JP7076742B2 - Low-temperature heating furnace with cooling mechanism using liquid nitrogen in the thermal desorption analysis method - Google Patents

Low-temperature heating furnace with cooling mechanism using liquid nitrogen in the thermal desorption analysis method Download PDF

Info

Publication number
JP7076742B2
JP7076742B2 JP2019086307A JP2019086307A JP7076742B2 JP 7076742 B2 JP7076742 B2 JP 7076742B2 JP 2019086307 A JP2019086307 A JP 2019086307A JP 2019086307 A JP2019086307 A JP 2019086307A JP 7076742 B2 JP7076742 B2 JP 7076742B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
analysis
liquid nitrogen
analysis chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019086307A
Other languages
Japanese (ja)
Other versions
JP2020180952A (en
Inventor
尚三 長沢
聡 亀井
裕介 野中
武司 広田
Original Assignee
株式会社ジェイ・サイエンス・ラボ
武司 広田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・サイエンス・ラボ, 武司 広田 filed Critical 株式会社ジェイ・サイエンス・ラボ
Priority to JP2019086307A priority Critical patent/JP7076742B2/en
Publication of JP2020180952A publication Critical patent/JP2020180952A/en
Application granted granted Critical
Publication of JP7076742B2 publication Critical patent/JP7076742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉にかかり、分析試料が内部に設置される分析チャンバ内を零度以下の温度から常温以上の所定温度範囲に亘って昇温するのに好適な昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉に関する。 The present invention is applied to a low-temperature heating furnace with a cooling mechanism using liquid nitrogen in the temperature-heating desorption analysis method, and the temperature inside the analysis chamber in which the analysis sample is installed is changed from a temperature below zero to a predetermined temperature range above room temperature. The present invention relates to a low temperature temperature riser with a cooling mechanism using liquid nitrogen in a temperature rise desorption analysis method suitable for raising the temperature over a period of time.

一般に、水素脆性に関わる水素分析方法の1つとして昇温脱離分析法(TDA)が利用されている。 Generally, the thermal desorption analysis method (TDA) is used as one of the hydrogen analysis methods related to hydrogen embrittlement.

この昇温脱離分析法は、鋼材に侵入し遅れ破壊の原因となる水素を、室温から最大1000℃(拡散性水素測定の場合は300℃程度で十分)まで、一定速度で昇温炉を昇温し、温度プロファイル(温度に対する水素放出量)を検証し、鋼材中の水素の存在状態(トラップサイト等)を推測することを可能とする(例えば、特許文献1参照)。 In this temperature rise desorption analysis method, hydrogen that invades steel and causes delayed breakdown is heated at a constant speed from room temperature to a maximum of 1000 ° C (about 300 ° C is sufficient for diffusible hydrogen measurement). It is possible to raise the temperature, verify the temperature profile (amount of hydrogen released with respect to temperature), and infer the existence state of hydrogen in the steel material (trap site, etc.) (see, for example, Patent Document 1).

特開2012-032223号公報Japanese Unexamined Patent Publication No. 2012-02223

このような前記従来方式においては、室温から昇温を開始しているので、室温付近で放出が始まっている拡散性水素については、室温若しくは室温以下における水素放出挙動を検証することができないという不都合があった。 In such a conventional method, since the temperature rise is started from room temperature, it is inconvenient that the hydrogen release behavior at room temperature or below room temperature cannot be verified for the diffusible hydrogen whose release starts near room temperature. was there.

そこで、室温以下の水素の挙動を検証するためには炉温度を冷却し、例えば-100℃程度からの低温部の昇温制御ができる方式が必要とされている。 Therefore, in order to verify the behavior of hydrogen below room temperature, there is a need for a method that can cool the furnace temperature and control the temperature rise of the low temperature portion from, for example, about -100 ° C.

しかしながら、炉温度を冷却する場合にも分析試料からの水素放出が予測されるので、その水素放出を抑制しながら炉の冷却を進める必要性がある。 However, since hydrogen release from the analytical sample is predicted even when the furnace temperature is cooled, it is necessary to proceed with cooling of the furnace while suppressing the hydrogen release.

