention. The wind farm here means a wind power generation facility having a group of wind power generation devices.

第1実施例では、風力発電装置は、それぞれの自端風速に基づいて、風力発電機の動作(発電電力、発電量)を自律的に制御する。風力発電装置群の平均風速よりも自端風速の大きい風力発電装置では、系統周波数から、時定数の長い変動成分を抽出する。風力発電装置群の平均風速よりも自端風速の小さい風力発電装置では、系統周波数から、時定数の短い変動成分を抽出する。そして、各風力発電装置は、それぞれ抽出した変動成分に基づいて、系統周波数の変動抑制のための電力指令値を算出する。これにより、風力発電装置群全体として、電力系統の周波数変動を比較的低コストで抑制することができる。 In the first embodiment, the wind power generation device autonomously controls the operation (generated power, power generation amount) of the wind power generator based on each self-end wind speed. In a wind power generation device having a self-end wind speed higher than the average wind speed of the wind power generation device group, a variable component having a long time constant is extracted from the system frequency. In a wind power generation device whose own wind speed is smaller than the average wind speed of the wind power generation device group, a variable component having a short time constant is extracted from the system frequency. Then, each wind power generation device calculates a power command value for suppressing fluctuations in the system frequency based on the extracted fluctuation components. As a result, the frequency fluctuation of the power system can be suppressed at a relatively low cost for the entire wind power generation device group.

図1は、風力発電システム10の全体概要を示す。図中では、電力を授受するための三相電気回路を実線で示し、通信線路などの三相電気回路以外の線路を点線で示す。 FIG. 1 shows an overall overview of the wind power generation system 10. In the figure, a three-phase electric circuit for transmitting and receiving electric power is shown by a solid line, and a line other than the three-phase electric circuit such as a communication line is shown by a dotted line.

風力発電システム10は、複数の風力発電装置12a,12bからなる風力発電装置群と、風力発電装置群を制御する風力発電装置群制御装置14とを備える。風力発電装置群制御装置14は、「制御装置」の一例であり、通信線CNを介して各風力発電装置12a,12bと双方向通信可能に接続されている。以下では、風力発電装置群制御装置14を群制御装置14と略記する場合がある。通信線CNは、有線または無線のいずれを用いた通信線でもよい。風力発電装置12a,12bから群制御装置14へ向かう上り方向と、その逆の下り方向とで通信線を分けてもよい。 The wind power generation system 10 includes a wind power generation device group including a plurality of wind power generation devices 12a and 12b, and a wind power generation device group control device 14 for controlling the wind power generation device group. The wind power generation device group control device 14 is an example of a “control device”, and is connected to each wind power generation device 12a, 12b via a communication line CN so as to be bidirectionally communicable. In the following, the wind power generation device group control device 14 may be abbreviated as the group control device 14. The communication line CN may be a communication line using either wired or wireless. The communication line may be divided into an upward direction from the wind power generation devices 12a and 12b toward the group control device 14 and a downward direction vice versa.

各風力発電装置12a,12bは、母線13を介して電力系統11に電気的に接続されている。 The wind power generators 12a and 12b are electrically connected to the power system 11 via the bus 13.

風力発電装置12aは、例えば、風力発電機15aと、周波数検出装置16aと、補償電力指令値演算制御装置17aと、風力発電制御装置18aとを備える。 The wind power generation device 12a includes, for example, a wind power generator 15a, a frequency detection device 16a, a compensated power command value calculation control device 17a, and a wind power generation control device 18a.

風力発電機15aは、流入する風Waに応じて羽根(不図示)を回転させることで、発電する装置である。周波数検出装置16aは、母線13と風力発電装置12aの電気的接続点の電圧値に基づき、風力発電装置12aでの系統周波数を検出する。周波数検出装置を「周波数検出部」と呼ぶこともできる。「第1制御部」の例である補償電力指令値演算制御部17aは、系統周波数の変動を抑制するための電力指令値を算出する。「第2制御部」の例である風力発電制御装置18aは、風力発電装置群制御装置14からの発電出力指令値と補償電力指令値演算制御部17aからの電力指令値とに基づいて、風力発電機15aの動作を制御する。 The wind power generator 15a is a device that generates electricity by rotating blades (not shown) according to the inflowing wind Wa. The frequency detection device 16a detects the system frequency in the wind power generation device 12a based on the voltage value of the electrical connection point between the bus 13 and the wind power generation device 12a. The frequency detection device can also be called a "frequency detection unit". The compensated power command value calculation control unit 17a, which is an example of the “first control unit”, calculates the power command value for suppressing the fluctuation of the system frequency. The wind power generation control device 18a, which is an example of the “second control unit”, is based on the power generation output command value from the wind power generation device group control device 14 and the power command value from the compensation power command value calculation control unit 17a. It controls the operation of the generator 15a.

風力発電装置12bも風力発電装置12aと同様に、例えば、風力発電機15b、周波数検出装置16b、補償電力指令値演算制御装置17b、風力発電制御装置18bとを備えて構成される。各構成15b,16b,17b,18bは、各構成15a,16a,17a,18aと同様であるため、説明を省略する。 Similar to the wind power generation device 12a, the wind power generation device 12b also includes, for example, a wind power generator 15b, a frequency detection device 16b, a compensated power command value calculation control device 17b, and a wind power generation control device 18b. Since each configuration 15b, 16b, 17b, 18b is the same as each configuration 15a, 16a, 17a, 18a, the description thereof will be omitted.

