JP7073212B2 - 過電流継電器 - Google Patents

過電流継電器 Download PDF

Info

Publication number
JP7073212B2
JP7073212B2 JP2018128331A JP2018128331A JP7073212B2 JP 7073212 B2 JP7073212 B2 JP 7073212B2 JP 2018128331 A JP2018128331 A JP 2018128331A JP 2018128331 A JP2018128331 A JP 2018128331A JP 7073212 B2 JP7073212 B2 JP 7073212B2
Authority
JP
Japan
Prior art keywords
current
current transformer
relay
overcurrent
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018128331A
Other languages
English (en)
Other versions
JP2020010467A (ja
Inventor
康臣 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2018128331A priority Critical patent/JP7073212B2/ja
Publication of JP2020010467A publication Critical patent/JP2020010467A/ja
Application granted granted Critical
Publication of JP7073212B2 publication Critical patent/JP7073212B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

この発明は、過電流継電器に関する。
過電流継電器は、電力線(送電線、配電線)に予め定められた整定値よりも大きな電流が流れると動作し、その事故点を電力系統から切り離して、事故の影響を最小限に食い止めるように遮断器を動作させる信号を出力するように構成される。過電流継電器は、電力線の短絡保護や電力機器の過負荷保護用として広く用いられている。
例えば、特許第6271100号公報(特許文献1)は、静止形(デジタル形)の過電流継電器であるデジタルリレーを開示している。このデジタルリレーは、電力系統を流れる電流を監視するための計測機能と、計測値の異常を検出した場合の保護機能、すなわち遮断器へ動作信号を出力する機能とを有している。デジタルリレーでは、電力系統を流れる電流を変流器により検出する。計測回路は、この変流器の検出値を入力電流として取得すると、デジタルデータに変換してプロセッサへ出力する。プロセッサは、計測値のデジタルデータを用いて、計測処理の演算と、過電流保護等の高速度が求められる保護処理とを並列に実行する。
特許第6271100号公報
変流器は、過電流保護専用に設置されるとは限らず、電力線の電流、電力等の計測用に共用されることが多い。そのため、主回路の短絡容量に対しては過電流強度を確保した上で、通電容量(負荷容量)に見合った変流器の一次電流を選定することが少なくない。
しかしながら、負荷容量が小さい主回路に対して、この負荷容量に見合った変流器を適用すると、変流器の定格一次電流が小さくなる。変流器においては、一次電流が小さいほど、電流が大きい領域での鉄心の磁気飽和が問題となる。この変流器における鉄心の磁気飽和は、定格負担の低下、確度階級の低下および定格過電流定数の低下などの不具合を生じさせる。定格過電流定数の低下は、過電流領域でのマイナス比誤差を増大させるものである。過電流領域でのマイナス比誤差の増大は、変流器の二次回路に接続される過電流継電器の入力電流を低減させる。そのため、過電流継電器において、過電流保護が動作しない、または動作が遅れるなどの事態が発生してしまい、保護機能が阻害されることが懸念される。
この発明は、上記の問題点を考慮してなされたものであって、その目的は、変流器における磁気飽和の影響を受けることなく、確実な過電流保護動作を実現することができる過電流継電器を提供することである。
この発明による過電流継電器は、遮断器が接続された電力線に過電流が生じたときに、遮断器に動作指令を出力するように構成される。電力線には変流器が配置される。変流器は、電力線の電流を流す一次巻線、電流に応じて誘導される二次電流を二次端子から出力する二次巻線、および一次巻線および二次巻線が巻かれる鉄心とを有する。過電流継電器は、変流器の二次電流を取り込み、その電流値が予め定められた第1の整定値を超えたときに動作指令を出力するように構成された第1の過電流保護手段と、変流器の二次端子電圧を取り込み、その電圧値が予め定められた第2の整定値を超えたときに動作指令を出力するように構成された第2の過電流保護手段とを備える。
この発明によれば、変流器における磁気飽和の影響を受けることなく、確実な過電流保護動作を実現することができる過電流継電器を提供することができる。
実施の形態1に従う過電流継電器の概略構成を示す回路図である。 図1に示した変流器の構成を説明するための図である。 図2に示した変流器の等価回路である。 過電流領域における変流器の二次電流の実測例を示す図である。 変流器における励磁電圧の特性の一例を示す図である。 図1に示した入力回路の構成例を説明する概略ブロック図である。 実施の形態1に従う過電流継電器の動作を説明するためのフローチャートである。 実施の形態2に従う過電流継電器の概略構成を示す回路図である。 図8に示した入力回路の構成例を説明する概略ブロック図である。 実施の形態2に従う過電流継電器および過電圧継電器の動作を説明するためのフローチャートである。
以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下図中の同一または相当部分には同一符号を付してその説明は繰返さないものとする。
[実施の形態1]
図1は、本発明の実施の形態1に従う過電流継電器の概略構成を示す回路図である。本実施の形態1に従う過電流継電器(OCR:Over Current Relay)4は、電力線1に流れる電流を計測する計測機能と、短絡事故や過負荷から電力線1および電力機器等を保護する保護機能とを有している。過電流継電器4は、例えば電力線1に接続された母線を含む電気所(例えば、変電所、発電所、需要設備等)に設置される。
図1を参照して、変流器(CT:Current transformer)3は、電力線1に接続されており、電力線1に流れる電流を取り込む。変流器3の二次電流は過電流継電器4に入力される。
過電流継電器4は、短絡事故や過負荷による過電流を変流器3により取り込み、その電流値の大きさによって動作する継電器である。過電流継電器4は、瞬時要素と限時要素との2つの動作要素を有する。瞬時要素は、短絡領域での過電流保護を行なう動作要素であり、短時間の定限時特性を有する。限時要素は、過負荷領域での過電流保護を行なうものであり、電流の大きさが大きくなるに従って速い時間で動作する反限時特性を有する。
過電流継電器4は、静止回路を主体に構成された静止形(デジタル形)過電流継電器である。静止形過電流継電器は、電磁機械式過電流継電器のように物理的および電磁機械的な動作ではなく、電子回路の演算および制御によって、入力電流が整定値を超えると動作するように構成される。具体的には、過電流継電器4は、入力端子T1~T4と、接地端子T5と、電源端子T6,T7と、出力端子T8とを備える。過電流継電器4は、補助変流器(Aux-CT)5と、補助変圧器(Aux-VT)6と、入力回路7と、出力回路8と、設定部10と、表示部12と、電源回路14とをさらに備える。
