JP7079123B2 - 撮像装置及びその制御方法、撮像システム - Google Patents

撮像装置及びその制御方法、撮像システム Download PDF

Info

Publication number
JP7079123B2
JP7079123B2 JP2018048397A JP2018048397A JP7079123B2 JP 7079123 B2 JP7079123 B2 JP 7079123B2 JP 2018048397 A JP2018048397 A JP 2018048397A JP 2018048397 A JP2018048397 A JP 2018048397A JP 7079123 B2 JP7079123 B2 JP 7079123B2
Authority
JP
Japan
Prior art keywords
information
image pickup
distance
robot arm
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018048397A
Other languages
English (en)
Other versions
JP2019161553A5 (ja
JP2019161553A (ja
Inventor
和憲 石井
誠 横関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018048397A priority Critical patent/JP7079123B2/ja
Priority to US16/352,999 priority patent/US11095798B2/en
Publication of JP2019161553A publication Critical patent/JP2019161553A/ja
Publication of JP2019161553A5 publication Critical patent/JP2019161553A5/ja
Application granted granted Critical
Publication of JP7079123B2 publication Critical patent/JP7079123B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37555Camera detects orientation, position workpiece, points of workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40584Camera, non-contact sensor mounted on wrist, indep from gripper
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50391Robot

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Geometry (AREA)
  • Studio Devices (AREA)
  • Manipulator (AREA)
  • Exposure Control For Cameras (AREA)
  • Focusing (AREA)
  • Lens Barrels (AREA)
  • Accessories Of Cameras (AREA)
  • Automatic Focus Adjustment (AREA)