上述の通り、風力発電機15a,15bは、流入する風Wa,Wbの運動エネルギを電気エネルギに変換する装置である。風力発電機15a,15bは、例えば、風車(不図示)を用いることで、風のエネルギを機械エネルギに変換し、発電機(不図示)を用いて電気エネルギに変換する構成が考えられる。風力発電制御装置18a,18bは、風車を構成する複数の羽根のピッチ角を制御することで、弱風時の発電効率の増大と、強風時の発電効率の減少とを実現する。 As described above, the wind power generators 15a and 15b are devices that convert the kinetic energy of the inflowing winds Wa and Wb into electrical energy. As the wind power generators 15a and 15b, for example, a wind turbine (not shown) may be used to convert wind energy into mechanical energy, and a generator (not shown) may be used to convert wind energy into electrical energy. The wind power generation control devices 18a and 18b control the pitch angles of a plurality of blades constituting the wind turbine to increase the power generation efficiency in a weak wind and decrease the power generation efficiency in a strong wind.

図2は、風力発電システム10の機能構成を示す。以下、風力発電機15aへ流入する風Waの風速をVaと、風力発電機15bへ流入する風Wbの風速をVbと、それぞれ表記する。 FIG. 2 shows the functional configuration of the wind power generation system 10. Hereinafter, the wind speed of the wind Wa flowing into the wind power generator 15a is referred to as Va, and the wind speed of the wind Wb flowing into the wind power generator 15b is referred to as Vb.

風力発電装置群制御装置14は、通信線CNを介して、各風力発電装置12a,12bからそれぞれの風速Va,Vbを定期的に取得する。そして、群制御装置14は、風速Va,Vbの平均値Vaveを計算し、補償電力指令値演算制御装置17a,17bへ平均値Vaveの値を送信する。ここで、風速の平均値Vaveは、風力発電装置群全体としての風速の平均値である。風力発電機15a,15bに流れ込む風の速度(風速)は、「風力発電機の作動量」の例である。「風力発電機の作動量」の他の例として、風力発電機15a,15bの発電出力(発電量)を用いてもよい。 The wind power generation device group control device 14 periodically acquires the wind speeds Va and Vb from the wind power generation devices 12a and 12b via the communication line CN. Then, the group control device 14 calculates the average value Vave of the wind speeds Va and Vb, and transmits the value of the average value Vave to the compensating power command value calculation control devices 17a and 17b. Here, the average value Wave of the wind speed is the average value of the wind speed of the entire wind power generation device group. The speed (wind speed) of the wind flowing into the wind power generators 15a and 15b is an example of the "operating amount of the wind power generator". As another example of the "operating amount of the wind power generator", the power generation output (power generation amount) of the wind power generators 15a and 15b may be used.

さらに、風力発電装置群制御装置14は、風速Va,Vbや、その他の風力発電装置12a,12bの運転情報などに基づいて、風力発電機15a,15bに対する発電出力指令値Prefa,Prefbを算出する。風力発電装置群制御装置14は、算出した発電出力指令値Prefa,Prefbを、通信線CNを介して、各風力発電機15a,15bを制御する風力発電制御装置18a,18bへ送信する。本実施例において、発電出力指令値Prefa,Prefbは、数秒程度の短周期変動は含まず、数分程度以上の変動周期の信号である。 Further, the wind power generation device group control device 14 calculates the power generation output command values Prefa and Prefb for the wind power generators 15a and 15b based on the wind speeds Va and Vb and the operation information of the other wind power generation devices 12a and 12b. .. The wind power generation device group control device 14 transmits the calculated power generation output command values Prefa and Prefb to the wind power generation control devices 18a and 18b that control the wind power generators 15a and 15b via the communication line CN. In this embodiment, the power generation output command values Prefa and Prefb are signals having a fluctuation cycle of about several minutes or more without including short-cycle fluctuations of about several seconds.

本実施例では、風力発電装置群制御装置14と各風力発電装置12a,12bとは、リアルタイムで通信する必要はなく、数分程度の比較的長い通信周期で通信する。風力発電装置群制御装置14から各風力発電装置12a,12bへ送信するデータは、風力の平均値Vaveおよび発電出力指令値Prefa,Prefbといった比較的長い周期で伝達すれば足りる情報だからである。 In this embodiment, the wind power generation device group control device 14 and the wind power generation devices 12a and 12b do not need to communicate in real time, and communicate with each other in a relatively long communication cycle of about several minutes. This is because the data transmitted from the wind power generation device group control device 14 to the wind power generation devices 12a and 12b is sufficient information to be transmitted in a relatively long cycle such as the average value Wave of the wind power generation and the power generation output command values Prefa and Prefb.

周波数検出装置16aは、風力発電装置12aの三相電気回路が母線13に接続された箇所の電圧(接続端電圧)の周波数Fbusaを検出し、補償電力指令値演算制御装置17aへ送信する装置である。同様に、周波数検出装置16bは、風力発電装置12bの接続端電圧の周波数Fbusbを検出し、補償電力指令値演算制御装置17bへ送信する装置である。周波数Fbusa,Fbusbを、自端周波数Fbusa,Fbusbと呼ぶ場合がある。 The frequency detection device 16a is a device that detects the frequency Fbusa of the voltage (connection end voltage) at the position where the three-phase electric circuit of the wind power generation device 12a is connected to the bus 13, and transmits it to the compensation power command value calculation control device 17a. be. Similarly, the frequency detection device 16b is a device that detects the frequency Fbusb of the connection end voltage of the wind power generation device 12b and transmits it to the compensation power command value calculation control device 17b. The frequencies Fbusa and Fbusb may be referred to as self-end frequencies Fbusa and Fbusb.

風力発電装置12a,12bは、電力系統11と同期連系しているため、自端周波数Fbusa,Fbusbは、電力系統11の周波数Fsysとほぼ等しい。 Since the wind power generators 12a and 12b are synchronously interconnected with the power system 11, the self-end frequencies Fbusa and Fbusb are substantially equal to the frequency Fsys of the power system 11.