入力端子T1,T2は変流器3の二次端子k,lにそれぞれ接続され、変流器3により取り込まれた電力線1の電流を受ける。補助変流器5は、入力端子T1,T2に接続され、変流器3により取り込まれた電力線1の電流を取り込み、電力線1の電流を電子回路レベルの電圧に変換して入力回路7へ出力する。
入力端子T3は入力端子T1に接続され、入力端子T4は入力端子T2に接続される。入力端子T3,T4は、変流器3の二次回路から入力端子T1およびT2間に印加される電圧を受ける。補助変圧器6は、入力端子T3,T4に接続され、入力端子T3,T4間の入力電圧を取り込み、この入力電圧を電子回路レベルの電圧に変圧して入力回路7へ出力する。
入力回路7は、補助変流器5の二次出力に基づいて、電力線1に流れる電流を計測する。入力回路7はさらに、補助変流器5の二次出力および補助変圧器6の二次出力に基づいて、短絡事故または過負荷により発生した電力線1の過電流を検出する。入力回路7は、電力線1の過電流を検出すると、検出信号を出力回路8へ出力する。
入力回路7は、例えばマイクロコンピュータ等によって構成することが可能である。一例として、入力回路7は、図示しないメモリおよびCPU(Central Processing Unit)を内蔵し、メモリに予め格納されたプログラムをCPUが実行することによるソフトウェア処理によって、以下で説明する制御動作を実行することができる。あるいは、当該制御動作の一部または全部については、ソフトウェア処理に代えて、内蔵された専用の電子回路等を用いたハードウェア処理によって実現することも可能である。
出力回路8は、入力回路7から検出信号を受けると、出力端子T8から電力線1に接続された遮断器2に対して動作指令を出力する。この動作指令に応答して遮断器2が開放(トリップ)することにより、電力線1が遮断される。遮断器2を開放することで、過電流の原因となった事故点を電力系統から切り離して事故の影響を最小限に食い止めることができる。
電源端子T6,T7は、過電流継電器4の外部に設置された電源50に接続される。電源回路14は、電源端子T6,T7を介して供給される電源50から各部に必要な電圧を生成する。なお、図1の例では、電源回路14を、電源50から各部の電源電圧を生成する構成としたが、変流器3の二次電流を利用して電源電圧を生成する構成としてもよい。これによると、電源50が不要となる。
設定部10は、瞬時要素および限時要素の動作値および動作時間などの応動の基準値となる整定値を設定するためのものである。設定部10は、公称値を表示した装置(例えばタップ、レバー、スイッチ等)により構成される。
表示部12は、例えば液晶ディスプレイ(LCD:Liquid Crystal Display)または発光ダイオード(LED:Light Emitting Diode)などで構成される。表示部12は、瞬時要素および限時要素のどちらが動作したかも表示する。これにより、事故の種別が判別できるようにしている。
次に、変流器3の構成を詳細に説明する。
図2は、図1に示した変流器3の構成を説明するための図である。図2を用いて変流器3の基本原理を説明する。
図2を参照して、変流器3は、一次巻線41、二次巻線42および鉄心40から構成される。変流器3は、鉄心40に巻かれた一次巻線41により、電力線1に流れる電流I1を取り込む。一次電流I1が一次巻線41を流れると、鉄心40中に磁束が誘起される。鉄心40は閉じられた磁路を形成している。この磁束の変化に対応して、二次巻線42に二次電流I2が流れる。
なお、一次巻線41を流れる電流を一次電流I1とし、二次巻線42を流れる電流を二次電流I2とし、一次巻線41の巻数をNとし、二次巻線42の巻数をNとすると、一次電流I1と二次電流I2との間には、理想的には次式(1)の関係が成り立つ。
×I1=N×I2 …(1)
すなわち、変流器3は一次電流I1(電力線1の電流)をこれに比例する二次電流I2に変成する。一次電流I1と二次電流I2との比は、変流比(またはCT比)と呼ばれる。変流比をKとすると、Kは次式(2)で表わされる。
K=I1/I2 …(2)
変流器3は、二次電流I2を取り出して、二次端子k,l間に接続される二次負担インピーダンスZbで二次端子電圧ETに変換する。二次負担インピーダンスZbは、変流器3の二次回路に接続される負担(計器、継電器、導線等)のインピーダンスである。
図3は、図2に示した変流器3の等価回路である。電力線1の電流を標本量(継電器入力)とする場合、変流器3に二次負担インピーダンスZbを組み合わせた構成を用いる。
図3に示すように、一次巻線41と二次巻線42との巻数比N:N=1:Nとすると、二次入力電流は(I1/N)となる。二次入力電流(I1/N)は、二次換算一次巻線インピーダンスZ1/Nを通って、励磁インピーダンスZeと二次巻線インピーダンスZ2とへ分流する。励磁電流Ieは励磁インピーダンスZeに流れる電流であり、励磁電圧E2および励磁インピーダンスZeとの関係が次式(3)で表わされる。
Ie=E2/Ze …(3)
二次電流I2は二次巻線インピーダンスZ2および二次負担インピーダンスZbに流れる電流であり、次式(4)で表わされる。
I2=I1/N-Ie …(4)
式(4)から分かるように、二次負担インピーダンスZbには二次入力電流(I1/N)ではなく、二次入力電流(I1/N)から励磁電流Ieを差し引いた電流(I1/N-Ie)が流れるため、これが変流器3のマイナス比誤差となる。励磁電圧E2が大きくなるほど、励磁インピーダンスZeに流れる励磁電流Ie、すなわち変流器3のマイナス比誤差が大きくなる。
励磁電圧E2は次式(5)で表わされる。式(5)においてZ2およびZbは設備毎に固定した値である。
E2=I2・(Z2+Zb) …(5)
式(5)の左辺に含まれるI2・Zbは二次端子k,l間の電圧(以下、二次端子電圧ETと称する)に相当する。二次端子電圧ETは、次式(6)で表すことができる。
ET=E2・Z2/(Z2+Zb) …(6)
Z2およびZbは設備ごとに固定した値であることから、励磁電圧E2と二次端子電圧ETとの間には設備毎に固定した関係が成り立っている。したがって、二次端子電圧ETを標本量(継電器入力)とすることで、間接的に励磁電圧E2を入力として動作判定することになる。なお、一般に、二次巻線インピーダンスZ2は、二次負担インピーダンスZbの定格値に比べて十分に小さい。そのため、励磁電圧E2と二次端子電圧ETとは大差はない。
ここで、図2および図3の変流器3において、磁束(瞬時値)をφ[Wb]、磁束(最大値)をΦ[Wb]、一次誘起電圧(瞬時値)をe1[V]、一次誘起電圧(実効値)をE1[V]、二次誘起電圧(瞬時値)をe2[V]、二次誘起電圧(実効値)をE2[V]、巻数比をa、周波数をf[Hz](角周波数ω=2πf)とすると、これらの数値の関係は次式(6)~(11)で表すことができる。
φ=Φmsinωt=Φsin2πft …(6)
e1=Ndφ/dt=ωNΦcosωt=2πfNΦcos2πft …(7)
E1=1/√2・ωN1Φ=√2πfN1Φ=4.44fN1Φ …(8)
e2=Ndφ/dt=ωNΦcosωt=2πfNΦcos2πft …(9)
E2=1/√2・ωN2Φ=√2πfNΦ=4.44fNΦ …(10)
E2/E1=N/N=a …(11)
変流器3においては、鉄心40の磁束密度が最大磁束密度を超えると、鉄心40が磁気飽和を起こす。鉄心40の最大磁束密度は鉄心40の材料等によって決まる。鉄心40が磁気飽和すると、励磁インダクタンスが非常に小さくなる。仮に励磁インダクタンスを励磁インピーダンスZeと考えると、磁気飽和時における励磁インピーダンスZeは二次負担インピーダンスZbよりも非常に小さな値となる。その結果、二次入力電流(I1/N)の大半が励磁電流Ieとして励磁インピーダンスZeに流れることになり、結果的に二次負担インピーダンスZbに流れる二次電流I2が著しく減少することになる。すなわち、二次電流I2が二次入力電流(I1/N)よりも非常に小さな電流となり、マイナス比誤差が増大することになる。