また、大きな分析試料についても適正に検証できる装置が望まれていた。 In addition, an apparatus that can properly verify even a large analytical sample has been desired.

本発明はこれらの点に鑑みてなされたものであり、分析試料が内部に設置される分析チャンバ内を零度以下の温度から常温以上の所定温度範囲に亘って昇温することができ、分析試料からの水素放出を抑制しながら所定温度範囲の下限まで冷却することができ、大きな分析試料についても対応することのできる昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉を提供することを目的とする。 The present invention has been made in view of these points, and the temperature inside the analysis chamber in which the analysis sample is installed can be raised from a temperature below zero to a predetermined temperature range above room temperature, and the analysis sample can be heated. Low temperature temperature riser with cooling mechanism using liquid nitrogen in the temperature rise desorption analysis method that can cool to the lower limit of the predetermined temperature range while suppressing the release of hydrogen from The purpose is to provide.

前記の課題を解決するために、本発明の第1の態様の昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉は、分析試料が内部に設置される分析チャンバ内を-100℃から1000℃の所定温度範囲に亘って昇温する昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉であって、液体窒素を冷却源として前記分析チャンバ内を少なくとも常温から前記所定温度範囲の下限温度まで冷却する冷却機構であって、前記分析試料が設置される前記分析チャンバの直管部分の外周全体を囲む環状の冷却流路と、当該冷却流路に前記冷却源を供給して前記分析チャンバ内を常温から-30℃まで10分以内の速度をもって前記分析試料からの水素放出を抑制しながら-100℃まで冷却させる冷却源供給手段とを備えている冷却機構と、前記分析チャンバ内を前記所定温度範囲の下限から上限に亘って等速で昇温させる加熱手段であって、前記冷却流路の外周全体を囲むように配置されているとともに、前記冷却流路を通して前記分析チャンバ内に熱量を付与して加熱するように形成されている加熱手段とを有していることを特徴とする。 In order to solve the above-mentioned problems, the low-temperature heating furnace with a cooling mechanism using liquid nitrogen in the temperature-heating desorption analysis method of the first aspect of the present invention is provided in an analysis chamber in which an analysis sample is installed. A low-temperature heating furnace with a cooling mechanism using liquid nitrogen in a temperature-heating desorption analysis method that raises the temperature over a predetermined temperature range of -100 ° C to 1000 ° C. The analysis chamber uses liquid nitrogen as a cooling source. A cooling mechanism that cools the inside from at least room temperature to the lower limit temperature in the predetermined temperature range, and includes an annular cooling flow path that surrounds the entire outer circumference of the straight pipe portion of the analysis chamber in which the analysis sample is installed. As a cooling source supply means for supplying the cooling source to the cooling flow path and cooling the inside of the analysis chamber from room temperature to -30 ° C at a rate of within 10 minutes while suppressing hydrogen release from the analysis sample to -100 ° C. A cooling mechanism comprising the In addition, it is characterized by having a heating means formed so as to apply heat to the inside of the analysis chamber through the cooling flow path to heat the analysis chamber .

このように本発明は構成されているので、冷却機構において、冷却源供給手段によって冷却源の液体窒素を冷却流路に供給して、分析チャンバ内を常温から所定温度範囲の下限の-100℃まで常温から-30℃まで10分以内の速度をもって分析試料からの水素放出を抑制しながら冷却することができる。更に、冷却流路の外周全体を囲むように配置されている加熱手段によって、冷却機構の冷却流路を通して分析チャンバ内に熱源を供給して分析チャンバ内を所定温度範囲の下限の-100℃から上限の1000℃まで等速で昇温させることができる。 Since the present invention is configured in this way, in the cooling mechanism , liquid nitrogen of the cooling source is supplied to the cooling flow path by the cooling source supply means, and the inside of the analysis chamber is inside the analysis chamber at −100 ° C., which is the lower limit of the predetermined temperature range. It can be cooled from room temperature to −30 ° C. at a rate of less than 10 minutes while suppressing hydrogen release from the analytical sample. Further, a heat source is supplied into the analysis chamber through the cooling flow path of the cooling mechanism by a heating means arranged so as to surround the entire outer circumference of the cooling flow path, and the inside of the analysis chamber is kept in the analysis chamber from the lower limit of −100 ° C. in a predetermined temperature range. The temperature can be raised to the upper limit of 1000 ° C. at a constant speed.