補償電力指令値演算制御装置17aは、風速平均値Vaveと自端周波数Fbusaと自端風速Vaとを基に、風力発電装置12aの補償電力指令値(出力補正指令値)ΔPrefaを演算し、風力発電制御装置18aへ送信する。同様に、補償電力指令値演算制御装置17bも、風速平均値Vaveと自端周波数Fbusbと自端風速Vbとを基に、風力発電装置12bの補償電力指令値ΔPrefbを演算し、風力発電制御装置18bへ送信する。 The compensated power command value calculation control device 17a calculates the compensated power command value (output correction command value) ΔPrefa of the wind power generation device 12a based on the wind speed average value Vave, the self-end frequency Fbusa, and the self-end wind speed Va, and wind power. It is transmitted to the power generation control device 18a. Similarly, the compensated power command value calculation control device 17b also calculates the compensated power command value ΔPrefb of the wind power generation device 12b based on the wind speed average value Wave, the self-end frequency Fbusb, and the self-end wind speed Vb, and is a wind power generation control device. Send to 18b.

風力発電制御装置18aは、風力発電機15aの発電電力Paが、発電出力指令値Prefaと補償電力指令値ΔPrefaとの和に一致するように、風力発電機15a内の各機器を制御する装置である。風力発電制御装置18aは、例えば、風車の羽根のピッチ角を調整することで、発電電力Paを制御することができる。同様に、風力発電制御装置18bは、風力発電機15bの発電電力Pbが、発電出力指令値Prefbと補償電力指令値ΔPrefbとの和に一致するように、風力発電機15b内の各機器を制御する装置である。 The wind power generation control device 18a is a device that controls each device in the wind power generator 15a so that the generated power Pa of the wind power generator 15a matches the sum of the power generation output command value Prefa and the compensation power command value ΔPrefa. be. The wind power generation control device 18a can control the generated power Pa by, for example, adjusting the pitch angle of the blades of the wind turbine. Similarly, the wind power generation control device 18b controls each device in the wind power generator 15b so that the generated power Pb of the wind power generator 15b matches the sum of the power generation output command value Prefb and the compensation power command value ΔPrefb. It is a device to do.

図3は、補償電力指令値演算制御装置17aの機能構成を示す。補償電力指令値演算制御装置17bも、信号名が異なるだけで、図3と同様の構成である。 FIG. 3 shows the functional configuration of the compensated power command value calculation control device 17a. The compensated power command value calculation control device 17b also has the same configuration as that of FIG. 3 except that the signal name is different.

補償電力指令値演算制御部17aは、例えば、減算器170、時定数補正量算出器171、周波数変動抽出器172、補正電力指令演算器173を備えて構成される。 The compensated power command value calculation control unit 17a includes, for example, a subtractor 170, a time constant correction amount calculator 171, a frequency fluctuation extractor 172, and a correction power command calculator 173.

以下、図3の制御の動作を述べる。まず、風速平均値Vaveと自端風速Vaとの差分ΔVaを減算器170で計算する。次に、風速の差分ΔVaを基に、時定数補正量算出器171にて時定数補正量ΔTaを算出する。例えば、時定数補正量ΔVaに、所定の定数K1を乗じ、その絶対値を演算する。 Hereinafter, the operation of the control of FIG. 3 will be described. First, the difference ΔVa between the mean wind speed Vave and the self-end wind speed Va is calculated by the subtractor 170. Next, the time constant correction amount ΔTa is calculated by the time constant correction amount calculator 171 based on the difference ΔVa of the wind speed. For example, the time constant correction amount ΔVa is multiplied by a predetermined constant K1 to calculate the absolute value.

次に、自端周波数Fbusa、時定数補正量ΔTa、風速の差分ΔVaを基に、周波数変動抽出部172にて、周波数変動ΔFrefaを算出する。周波数変動抽出器172は、自端周波数Fbusaから、所定の変動周期帯の信号のみを抽出するバンドパスフィルタとして構成することができる。 Next, the frequency fluctuation extraction unit 172 calculates the frequency fluctuation ΔFrefa based on the self-end frequency Fbusa, the time constant correction amount ΔTa, and the difference ΔVa of the wind speed. The frequency fluctuation extractor 172 can be configured as a bandpass filter that extracts only signals in a predetermined fluctuation period band from its own frequency Fbusa.

図4に、周波数変動抽出器172の動作例を示す。図4の横軸は、自端周波数Fbusaの変動周期である。右に行くほど変動時定数が短い、すなわち、変動周期が早い成分を指す。 FIG. 4 shows an operation example of the frequency fluctuation extractor 172. The horizontal axis of FIG. 4 is the fluctuation period of the self-end frequency Fbusa. The more to the right, the shorter the fluctuation time constant, that is, the component with a faster fluctuation cycle.

周期T1の場合(ΔVa=0の場合)、周波数変動抽出器172は、自端周波数Fbusaの変動成分に基づき、時定数TminからTmaxまでの変動成分を抽出する。 In the case of the period T1 (when ΔVa = 0), the frequency fluctuation extractor 172 extracts the fluctuation component from the time constant Tmin to Tmax based on the fluctuation component of the self-end frequency Fbusa.

時定数の最小値Tminおよび最大値Tmaxの値は、例えば、電力系統11の運用状況や風力発電装置12a,12bの運用形態に応じて、任意に設定できる。時定数の最小値Tminおよび最大値Tmaxは、風力発電装置12a,12bの運用開始前に設定可能である。 The minimum value Tmin and the maximum value Tmax of the time constant can be arbitrarily set according to, for example, the operation status of the power system 11 and the operation mode of the wind power generation devices 12a and 12b. The minimum value Tmin and the maximum value Tmax of the time constant can be set before the start of operation of the wind power generators 12a and 12b.