これによると、電力線1に短絡電流のような過電流が流れると、変流器3の鉄心40が磁気飽和に至り、マイナス比誤差が増大する。マイナス比誤差の増大は、変流器3の二次回路から過電流継電器4に入力される電流(二次電流I2)を著しく減少させるため、過電流継電器4では、瞬時要素が動作しない、または動作が遅れるといった不具合が発生し、保護機能が阻害されることが懸念される。
詳細には、変流器3の鉄心40の磁束密度をBとすると、磁束密度Bは、上記式(9)を用いて、次式(12)で与えられる。
B=E2/4.44fSN=I2(Z2+Zb)/4.44fSN…(12)
ただし、Sは鉄心40の断面積[m]である。
式(12)から明らかなように、鉄心40の断面積Sを大きくすれば磁束密度Bを小さく抑えることができるが、鉄心40を大きくすると変流器3自体が大型化してしまう。
また、式(12)は、二次巻線42の巻数Nが小さいほど磁束密度Bが大きくなることを示している。すなわち、変流器3のタンクやモールド金型が同一サイズであれば、変流比が小さいほど磁束密度Bが大きくなり、結果的に磁気飽和特性が悪くなる。したがって、変流比が小さい変流器を適用した場合に、二次電流I2のマイナス比誤差が大きくなり、過電流継電器4の動作に悪影響を与えることになる。
図4に、過電流領域における変流器3の二次電流I2の実測例を示す。本実測例では、変流器3の定格一次電流が100[A]、定格二次電流が5[A]、定格二次負担が40[VA](純抵抗負荷とする)である。図4に示すように、一次電流I1=25[kA]に増大すると、二次電流I2の波形は正弦波状から歪み、尖頭状に変化する。このときの二次電流I2の最大値は217[A]であり、実効値は81[A]であった。
一方、鉄心40の磁気飽和を無視して変流比K=5/100から単純計算すると、二次電流I2の実効値は25[kA]×5/100=1250[A]となる。これによると、二次電流I2の実測値81[A]は、磁気飽和が無いと仮定した場合のわずか6.5%となっており、二次電流I2が著しく減少していることが分かる。このように鉄心40の磁気飽和に起因して二次電流I2の実効値が減少することで、過電流継電器4では、瞬時要素の不動作または動作遅れが発生することが懸念される。
図5に変流器3における励磁電圧E2の特性の一例を示す。図5の横軸は励磁電流Ieを示し、縦軸は励磁電圧E2を示す。なお、励磁電圧E2のグラフの傾き(ΔE2/ΔIe)は励磁インピーダンスZeに相当する。
図5に示すように、鉄心40の磁束が未飽和状態である領域では、励磁インピーダンスZeが大きい値を示しているが、励磁電圧E2が50Vを超える辺りで鉄心40が磁気飽和すると、励磁インピーダンスZeが急激に小さい値となる。この磁束飽和域で励磁電流Ieが急増するため、過電流領域での変流器3のマイナス比誤差の原因となる。
なお、磁気飽和域では、励磁電流Ieが増加しても、励磁電圧E2は高い値のままで下がらない、いわゆる“高止まり”することを表している。なお、二次電流I2は一次電流I1の正弦波状の波形に比例せず大きく歪んだ尖頭状の波形となるが(図4参照)、励磁電圧E2の波形は正弦波に近いものとなる。
これによると、電力線1の過電流状態が発生すると、鉄心40の磁気飽和に起因して変流器3の二次電流I2、すなわち過電流継電器4の入力電流が減少する一方で、励磁電圧E2が高止まりの状態を示すことが分かる。したがって、過電流継電器4において、励磁電圧E2の高止まりの状態を捉えることができれば、電力線1の過電流状態を検出することが可能となる。
そこで、本実施の形態1に従う過電流継電器4では、変流器3の二次電流I2を入力電流として電力線1の過電流を検出する機能に加えて、変流器3の励磁電圧E2を入力電圧として電力線1の過電流を検出する機能を備えるものとする。なお、上述したように、二次端子電圧ETは励磁電圧E2と固定した関係があることから、過電流継電器4は、二次端子電圧ETを入力電圧とすることで、実質的に励磁電圧E2を取り込むことができる。
具体的には、図1に戻って、過電流継電器4は、入力端子T1,T2を介して変流器3の二次電流I2を取り込むとともに、入力端子T3,T4を介して変流器3の二次端子k,l間の二次端子電圧ETを取り込む。過電流継電器4は、二次端子電圧ETが予め定められた整定値を超えたときに、瞬時要素が動作するように構成される。
ここでは、変流器3が図5に示す励磁電圧E2の特性を有する場合を想定する。
変流器3の定格二次電流が5[A]、定格負担(二次回路に接続する使用負担(計器、継電器および電線の合計消費VA))が40[VA]である場合、二次負担インピーダンスZb=40/5=1.6[Ω]となり、二次端子電圧ET=5[A]×1.6[Ω]=8[V]となる。
なお、二次巻線インピーダンスZ2は例えば0.1Ω程度であり、二次負担インピーダンスZb(=1.6Ω)に比べて十分に小さな値となっている。そのため、励磁電圧E2と二次端子電圧ETとを同等とみなすことができる。
このような状況において短絡事故が発生し、電力線1に過電流が流れると、変流器3では、励磁電圧E2が50Vを超える辺りから鉄心40の磁気飽和を起こすため、励磁電流Ieが急増し、二次電流I2が減少する。
過電流継電器4においては、鉄心40が磁気飽和を起こす励磁電圧E2である50Vを、入力電圧(二次端子電圧ET)に対する整定値に予め設定しておくことができる。これによると、二次端子電圧ETが8Vから増大して整定値である50Vを超えたとき、過電流継電器4が動作し、遮断器2に対して動作指令を出力することになる。したがって、過電流継電器4は、変流器3の磁気飽和の影響を受けることなく、確実に過電流を検出して動作することができる。
次に、図6を用いて、過電流継電器4における入力回路7の構成例を説明する。
図6は、図1に示した入力回路7の構成例を説明する概略ブロック図である。入力回路7は電源回路14(図1)から電力供給を受けて動作する。
図6を参照して、入力回路7は、整流器20,21と、アナログ/デジタル(A/D)変換器22と、処理回路24と、ドライバ26と、補助継電器X1,X2,X3とを有する。
整流器20は、補助変流器5の二次出力を整流および平滑化してA/D変換器22へ出力する。整流器21は、補助変圧器6の二次出力を整流および平滑化してA/D変換器22へ出力する。
A/D変換器22は、整流器20から受けた補助CT5の二次出力をデジタルデータに変換して処理回路24へ出力する。A/D変換器22は、また、整流器21から受けた補助変圧器6の二次出力をデジタルデータに変換して処理回路24へ出力する。
処理回路24は、図示は省略するが、例えばCPU(Central Processing Unit)と、RAM(Random Access Memory)およびROM(Read Only Memory)等のメモリとによって構成される。CPUがメモリに格納されたプログラムおよびデータに従った演算処理を実行することにより、電力線1の過電流の検出および遮断器2の動作制御が実行される。
具体的には、処理回路24は、補助変流器5の二次出力(デジタルデータ)に基づいて、二次電流I2が瞬時要素の整定値Iinst以上であるか否かを判定する。二次電流I2が整定値Iinst以上であると判定されると、処理回路24は、短絡事故による過電流が発生していると判断する。処理回路24は、ドライバ26により補助継電器X1を駆動することにより、出力回路8内部のトリップ用接点31を導通する。