また、本発明の第の態様の昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉は、第の態様において、前記冷却流路および加熱手段は、前記分析チャンバの前記分析試料が設置される位置の直管部分に沿って長尺状に形成されており、前記分析チャンバ内に所定長の均熱領域を形成して加熱するように形成されていることを特徴とする。 Further, in the low temperature heating furnace with a cooling mechanism using liquid nitrogen in the heating desorption analysis method of the second aspect of the present invention, in the first aspect, the cooling flow path and the heating means are the analysis chamber. It is formed in a long shape along the straight pipe portion at the position where the analysis sample is installed, and is formed so as to form a heat equalizing region of a predetermined length in the analysis chamber and heat it. It is a feature.

このように本発明は構成されているので、前記分析チャンバ内を所定長の均熱領域を形成して加熱することができ、当該均熱領域に収まる大きな分析試料についても適正に加熱して、水素放出の分析に供することができる。 Since the present invention is configured in this way, the inside of the analysis chamber can be heated by forming a heat equalizing region having a predetermined length, and even a large analytical sample that fits in the heat equalizing region can be appropriately heated. It can be used for analysis of hydrogen release.

このように本発明は分析試料が内部に設置される分析チャンバ内を零度以下の温度から常温以上の所定温度範囲に亘って昇温することができ、分析試料からの水素放出を抑制しながら所定温度範囲の下限まで冷却することができ、大きな分析試料についても対応することのできる昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉を提供することができる。 As described above, according to the present invention, the temperature inside the analysis chamber in which the analysis sample is installed can be raised from a temperature below zero to a predetermined temperature range above room temperature, and the temperature can be determined while suppressing hydrogen release from the analysis sample. It is possible to provide a low temperature temperature riser with a cooling mechanism using liquid nitrogen in a temperature rise desorption analysis method that can cool down to the lower limit of the temperature range and can handle a large analytical sample.

本発明の1実施形態の全体構成を示すブロック図A block diagram showing the overall configuration of one embodiment of the present invention. 本実施形態に基づく昇温特性を示す線図Diagram showing temperature rise characteristics based on this embodiment 本実施形態に基づく放出水素量の特性を示す線図Diagram showing the characteristics of the amount of released hydrogen based on this embodiment 本実施形態に基づく分析チャンバ内の温度分布を示す線図Diagram showing the temperature distribution in the analysis chamber based on this embodiment

以下、本発明の実施の形態について、図1~図4について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 4.

図1は、本発明の昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉(以下、「低温式昇温炉」という)の1実施形態の全体構成を示している。 FIG. 1 shows the overall configuration of one embodiment of a low temperature heating furnace with a cooling mechanism (hereinafter referred to as “low temperature heating furnace”) using liquid nitrogen in the heating desorption analysis method of the present invention. ..

本実施形態の低温式昇温炉1は、分析試料Sが内部に設置される分析チャンバ2に沿って設けられている。分析チャンバ2は長尺な円筒状の石英管によって形成されており、内部の図示しない試料設置台上に分析試料Sが挿入して設置されるように形成されている。分析チャンバ2の図1の左側開口よりパージアルゴンが供給され、右側開口より図示しない分析手段に向けて分析試料Sより放出された水素等の被検出成分が送出される。 The low-temperature heating furnace 1 of the present embodiment is provided along the analysis chamber 2 in which the analysis sample S is installed. The analysis chamber 2 is formed by a long cylindrical quartz tube, and is formed so that the analysis sample S is inserted and installed on a sample installation table (not shown) inside. Purge argon is supplied from the left opening of FIG. 1 of the analysis chamber 2, and the detected component such as hydrogen released from the analysis sample S is sent from the right opening toward the analysis means (not shown).