周波数変動抽出部172は、風速の差分ΔVaを基に、時定数の最小値Tminと最大値Tmaxを時定数補正量ΔTaだけ補正することにより、周波数変動抽出部172で抽出する変動周波数帯を補正する。 The frequency fluctuation extraction unit 172 corrects the fluctuation frequency band extracted by the frequency fluctuation extraction unit 172 by correcting the minimum value Tmin and the maximum value Tmax of the time constant by the time constant correction amount ΔTa based on the difference ΔVa of the wind speed. do.

例えば、周期T2の場合(ΔVa<0の場合)、周波数変動抽出部172は、自端周波数Fbusaの変動成分に基づき、時定数Tminから時定数(Tmax-ΔTa)までの変動成分を抽出する。 For example, in the case of the period T2 (when ΔVa <0), the frequency fluctuation extraction unit 172 extracts the fluctuation component from the time constant Tmin to the time constant (Tmax−ΔTa) based on the fluctuation component of the self-end frequency Fbusa.

また例えば、周期T3の場合(ΔVa>0の場合)、周波数変動抽出部172は、自端周波数Fbusaの変動成分に基づき、時定数Tminから時定数(Tmax+ΔTa)までの変動成分を抽出する。 Further, for example, in the case of the period T3 (when ΔVa> 0), the frequency fluctuation extraction unit 172 extracts the fluctuation component from the time constant Tmin to the time constant (Tmax + ΔTa) based on the fluctuation component of the self-end frequency Fbusa.

図4のように周波数変動ΔFrefaを決定することで、風速の差分ΔVaが大きい風力発電装置、つまり自端風速Vaが平均値Vaveよりも大きい風力発電装置に対しては、電力系統11の周波数Fsysの長周期変動の補償を優先的に割り当て、風速の差分ΔVaが小さい風力発電装置、つまり自端風速Vaが小さい風力発電装置に対しては、電力系統11の周波数Fsysの短周期変動の補償を優先的に割り当てるように制御することができる。 By determining the frequency fluctuation ΔFrefa as shown in FIG. 4, for a wind power generation device having a large wind speed difference ΔVa, that is, a wind power generation device having a self-end wind speed Va larger than the average value Vave, the frequency Fsys of the power system 11 Compensation for short-period fluctuations of the frequency Fsys of the power system 11 is preferentially assigned to the wind power generation equipment with a small wind speed difference ΔBa, that is, the wind power generation equipment with a small self-end wind speed Va. It can be controlled to be preferentially assigned.

これにより、自端風速Vaの大きい風力発電装置は、電力系統11の周波数Fsysの短周期変動を補償するために、出力を急峻に変化させる必要が無くなる。このため、風力発電装置の急峻な出力変化に伴う、風力発電装置への機械的なダメージを抑制しつつ、風力発電装置群(ウインドファーム)による、電力系統11の周波数変動の抑制に貢献することができる。 As a result, the wind power generation device having a large self-end wind speed Va does not need to sharply change the output in order to compensate for the short-period fluctuation of the frequency Fsys of the power system 11. Therefore, it contributes to the suppression of the frequency fluctuation of the power system 11 by the wind power generation device group (wind farm) while suppressing the mechanical damage to the wind power generation device due to the sudden output change of the wind power generation device. Can be done.

次に、補正電力指令演算器173は、周波数変動抽出器172で抽出された周波数変動ΔFrefaを基にして、補償電力指令値ΔPrefaを計算する。そして、補正電力指令演算器173は、算出した補償電力指令値ΔPrefaを風力発電制御装置18aへ送信する。 Next, the correction power command calculator 173 calculates the compensation power command value ΔPrefa based on the frequency fluctuation ΔRefa extracted by the frequency fluctuation extractor 172. Then, the correction power command calculator 173 transmits the calculated compensation power command value ΔPrefa to the wind power generation control device 18a.

補償電力指令値ΔPrefaの計算方法としては、例えば、補償電力指令値ΔPrefaに、所定の定数K2を乗じる方法が挙げられる。 Examples of the method for calculating the compensated power command value ΔPrefa include a method of multiplying the compensated power command value ΔPrefa by a predetermined constant K2.

このように構成される本実施例によれば、各風力発電装置12a,12bは、自端風速に基づいて、風力発電機15a,15bに対する指令値を自律的に補正でき、電力系統11の周波数変動の抑制に貢献することができる。 According to the present embodiment configured as described above, each of the wind power generators 12a and 12b can autonomously correct the command value for the wind power generators 15a and 15b based on the self-end wind speed, and the frequency of the power system 11 can be corrected. It can contribute to the suppression of fluctuations.

さらに本実施例の風力発電装置によれば、自端風速が平均風速よりも大きい場合(強風時)、長い周期の周波数変動に対応し、自端風速が平均風速よりも小さい場合(弱風時)、短い周期の周波数変動に対応するため、羽根や回転機構などの駆動部分が故障等するのを抑制することができる。これにより、本実施例によれば、風力発電装置群全体として電力系統11の周波数変動の抑制に貢献することができる上に、各風力発電装置の信頼性を向上することができ、運用コストを低減できる。 Further, according to the wind power generator of this embodiment, when the self-end wind speed is larger than the average wind speed (in strong wind), it corresponds to the frequency fluctuation of a long cycle, and the self-end wind speed is smaller than the average wind speed (in weak wind). ), Since it corresponds to the frequency fluctuation with a short cycle, it is possible to suppress the failure of the driving part such as the blade and the rotation mechanism. Thereby, according to this embodiment, it is possible to contribute to the suppression of the frequency fluctuation of the power system 11 as a whole of the wind power generation device group, and it is possible to improve the reliability of each wind power generation device and reduce the operating cost. Can be reduced.