処理回路24は、また、二次電流I2が限時要素の整定値Ioc以上であるか否かを判定する。二次電流I2が整定値Ioc以上であると判定されると、処理回路24は、二次電流I2が整定値Ioc以上となっている時間(以下、過電流継続時間とも称する)をカウントする。カウント値が動作時間の整定値Toc以上となると、処理回路24は、過負荷による過電流が発生していると判断する。処理回路24は、ドライバ26により補助継電器X2を駆動することにより、出力回路8内部のトリップ用接点32を導通する。
処理回路24は、さらに、補助変圧器6の二次出力に基づいて、二次端子電圧ETが瞬時要素の整定値Vinst以上であるか否かを判定する。二次端子電圧ETが整定値Vinst以上であると判定されると、処理回路24は、短絡事故による過電流が発生していると判断する。処理回路24は、ドライバ26により補助継電器X3を駆動することにより、出力回路8内部のトリップ用接点33を導通する。
ここで、処理回路24で使用される瞬時要素の整定値には、入力電流(二次電流I2)に対応した整定値Iinstと、入力電圧(二次端子電圧ET)に対応した整定値Vinstとが含まれる。整定値Iinst,Ioc,Tocは「第1の整定値」の一実施例に対応し、整定値Vinstは「第2の整定値」の一実施例に対応する。
整定値Iinstは、限時要素の整定値Iocよりも高い。例えば一般的な高圧受電用過電流継電器においては、瞬時要素の整定値Iinstが10A~60Aとされ、限時要素の整定値Iocが3A~6Aとされる。
整定値Vinstは、変流器3の鉄心40が磁気飽和するときの励磁電圧E2に基づいて設定される。具体的には、使用する変流器3について、図5に示したような励磁電圧E2の特性を実験または計算によって導出し、この導出された特性から、磁気飽和域での励磁電圧E2、すなわち高止まりとなるときの励磁電圧E2の電圧範囲を求める。この電圧範囲の下限値に基づいて整定値Vinstを設定することができる。
なお、式(6)で示したように、励磁電圧E2>二次端子電圧ETであるため、整定値Vinstの設定においては、変流器3の励磁特性のカーブだけでなく、二次巻線インピーダンスZ2および二次負担インピーダンスZbの値を把握する必要がある。
このようにすると、変流器3の二次電流I2が整定値Iinstを超えたとき、または、変流器3の二次端子電圧ETが整定値Vinstを超えたとき、瞬時要素が動作することになる。したがって、鉄心40の磁気飽和によって二次電流I2が減少し、整定値Iinstに満たない状況であっても、二次端子電圧ETが整定値Vinstを超えたことに基づいて、電力線1の過電流を検出することができる。この結果、確実に過電流を検出することができるため、瞬時要素の不動作または動作遅れを回避することができる。
すなわち、実施の形態1に従う過電流継電器4は、変流器3の二次電流を取り込み、その電流値が予め定められた第1の整定値を超えたときに動作指令を出力するように構成された「第1の過電流保護手段」と、変流器3の二次端子電圧ETを取り込み、その電圧値が予め定められた第2の整定値を超えたときに動作指令を出力するように構成された「第2の過電流保護手段」と備える。これら2つの過電流保護手段が協働することで、確実な過電流保護動作を実現する。
出力回路8は、トリップ用接点31,32,33と、端子T8~T13とを有する。トリップ用接点31は、端子T9,T10を介して遮断器2のトリップコイルTCと電気的に直列接続される。端子T9はHレベルの電源ラインPおよび端子T11に接続され、端子T10は端子T12に接続される。トリップ用接点31は、補助継電器X1により導通または非導通に駆動される。
トリップ用接点32は、端子T11,T12を介して遮断器2のトリップコイルTCと電気的に直列接続される。端子T11は端子T9,T13に接続され、端子T12は端子T10および出力端子T8に接続される。トリップ用接点32は、補助継電器X2により導通または非導通に駆動される。
トリップ用接点33は、端子T13および出力端子T8を介して遮断器2のトリップコイルTCと電気的に直列接続される。端子T13は端子T11に接続され、出力端子T8は端子T12およびトリップコイルTCの一方端に接続される。トリップコイルTCの他方端はLレベルの電源ラインNに接続される。
トリップ用接点31,32,33は電源ラインPと電源ラインNとの間に電気的に並列接続されている。したがって、補助継電器X1,X2,X3のいずれか1つが駆動されることによってトリップ用接点31,32,33のいずれか1つが導通すると、このトリップ用接点を介してトリップコイルTCが電源ラインPおよび電源ラインNの間に電気的に接続される。これにより、トリップコイルTCには、動作指令として電流が供給される。この動作指令を受けてトリップコイルTCを励磁することにより、遮断器2が開放(トリップ)される。
図7は、本実施の形態1に従う過電流継電器4の動作を説明するためのフローチャートである。
図7を参照して、過電流継電器4は、ステップS10により、変流器3の二次電流I2を取り込むとともに、ステップS20により、変流器3の二次端子電圧ETを取り込む。過電流継電器4内部では、変流器3の二次電流I2は、補助変流器5により電子回路レベルの信号に変換され、A/D変換器22を経てデジタルデータとして処理回路24に入力される。変流器3の二次端子電圧ETは、補助変圧器6により電子回路レベルの信号に変換され、A/D変換器22を経てデジタルデータとして処理回路24に入力される。
処理回路24は、これらのデジタルデータと設定部10にて予め定められている整定値とを比較することとにより、動作判定演算を実行する。整定値は、限時動作のための整定値Iocと、瞬時動作のための整定値Iinst,Vinstとを含む。
具体的には、処理回路24は、ステップS30により、二次電流I2が整定値Ioc以上であるか否かを判定する。二次電流I2が整定値Iocより小さい場合(S30のNO判定時)、処理回路24は電力線1が正常であると判断して処理を終了する。
一方、二次電流I2が整定値Ioc以上である場合(S30のYES判定時)、処理回路24は、ステップS40に進み、二次電流I2が整定値Ioc以上となっている時間(過電流継続時間)が動作時間の整定値Toc以上であるか否かを判定する。過電流継続時間が整定値Toc未満である場合(S40のNO判定時)、処理回路24は電力線1が正常であると判断して処理を終了する。
これに対して、過電流継続時間が整定値Toc以上である場合(S40のYES判定時)には、ステップS50により、限時要素が動作する。ステップS50では、処理回路24は、ドライバ26によって補助継電器X2を駆動することにより、トリップ用接点32を導通する。これにより、ステップS60では、過電流継電器4から遮断器2に対して動作指令が出力される。遮断器2のトリップコイルTCが励磁されて遮断器2が開放する。
処理回路24は、また、ステップS70により、二次電流I2が整定値Iinst以上であるか否かを判定する。二次電流I2が整定値Iinstより小さい場合(S70のNO判定時)、処理回路24は電力線1が正常であると判断して処理を終了する。
一方、二次電流I2が整定値Iinst以上である場合(S70のYES判定時)、ステップS80により、限時要素が動作する。ステップS80では、処理回路24は、ドライバ26によって補助継電器X1を駆動することにより、トリップ用接点31を導通する。これにより、ステップS80では、過電流継電器4から遮断器2に対して動作指令が出力される。遮断器2のトリップコイルTCが励磁されて遮断器2が開放する。
処理回路24は、ステップS30およびS70における判定処理と並行して、ステップS90により、二次端子電圧ETが整定値Vinst以上であるか否かを判定する。二次端子電圧ETが整定値Vinstより小さい場合(S90のNO判定時)、処理回路24は電力線1が正常であると判断して処理を終了する。