Description

本発明は、ロボットアームと被写体との位置関係に基づいて撮像装置を制御する技術に関するものである。
例えば、組立用のロボット等においては、ロボットアームによりワークをピック&プレイスする際に、カメラを用いてロボットを制御することが行われている。この制御は、ロボットアームの手先部に取り付けられたカメラにより、そのワークを撮影し、その撮影画像データからワークの位置を検出し、検出位置にロボットアームを移動させてハンドでワークを把持するというものである。
この種のロボット制御装置として、特許文献1には、カメラに焦点調節機能、焦点距離調節機能、絞り調整機能等を有する光学系調節手段を有し、ワークを撮影した撮影画像データに基づいて光学系調節手段を制御する装置が記載されている。
特開2003-211382号公報
しかしながら、上記の従来技術では、ビジュアルサーボと称される視覚フィードバッグ制御により、対象物の特徴量を目標データとして記憶し、目標データ記憶時と誤差が少なくなるようにピント、焦点距離、絞りを調節する構成となっている。
この制御では、対象物を撮影し、撮影した撮影画像を視覚認識装置に送信し、視覚認識装置で目標データと現在データとを比較してその誤差を算出し、誤差を減少させる(0となる)ように再度ロボット制御およびカメラ制御を繰り返す。そのため、誤差を減少させるために時間がかかる。その場合、ロボットアームの動作のスムーズな動きを阻害してしまう。
また、対象物にピントを合わせる場合、対象物を撮影し、撮影した撮影画像からピントが合っているか否かを確認しながらピント位置を調整していると、対象物までの距離が様々である場合には、各距離で同じ制御を行う必要が出てくるので時間がかかる。
そのため、自動でピントを合わせるオートフォーカスの機能を備えることが考えられるが、合焦位置から離れた位置からピントが合う位置を探索していては、ピントが合うまでに時間がかかる。
また、対象物の画像全体がカメラの視野内に収まるように焦点距離を調節する場合、カメラの視野から対象物の画像の一部あるいは全部が外れてしまっているか否かを確認しながら焦点距離を調整していると時間がかかる。
また、対象物の露光条件を適切にする場合、対象物までの距離により周囲光の環境が異なることが想定される。撮影画像から露光条件が適切か否かを確認しながら露出を調整していると時間がかかる。
そのため、対象物の周囲の光を検出して、絞り量、シャッタースピード、ゲインを自動で調節するAE機能を備えることが考えられるが、対象物に適切な露光条件に安定するまでに時間がかかるという問題がある。
本発明は上述した課題に鑑みてなされたものであり、その目的は、ロボットに取り付けられたカメラを制御するシステムにおいて、対象物までの距離が様々である場合にもカメラの制御にかかる時間を短縮できるようにすることである。
本発明に係わる撮像装置は、ロボットアームに取り付け可能な撮像装置であって、ロボットアームを制御する制御装置から前記ロボットアームの状態の情報を受信する受信手段と、被写体像を撮像する撮像手段と、被写体に対する前記撮像手段の撮像動作を制御する撮像制御手段と、被写体の第1のサイズ情報と被写体までの第1の距離情報を記憶する記憶手段と、を備え、前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づいて、フォーカスレンズの移動を制御することで焦点状態の調節動作を制御し、前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づく被写体までの距離情報が第2の距離情報であった場合、前記第1のサイズ情報と前記第1の距離情報と前記第2の距離情報とに基づいて、焦点状態を検出するための領域を設定することを特徴とする。
本発明によれば、ロボットに取り付けられたカメラを制御するシステムにおいて、対象物までの距離が様々である場合にもカメラの制御にかかる時間を短縮することが可能となる。
本発明の第1の実施形態に係わる撮像システムの構成を示すブロック図。 撮像装置、画像処理コントローラ、ロボットアームの外観を模式的に表した図。 第1の実施形態における撮像装置のフォーカス制御を示すフローチャート。 第2の実施形態における撮像装置のカメラ制御を示すフローチャート。 第3の実施形態におけるキャリブレーション処理を示すフローチャート。 第3の実施形態におけるアームとカメラの構成を示す図。 第3の実施形態におけるキャリブレーション情報の例を示す図。 第3の実施形態における撮影画像の例を示す図。 第3の実施形態におけるAF枠設定処理に関するフローチャート。 第3の実施形態におけるAF枠オフセットとサイズを示す図。
(第1の実施形態)
<撮像システムの構成>
本発明の第1の実施形態における撮像システムについて説明する。この撮像システムでは、ロボットアームと被写体の位置に基づいて、ロボットアームに設置された撮像装置の制御を行う。
図1Aは、本発明の第1の実施形態に係わる撮像システムの構成を示すブロック図である。この撮像システムは、撮像装置100と、画像処理コントローラ120と、ロボットアーム130とが通信可能に接続されて構成されている。
撮像装置100には、撮像光学系として、第1の固定レンズ群101、変倍レンズ102、絞り103、第2の固定レンズ群104、フォーカスレンズ105(フォーカスコンペンセータレンズ)が配置されている。変倍レンズ(ズームレンズ)102を光軸に沿う方向に移動することにより変倍(ズーム調節)を行い、焦点距離を変えることができる。フォーカスレンズ105は、変倍に伴う焦点面の移動を補正する機能とフォーカシングの機能とを兼ね備えている。
ズーム駆動源109は変倍レンズ102を移動させる駆動源である。絞り駆動源110は絞り103を動かすための駆動源である。フォーカシング駆動源111はフォーカスレンズ105を移動させるための駆動源である。ズーム駆動源109、絞り駆動源110、フォーカシング駆動源111は、ステッピングモータ、DCモータ、振動型モータ及びボイスコイルモータ等のアクチュエータにより構成される。
撮像装置100は、さらに撮像素子106、CDS/AGC回路107、カメラ信号処理部108、タイミングジェネレータ112、AF信号処理部113、記録部115、カメラマイクロコンピュータ114(以下、単にカメラマイコンという)、通信装置116を備える。
撮像素子106は被写体像を光電変換する素子であって、CCDやCMOSセンサなどから構成されている。撮像素子106は行列状に複数の画素部を有する。撮像光学系を通過した光束は撮像素子106の受光面上に結像され、各画素部が有するフォトダイオード(光電変換部)によって入射光量に応じた信号電荷に変換される。各フォトダイオードに蓄積された信号電荷は、カメラマイコン114の指令に従ってタイミングジェネレータ112から与えられる駆動パルスに基づいて信号電荷に応じた電圧信号として撮像素子106から順次読み出される。
撮像素子106から読み出された出力信号は、サンプリングし、ゲイン調整するCDS/AGC回路107に入力される。カメラ信号処理部108は、CDS/AGC回路107から出力された画像信号に対して各種の画像処理を施して、画像信号を生成する。第1の実施形態における画像信号は、ロボット制御に用いるための静止画像や動画像の信号である。記憶部115は、カメラ信号処理部108からの画像信号を記憶する。