本実施例の低温式昇温炉1は、分析試料Sが内部に設置される分析チャンバ2内を零度以下の温度から常温以上の所定温度範囲に亘って昇温して昇温脱離分析法を実行する低温式昇温炉であり、液体窒素を冷却源として分析チャンバ2内を少なくとも常温から前記所定温度範囲の下限温度まで所定冷却速度(所定冷却速度とは、冷却目的に応じた冷却速度を意味し、早期の冷却を目的とする急速急冷や、一定速度の冷却を含み、予め冷却目的に応じて適正な冷却速度を設定しておくとよい。)で冷却する冷却機構3と、前記所定温度範囲の下限から上限に亘って等速で昇温させる加熱手段4とを有している。本実施形態の所定温度範囲は-100℃から1000℃としている。 In the low-temperature heating furnace 1 of the present embodiment, the temperature inside the analysis chamber 2 in which the analysis sample S is installed is raised from a temperature below zero to a predetermined temperature range above room temperature, and the temperature rises and desorbs. It is a low-temperature type heating furnace that executes The cooling mechanism 3 for cooling by a cooling mechanism 3 which includes rapid rapid cooling for the purpose of early cooling and cooling at a constant rate, and an appropriate cooling rate may be set in advance according to the cooling purpose. It has a heating means 4 for raising the temperature at a constant speed from the lower limit to the upper limit of a predetermined temperature range. The predetermined temperature range of this embodiment is -100 ° C to 1000 ° C.

一方の冷却機構3は、分析試料Sが設置される分析チャンバ2の直管部分の外周を同心円状に囲む長尺な環状の冷却流路3aと、当該冷却流路3aに液体窒素からなる冷却源を供給して分析チャンバ2内を冷却させる冷却源供給手段3bとを備えている。 On the other hand, the cooling mechanism 3 has a long annular cooling flow path 3a concentrically surrounding the outer periphery of the straight pipe portion of the analysis chamber 2 in which the analysis sample S is installed, and the cooling flow path 3a is cooled by liquid nitrogen. It is provided with a cooling source supply means 3b for supplying a source and cooling the inside of the analysis chamber 2.

他方の加熱手段4は、冷却流路3aの外側に同心円状に配置されている長尺な公知のヒータからなる加熱源をもって形成されており、冷却流路3aを通して真空チャンバ2内に熱量を付与して加熱するように形成されている。 The other heating means 4 is formed with a heating source consisting of long known heaters arranged concentrically on the outside of the cooling flow path 3a, and imparts heat to the inside of the vacuum chamber 2 through the cooling flow path 3a. It is formed to heat.

更に説明すると、分析チャンバ2の分析試料Sが設置される位置の直管部分に沿って所定長の長尺筒状の昇温炉筐体1aが設置されている。この昇温炉筐体1aには、それぞれ所定長の冷却流路3aおよび加熱手段4が適宜な仕切をもって同心円上に配置されている。 More specifically, a long cylindrical heating furnace housing 1a having a predetermined length is installed along the straight pipe portion at the position where the analysis sample S of the analysis chamber 2 is installed. In the heating furnace housing 1a, a cooling flow path 3a having a predetermined length and a heating means 4 are arranged concentrically with appropriate partitions.