さらに、本実施例では、制御装置14と各風力発電装置12a,12bとの間の通信速度および通信量を少なくでき、通信コストも低減することができる。 Further, in this embodiment, the communication speed and the communication amount between the control device 14 and the wind power generation devices 12a and 12b can be reduced, and the communication cost can also be reduced.

なお、本実施例では、風力発電装置の風速情報を基に補償電力指令値を演算する場合を述べた。しかし、風力発電装置では、風速と発電電力とが正の相関にあるため、風力発電装置の風速情報に代えて、風力発電装置の発電電力を用いてもよい。つまり、風力発電装置の発電電力を基に補償電力指令値を演算してもよい。 In this embodiment, the case where the compensated power command value is calculated based on the wind speed information of the wind power generation device has been described. However, in the wind power generation device, since the wind speed and the generated power have a positive correlation, the generated power of the wind power generation device may be used instead of the wind speed information of the wind power generation device. That is, the compensation power command value may be calculated based on the power generated by the wind power generation device.

図5~図7を用いて第2実施例を説明する。本実施例は第1実施例の変形例に該当するため、第1実施例との差異を中心に述べる。本実施例では、風力発電装置の自端風速と、風力発電装置の累積疲労損傷度とに基づいて、周波数変動抽出器172で周波数変動成分を抽出する。 The second embodiment will be described with reference to FIGS. 5 to 7. Since this embodiment corresponds to a modified example of the first embodiment, the differences from the first embodiment will be mainly described. In this embodiment, the frequency fluctuation component is extracted by the frequency fluctuation extractor 172 based on the self-end wind speed of the wind power generation device and the cumulative fatigue damage degree of the wind power generation device.

本実施例では、累積疲労損傷度の高い風力発電装置は、なるべく出力が一定となる運転を継続させることにより、ウインドファーム内の風力発電装置ごとの累積疲労損傷度の増大を抑えつつ、電力系統の周波数変動の抑制に貢献する。 In this embodiment, the wind power generation device having a high cumulative fatigue damage degree is a power system while suppressing an increase in the cumulative fatigue damage degree for each wind power generation device in the wind farm by continuing the operation in which the output is as constant as possible. Contributes to the suppression of frequency fluctuations in.

図5は、本実施例における機能構成図である。図5と図1を比較すると、風力発電装置群制御装置14が風力発電装置群制御装置14-2に、補償電力指令値演算制御装置17aが補償電力指令値演算制御装置17-2aに、補償電力指令値演算制御装置17bが補償電力指令値演算制御装置17-2bに、それぞれ代わっている。 FIG. 5 is a functional configuration diagram in this embodiment. Comparing FIGS. 5 and 1, the wind power generation device group control device 14 compensates for the wind power generation device group control device 14-2, and the compensation power command value calculation control device 17a compensates for the compensation power command value calculation control device 17-2a. The power command value calculation control device 17b has replaced the compensation power command value calculation control device 17-2b, respectively.

さらに、本実施例では、風力発電装置群制御装置14-2から、各補償電力指令値演算制御装置17-2a,17-2bに対して、それぞれ累積疲労損傷度補正量Siga,Sigbを送信している。 Further, in this embodiment, the cumulative fatigue damage degree correction amounts Siga and Sigb are transmitted from the wind power generation device group control device 14-2 to the compensated power command value calculation control devices 17-2a and 17-2b, respectively. ing.

累積疲労度損傷度補正量Siga,Sigbは、「損傷度補正量」の例であり、風力発電装置12a,12bごとに計算される。累積疲労度損傷度補正量Siga,Sigbは、累積疲労損傷度に対して負の相関関係を持ち、0以上の値である。なお、累積疲労度損傷度補正量Siga,Sigbの通信周期は、リアルタイムである必要はなく、数分程度の通信周期を用いることができる。 Cumulative fatigue damage degree correction amounts Siga and Sigb are examples of "damage degree correction amounts" and are calculated for each of the wind power generation devices 12a and 12b. The cumulative fatigue damage degree correction amounts Siga and Sigb have a negative correlation with the cumulative fatigue damage degree and are values of 0 or more. The communication cycle of the cumulative fatigue degree damage correction amounts Siga and Sigb does not have to be real-time, and a communication cycle of about several minutes can be used.

以下、風力発電装置12a,12bを比較して、風力発電装置12aの方が累積疲労損傷度が高い場合、言いかえると、損傷度補正量Sigaが損傷度補正量Sigbより小さい場合を例に説明する。 Hereinafter, when the wind power generation devices 12a and 12b are compared and the wind power generation device 12a has a higher cumulative fatigue damage degree, in other words, the case where the damage degree correction amount Siga is smaller than the damage degree correction amount Sigb will be described as an example. do.

図6は、本実施例の補償電力指令値演算制御部の一例であり、補償電力指令値演算制御部17-2aを例に示している。補償電力指令値演算制御部17-2bの構成も同様であるため、ここでは説明を省略する。 FIG. 6 is an example of the compensated power command value calculation control unit of this embodiment, and shows the compensated power command value calculation control unit 17-2a as an example. Since the configuration of the compensated power command value calculation control unit 17-2b is the same, the description thereof is omitted here.

図6は、図3と比較して、周波数変動抽出器172が周波数変動抽出器172-2に代わっている。周波数変動抽出器172-2は、周波数変動抽出部172と比較して、自端周波数Fbusa、時定数補正量ΔTa、平均風速との差分ΔVaに加え、損傷度補正量Sigaを入力としている。これらの点以外は、図2と同様の構成である。 In FIG. 6, the frequency variation extractor 172 has replaced the frequency variation extractor 172-2 as compared with FIG. Compared with the frequency fluctuation extraction unit 172, the frequency fluctuation extractor 172-2 inputs the damage degree correction amount Siga in addition to the self-end frequency Fbusa, the time constant correction amount ΔTa, and the difference ΔVa from the average wind speed. Except for these points, the configuration is the same as in FIG.