AF信号処理部113はCDS/AGC回路107からの全画素の出力信号のうち焦点検出に用いられる領域の信号のみを通すAFゲートを通過した信号から高周波成分や輝度差成分(AFゲートを通過した信号の輝度レベルの最大値と最小値の差分)等を抽出してAF評価値信号を生成する。AF評価値信号は、カメラマイコン114に出力される。AF評価値信号は、撮像素子106からの出力信号に基づいて生成される映像信号の鮮鋭度(コントラスト状態)を表すものであるが、鮮鋭度は撮像光学系の焦点状態によって変化するので、結果的にAF評価値信号は撮像光学系の焦点状態を表す信号となる。
カメラマイコン114は、撮像装置100全体の動作の制御を司るとともに、フォーカシング駆動源111を制御してフォーカスレンズ105を移動させるAF制御(自動焦点調節制御)を行う。カメラマイコン114は、AF制御として、TV-AF方式でのAF制御(以下、単に「TV-AF」という。)を行う。TV-AF方式とは上記のようなコントラスト検出により焦点検出を行う焦点検出方式である。また、カメラマイコン114は、ズーム駆動源109を制御して変倍レンズ102を移動させ焦点距離制御を行い、絞り駆動源110を制御して絞り103を動作させる絞り制御を行う。
通信装置116は、画像処理コントローラ120と通信を行うための装置である。画像処理コントローラ120は、撮像装置100への撮影指示、撮影した画像の解析、および各カメラ制御(フォーカス制御、露出制御、焦点距離制御)の指示を行う。また、ロボットアーム130の動作状態やロボットアーム130の位置状態に基づいて被写体までの距離を撮像装置100へ送信(通知)するとともに、カメラの撮影状態の受信等を行う。さらにロボットアーム130への操作指示を行うものである。なお、上記のロボットアーム130の動作状態やロボットアーム130の位置状態は、ロボットアーム130に備えられた各種のセンサの検出値や画像処理コントローラ120からロボットアーム130に送られる指示コマンドなどから判断される。また、データの送受信は、所定の通信プロトコルに準じて行われる。ここでは、あらかじめ各種指示ごとに決められたコマンドを用いてデータの送受信を行う。
画像処理コントローラ120は、CPU121、一次記憶装置122、二次記憶装置123、通信装置124、表示部125、操作部126を備える。CPU121は、画像処理コントローラ120全体を制御する。二次記憶装置123は、ハードディスクなどからなり、CPU121を動かすプログラムを格納する。一次記憶装置122は、RAMなどからなり、二次記憶装置123から読み込まれたプログラムが格納される。通信装置124は、撮像装置100やロボットアーム130と通信を行う。表示部125は撮影画像の表示、対話的な操作のための文字表示などを行う。操作部126は、使用者の操作を受け付ける。
撮像装置100はロボットアーム130に固定されている。ロボットアーム130が動くと、撮像装置100の撮影範囲が変更される。また、ロボットアーム130は、アーム先端のロボットハンドを使って撮影対象物を把持することができる。CPU131はロボットアーム130全体を制御する。通信装置132は、画像処理コントローラ120と通信を行う。
また、図1Bは撮像装置100、画像処理コントローラ120、ロボットアーム130の外観を模式的に表した図である。なお、本実施形態では画像処理コントローラ120が親となり、撮像装置100とロボットアーム130に指示を送るものとする。
<フォーカス制御処理>
次に、カメラマイコン114が実行するフォーカス制御処理について説明する。ここでは、TV-AF方式により、フォーカスレンズ105を移動させ、フォーカスレンズ105の位置ごとのAF評価値信号を取得しながら、AF評価値信号が最大となるフォーカスレンズ位置を探索する。そして、最終的に、フォーカスレンズ105をAF評価値信号が最大となるフォーカスレンズ位置へ移動させて停止させるワンショットAF動作を実行する。
図2は、図1におけるカメラマイコン114が実行するフォーカス制御処理を示すフローチャートである。本処理は、カメラマイコン114内に格納されたコンピュータプログラムに従って実行される。また、本処理は、例えば、1フィールド画像(以下、1フレーム、1画面ともいう)を生成するための撮像素子106からの画像信号の読み出し周期(垂直同期期間ごと)で実行される。ただし、垂直同期期間(Vレート)内に複数回繰り返すようにしてもよい。
まず、S201において、カメラマイコン114は、通信装置116を経由して画像処理コントローラ120からのコマンドを受信したか否かを判定する。コマンドを受信した場合(S201でYes)、S202へ移行し、コマンドを受信していない場合(S201でNo)、S213へ移行する。
S202では、カメラマイコン114は、ロボットアームの位置状態に基づく被写体までの距離情報を、画像処理コントローラ120から受信する受信コマンドか否かを判定する。被写体までの距離情報の受信コマンドの場合(S202でYes)、画像処理コントローラ120から送られてくる被写体の距離情報を取得し(S203)、被写体の距離情報をフォーカスレンズの位置情報へ換算する(S204)。被写体の距離情報のフォーカスレンズの位置情報への換算は、あらかじめズーム位置に応じてフォーカスレンズ位置に対する被写体距離を記憶した不揮発性メモリ等の情報に基づいて行えばよいが、これに限定されるものではない。
S205では、カメラマイコン114は、フォーカスレンズ105を、S204で算出したフォーカスレンズ位置へ移動させ、S206では、ワンショットAF動作中フラグをクリアしておく。
S202において、被写体までの距離情報の受信コマンドでない場合(S202でNo)、S207において、ワンショットAFコマンドか否かを判定する。ワンショットAFコマンドでない場合(S207でNo)は処理を終了し、ワンショットAFコマンドである場合(S207でYes)、S208において、ワンショットAF動作中フラグが立っているか否かを判定する。
ワンショットAF動作中フラグが立っている場合(S208でYes)、S210においてワンショットAF動作処理を継続する。ワンショットAF動作中フラグが立っていない場合(S208でNo)、S209においてワンショットAF動作中フラグを立て、S210においてワンショットAF動作を開始する。
そして、S211でワンショットAF動作が終了したか否かを判定する。ワンショットAF動作が終了していない場合(S211でNo)は処理を終了し、ワンショットAF動作が終了した場合(S211でYes)、S212においてワンショットAF動作中フラグをクリアする。
S213では、ワンショットAF動作中フラグが立っている場合(S213でYes)、S210においてワンショットAF動作を継続する。ワンショットAF動作中フラグが立っていない場合(S213でNo)、処理を終了する。
なお、本実施形態では、被写体までの距離情報の受信コマンドおよびワンショットAFコマンドを受信した後、各コマンド制御が終了するまで次のコマンドを受け付けないシーケンスを前提に記載しているが、本発明はこれに限定されるものではない。例えば、被写体までの距離情報の受信コマンドを所定の周期で定期的に受信するようにした場合には、ワンショットAFコマンド制御が実行されている際には、被写体距離情報の受信コマンドを受けつけないようにすればよい。
以上の動作により、画像処理コントローラ120から対象物までの距離、もしくはこれから移動しようとしている対象物までの距離を撮像装置100が受信する。その距離に基づいてフォーカスレンズを移動することにより、ロボットアーム130が動作している間に、合焦位置近傍へフォーカスレンズを移動させることができ、ロボットアーム130が動作した後のピント合わせにかかる時間を短縮することができる。また、ワンショットAF動作でのピント合わせにかかる時間も短縮することができる。