冷却源供給手段3bにおいては、例えばデュワー瓶からなる液体窒素容器5内の液体窒素を冷却源として備えている。本実施形態においては、液体窒素を液体状ではなく冷気窒素ガス状として冷却流路3aに供給するための冷媒供給路6が液体窒素容器5の上部開口と冷却流路3aとの間に設けられている。冷媒供給路6には必要箇所に断熱カバー6aが付されている。液体窒素容器5内には放熱フィンを付けたカートリッジヒータ7が設置されており、温度調節器8からの指示によってカートリッジヒータ7を加熱することによって液体窒素を気化させ、気化による自圧によって冷気窒素ガスを冷却流路3aに供給するように形成されている。冷媒供給路6の途中には、冷気窒素ガスの供給状態を適正に制御するための窒素制御ユニット9が設けられている。具体的には冷媒供給路6の途中に供給遮断を可能とするストップ弁10が設置されており、そのストップ弁10の上流側の位置に必要に応じて冷気窒素ガスを系外に放出可能とする安全弁11および逃がし弁12が設置されている。 The cooling source supply means 3b includes, for example, liquid nitrogen in a liquid nitrogen container 5 made of a Dewar bottle as a cooling source. In the present embodiment, a refrigerant supply path 6 for supplying liquid nitrogen to the cooling flow path 3a in the form of cold nitrogen gas instead of liquid is provided between the upper opening of the liquid nitrogen container 5 and the cooling flow path 3a. ing. The refrigerant supply path 6 is provided with a heat insulating cover 6a at necessary points. A cartridge heater 7 with radiating fins is installed in the liquid nitrogen container 5, and liquid nitrogen is vaporized by heating the cartridge heater 7 according to an instruction from the temperature controller 8, and cold nitrogen is vaporized by self-pressure due to vaporization. It is formed so as to supply gas to the cooling flow path 3a. A nitrogen control unit 9 for appropriately controlling the supply state of cold nitrogen gas is provided in the middle of the refrigerant supply path 6. Specifically, a stop valve 10 that enables supply cutoff is installed in the middle of the refrigerant supply path 6, and cold nitrogen gas can be discharged to the outside of the system at a position on the upstream side of the stop valve 10 as needed. A safety valve 11 and a relief valve 12 are installed.

次に、本実施形態の作用を説明する。 Next, the operation of this embodiment will be described.

<低温式昇温炉の冷却>
分析試料Sを分析チャンバ2の試料設置台上に設置した状態で分析チャンバ2内にパージアルゴンを供給して微加圧状態にする。
<Cooling of low temperature heating furnace>
With the analysis sample S installed on the sample installation table of the analysis chamber 2, purge argon is supplied into the analysis chamber 2 to bring it into a slightly pressurized state.

その後、冷却機構3の冷却供給手段3bの温度調節器8によってカートリッジヒータ7を加熱させて液体窒素容器5内の液体窒素を定量的に所定速度で気化させる。液体窒素の気化によって発生した冷気窒素ガスは自圧によって冷媒供給路6を通ると共に、窒素制御ユニット9をもって適正速度に調整されて冷却流路3aに供給される。冷却流路3a内を流通する冷気窒素ガスは、分析チャンバ2内および分析試料Sを常温(室温)から-100℃まで急速に冷却させて分析試料Sからの温度降下時における水素放出を抑制する。本実施形態においては、液体窒素を冷却源としているために急速冷却が可能である。特に、低温領域の拡散性水素では室温から-30℃まで10分以内で冷却することが望まれているが、本実施形態によれば、常温(室温)から-100℃まで急速冷却することによって低温領域の拡散性水素の放出を確実に防止することができる。 After that, the cartridge heater 7 is heated by the temperature controller 8 of the cooling supply means 3b of the cooling mechanism 3 to quantitatively vaporize the liquid nitrogen in the liquid nitrogen container 5 at a predetermined rate. The cold nitrogen gas generated by the vaporization of liquid nitrogen passes through the refrigerant supply path 6 by its own pressure, is adjusted to an appropriate speed by the nitrogen control unit 9, and is supplied to the cooling flow path 3a. The cold nitrogen gas flowing in the cooling flow path 3a rapidly cools the inside of the analysis chamber 2 and the analysis sample S from room temperature (room temperature) to -100 ° C, and suppresses hydrogen release from the analysis sample S when the temperature drops. .. In the present embodiment, since liquid nitrogen is used as the cooling source, rapid cooling is possible. In particular, diffusible hydrogen in the low temperature region is desired to be cooled from room temperature to −30 ° C. within 10 minutes, but according to the present embodiment, it is rapidly cooled from room temperature (room temperature) to −100 ° C. The release of diffusible hydrogen in the low temperature region can be reliably prevented.