図7は、変動抽出器172-2aの構成例であり、周波数変動抽出器1721と上下限リミッタ器1722とを備えて構成される。 FIG. 7 is a configuration example of the fluctuation extractor 172-2a, which includes a frequency fluctuation extractor 1721 and an upper / lower limit limiter 1722.

本実施例では、自端周波数Fbusa、時定数補正量ΔTa、平均風速との差分ΔVaを入力とし、周波数変動抽出器1721で周波数変動を抽出した後、上下限リミッタ器1722で出力制約を実施する。 In this embodiment, the own end frequency Fbusa, the time constant correction amount ΔTa, and the difference ΔVa from the average wind speed are input, and after the frequency fluctuation is extracted by the frequency fluctuation extractor 1721, the output constraint is implemented by the upper and lower limit limiter 1722. ..

図7において、上下限リミッタ器1722の上限値および下限値は、損傷度補正量Sigaおよび-Sigaである。上述の通り、損傷度補正量Sigaは累積疲労損傷度に対して負の相関関係を持った値であるため、累積疲労損傷度が高いほど、Sigaの値は小さくなり、その結果、周波数変動ΔFrefaの値も小さくなる。このため、補正電力指令演算部173で計算される補償電力指令値ΔPrefaの変動幅も小さくなる。 In FIG. 7, the upper and lower limit values of the upper and lower limit limiter 1722 are the damage degree correction amounts Siga and −Siga. As described above, since the damage degree correction amount Siga has a negative correlation with the cumulative fatigue damage degree, the higher the cumulative fatigue damage degree, the smaller the value of Siga, and as a result, the frequency fluctuation ΔFrefa. The value of is also small. Therefore, the fluctuation range of the compensated power command value ΔPrefa calculated by the corrected power command calculation unit 173 is also reduced.

したがって、最終的に風力発電装置12aは、発電出力指令値Prefaに従って、数分程度の変動周期にのみ追従するような出力運転となり、数秒程度の短周期変動に追従する場合に受ける風力発電装置への機械的ダメージを軽減することができる。 Therefore, finally, the wind power generation device 12a becomes an output operation that follows only a fluctuation cycle of about several minutes according to the power generation output command value Prefa, and becomes a wind power generation device that receives when following a short cycle fluctuation of about several seconds. It can reduce the mechanical damage of.

このように構成される本実施例も第1実施例と同様の作用効果を奏する。さらに本実施例の各風力発電装置は、累積疲労度損傷度補正量を考慮して風力発電機の動作を制御するため、風力発電装置の信頼性および寿命を改善しつつ、電力系統の周波数変動の抑制に貢献することができる。 This embodiment configured in this way also has the same effect as that of the first embodiment. Further, since each wind power generation device of this embodiment controls the operation of the wind power generator in consideration of the cumulative fatigue degree damage correction amount, the frequency fluctuation of the power system is improved while improving the reliability and life of the wind power generation device. Can contribute to the suppression of.

なお、本発明は、上述した実施形態に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。上述の実施形態において、添付図面に図示した構成例に限定されない。本発明の目的を達成する範囲内で、実施形態の構成や処理方法は適宜変更することが可能である。 The present invention is not limited to the above-described embodiment. Those skilled in the art can make various additions and changes within the scope of the present invention. In the above-described embodiment, the configuration is not limited to the configuration example shown in the attached drawings. The configuration and processing method of the embodiment can be appropriately changed within the range of achieving the object of the present invention.

また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれる。さらに特許請求の範囲に記載された構成は、特許請求の範囲で明示している組合せ以外にも組み合わせることができる。 Further, each component of the present invention can be arbitrarily selected, and the invention including the selected configuration is also included in the present invention. Further, the configurations described in the claims can be combined in addition to the combinations specified in the claims.

10:風力発電システム、11:電力系統、12a,12b:風力発電装置、13:母線、14:風力発電装置群制御装置、15a,15b:風力発電機、16a,16b:周波数検出装置、17a,17b:補償電力指令値演算制御装置、18a,18b:風力発電制御装置 10: Wind power generation system, 11: Power system, 12a, 12b: Wind power generation device, 13: Bus, 14: Wind power generation device group control device, 15a, 15b: Wind power generator, 16a, 16b: Frequency detector, 17a, 17b: Compensated power command value calculation control device, 18a, 18b: Wind power generation control device

Claims (10)