また、被写体までの距離情報の受信コマンドにより受信した被写体の距離情報の変化量が所定値以下の場合には、フォーカスレンズの移動を禁止する方法も考えられる。被写体の距離情報の変化が被写界深度内もしくは焦点深度内である場合には、フォーカスレンズを移動しなくてもピントが合っている。そのため、対象物の画像認識に対して影響を及ぼすことはなく、逆にフォーカスレンズの移動時間を短縮できる。この場合、所定値は、被写界深度もしくは焦点深度に基づいて決めればよい。また、被写体の距離情報の変化が小さい場合には、ロボットアーム130の移動量も小さい。このとき、ロボットアーム130が移動している間にフォーカスレンズが移動できないと時間の短縮にならない。この場合、所定値はロボットアーム130の移動速度とフォーカスレンズの移動速度とから決定すればよい。また、被写体距離ごとに被写体距離の変化量に対するフォーカスレンズの移動量が異なるため、被写体距離ごとに所定値を変更してもよい。
(第2の実施形態)
図3は、図1におけるカメラマイコン114が実行する焦点距離制御、絞り制御、露出制御等(撮像動作)の各種のカメラ制御処理(撮像制御)を示すフローチャートである。本処理は、カメラマイコン114内に格納されたコンピュータプログラムに従って実行される。
まず、S301において、カメラマイコン114は、通信装置116を経由して画像処理コントローラ120からのコマンドを受信したか否かを判定する。コマンドを受信した場合(S301でYes)、S302へ移行し、コマンドを受信していない場合(S301でNo)、S313へ移行する。
S302では、カメラマイコン114は、ロボットアームの位置状態に基づく被写体までの距離情報を、画像処理コントローラ120から受信する受信コマンドか否かを判定する。被写体までの距離情報の受信コマンドの場合(S302でYes)、画像処理コントローラ120から送られてくる被写体の距離情報を取得し(S303)、被写体の距離情報を各カメラ制御パラメータへ換算する(S304)。
ここで、各カメラ制御は、焦点距離制御、絞り制御、シャッタースピード制御(シャッタースピード変更制御)、ゲイン制御(ゲイン変更制御)を示している。被写体の距離情報に対して予め決められた焦点距離位置、絞り位置、シャッタースピード値、ゲイン値が、不図示の不揮発性メモリ等に記憶されている。そして、カメラマイコン114は、被写体の距離情報に対応する焦点距離位置、絞り位置、シャッタースピード値、ゲイン値をこの不揮発性メモリから取得する。
例えば、焦点距離制御では、対象物までの距離が近いほど、対象物が大きくなる。そのため、対象物までの距離が近いほど撮影範囲を広くし、撮影範囲をはみださないようにする。つまり、焦点距離制御は、対象物までの距離が近いほど、焦点距離が短くなるパラメータを記憶しておく。
また、絞り制御では、対象物までの距離が近いほど、被写界深度が狭くなってしまう。そのため、ピント位置が高精度である必要がある。そこで、絞り制御では、対象物までの距離が近いほど、小絞りになるパラメータを記憶しておく。これにより、ピント合わせの精度の厳密性を低減することが可能となる。
シャッタースピード制御およびゲイン制御では、対象物までの距離が近いほど、対象物がロボットアームで隠れてしまい、暗くなることが考えられる。そのため、適切な露光条件にするためには、対象物までの距離が近いほど、明るく撮影できるようにする必要がある。そのため、シャッタースピード制御およびゲイン制御では、対象物までの距離が近いほど、シャッタースピードが遅くなるように、またゲインが高くなるようにパラメータを記憶しておく。これにより、安定した適切な露光条件になるまでの時間を短縮することが可能となる。
S305において、S304で算出した各カメラ制御パラメータを設定し、設定されたパラメータに基づいて焦点距離制御、絞り制御およびシャッタースピード制御、ゲイン制御を行う。そして、S306において、各カメラ制御動作中フラグをクリアする。
一方、S302において、被写体までの距離情報の受信コマンドでない場合(S302でNo)、S307において、焦点距離制御コマンド、絞り制御コマンド、シャッタースピード制御コマンド、ゲイン制御コマンド等のカメラ制御コマンドか否かを判定する。各カメラ制御コマンドでない場合(S307でNo)は処理を終了し、各カメラ制御コマンドである場合(S307でYes)、S308において、各カメラ制御動作中フラグが立っているか否かを判定する。
S308において、各カメラ制御動作中フラグが立っている場合(S308でYes)、S310において各カメラ制御処理を継続する。各カメラ制御動作中フラグが立っていない場合(S308でNo)、S309において各カメラ制御動作中フラグを立て、S30において各カメラ制御動作を開始する。
そして、S311において、各カメラ制御動作が終了したか否かを判定し、各カメラ制御動作が終了していない場合(S311でNo)は処理を終了する。各カメラ制御動作が終了した場合(S311でYes)、S312において各カメラ制御動作中フラグをクリアする。
S313では、各カメラ制御動作中フラグが立っている場合(S313でYes)、S310において各カメラ制御動作を継続し、各カメラ制御動作中フラグが立っていない場合(S313でNo)、処理を終了する。
なお、本実施形態では、被写体までの距離情報の受信コマンドおよび各カメラ制御コマンドを受信した後、各コマンド制御が終了するまで次のコマンドを受け付けないシーケンスを前提に記載しているが、本発明はこれに限定されるものではない。例えば、被写体までの距離情報の受信コマンドを所定の周期で定期的に受信するようにした場合には、各カメラ制御コマンドによるカメラ制御が実行されている際には、被写体距離情報の受信コマンドを受けつけないようにすればよい。
以上の動作により、画像処理コントローラ120から、対象物までの距離、もしくはこれから移動しようとしている対象物までの距離を撮像装置100が受信する。その距離に基づいて焦点距離制御、絞り制御、シャッタースピード制御、ゲイン制御を行うことにより、ロボットアーム130が動作している間に、対象物を画像認識するために適切な撮影範囲、ピント精度、露光条件にカメラを制御することができる。これにより、ロボットアーム130が動作した後の、対象物を画像認識するまでにかかる時間も短縮することができる。それにより、ロボットアーム130の動作もスムーズに制御することができる。
(第3の実施形態)
<キャリブレーション処理>
図4は、基準となるデータ(図6に示すキャリブレーション情報)を作成するための画像処理コントローラ120及びロボットアーム130の動作を示すフローチャートである。
ただし、本実施形態においては、「撮像装置100のレンズ前玉の位置とロボットアーム130のハンド先端位置の距離情報」、「レンズ光軸とハンド中心軸の距離(X)313」は予め画像処理コントローラ120の二次記憶装置123に記憶されているものとする。一方、キャリブレーション位置に移動したときの被写体の距離情報については、ロボットアーム130から通知されてもよいし、予め画像処理コントローラ120の二次記憶装置123に記録されていてもよい。
まず、ユーザーが操作部126を介して画像処理コントローラ120にキャリブレーション動作指示を入力すると、S201において、CPU121は通信装置124を介してロボットアーム130に対してキャリブレーション位置への移動を指示する。
次にS202において、CPU121は通信装置124を介して撮像装置100に対してワンショットAFの実行指示を通知する。S203では、CPU121は通信装置124を介して撮像装置100に対して、画像を撮影して送信する旨の要求を通知する。