一方、二次端子電圧ETが整定値Vinst以上である場合(S90のYES判定時)、ステップS80により、瞬時要素が動作する。ステップS80では、処理回路24は、ドライバ26によって補助継電器X3を駆動することにより、トリップ用接点33を導通する。これにより、ステップS80では、過電流継電器4から遮断器2に対して動作指令が出力される。遮断器2のトリップコイルTCが励磁されて遮断器2が開放する。
以上説明したように、実施の形態1に従う過電流継電器によれば、変流器3の二次電流I2および二次端子電圧ETを取り込み、その電流値または電圧値が予め定められた整定値を超えたときに動作するように構成される。これによると、変流器3の鉄心40の磁気飽和により二次電流I2が減少して整定値に満たない状況であっても、二次端子電圧ETが整定値を超えたことに基づいて、電力線1の過電流を検出することができる。したがって、瞬時要素の不動作または動作の遅れを回避でき、確実な過電流保護動作を実現することができる。
[実施の形態2]
上述した実施の形態1では、過電流継電器4に対して電圧検出機能を付加する構成について説明したが、この電圧検出機能を別体の過電圧継電器に担わせる構成としてもよい。これによると、一般的な過電流継電器および過電圧継電器(OVR:Over Voltage Relay)を使用して本発明の過電流継電器4を構築することができる。
実施の形態2では、過電流継電器と過電圧継電器とを組み合わせて、短絡事故または過負荷時に動作する過電流継電器を実現する構成について説明する。
図8は、本発明の実施の形態2に従う過電流継電器の概略構成を示す回路図である。
図8を参照して、実施の形態2に従う過電流継電器4は、過電流継電器4Aおよび過電圧継電器4Bにより構成される。過電流継電器4Aは、入力電流が予め定められた整定値を超えたときに動作する継電器であり、瞬時要素と限時要素とを有する。過電圧継電器4Bは、入力電圧が予め定められた整定値を超えたときに動作する継電器であり、瞬時要素を有する。過電流継電器4Aは「第1の継電器」の一実施例に対応し、過電圧継電器4Bは「第2の継電器」の一実施例に対応する。過電流継電器4Aは「第1の過電流保護手段」を実現し、過電圧継電器4Bは「第2の過電流保護手段」を実現する。
過電流継電器4Aは、静止形(デジタル形)過電流継電器であって、入力端子T1,T2と、接地端子T5と、電源端子T6,T7と、出力端子T12とを備える。過電流継電器4は、補助変流器(Aux-CT)5と、入力回路7Aと、出力回路8Aと、設定部10Aと、表示部12Aと、電源回路14Aとをさらに備える。
入力端子T1,T2は変流器3の二次端子k,lにそれぞれ接続され、変流器3により取り込まれた電力線1の電流を受ける。補助変流器5は、入力端子T1,T2に接続され、変流器3により取り込まれた電力線1の電流を取り込み、電力線1の電流を電子回路レベルの電圧に変圧して入力回路7Aへ出力する。
入力回路7Aは、補助変流器5の二次出力に基づいて、電力線1に流れる電流を計測するとともに、短絡事故または過負荷により発生した電力線1の過電流を検出する。入力回路7Aは、電力線1の過電流を検出すると、検出信号を出力回路8Aへ出力する。入力回路7Aは、例えばマイクロコンピュータ等によって構成することが可能である。
出力回路8Aは、入力回路7Aから検出信号を受けると、出力端子T12から電力線1に接続された遮断器2に対して動作指令を出力する。この動作指令に応答して遮断器2が開放(トリップ)することにより、電力線1が遮断される。
電源回路14A、設定部10Aおよび表示部12Aは、それぞれ、図1に示した電源回路14、設定部10および表示部12と同様の構成を有している。
過電圧継電器4Bは、静止形(デジタル形)過電圧継電器であって、入力端子T3,T4と、接地端子T5と、電源端子T6,T7と、出力端子T8とを備える。過電圧継電器4Bは、補助変圧器(PT)6と、入力回路7Bと、出力回路8Bと、設定部10Bと、表示部12Bと、電源回路14Bとをさらに備える。
入力端子T3,T4は変流器3の二次端子k,lにそれぞれ接続され、変流器3の二次端子電圧ETを受ける。補助変圧器6は、入力端子T3,T4に接続され、変流器3の二次端子電圧ETを取り込み、二次端子電圧ET流を電子回路レベルの電圧に変圧して入力回路7Bへ出力する。
入力回路7Bは、補助変圧器6の二次出力に基づいて、短絡事故または過負荷により発生した電力線1の過電流を検出する。入力回路7Bは、電力線1の過電流を検出すると、検出信号を出力回路8Bへ出力する。入力回路7Bは、例えばマイクロコンピュータ等によって構成することが可能である。
出力回路8Bは、入力回路7Bから検出信号を受けると、出力端子T8から遮断器2に対して動作指令を出力する。この動作指令に応答して遮断器2が開放(トリップ)することにより、電力線1が遮断される。
電源回路14B、設定部10Bおよび表示部12Bは、それぞれ、図1に示した電源回路14、設定部10および表示部12と同様の構成を有している。
次に、図9を用いて、過電流継電器4Aにおける入力回路7Aおよび過電圧継電器4Bにおける入力回路7Bの構成例を説明する。
図9は、図8に示した入力回路7A,7Bの構成例を説明する概略ブロック図である。入力回路7A,7Bは電源回路14A,14Bからそれぞれ電力供給を受けて動作する。
図9を参照して、入力回路7Aは、整流器20と、A/D変換器22Aと、処理回路24Aと、ドライバ26Aと、補助継電器X1,X2とを有する。
整流器20は、補助変流器5の二次出力を整流および平滑化してA/D変換器22Aへ出力する。A/D変換器22Aは、整流器20から受けた補助変流器5の二次出力をデジタルデータに変換して処理回路24Aへ出力する。
処理回路24Aは、補助変流器5の二次出力(デジタルデータ)に基づいて二次電流I2が瞬時要素の整定値Iinst以上であるか否かを判定する。二次電流I2が整定値Iinst以上であると判定されると、処理回路24Aは、短絡事故による過電流が発生していると判断する。処理回路24Aは、ドライバ26Aにより補助継電器X1を駆動することにより、出力回路8A内部のトリップ用接点31を導通する。
処理回路24Aは、また、二次電流I2が限時要素の整定値Ioc以上であるか否かを判定する。二次電流I2が整定値Ioc以上であると判定されると、処理回路24Aは、二次電流I2が整定値Ioc以上となっている時間(過電流継続時間)をカウントする。カウント値が動作時間の整定値Toc以上となると、処理回路24Aは、過負荷による過電流が発生していると判断する。処理回路24は、ドライバ26Aにより補助継電器X2を駆動することにより、出力回路8内部のトリップ用接点32を導通する。
出力回路8Aは、トリップ用接点31,32と、端子T9~T12とを有する。トリップ用接点31は、端子T9,T10を介して遮断器2のトリップコイルTCと電気的に直列に接続される。端子T9はHレベルの電源ラインPおよび端子T11に接続され、端子T10は端子T12に接続される。トリップ用接点31は、補助継電器X1により導通または非導通に駆動される。
トリップ用接点32は、端子T11,T12を介して遮断器2のトリップコイルTCと電気的に直列に接続される。端子T11は端子T9,T13に接続され、端子T12は端子T10および出力端子T8に接続される。トリップ用接点32は、補助継電器X2により導通または非導通に駆動される。
入力回路7Bは、整流器21と、A/D変換器22Bと、処理回路24Bと、ドライバ26Bと、補助継電器X3とを有する。
整流器21は、補助変圧器6の二次出力を整流および平滑化してA/D変換器22Bへ出力する。A/D変換器22Bは、整流器21から受けた補助変圧器6の二次出力をデジタルデータに変換して処理回路24Bへ出力する。
