JP7072624B1 - Power semiconductor devices and methods for manufacturing power semiconductor devices - Google Patents

Power semiconductor devices and methods for manufacturing power semiconductor devices Download PDF

Info

Publication number
JP7072624B1
JP7072624B1 JP2020193040A JP2020193040A JP7072624B1 JP 7072624 B1 JP7072624 B1 JP 7072624B1 JP 2020193040 A JP2020193040 A JP 2020193040A JP 2020193040 A JP2020193040 A JP 2020193040A JP 7072624 B1 JP7072624 B1 JP 7072624B1
Authority
JP
Japan
Prior art keywords
plate
porous body
ceramic porous
shaped resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020193040A
Other languages
Japanese (ja)
Other versions
JP2022081849A (en
Inventor
朋久 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020193040A priority Critical patent/JP7072624B1/en
Application granted granted Critical
Publication of JP7072624B1 publication Critical patent/JP7072624B1/en
Publication of JP2022081849A publication Critical patent/JP2022081849A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】近年求められているパワーモジュールの大容量化、低コスト化に対応した信頼性の高い電力用半導体装置を得ることを可能とする。【解決手段】電力用半導体素子1a,1bの通電による発熱を取り出すと共に露出した部分に前記発熱を伝熱するヒートスプレッダ3を有するパワーモジュール201、およびヒートスプレッダにヒートスプレッダの側の面が熱的に接合し、ヒートスプレッダと反対側の面が冷却器7と熱的に接合する板状樹脂含浸セラミックス多孔質体6を備え、パワーモジュールの冷却器の側の面と、冷却器のパワーモジュールの側の面と、板状樹脂含浸セラミックス多孔質体の板状樹脂含浸セラミックス多孔質体の延在方向の端面とによって囲まれ、板状樹脂含浸セラミックス多孔質体の含浸樹脂の板状樹脂含浸セラミックス多孔質体の延在方向の端面からの流出を許容する空間領域567aが設けられている。【選択図】図1PROBLEM TO BE SOLVED: To obtain a highly reliable power semiconductor device corresponding to an increase in capacity and cost reduction of a power module, which has been demanded in recent years. SOLUTION: A power module 201 having a heat spreader 3 for extracting heat generated by energization of power semiconductor elements 1a and 1b and transferring the heat to an exposed portion, and a heat spreader on the side surface of the heat spreader are thermally bonded to the heat spreader. A plate-like resin-impregnated ceramic porous body 6 with a surface opposite to the heat spreader thermally bonded to the cooler 7 is provided with a power module cooler side surface and a cooler power module side surface. , Plate-shaped resin impregnated ceramics porous body plate-shaped resin impregnated ceramics Plate-shaped resin impregnated ceramics porous body surrounded by end faces in the extending direction, plate-shaped resin impregnated ceramics porous body impregnated resin plate-shaped resin impregnated ceramics porous body A spatial area 567a is provided to allow outflow from the end face in the extending direction. [Selection diagram] Fig. 1

Description

本願は、電力用半導体装置および電力用半導体装置の製造方法に関するものである。 The present application relates to a power semiconductor device and a method for manufacturing a power semiconductor device.

パワーモジュールとパワーモジュールを支持する支持部材との結合方法は、直接冷却方式と間接冷却方式に大別される。
直接冷却方式は例えば、固体セラミックスを絶縁層として、セラミックスの両面に金属を貼り付けて構成された金属回路基板を用い、当該金属回路基板の一方の面に半導体素子、配線部材等を実装し、もう一方の面と支持部材とを半田等の金属接合材で結合する冷却方式であり、放熱、接着機能を金属接合材により、絶縁機能を固体セラミックスにより実現する。
一方、間接冷却方式は、例えば、金属板の一方の面に半導体素子、配線部材を実装し、もう一方の面と支持部材との間に放熱絶縁グリスを配置し、ネジなどで固定する冷却方式であり、放熱、絶縁機能を放熱絶縁グリスにより、接着機能をネジにより実現する。
The method of connecting the power module and the support member that supports the power module is roughly classified into a direct cooling method and an indirect cooling method.
In the direct cooling method, for example, a metal circuit board configured by using solid ceramics as an insulating layer and metal is attached to both sides of the ceramics is used, and a semiconductor element, a wiring member, etc. are mounted on one surface of the metal circuit board. It is a cooling method in which the other surface and the support member are bonded with a metal bonding material such as solder. The heat dissipation and bonding functions are realized by the metal bonding material, and the insulating function is realized by the solid ceramics.
On the other hand, the indirect cooling method is, for example, a cooling method in which a semiconductor element and a wiring member are mounted on one surface of a metal plate, heat-dissipating insulating grease is placed between the other surface and a support member, and the metal plate is fixed with screws or the like. The heat dissipation and insulation functions are realized by heat dissipation insulation grease, and the adhesive function is realized by screws.