S204では、CPU121は撮像装置100から画像を受信すると、被写体のサイズを算出し、二次記憶装置123に記憶してキャリブレーション処理を終了する。被写体のサイズの算出方法と被写体サイズの種類については図6を用いて後述する。
<キャリブレーション情報>
次に、上述した図4における処理の結果生成されるキャリブレーション情報について、図5と図6を用いて説明する。まず、図5について説明する。なお、図5において、図1と同様の部分は同じ符号を付して示す。
ハンド部301は、ロボットアーム130の先端で把持動作を行う可動部分である。ワーク302は、ロボットアーム130が把持動作を行う対象となる物体、及び撮像装置100がAFや撮影を行う対象となる被写体である。
被写体距離(L)311は、ハンド部301の先端からワーク302までの距離を示している。撮像装置100のレンズの前玉からアーム先端までの距離(H)312は、撮像装置100における第1の固定レンズ群101の光軸に対して垂直な平面と、ハンド部301の先端が形成する平面との距離を示す。
レンズ光軸とハンド中心軸の距離(X)313は、撮像装置100の光軸とアーム部142の中心軸(略ワークを把持するときの中心軸)との距離を示す。焦点距離(l)314は、撮像装置100の焦点距離を示す。画像中心からのオフセット量(x)315は、撮像装置100においてワーク302を撮影したときの撮影画像におけるワーク302の中心位置と撮像素子106の中心位置との差(オフセット量)を示している。ワークサイズ(W)316は、ワーク302の実サイズ(実サイズ情報)を示している。
本発明形態では、前玉からアーム先端までの距離(H)312を50mm、レンズ光軸とハンド中心軸の距離(X)313を40mm、焦点距離(l)314を4.3mmと定義するが、これに限定されるものではない。
次に、図6について説明する。まず、図6において、被写体距離(L)、被写体サイズ(W)はそれぞれ図4のキャリブレーション処理において記憶した情報である。また、焦点距離(l)は撮像装置100が保持している情報である。さらに、物体の矩形サイズ(W)については図6(a)に記載されている物体の矩形サイズ(Wの画像上のサイズ)と図6(b)に記載されている物体の矩形サイズ(実サイズW)がある。
物体の矩形サイズ(Wの画像上のサイズ)を記憶する場合のシーケンスの一例について説明する。
図4のS202において、ワンショットAF処理が実行された後、画像処理コントローラ120のCPU121から通信装置124を介して撮像装置100に画像撮影要求を送信する。撮像装置100のカメラマイコン114が通信装置116を介して画像処理コントローラ120からの画像撮影要求を受信すると、撮影した画像を通信装置116を介して画像処理コントローラ120に送信する。
次に、CPU121は二次記憶装置123に記憶されているワーク302のサンプル画像と受信した撮影画像をマッチング処理し、類似度が最も高くなる時の撮影画像におけるサイズ情報(本実施形態においてはピクセル数)を二次記憶装置123に記憶する。サンプル画像はユーザーがあらかじめ二次記憶装置123に記憶しておいてもよいし、CAD情報等から予めマッチングのためのサンプル画像を生成しておくようにしてもよい。
一方、物体の矩形サイズ(実サイズW)をキャリブレーション情報として記憶する場合は、ユーザーが予めCAD情報等からワーク302の最長となる箇所等をサイズ情報として二次記憶装置123に記憶しておく方法が考えられる。
次に、撮像装置100によりワーク302を撮影したときの撮影画像に関して、図7を用いて説明する。
図7(a)は被写体距離(L)311が350mm(前玉からアーム先端までの距離(H)312を足すと400mm)、ワークサイズ(W)316が10mmの場合の撮影画像を表した例である。図7(b)は被写体距離(L)311が250mm(前玉からアーム先端までの距離(H)312を足すと300mm)、ワークサイズ(W)316が10mmの場合の撮影画像を表した例である。図7(c)は被写体距離(L)311が150mm(前玉からアーム先端までの距離(H)312を足すと200mm)、ワークサイズ(W)316が10mmの場合の撮影画像を表した例である。
図7(a)~図7(c)において、320は画面の中心位置を示している。321,331,341は、ワーク302を撮影したときの被写体像である。322,332,342は、被写体像321,331,341のそれぞれの中心位置と画面の中心位置320との画面上の距離(オフセット量)であり、図5における画像中心からのオフセット量(x)315に相当する。
なお、図7(c)のワーク302を撮影した被写体像である341は撮影画像外にフレームアウトしており、フレームアウトした部分は撮影されない。また、図中の点線で表記された323,333,343は、後述するAF枠設定処理を実行した結果設定されたAF枠である。
<AF枠設定処理>
次に、図8(a)を用いて本実施形態の特徴的な動作であるAF枠の設定処理(焦点検出領域設定処理)について説明する。まず、S601において、カメラマイコン114は通信装置116を介して画像処理コントローラ120から被写体距離情報を受信したか否かを判断する。受信していた場合はS602に進み、受信していない場合は被写体距離情報を受信するまでS601を繰り返す。
次にS602において、カメラマイコン114は通信装置116を介して画像処理コントローラ120からキャリブレーション情報を受信したか否かを判断する。受信していた場合はS603に進み、受信していない場合はキャリブレーション情報を受信するまでS602を繰り返す。
次にS603において、カメラマイコン114はS602とS603において受信した被写体距離情報とキャリブレーション情報とからAF枠サイズとAF枠の画像中心からのオフセット量を算出する。AF枠サイズとAF枠の中心からのオフセット量の算出方法については後述する。
次にS604において、カメラマイコン114は、S603において算出したAF枠サイズとAF枠の画像中心からのオフセット量に基づいてAF信号処理部113に対してAF信号処理を行う領域を設定する。そして、AF信号処理部113から受信したAF評価値に基づいてワンショットAF処理を実行する。
ここで、AF枠サイズとAF枠の中心からのオフセット量の算出方法について、図6と図9を用いて説明する。一例として、S601において受信した被写体距離情報(L2とする)が550mm、S602において受信したキャリブレーション情報が図6(a)に示す内容である場合の算出方法について説明する。
受信した被写体距離情報(L2)とキャリブレーション情報とに基づいて、画像上のオフセット量x(pix)およびAF枠の一片のサイズw(pix)は以下の式1及び式2で求められる。
x(pix)=(4.3*X)/((L2+H)*0.00155) …(式1)
w(pix)=w’*(L+H)/(L2+H) …(式2)
上述の(式1)、(式2)において、Xは40mm、w’は69pixであるので、画像上のオフセットx(pix)≒185(pix)、AF枠の一片のサイズw(pix)≒46(pix)となる。
また、S602において受信するキャリブレーション情報が図6(b)に示す内容である場合、(式2)の代わりに下記の(式3)を用いる。
w(pix)=(4.3*W)/((L+H)*0.00155) …(式3)
Wは10mmであるので、AF枠の一片のサイズは(式2)の結果と同様にw(pix)≒46(pix)となる。