処理回路24Bは、補助変圧器6の二次出力(デジタルデータ)に基づいて、二次端子電圧ETが瞬時要素の整定値Vinst以上であるか否かを判定する。二次端子電圧ETが整定値Vinst以上であると判定されると、処理回路24Bは、短絡事故による過電流が発生していると判断する。処理回路24Bは、ドライバ26Bにより補助継電器X3を駆動することにより、出力回路8B内部のトリップ用接点33を導通する。
出力回路8Bは、トリップ用接点33と、端子T8,T13とを有する。トリップ用接点33は、端子T13,T8を介して遮断器2のトリップコイルTCと電気的に直列に接続される。端子T13出力回路8Aの端子T11に接続され、端子T8は端子T12および遮断器2のトリップコイルTCの一方端に接続される。トリップコイルTCの他方端はLレベルの電源ラインNに接続される。トリップ用接点33は、補助継電器X3により導通または非導通に駆動される。
図6に示した出力回路8と同様に、出力回路8Aのトリップ用接点31,32および出力回路8Bのトリップ用接点33は電源ラインPと電源ラインNとの間に電気的に並列に接続されている。したがって、補助継電器X1,X2,X3のいずれか1つが駆動されることによってトリップ用接点31,32,33のいずれか1つが導通すると、このトリップ用接点を介してトリップコイルTCが電源ラインPおよび電源ラインNの間に電気的に接続される。これにより、トリップコイルTCには、動作指令として電流が供給される。この動作指令を受けてトリップコイルTCが励磁され、遮断器2が開放(トリップ)される。
このように実施の形態2に従う過電流継電器4では、過電圧継電器4Bは変流器3の二次端子電圧ETが整定値Vinstを超えたときに動作するように構成される。整定値Vinstは、実施の形態1で説明したように、変流器3において鉄心40の磁気飽和が起こる励磁電圧E2(例えば50V程度)に基づいて設定される。
一方、一般的な過電圧継電器は、発電機の制御系の故障による電圧の過昇保護や、コンデンサの過負荷保護などに使用され、その整定範囲は一般に120~150Vである。このように一般的な過電圧継電器では整定範囲が高いため、一般的な過電圧継電器を過電圧継電器4Bに適用する場合、その整定値をより小さい値に変更する必要がある。
図10は、本実施の形態2に従う過電流継電器4Aおよび過電圧継電器4Bの動作を説明するためのフローチャートである。
図10を参照して、過電流継電器4Aは、ステップS10により、変流器3の二次電流I2を取り込む。過電流継電器4A内部では、変流器3の二次電流I2は、補助変流器5により電子回路レベルの信号に変換され、A/D変換器22Aを経てデジタルデータとして処理回路24Aに入力される。
処理回路24Aはデジタルデータと設定部10Aにて予め定められている整定値Ioc,Iinstとを比較することにより、動作判定演算を実行する。具体的には、処理回路24Aは、ステップS30により、二次電流I2が整定値Ioc以上であるか否かを判定する。二次電流I2が整定値Iocより小さい場合(S30のNO判定時)、処理回路24は電力線1が正常であると判断して処理を終了する。一方、二次電流I2が整定値Ioc以上である場合(S30のYES判定時)、処理回路24Aは、ステップS40にて、二次電流I2が整定値Ioc以上となっている時間(過電流継続時間)が動作時間の整定値Toc以上であるか否かを判定する。
ステップS40にて過電流継続時間が整定値Toc未満である場合(S40のNO判定時)、処理回路24Aは電力線1が正常であると判断して処理を終了する。これに対して、過電流継続時間が整定値Toc以上である場合(S40のYES判定時)には、ステップS50により、限時要素が動作する。ステップS50では、処理回路24は、ドライバ26Aによって補助継電器X2を駆動することにより、トリップ用接点32を導通する。これにより、ステップS60では、過電流継電器4Aから遮断器2に対して動作指令が出力され、遮断器2が開放する。
処理回路24Aは、ステップS30の判定処理と並行して、ステップS70により、二次電流I2が整定値Iinst以上であるか否かを判定する。二次電流I2が整定値Iinstより小さい場合(S70のNO判定時)、処理回路24Aは電力線1が正常であると判断して処理を終了する。
一方、二次電流I2が整定値Iinst以上である場合(S70のYES判定時)、ステップS80により、瞬時要素が動作する。ステップS80では、処理回路24Aは、ドライバ26Aによって補助継電器X1を駆動することにより、トリップ用接点31を導通する。これにより、ステップS60では、過電流継電器4Aから遮断器2に対して動作指令が出力され、遮断器2が開放する。
過電圧継電器4Bにおいては、ステップS30により、変流器3の二次端子電圧ETを取り込むと、補助変圧器6により電子回路レベルの信号に変換され、A/D変換器22Bを経てデジタルデータとして処理回路24Bに入力される。
処理回路24Bはデジタルデータと設定部10Bにて予め定められている整定値Vinstとを比較することにより、動作判定演算を実行する。具体的には、処理回路24Bは、ステップS90により、二次端子電圧ETが整定値Vinst以上であるか否かを判定する。二次端子電圧ETが整定値Vinstより小さい場合(S90のNO判定時)、処理回路24Bは電力線1が正常であると判断して処理を終了する。
一方、二次端子電圧ETが整定値Vinst以上である場合(S90のYES判定時)、ステップS100により、瞬時要素が動作する。ステップS100では、処理回路24Bは、ドライバ26Bによって補助継電器X3を駆動することにより、トリップ用接点33を導通する。これにより、ステップS110では、過電圧継電器4Bから遮断器2に対して動作指令が出力され、遮断器2が開放する。
以上説明したように、実施の形態2に従う過電流継電器によれば、変流器3の二次電流I2が整定値を超えたときに動作するように構成された過電流継電器4A(第1の継電器)と、変流器3の二次端子電圧ETが整定値を超えたときに動作するように構成された過電圧継電器4B(第2の継電器)とを組み合わせて構成される。したがって、変流器3の鉄心の磁気飽和により二次電流I2が減少して整定値に満たないために過電流継電器4Aが動作しない状況であっても、過電圧継電器4Bが、二次端子電圧ETが整定値を超えたことに基づいて電力線の過電流を検出して動作することができる。これにより、瞬時要素の不動作または動作遅れを回避できるため、確実な過電流保護動作を実現することができる。
なお、上述した実施の形態では、変流器の二次電流および二次端子電圧を取り込み、その電流値または電圧値が予め定められた整定値を超えたときに動作するように構成された過電流継電器について説明したが、本発明の適用は、計測・計量機能のみを有する単機能過電流継電器に限定されず、計測・計量機能および継電器機能(保護機能)が一体化された複合形継電器であるマルチリレーに対しても本発明を適用することが可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 電力線、2 遮断器、3 変流器、4,4A 過電流継電器、4B 過電圧継電器、5 補助変流器、6 補助変圧器、7,7A,7B 入力回路、8,8A,8B 出力回路、10,10A,10B 設定部、12,12A,12B 表示部、14,14A,14B 電源回路、20,21 整流器、22,22A,22B A/D変換器、24,24A,24B 処理回路、26,26A,26B ドライバ、31,32,33 トリップ用接点、40 鉄心、41 一次巻線、42 二次巻線、50 電源、I1 一次電流、I2 二次電流、Ie 励磁電流、E2 励磁電圧、ET 二次端子電圧、T1~T4 入力端子、T5 接地端子、T8,T12 出力端子、T9~T11,T13 端子、X1~X3 補助継電器、TC トリップコイル、k,l 二次端子。