電力系統に接続される風力発電装置であって、
自装置の備える風力発電機の作動量である自端作動量と、前記自端作動量と他の風力発電機の作動量との平均値と、前記風力発電機と前記電力系統との電気的接続点の電圧値から得られる系統周波数とに基づいて、前記系統周波数の変動を補償する電力指令値を算出する第1制御部と、
前記第1制御部から与えられる前記電力指令値に従って、前記風力発電機の動作を制御する第2制御部と
を備え、
前記第1制御部は、前記自端作動量と前記平均値との差分とに基づいて、時定数補正量を演算する
風力発電装置。
A wind power generator connected to the power grid
The self-end operation amount, which is the operation amount of the wind power generator provided in the own device, the average value of the self-end operation amount and the operation amount of another wind power generator, and the electrical of the wind power generator and the power system. A first control unit that calculates a power command value that compensates for fluctuations in the system frequency based on the system frequency obtained from the voltage value at the connection point.
A second control unit that controls the operation of the wind power generator according to the power command value given from the first control unit is provided.
The first control unit is a wind power generation device that calculates a time constant correction amount based on the difference between the self-end operation amount and the average value.
前記作動量は、風力発電機の発電量、または、風力発電機に流入する空気の風速として算出される、
請求項1に記載の風力発電装置。
The operating amount is calculated as the amount of power generated by the wind power generator or the wind speed of the air flowing into the wind power generator.
The wind power generator according to claim 1.
前記第1制御部は、予め定められた周波数変動補償帯域と前記時定数補正量とに基づいて、周波数変動抑制のための所定の変動成分を前記系統周波数から抽出する、
請求項2に記載の風力発電装置。
The first control unit extracts a predetermined fluctuation component for suppressing frequency fluctuation from the system frequency based on a predetermined frequency fluctuation compensation band and the time constant correction amount.
The wind power generator according to claim 2.
前記第1制御部は、前記平均値よりも前記自端作動量の方が大きい場合、前記系統周波数から時定数の長い変動成分を前記所定の変動成分として抽出し、前記平均値よりも前記自端作動量の方が小さい場合、前記系統周波数から時定数の短い変動成分を前記所定の変動成分として抽出する、
請求項3に記載の風力発電装置。
When the self-end operation amount is larger than the average value, the first control unit extracts a fluctuation component having a long time constant from the system frequency as the predetermined fluctuation component, and the self-end is larger than the average value. When the end working amount is smaller, a variable component having a short time constant is extracted from the system frequency as the predetermined variable component.
The wind power generator according to claim 3.
前記第1制御部は、前記風力発電機の損傷度に応じた補正量である損傷度補正量を取得し、予め定められた周波数変動補償帯域と前記時定数補正量と前記損傷度補正量とに基づいて、前記所定の動成分を前記系統周波数から抽出する、
請求項3または4のいずれか一項に記載の風力発電装置。
The first control unit acquires a damage degree correction amount which is a correction amount according to the damage degree of the wind power generator, and includes a predetermined frequency fluctuation compensation band, the time constant correction amount, and the damage degree correction amount. The predetermined variable component is extracted from the system frequency based on the above.
The wind power generator according to any one of claims 3 or 4.
前記第1制御部は、前記損傷度補正量が大きくなるほど、前記所定の変動成分が長くなるように設定する、
請求項5に記載の風力発電装置。
The first control unit is set so that the predetermined fluctuation component becomes longer as the damage degree correction amount becomes larger.
The wind power generator according to claim 5.
電力系統に接続される複数の風力発電装置を備える風力発電システムであって、
前記各風力発電装置と通信線を介して接続される制御装置と、
前記各風力発電装置に設けられ、系統周波数の変動を補償する電力指令値を算出する第1制御部と、
前記各風力発電装置に設けられ、前記第1制御部からの前記電力指令値に従って、前記風力発電装置の動作を制御する第2制御部と、
を有し、
前記制御装置は、前記各風力発電装置の風力発電機の作動量を前記通信線を介して取得し、取得した各作動量の平均値を算出して前記各第1制御部へ送信すると共に、前記各風力発電装置で発電すべき発電量を示す発電出力指令値を算出して、前記各第2制御部へ送信し、
前記各第1制御部は、自装置の風力発電機の作動量である自端作動量と、前記制御装置から取得した前記平均値と、自装置の備える前記風力発電機と前記電力系統との電気的接続点の電圧値から得られる前記系統周波数とに基づいて、前記電力指令値を算出し、
前記各第2制御部は、前記第1制御部からの前記電力指令値と前記制御装置からの前記発電出力指令値とに従って、前記風力発電機の動作を制御する、
風力発電システム。
A wind power generation system equipped with multiple wind power generation devices connected to the power system.
A control device connected to each of the wind power generation devices via a communication line,
A first control unit provided in each of the wind power generation devices and calculating a power command value for compensating for fluctuations in the system frequency, and a first control unit.
A second control unit provided in each of the wind power generation devices and controlling the operation of the wind power generation device according to the power command value from the first control unit.
Have,
The control device acquires the operating amount of the wind power generator of each of the wind power generation devices via the communication line, calculates the average value of the acquired operating amounts, and transmits the average value to each of the first control units. A power generation output command value indicating the amount of power generated by each of the wind power generators is calculated and transmitted to each of the second control units.
Each of the first control units includes a self-end operating amount which is an operating amount of a wind power generator of the own device, the average value acquired from the control device, and the wind power generator and the electric power system included in the own device. The power command value is calculated based on the system frequency obtained from the voltage value of the electrical connection point.
Each of the second control units controls the operation of the wind power generator according to the power command value from the first control unit and the power generation output command value from the control device.
Wind power generation system.
前記各第1制御部は、
前記自端作動量と前記平均値との差分とに基づいて、時定数補正量を演算し、
予め定められた周波数変動補償帯域と前記時定数補正量とに基づいて、周波数変動抑制のための所定の変動成分を前記系統周波数から抽出する、
請求項7に記載の風力発電システム。
Each of the first control units is
The time constant correction amount is calculated based on the difference between the self-end operation amount and the average value.
A predetermined fluctuation component for suppressing frequency fluctuation is extracted from the system frequency based on a predetermined frequency fluctuation compensation band and the time constant correction amount.
The wind power generation system according to claim 7.
前記各第1制御部は、前記平均値よりも前記自端作動量の方が大きい場合、前記系統周波数から時定数の長い変動成分を前記所定の変動成分として抽出し、前記平均値よりも前記自端作動量の方が小さい場合、前記系統周波数から時定数の短い変動成分を前記所定の変動成分として抽出する、
請求項8に記載の風力発電システム。
When the self-end operation amount is larger than the average value, each of the first control units extracts a variable component having a long time constant from the system frequency as the predetermined variable component, and the variable component has a longer time constant than the average value. When the self-end operation amount is smaller, a variable component having a short time constant is extracted from the system frequency as the predetermined variable component.
The wind power generation system according to claim 8.
前記各第1制御部は、
前記風力発電機の損傷度に応じた補正量である損傷度補正量を取得し、
予め定められた周波数変動補償帯域と前記時定数補正量と前記損傷度補正量とに基づいて、前記所定の変動成分を前記系統周波数から抽出し、
前記損傷度補正量が大きくなるほど、前記所定の変動成分が長くなるように設定する、
請求項9に記載の風力発電システム。
Each of the first control units is
Obtain the damage degree correction amount, which is the correction amount according to the damage degree of the wind power generator.
Based on a predetermined frequency fluctuation compensation band, the time constant correction amount, and the damage degree correction amount, the predetermined fluctuation component is extracted from the system frequency.
The larger the damage degree correction amount, the longer the predetermined fluctuation component is set.
The wind power generation system according to claim 9.
JP2017137059A 2017-07-13 2017-07-13 Wind power generation equipment and wind power generation system Active JP7080022B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017137059A JP7080022B2 (en) 2017-07-13 2017-07-13 Wind power generation equipment and wind power generation system
PCT/JP2018/019941 WO2019012814A1 (en) 2017-07-13 2018-05-24 Wind power generation device, control method for wind power generation device, and wind power generation system
TW107123408A TWI701383B (en) 2017-07-13 2018-07-06 Wind power generation device, control method of wind power generation device, and wind power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017137059A JP7080022B2 (en) 2017-07-13 2017-07-13 Wind power generation equipment and wind power generation system