(式1)に関して、被写体距離に応じた中心座標のオフセット量(pix)の関係を表したグラフを図9(a)に示す。図9(a)から、被写体距離が短くなるほどオフセット量が大きくなることがわかる。本実施形態において、画像のサイズを1920pix×1080pixとすると、画像の短手方向のオフセットが540(pix)を超えると、ワーク302が半分以上画像の外にフレームアウトしている状態となる。
また、(式3)に関して、被写体距離に応じた画像上の物体サイズ(pix)の関係を表したグラフを図9(b)に示す。図9(b)から、被写体距離が短くなるほど物体サイズ(pix)が大きくなることがわかる。図9(a)と図9(b)より、オフセット量(pix)+物体サイズ(pix)の半分のサイズが540(pix)を超えると物体が画像の外にフレームアウトし始めることがわかる。物体が画像の外にフレームアウトした場合、図7(c)に示すようにAF枠はフレームアウトした物体の画像端まで設定するようにする。
AF枠は、上述の方法により求めた撮影画像上のワーク302のサイズがちょうど収まるサイズに設定してもよいし、アーム部142の駆動誤差や上述したマッチングの精度等を考慮して所定割合または所定量だけ大きいAF枠を設定してもよい。
<AF制御処理>
次に図8(b)を用いてAF制御処理について説明する。まず、S611において、カメラマイコン114は画像処理コントローラ120からワンショットAFコマンドを受信したか否かを判断する。ワンショットAFコマンドを受信した場合はS612に進み、受信していない場合はワンショットAFコマンドを受信するまでS611を繰り返す。
次にS612において、ワンショットAFの対象となる被写体がワンショットAF可能な距離にあるか否かを判断する。ワンショットAF可能な距離か否かの判断の一例を以下に説明する。
カメラマイコン114がS601において受信した被写体距離情報に基づいて、被写体距離情報をフォーカスレンズ位置に換算した場合に、記憶部115に記憶されているレンズ駆動可能範囲内であるか否かを判断する。レンズ駆動可能範囲内であればワンショットAF可能であると判断し、レンズ駆動可能範囲外であればワンショットAF不可能であると判断する方法が考えられる。
また別の方法として、上述した図9(a)と図9(b)から、オフセット量(pix)+物体サイズ(pix)の半分のサイズが540(pix)を超えるか否かを判断する。超える場合は被写体が画像外にフレームアウトするため、ワンショットAF不可能領域であると判断する方法がある。
さらに別の方法として、図9(a)から、画像の短手方向のオフセットが540(pix)を超えて、ワーク302が半分以上画像の外にフレームアウトした状態となった場合にワンショットAF不可能距離であると判断する方法もある。
次にS613において、ワンショットAFを実行する。ワンショットAFでは、カメラマイコン114がAF信号処理部113からS604において設定したAF枠内の映像信号の高周波成分を抽出し、高周波成分が最も大きくなる位置にフォーカスレンズを駆動させる。ただし、ワンショットAFの方法については他の方法による制御を行ってもよい。
次にS614において、カメラマイコン114はワンショットAFが完了すると、通信装置116を介して画像処理コントローラ120にワンショットAFが完了した旨の通知をして処理を終了する。一方、S615では、カメラマイコン114はワンショットAFが不可能である旨の通知を通信装置116を介して画像処理コントローラ120に通知して処理を終了する。
上記のAF枠設定処理とAF制御処理によって、アーム部142と撮像装置100のパララックスを考慮して最適な位置にAF枠を設定した状態においてワンショットAFが実行できる。そのため、所望の被写体以外の被写体にピントが合うことを軽減することができる。
ただし、上述したAF枠設定処理は、図5に示すように撮像装置100がアーム部142に装着され、一体となって動作する場合にのみ適応されるものである。つまり、アーム部142の動作とは無関係な位置に撮像装置100が固定設置されているような場合は、カメラマイコン114は、アーム部142とワーク302との距離によらず固定の位置にAF枠を設定するようにAF信号処理部113に指示を出す。
<変形例>
なお、本実施形態の構成においては、撮像装置100はロボットアーム130に固定されている状態であり、ロボットアーム130に連動して移動するものであった。しかし、撮像装置100がロボットアーム130に固定されておらず、定点位置に置かれている場合も考えられる。その場合は、ロボットアーム130の位置によらず、対象物に対するピントや明るさや撮影画角は変わらずおおよそ一定である。そのため、対象物までの距離情報に基づいてフォーカスレンズ制御、焦点距離制御、絞り制御、シャッタースピード制御およびゲイン制御を変更する必要がない。このような理由により、画像処理コントローラ120から撮像装置100がロボットアーム130に固定されているのか、それもと定点撮影として固定されているのかを情報として撮像装置100に送信する。そして、撮像装置100はその情報に基づいてカメラ制御を変更する(制限する)。
また、画像処理コントローラ120は、ロボットアーム130と別々の構成としていたが、ロボットアーム130内に搭載されている構成でもよい。
また、本実施形態では、画像処理コントローラ120からロボットアーム130の位置状態に基づいて、対象物までの距離を示す被写体距離情報を撮像装置100に送信する構成としていた。しかし、ロボットアーム130の位置状態を撮像装置100に送信する構成でもよい。その場合、カメラマイコン114において、ロボットアーム130の位置状態から対象物までの距離を示す情報に換算すればよい。
さらに、撮像装置100に対して送信される対象物までの距離を示す被写体距離情報は、現在のロボットアーム130の位置状態における対象物までの距離でなくてもかまわない。次にロボットアームが移動しようとしている位置状態での対象物までの距離を示す被写体距離情報を送信することで、ロボットアームが移動しようとしている間に、各カメラ制御を実行することができ、ロボットアーム130の動作をスムーズに行うことができる。
<各実施形態の利点>
以上説明したように、上記の実施形態では、ロボットアーム130の位置状態に基づいて算出した対象物までの距離を示す情報を撮像装置100が受信する。撮像装置100では、対象物までの距離を示す情報に基づいて各カメラ制御を実行する。
このように、ロボットアーム130の位置、もしくは次に移動しようとしている位置に基づいて対象物までの距離を示す情報を撮像装置100が受信することにより、対象物の画像を取得し、画像を認識するために最適なピント、画角、明るさ等の撮影条件にカメラ制御を安定させるまでの時間を短縮することができる。これにより、ロボットアーム130をスムーズに動作させることが可能となる。
以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。上述の実施形態の一部を適宜組み合わせてもよい。
(その他の実施形態)
また本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現できる。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現できる。
100:撮像装置、102:変倍レンズ、103:絞り、105:フォーカスレンズ、106‥‥撮像素子、108:カメラ信号処理部、113:AF信号処理部、114:カメラマイクロコンピュータ、116:通信装置、120:画像処理コントローラ、130:ロボットアーム