Claims (3)

  1. 遮断器が接続された電力線に過電流が生じたときに、前記遮断器に動作指令を出力する過電流継電器であって、
    前記電力線には変流器が配置され、前記変流器は、前記電力線の電流を流す一次巻線、前記電流に応じて誘導される二次電流を二次端子から出力する二次巻線、および前記一次巻線および前記二次巻線が巻かれる鉄心を有し、
    前記変流器の前記二次電流を受ける第1および第2の入力端子と、
    前記変流器の二次端子電圧を受ける第3および第4の入力端子と、
    前記第1および第2の入力端子から与えられる前記二次電流を入力とする補助変流器と、
    前記第3および第4の入力端子から与えられる前記二次端子電圧を入力とする補助変圧器と、
    前記補助変流器の二次電流および前記補助変圧器の二次出力の各々をデジタルデータに変換するアナログ/デジタル変換器と、
    前記デジタルデータを用いた演算処理を実行することにより前記動作指令を出力する処理回路とを備え、
    前記処理回路は、
    前記補助変流器の二次電流に基づいたデジタルデータが予め定められた第1の整定値を超えたときに前記動作指令を出力するように構成された第1の過電流保護手段と、
    前記補助変圧器の二次出力の電圧に基づいたデジタルデータが予め定められた第2の整定値を超えたときに前記動作指令を出力するように構成された第2の過電流保護手段とを含み、
    前記第2の整定値は、前記変流器において前記鉄心の磁気飽和が起こるときの励磁電圧に基づいて設定される、過電流継電器。
  2. 前記第1の整定値は、瞬時要素の動作値となる整定値と、限時要素の動作値および動作時間となる整定値とを含み、
    前記第2の整定値は、前記瞬時要素の動作値となる整定値を含む、請求項1に記載の過電流継電器。
  3. 遮断器が接続された電力線に過電流が生じたときに、前記遮断器に動作指令を出力する過電流継電器であって、
    前記電力線には変流器が配置され、前記変流器は、前記電力線の電流を流す一次巻線、前記電流に応じて誘導される二次電流を二次端子から出力する二次巻線、および前記一次巻線および前記二次巻線が巻かれる鉄心を有し、
    第1の継電器と、
    第2の継電器とを備え、
    前記第1の継電器は、
    前記変流器の前記二次電流を受ける第1および第2の入力端子と、
    前記第1および第2の入力端子から与えられる前記二次電流を入力とする補助変流器と、
    前記補助変流器の二次電流をデジタルデータに変換する第1のアナログ/デジタル変換器と、
    前記補助変流器の二次電流に基づいたデジタルデータが予め定められた第1の整定値を超えたときに前記動作指令を出力するように構成された第1の処理回路とを含み、
    前記第2の継電器は、
    前記変流器の二次端子電圧を受ける第3および第4の入力端子と、
    前記第3および第4の入力端子から与えられる前記二次端子電圧を入力とする補助変圧器と、
    前記補助変圧器の二次出力をデジタルデータに変換する第2のアナログ/デジタル変換器と、
    前記補助変圧器の二次出力の電圧に基づいたデジタルデータが予め定められた第2の整定値を超えたときに前記動作指令を出力するように構成された第2の処理回路とを含み、
    前記第2の整定値は、前記変流器において前記鉄心の磁気飽和が起こるときの励磁電圧に基づいて設定される、過電流継電器。
JP2018128331A 2018-07-05 2018-07-05 過電流継電器 Active JP7073212B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018128331A JP7073212B2 (ja) 2018-07-05 2018-07-05 過電流継電器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018128331A JP7073212B2 (ja) 2018-07-05 2018-07-05 過電流継電器