<低温式昇温炉の昇温>
分析チャンバ2内および分析試料Sが-100℃に冷却された後に、加熱手段4のヒータを稼働させて熱量を発生させて、冷却流路3aを通して分析チャンバ2に向けて熱量を供給する。この熱量の供給量は冷却流路3a内の冷気窒素ガスの存在を考慮してバランスを取りながら分析チャンバ2および分析試料Sが等速に昇温する量に制御される。
<Temperature temperature rise of low temperature type heating furnace>
After the inside of the analysis chamber 2 and the analysis sample S are cooled to −100 ° C., the heater of the heating means 4 is operated to generate heat, and the heat is supplied to the analysis chamber 2 through the cooling flow path 3a. The amount of heat supplied is controlled to an amount that raises the temperature of the analysis chamber 2 and the analysis sample S at a constant rate while keeping a balance in consideration of the presence of cold nitrogen gas in the cooling flow path 3a.

これにより例えば図2に示すように、分析チャンバ2および分析試料Sは100℃/時の昇温速度をもって、例えば-100℃~200℃の間を等速昇温される。この-100℃からの昇温は、一般的な室温からの昇温と変わらない直線性を可能としている。その場合における分析試料Sからの放出水素量は、例えば図3に示すように、50℃をピークとする正規分布となり、適正な水素放出の検出が可能となる。この昇温条件は昇温目的に応じて変更するとよい。 As a result, for example, as shown in FIG. 2, the analysis chamber 2 and the analysis sample S are heated at a constant rate of temperature between −100 ° C. and 200 ° C. at a temperature rise rate of 100 ° C./hour. The temperature rise from -100 ° C. enables the same linearity as the temperature rise from a general room temperature. In that case, the amount of hydrogen released from the analytical sample S has a normal distribution with a peak at 50 ° C., for example, as shown in FIG. 3, and appropriate hydrogen release can be detected. This temperature rise condition may be changed according to the purpose of temperature rise.

また、本実施形態においては、冷却流路3aおよび加熱手段4が、分析チャンバ2の分析試料Sが設置される位置の直管部分に沿って所定長に亘って長尺状に形成されているので、分析チャンバ2内に所定長の均熱領域を形成して加熱することができる。具体的には、分析チャンバ2の長さ200mmに亘って-100℃、0℃、100℃、200℃、400℃、800℃についての長手方向の温度分布を計測すると、図4に示すように、設定値±5℃の範囲内の均熱領域が少なくとも50mmに亘って形成されている。これにより本実施形態によれば、当該均熱領域に収まる大きな分析試料Sについても適正に加熱して、水素放出の分析に供することができる。更に、-100℃の低温領域から最大1000℃の高温領域に亘って等速昇温ができるので、拡散性水素/非拡散性水素のすべてに対応できる広範囲な温度領域での測定が可能である。 Further, in the present embodiment, the cooling flow path 3a and the heating means 4 are formed in a long shape along a straight pipe portion at a position where the analysis sample S of the analysis chamber 2 is installed over a predetermined length. Therefore, a heat equalizing region having a predetermined length can be formed in the analysis chamber 2 and heated. Specifically, when the temperature distribution in the longitudinal direction for −100 ° C., 0 ° C., 100 ° C., 200 ° C., 400 ° C., and 800 ° C. was measured over a length of 200 mm of the analysis chamber 2, as shown in FIG. , A soaking region within the range of the set value ± 5 ° C. is formed over at least 50 mm. As a result, according to the present embodiment, even a large analytical sample S that fits in the soaking region can be appropriately heated and used for analysis of hydrogen release. Furthermore, since the temperature can be raised at a constant rate from a low temperature region of -100 ° C to a high temperature region of up to 1000 ° C, measurement can be performed in a wide temperature range that can handle all diffusible hydrogen / non-diffusible hydrogen. ..