Claims (15)

  1. ロボットアームに取り付け可能な撮像装置であって、
    ロボットアームを制御する制御装置から前記ロボットアームの状態の情報を受信する受信手段と、
    被写体像を撮像する撮像手段と、
    被写体に対する前記撮像手段の撮像動作を制御する撮像制御手段と、
    被写体の第1のサイズ情報と被写体までの第1の距離情報を記憶する記憶手段と、を備え、
    前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づいて、フォーカスレンズの移動を制御することで焦点状態の調節動作を制御し、
    前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づく被写体までの距離情報が第2の距離情報であった場合、前記第1のサイズ情報と前記第1の距離情報と前記第2の距離情報とに基づいて、焦点状態を検出するための領域を設定することを特徴とする撮像装置。
  2. 前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づくフォーカスレンズの移動量が所定値以下の場合は、フォーカスレンズを移動させないことを特徴とする請求項に記載の撮像装置。
  3. 前記撮像動作は、焦点距離の調節動作であって、
    前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づいて、ズームレンズの移動を制御することで前記焦点距離の調節動作を制御することを特徴とする請求項1に記載の撮像装置。
  4. 前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づく被写体までの距離が第1の距離よりも近い第2の距離の場合に、前記第1の距離の場合よりも、焦点距離が短くなるようにズームレンズの移動を制御することを特徴とする請求項に記載の撮像装置。
  5. 前記撮像動作は、絞り値の調節動作であって、
    前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づいて、絞りの駆動を制御することで前記絞り値の調節動作を制御することを特徴とする請求項1に記載の撮像装置。
  6. 前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づく被写体までの距離が第1の距離よりも近い第2の距離の場合に、前記第1の距離の場合よりも、絞り値が小絞りになるように、前記絞りの駆動を制御することを特徴とする請求項に記載の撮像装置。
  7. 前記撮像動作は、シャッタースピードの変更動作であって、
    前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づいて、前記シャッタースピードを制御することを特徴とする請求項1に記載の撮像装置。
  8. 前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づく被写体までの距離が第1の距離よりも近い第2の距離の場合に、前記第1の距離の場合よりも、シャッタースピードが遅くなるように、前記シャッタースピードを制御することを特徴とする請求項に記載の撮像装置。
  9. 前記撮像動作は、ゲインの変更動作であって、
    前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づいて、前記ゲインを制御することを特徴とする請求項1に記載の撮像装置。
  10. 前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づく被写体までの距離が第1の距離よりも近い第2の距離の場合に、前記第1の距離の場合よりも、ゲインが高くなるように、前記ゲインを制御することを特徴とする請求項に記載の撮像装置。
  11. 前記撮像装置が前記ロボットアームに取り付けられているか、いないかの情報を取得する取得手段を更に有し、
    前記撮像装置が前記ロボットアームに取り付けられていない場合には、前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づく前記撮像動作の制御を制限することを特徴とする請求項1に記載の撮像装置。
  12. 被写体の前記第1のサイズ情報は、前記撮像手段で撮像した画像に基づいた、前記第1の距離情報を受信したときの被写体のサイズ情報であることを特徴とする請求項に記載の撮像装置。
  13. 被写体の前記第1のサイズ情報は、前記制御装置に予め記憶されている被写体の実サイズ情報であることを特徴とする請求項に記載の撮像装置。
  14. ロボットアームに取り付け可能な撮像装置を制御する方法であって、
    ロボットアームを制御する制御装置から前記ロボットアームの状態の情報を受信する受信工程と、
    被写体像を撮像する撮像手段の撮像動作を制御する撮像制御工程と、
    被写体の第1のサイズ情報と被写体までの第1の距離情報を記憶する記憶工程と、を備え、
    前記撮像制御工程では、前記受信工程において前記制御装置から受信した前記ロボットアームの状態の情報に基づいて、フォーカスレンズの移動を制御することで焦点状態の調節動作を制御し、
    前記撮像制御工程では、前記受信工程において前記制御装置から受信した前記ロボットアームの状態の情報に基づく被写体までの距離情報が第2の距離情報であった場合、前記第1のサイズ情報と前記第1の距離情報と前記第2の距離情報とに基づいて、焦点状態を検出するための領域を設定することを特徴とする撮像装置の制御方法。
  15. ロボットアームに取り付けられた撮像装置と、前記ロボットアームと前記撮像装置を制御する制御装置とを備える撮像システムであって、
    前記制御装置は、
    前記撮像装置に対して、前記ロボットアームの状態の情報を通知する通知手段を備え、
    前記撮像装置は、
    被写体像を撮像する撮像手段と、
    被写体に対する前記撮像手段の撮像動作を制御する撮像制御手段と、
    前記ロボットアームの状態の情報を受信する受信手段と、
    被写体の第1のサイズ情報と被写体までの第1の距離情報を記憶する記憶手段と、を備え、
    前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づいて、フォーカスレンズの移動を制御することで焦点状態の調節動作を制御し、
    前記撮像制御手段は、前記受信手段により前記制御装置から受信した前記ロボットアームの状態の情報に基づく被写体までの距離情報が第2の距離情報であった場合、前記第1のサイズ情報と前記第1の距離情報と前記第2の距離情報とに基づいて、焦点状態を検出するための領域を設定することを特徴とする撮像システム。
JP2018048397A 2018-03-15 2018-03-15 撮像装置及びその制御方法、撮像システム Active JP7079123B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018048397A JP7079123B2 (ja) 2018-03-15 2018-03-15 撮像装置及びその制御方法、撮像システム
US16/352,999 US11095798B2 (en) 2018-03-15 2019-03-14 Image capturing system, image capturing apparatus, and control method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018048397A JP7079123B2 (ja) 2018-03-15 2018-03-15 撮像装置及びその制御方法、撮像システム