一般に、直接冷却方式は間接冷却方式と比べて放熱性に優れており、小型、大出力化に有利であるが、大面積、複数個のパワーモジュールを支持部材に金属接合材を用いて結合する装置、例えば金属接合材が半田であればリフロー半田付けを行うリフロー装置が大型化し、製造コストが高くなる。また、固体セラミックスと他の部材との線膨張係数の差が大きく、各接合部に発生する熱応力が大きく、特に金属接合材の接合信頼性が短くなりやすい課題がある。
間接冷却方式は大面積、複数個のパワーモジュールを支持部材と結合する際でも、大型の昇温装置などが不要であり、製造コストを低く抑えることが可能であるが、ネジ固定部が大きく、大型化し、また、グリスの劣化による熱抵抗の悪化、絶縁性の低下など、課題があった。
In general, the direct cooling method is superior in heat dissipation to the indirect cooling method, and is advantageous for small size and high output. However, a large area and a plurality of power modules are bonded to a support member by using a metal bonding material. If the device, for example, the metal bonding material is solder, the reflow device for reflow soldering becomes large and the manufacturing cost increases. Further, there is a problem that the difference in the coefficient of linear expansion between the solid ceramic and other members is large, the thermal stress generated in each joint is large, and the joint reliability of the metal joint is particularly short.
The indirect cooling method has a large area, and even when connecting multiple power modules to the support member, a large temperature riser is not required and the manufacturing cost can be kept low, but the screw fixing part is large. There are problems such as an increase in size, deterioration of thermal resistance due to deterioration of grease, and deterioration of insulation.

このような課題に対し、接着性、放熱性、絶縁性を有した絶縁放熱接着シートを用いてパワーモジュールを支持部材に直接接合する構造は例えば特許文献1に開示されている。
さらに最近では、従来のセラミックスフィラーを添加した絶縁シートより、さらに高熱伝導が実現できる、樹脂を含浸したセラミックス多孔質体を板状に成型した、板状樹脂含浸セラミックス多孔質体が用いられる場合がある。板状樹脂含浸セラミックス多孔質体(以下、絶縁樹脂シートと区別するため、板状樹脂含浸セラミックス多孔質体と記載する。)として、例えば特許文献2に、窒化物系セラミックスの多孔性焼結体に熱硬化性樹脂組成物が不完全硬化状態で含浸されている窒化物系セラミックス樹脂複合体が開示されている。
To solve such a problem, for example, Patent Document 1 discloses a structure in which a power module is directly bonded to a support member by using an insulating heat-dissipating adhesive sheet having adhesiveness, heat-dissipating property, and insulating property.
More recently, there have been cases where a plate-shaped resin-impregnated ceramic porous body, which is obtained by molding a resin-impregnated ceramic porous body into a plate shape, which can realize higher heat conduction than the conventional insulating sheet to which a ceramic filler is added, is used. be. As a plate-shaped resin-impregnated ceramic porous body (hereinafter, referred to as a plate-shaped resin-impregnated ceramic porous body to distinguish it from an insulating resin sheet), for example, Patent Document 2 describes a porous sintered body of nitride-based ceramics. Discloses a nitride-based ceramic resin composite impregnated with a thermosetting resin composition in an incompletely cured state.

特開2003-153544号公報Japanese Patent Application Laid-Open No. 2003-153544 国際公開第2019/111978号International Publication No. 2019/111978

特許文献1においては、その段落[0027]に「絶縁樹脂シートは例えば、エポキシ樹脂に窒化ホウ素などのセラミックフィラーを充填したもので、熱伝導率2~4W/(mK)、厚み0.1~0.15mm」と記載されており、仮にこの絶縁樹脂シートを用いて半導体装置を構成した場合、前記直接冷却方式と比べて熱抵抗が大きく、半導体装置の小型、大出力化ができない。 In Patent Document 1, in the paragraph [0027], "The insulating resin sheet is, for example, an epoxy resin filled with a ceramic filler such as boron nitride, has a thermal conductivity of 2 to 4 W / (mK), and a thickness of 0.1 to 0.15 mm. If a semiconductor device is configured using this insulating resin sheet, the thermal resistance is larger than that of the direct cooling method, and the semiconductor device cannot be made smaller and have a higher output.