本実施形態においては、温度調節器8および窒素制御ユニット9をもって適正量の冷気窒素ガスを供給するものであるから、冷却源の液体窒素消費量も比較的少量に抑えることができ、1回の測定に要する液体窒素量は例えば、2.5~3L(2.5~3kg)であり、更に、液体窒素が減少した場合に、液体窒素容器7内で空焚きしないよう、また冷気窒素ガスの圧力が上昇しすぎた場合はバイパス流路より排気することができるので安全性が高い。 In the present embodiment, since the temperature controller 8 and the nitrogen control unit 9 supply an appropriate amount of cold air nitrogen gas, the liquid nitrogen consumption of the cooling source can be suppressed to a relatively small amount, and one time. The amount of liquid nitrogen required for measurement is, for example, 2.5 to 3 L (2.5 to 3 kg), and further, when the amount of liquid nitrogen decreases, it should not be heated in the liquid nitrogen container 7 and the cold nitrogen gas should be used. If the pressure rises too much, it can be exhausted from the bypass flow path, which is highly safe.

なお、本発明は前記実施形態に限定されるものではなく、種々の変更が可能である。 The present invention is not limited to the above embodiment, and various modifications can be made.

1 低温式昇温炉
2 分析チャンバ
3 冷却機
3a 冷却流路
3b 冷却源供給手段
4 加熱手段
5 液体窒素容器
8 温度調節器
9 窒素制御ユニット
1 Low temperature temperature riser 2 Analysis chamber 3 Cooler 3a Cooling flow path 3b Cooling source supply means 4 Heating means 5 Liquid nitrogen container 8 Temperature controller 9 Nitrogen control unit

Claims (2)

分析試料が内部に設置される分析チャンバ内を-100℃から1000℃の所定温度範囲に亘って昇温する昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉であって、
液体窒素を冷却源として前記分析チャンバ内を少なくとも常温から前記所定温度範囲の下限温度まで冷却する冷却機構であって、前記分析試料が設置される前記分析チャンバの直管部分の外周全体を囲む環状の冷却流路と、当該冷却流路に前記冷却源を供給して前記分析チャンバ内を常温から-30℃まで10分以内の速度をもって前記分析試料からの水素放出を抑制しながら-100℃まで冷却させる冷却源供給手段とを備えている冷却機構と、
前記分析チャンバ内を前記所定温度範囲の下限から上限に亘って等速で昇温させる加熱手段であって、前記冷却流路の外周全体を囲むように配置されているとともに、前記冷却流路を通して前記分析チャンバ内に熱量を付与して加熱するように形成されている加熱手段とを有している
ことを特徴とする昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉。
It is a low temperature temperature riser with a cooling mechanism using liquid nitrogen in the temperature rise desorption analysis method that raises the temperature inside the analysis chamber where the analysis sample is installed over a predetermined temperature range of -100 ° C to 1000 ° C. hand,
A cooling mechanism that cools the inside of the analysis chamber from at least room temperature to the lower limit temperature in the predetermined temperature range using liquid nitrogen as a cooling source, and covers the entire outer periphery of the straight pipe portion of the analysis chamber in which the analysis sample is installed. While suppressing the release of hydrogen from the analysis sample at a speed of within 10 minutes from room temperature to -30 ° C in the analysis chamber by supplying the cooling source to the surrounding annular cooling flow path and the cooling flow path, -100. A cooling mechanism equipped with a cooling source supply means for cooling to ° C , and
It is a heating means that raises the temperature inside the analysis chamber at a constant speed from the lower limit to the upper limit of the predetermined temperature range, is arranged so as to surround the entire outer periphery of the cooling flow path, and passes through the cooling flow path. A low-temperature temperature riser with a cooling mechanism using liquid nitrogen in a temperature rise desorption analysis method , which comprises a heating means formed to apply heat to the analysis chamber for heating. Furnace.
前記冷却流路および加熱手段は、前記分析チャンバの前記分析試料が設置される位置の直管部分に沿って長尺状に形成されており、前記分析チャンバ内に所定長の均熱領域を形成して加熱するように形成されていることを特徴とする請求項1に記載の昇温脱離分析法における液体窒素を用いた冷却機構付低温式昇温炉。 The cooling flow path and the heating means are formed in a long shape along a straight pipe portion at a position where the analysis sample is installed in the analysis chamber, and form a heat soaking region having a predetermined length in the analysis chamber. A low-temperature temperature riser with a cooling mechanism using liquid nitrogen in the temperature rise desorption analysis method according to claim 1, wherein the temperature riser is formed so as to heat the sample.
JP2019086307A 2019-04-26 2019-04-26 Low-temperature heating furnace with cooling mechanism using liquid nitrogen in the thermal desorption analysis method Active JP7076742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019086307A JP7076742B2 (en) 2019-04-26 2019-04-26 Low-temperature heating furnace with cooling mechanism using liquid nitrogen in the thermal desorption analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019086307A JP7076742B2 (en) 2019-04-26 2019-04-26 Low-temperature heating furnace with cooling mechanism using liquid nitrogen in the thermal desorption analysis method