Publications (3)

Publication Number Publication Date
JP2019161553A JP2019161553A (ja) 2019-09-19
JP2019161553A5 JP2019161553A5 (ja) 2021-04-22
JP7079123B2 true JP7079123B2 (ja) 2022-06-01

Family

ID=67904299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018048397A Active JP7079123B2 (ja) 2018-03-15 2018-03-15 撮像装置及びその制御方法、撮像システム

Country Status (2)

Country Link
US (1) US11095798B2 (ja)
JP (1) JP7079123B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021133183A1 (ru) * 2019-12-23 2021-07-01 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Способ управления роботизированным манипулятором
JP7415028B2 (ja) 2020-09-28 2024-01-16 ファナック株式会社 撮像条件調整装置、及び撮像条件調整方法
WO2023223395A1 (ja) * 2022-05-16 2023-11-23 ファナック株式会社 画像処理装置、ビジョンシステムおよび画像処理プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251236A (ja) 2006-03-13 2007-09-27 Fujifilm Corp 撮影装置
JP2009081810A (ja) 2007-09-27 2009-04-16 Fujifilm Corp 撮影装置及び撮影方法
US20130314500A1 (en) 2012-05-23 2013-11-28 Fujifilm Corporation Stereoscopic imaging apparatus
WO2017066927A1 (en) 2015-10-20 2017-04-27 SZ DJI Technology Co., Ltd. Systems, methods, and devices for setting camera parameters

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473866A (en) * 1987-09-16 1989-03-20 Agency Ind Science Techn Automatic focusing device
US4785323A (en) * 1987-12-28 1988-11-15 Eastman Kodak Company Exposure control
US5204710A (en) * 1989-06-13 1993-04-20 Minolta Camera Kabushiki Kaisha Camera having zoom lens system
JP2003211382A (ja) 2002-01-16 2003-07-29 Denso Wave Inc ロボット制御装置
US8079950B2 (en) * 2005-09-29 2011-12-20 Intuitive Surgical Operations, Inc. Autofocus and/or autoscaling in telesurgery
EP2821981A4 (en) * 2012-03-01 2015-05-20 Nissan Motor THREE DIMENSIONAL OBJECT DETECTION DEVICE
JP6137847B2 (ja) * 2013-01-28 2017-05-31 オリンパス株式会社 撮像装置及び撮像装置の制御方法
CN106061427B (zh) * 2014-02-28 2020-10-27 索尼公司 机器人臂设备、机器人臂控制方法和程序
WO2016044949A1 (en) * 2014-09-25 2016-03-31 Avigilon Corporation Method and system for adjusting camera focus to facilitate infrared imaging
US9857786B2 (en) * 2015-03-31 2018-01-02 Recognition Robotics, Inc. System and method for aligning a coordinated movement machine reference frame with a measurement system reference frame
JP6605611B2 (ja) * 2015-09-03 2019-11-13 株式会社Fuji ロボットシステム
BR102016028266A2 (pt) * 2016-12-01 2018-06-19 Autaza Tecnologia Ltda - Epp Método e sistema para a inspeção automática de qualidade de materiais
US10917543B2 (en) * 2017-04-24 2021-02-09 Alcon Inc. Stereoscopic visualization camera and integrated robotics platform
WO2018217951A1 (en) * 2017-05-24 2018-11-29 Camplex, Inc. Surgical visualization systems and displays
US10269108B2 (en) * 2017-09-01 2019-04-23 Midea Group Co., Ltd. Methods and systems for improved quality inspection of products using a robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251236A (ja) 2006-03-13 2007-09-27 Fujifilm Corp 撮影装置
JP2009081810A (ja) 2007-09-27 2009-04-16 Fujifilm Corp 撮影装置及び撮影方法
US20130314500A1 (en) 2012-05-23 2013-11-28 Fujifilm Corporation Stereoscopic imaging apparatus
WO2017066927A1 (en) 2015-10-20 2017-04-27 SZ DJI Technology Co., Ltd. Systems, methods, and devices for setting camera parameters

Also Published As

Publication number Publication date
JP2019161553A (ja) 2019-09-19
US11095798B2 (en) 2021-08-17
US20190289174A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP4874669B2 (ja) オートフォーカスユニット及びデジタルカメラ
JP4874668B2 (ja) オートフォーカスユニット及びカメラ
US7365790B2 (en) Autofocus system for an image capturing apparatus
JP2006319596A (ja) 撮像装置および撮像方法
JP5812706B2 (ja) 光学装置およびその制御方法
JP7079123B2 (ja) 撮像装置及びその制御方法、撮像システム
JP2010139666A (ja) 撮像装置
JP4596246B2 (ja) オートフォーカスシステム
JP4661269B2 (ja) 撮影装置及びプログラム
JP2016142999A (ja) 撮像装置及びその制御方法
KR101589498B1 (ko) 디지털 카메라 및 그 제어방법
JP2016142924A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP7137355B2 (ja) 撮像システム及びその制御方法、プログラム、記憶媒体
JP2010066728A (ja) 撮像装置および撮像装置の制御方法
CN111630427B (zh) 摄像装置、摄像方法及存储介质
JP2014174441A (ja) 撮像装置及びその制御方法
JP2010256519A (ja) 撮像装置
JP7132731B2 (ja) 撮像システム、撮像装置、及びそれらの制御方法、プログラム、記憶媒体
JP2020190652A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP7116561B2 (ja) 撮像システム、撮像装置、及びそれらの制御方法、プログラム、記憶媒体
JP5938268B2 (ja) 撮像装置およびその制御方法
US11924549B2 (en) Imaging apparatus
JP2017058563A (ja) 自動焦点調節装置、撮像装置、および自動焦点調節方法
JP2016142998A (ja) 焦点調節装置、撮像装置、焦点調節装置の制御方法、及びプログラム
JP4420651B2 (ja) 光学装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220520

R151 Written notification of patent or utility model registration

Ref document number: 7079123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151