Publications (2)

Publication Number Publication Date
JP2020010467A JP2020010467A (ja) 2020-01-16
JP7073212B2 true JP7073212B2 (ja) 2022-05-23

Family

ID=69152580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128331A Active JP7073212B2 (ja) 2018-07-05 2018-07-05 過電流継電器

Country Status (1)

Country Link
JP (1) JP7073212B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6917513B1 (ja) * 2020-09-04 2021-08-11 日本テクノ株式会社 三相交流の零相電流に基づく絶縁現状把握と遮断動作予測装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172916A (ja) 2007-01-11 2008-07-24 Chugoku Electric Power Co Inc:The 過電流継電装置
JP2009201209A (ja) 2008-02-20 2009-09-03 Meidensha Corp ディジタル形保護リレー

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297741A (en) * 1979-09-04 1981-10-27 General Electric Company Rate sensing instantaneous trip mode network
JPS61269609A (ja) * 1985-05-24 1986-11-29 株式会社日立製作所 保護継電器
JP3310801B2 (ja) * 1995-01-25 2002-08-05 三菱電機株式会社 過電流継電器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172916A (ja) 2007-01-11 2008-07-24 Chugoku Electric Power Co Inc:The 過電流継電装置
JP2009201209A (ja) 2008-02-20 2009-09-03 Meidensha Corp ディジタル形保護リレー

Also Published As

Publication number Publication date
JP2020010467A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
US9225162B2 (en) System and method for fault protection
CN107887890B (zh) 开关
US10804045B2 (en) Configurable circuit-breaker
US20150333509A1 (en) Protective Circuit for a Current Transformer and Current Transformer with a Protection Circuit
EP2804278B1 (en) Self-power circuit for protecting relay
US9048657B2 (en) Control circuit for electric power circuit switch
US10014679B2 (en) Electrical switching apparatus including alternating current electronic trip circuit with arc fault detection circuit and power supply
WO2012056287A2 (en) A protection relay for sensitive earth fault prtection
JP4935455B2 (ja) 漏電検出装置
US9170597B2 (en) Inrush current suppressing device
US11374391B2 (en) Electrical AC/DC converter arrangement with an AC circuit breaker, and a method for disconnecting an AC/DC converter arrangement
JP7073212B2 (ja) 過電流継電器
US6469882B1 (en) Current transformer initial condition correction
US20050141163A1 (en) Analogue electronic trip device for an electrical power breaker responding to a short-circuit
CN110718894A (zh) 低压断路器和方法
KR101050354B1 (ko) 회로 차단기
AU2019447727B2 (en) Electric line (L) protection device for detecting a leakage fault, a short-circuit, fault, an overcurrent fault and an arc fault
US20040145844A1 (en) Bypass circuit for the overcurrent trip of a low-voltage power circuit breaker
US11698392B2 (en) Low-voltage power switch and arc fault detection unit
JPH08182220A (ja) 過電流保護継電装置
JP6019069B2 (ja) 配線用遮断器、保護継電器、配線遮断方法及び配線遮断プログラム
US20140111294A1 (en) Electrical switching apparatus including transductor circuit and alternating current electronic trip circuit
EP3080829B1 (en) Electrical switching apparatus including transductor circuit and alternating current electronic trip circuit
CN102386025B (zh) 开关、特别是低压断路器和开关的电子脱扣单元的电源
JP6140674B2 (ja) 遮断器及び電力供給システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7073212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150