Publications (2)

Publication Number Publication Date
JP2019022277A JP2019022277A (en) 2019-02-07
JP7080022B2 true JP7080022B2 (en) 2022-06-03

Family

ID=65002391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017137059A Active JP7080022B2 (en) 2017-07-13 2017-07-13 Wind power generation equipment and wind power generation system

Country Status (3)

Country Link
JP (1) JP7080022B2 (en)
TW (1) TWI701383B (en)
WO (1) WO2019012814A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830892B (en) * 2019-04-22 2022-09-23 新疆金风科技股份有限公司 Wind generating set statistical time calibration method and device and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217290A (en) 2011-04-01 2012-11-08 Mitsubishi Heavy Ind Ltd Controller for wind power generator, wind power generator, window firmware, and control method for wind power generator
JP2014169660A (en) 2013-03-04 2014-09-18 Hitachi Power Solutions Co Ltd Wind power generation control device and wind power generation control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015203841A1 (en) * 2015-03-04 2016-09-08 Wobben Properties Gmbh Method for operating a wind energy plant
DE102015208554A1 (en) * 2015-05-07 2016-11-10 Wobben Properties Gmbh Method for operating a wind energy plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217290A (en) 2011-04-01 2012-11-08 Mitsubishi Heavy Ind Ltd Controller for wind power generator, wind power generator, window firmware, and control method for wind power generator
JP2014169660A (en) 2013-03-04 2014-09-18 Hitachi Power Solutions Co Ltd Wind power generation control device and wind power generation control method

Also Published As

Publication number Publication date
TWI701383B (en) 2020-08-11
WO2019012814A1 (en) 2019-01-17
TW201908596A (en) 2019-03-01
JP2019022277A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
US9341163B2 (en) Wind-turbine-generator control apparatus, wind turbine generator system, and wind-turbine-generator control method
US8237301B2 (en) Power generation stabilization control systems and methods
US9831810B2 (en) System and method for improved reactive power speed-of-response for a wind farm
EP2594005B1 (en) Power oscillation damping controller
TWI543492B (en) Method for feeding electrical energy into an electrical supply grid by means of a wind power installation or wind farm, and wind power installation and wind farm for feeding electrical energy into an electrical supply grid
EP3318751B1 (en) Damping mechanical oscillations of a wind turbine
JP5485368B2 (en) Wind power generation system and control method thereof
US20150211492A1 (en) Power plant control during a low voltage or a high voltage event
CN108138746B (en) Varying power output by ramping derated power output and derated rotor speed
EP2660464B1 (en) Control device for wind power generation device, wind power generation system, and control method for wind power generation device
US11715958B2 (en) System and method for power control of an inverter-based resource with a grid-forming converter
CN114204591A (en) Grid formation control of inverter-based resources using virtual impedance
US20190067943A1 (en) Method for compensating feed-in currents in a wind park
US10024305B2 (en) System and method for stabilizing a wind farm during one or more contingency events
US20150014992A1 (en) Operating wind turbines as damping loads
CN111492551A (en) Adaptive active power control for renewable energy power plants
EP3311026B1 (en) Frequency regulation using wind turbine generators
JP7080022B2 (en) Wind power generation equipment and wind power generation system
TWI543491B (en) Method for feeding electrical energy into an electrical supply grid by means of a wind power installation or wind farm, and wind power installation and wind farm for feeding electrical energy into an electrical supply grid
EP4160852A1 (en) System and method for converter control of an inverter-based resource
US11967824B2 (en) Adaptive gain control for a reactive power regulator of an inverter-based resource
US11626736B2 (en) Method for controlling negative-sequence current for grid-forming controls of inverter-based resources
Bharat et al. Asymmetrical Fault Analysis Using P2P Coordinated Control System for DFIG-STATCOM
WO2024136833A1 (en) System and method for coordinated frequency response of an inverter-based resource to grid frequency changes
Rodríguez-Amenedo et al. Control System Design and Performance Evaluation of a Variable Speed Wecs Equipped with a Doubly FED Induction Generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7080022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150