Publications (2)

Publication Number Publication Date
JP2020180952A JP2020180952A (en) 2020-11-05
JP7076742B2 true JP7076742B2 (en) 2022-05-30

Family

ID=73023969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019086307A Active JP7076742B2 (en) 2019-04-26 2019-04-26 Low-temperature heating furnace with cooling mechanism using liquid nitrogen in the thermal desorption analysis method

Country Status (1)

Country Link
JP (1) JP7076742B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083887A (en) 2003-09-08 2005-03-31 Rigaku Corp Temperature programmed desorption analyzer and its method
JP2008014807A (en) 2006-07-06 2008-01-24 Shimadzu Corp Thermal analyzer
JP2009257921A (en) 2008-04-16 2009-11-05 Toyota Motor Corp Heater and hydrogen analyzer using the same
JP2010086307A (en) 2008-09-30 2010-04-15 Brother Ind Ltd Cradle, cradle control system and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028243A (en) * 1988-12-22 1991-07-02 University Of Dayton Gas chromatography methods and apparatus
JP3597954B2 (en) * 1996-08-30 2004-12-08 株式会社リガク Sample temperature control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083887A (en) 2003-09-08 2005-03-31 Rigaku Corp Temperature programmed desorption analyzer and its method
JP2008014807A (en) 2006-07-06 2008-01-24 Shimadzu Corp Thermal analyzer
JP2009257921A (en) 2008-04-16 2009-11-05 Toyota Motor Corp Heater and hydrogen analyzer using the same
JP2010086307A (en) 2008-09-30 2010-04-15 Brother Ind Ltd Cradle, cradle control system and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高井 健一,"水素存在状態と水素脆性",材料と環境,2011年,Vol.60,No.5,230~235頁

Also Published As

Publication number Publication date
JP2020180952A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
EP0669287B1 (en) Method and apparatus for supplying gaseous raw material
KR101637734B1 (en) Low temperature starting control system of fuel cell vehicle
US20120064472A1 (en) Vertical-type heat treatment apparatus
US3585807A (en) Method of and apparatus for pumping gas under cryogenic conditions
JP7076742B2 (en) Low-temperature heating furnace with cooling mechanism using liquid nitrogen in the thermal desorption analysis method
JPH02105046A (en) Analyzing device
ES2746506T3 (en) Oven overheat detection system with cooling pipes
JP2009127813A (en) Hydrogen gas supply method and hydrogen gas supply installation
CN105296952B (en) Substrate temperature control method
JP5175485B2 (en) Heating furnace internal pressure control method
US11796257B2 (en) Ammonia filling system
JP2019020361A (en) Coolant introduction device, and gas chromatograph
KR101421955B1 (en) System and method for controlling heat retaining of blast furnace
CN109468437A (en) A kind of temperature-reduction at constant speed vacuum annealing furnace
JP2000283395A (en) Liquefied gas storage and supply facility
CN205874495U (en) Vacuum heat treating furnace&#39;s heat band and fixing device thereof
JP4093975B2 (en) Thermal vacuum test equipment
KR100354210B1 (en) Cooling method for stave in blast furnace
JP3221742U (en) Thermal insulation cover for liquefied gas cylinders
JP2010111893A (en) Heat-treating method
JPS6223475B2 (en)
JP5576577B1 (en) Gas extraction device
US1579314A (en) High-temperature heating system
US4720258A (en) Temperature control means for evaporators
JPH0763716A (en) Sample heating cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220509

R150 Certificate of patent or registration of utility model

Ref document number: 7076742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350