さらに、直接冷却方式において、支持部材と半導体素子を配置した金属回路基板とを接合するのに用いられる、半田に代表される金属接合材が、接合時に溶融することで、微小な凹凸、金属回路基板の反りを吸収するのに対し、特許文献1に開示の前記絶縁樹脂シートは変形が小さく、被着面の凹凸、反りの影響を受けやすく、良好な接着を得るためには被着面を切削加工などにより、改質する必要があるため、製造コストが高くなる課題がある。前記切削加工を行わずに良好な接着を得るためには、樹脂絶縁シートを、被着面の凹凸(例えば50μm)、反り(例えば20μm)を十分吸収できるように分厚くする方法もあるが、樹脂絶縁シートを分厚くすれば樹脂絶縁シートの熱抵抗が大きくなり、更に、特許文献1に例示のインバータ装置等の半導体装置の小型、大出力化ができない。 Further, in the direct cooling method, a metal bonding material typified by solder, which is used for bonding a support member and a metal circuit board on which a semiconductor element is arranged, melts at the time of bonding, resulting in minute irregularities and a metal circuit. While the insulating resin sheet disclosed in Patent Document 1 absorbs the warp of the substrate, the deformation is small, and it is easily affected by the unevenness of the adherend surface and the warp. There is a problem that the manufacturing cost is high because it needs to be reformed by cutting or the like. In order to obtain good adhesion without performing the above-mentioned cutting process, there is a method of thickening the resin insulating sheet so as to sufficiently absorb unevenness (for example, 50 μm) and warpage (for example, 20 μm) of the adherend surface. If the insulating sheet is made thicker, the thermal resistance of the resin insulating sheet increases, and further, the semiconductor device such as the inverter device exemplified in Patent Document 1 cannot be made smaller and have a higher output.

特許文献2においては、その段落[0066]に「本評価で用いたような熱伝導性絶縁接着シートの熱伝導率は、少なくとも30W/(mK)以上であれば実用的に用いるのに十分な値であるし、板状樹脂含浸セラミックス多孔質体では、接着時は加熱により、含浸樹脂の粘度が一時的に低下するとこで、セラミックス多孔質体と含浸樹脂が別々の挙動を示し、含浸樹脂部が被着面の凹凸、反りを吸収できる。なお、実施例1の25℃における熱伝導率は、100W/(mK)であった。」と記載されており、パワーモジュールへの活用方法については、その段落[0045]に「前記本発明の熱伝導性絶縁接着シートを電気絶縁層として備えている単層または多層の金属回路基板も本発明の実施態様のひとつである。」と記載され、その段落[0046]に「前記本発明の金属回路基板を用いたパワーモジュール構造体、LED発光装置も本発明の実施態様の一つである。」と記載されており、不完全硬化状態の樹脂含浸セラミックス多孔質体を用いて金属回路基板を構成する構造について言及がある。しかしながら、特許文献2においては、特許文献1のようにパワーモジュールを支持部材に直接接合する構造については言及がない。 In Patent Document 2, the paragraph [0066] states, "If the thermal conductivity of the thermally conductive insulating adhesive sheet as used in this evaluation is at least 30 W / (mK) or more, it is sufficient for practical use. In the plate-shaped resin-impregnated ceramic porous body, the viscosity of the impregnated resin temporarily decreases due to heating during bonding, and the ceramic porous body and the impregnated resin behave differently. The part can absorb the unevenness and warpage of the adherend surface. The thermal conductivity at 25 ° C in Example 1 was 100 W / (mK). " Is described in the paragraph [0045] as "a single-layer or multi-layered metal circuit board provided with the thermally conductive insulating adhesive sheet of the present invention as an electrically insulating layer is also one of the embodiments of the present invention." , The paragraph [0046] states that "a power module structure using the metal circuit board of the present invention and an LED light emitting device are also one of the embodiments of the present invention", and are in an incompletely cured state. There is a reference to a structure constituting a metal circuit board using a resin-impregnated ceramic porous body. However, Patent Document 2 does not mention a structure in which a power module is directly bonded to a support member as in Patent Document 1.

なお、特許文献1の段落[0096]には、「図15において、電力用半導体素子部は、図15の(a)に示すようにまず、IGBT191A~191Dとダイオード201A~201CをSn/Pbなどの低融点又はSn/Ag/Cuなどの高融点半田23で導体22に接合する。次に、図15の(b)に示すように、絶縁樹脂シート25を冷却器24に仮接着する。最後に、図15の(c)に示すように、導体22を、IGBT191A~191Dとダイオード201A~201Cが接合されていない場所に、加圧力を均一化するために例えばシリコンゴムなどの弾性体45を配置し、加圧板46を介し加圧して、導体22と冷却器24を絶縁樹脂シート25で加圧、加熱接着する。加圧温度は、例えば160℃~170℃、加圧力は約20~30kgf/cm2 である。」と記載されており、続けて、段落[0097]に「図15の電力用半導体素子部においては、仮に最初に導体22と冷却器24 を絶縁樹脂シートで接着したとすると、IGBT191A~191Dとダイオード201A~201Cを半田付けするときに、絶縁樹脂シート25のガラス転移温度(例えば170℃位)以上に長時間加熱する必要があり、絶縁樹脂シートの特性が劣化する。これに対し、本実施形態では、上述した製造方法を採用するため、絶縁樹脂シートの特性が劣化することはない。」と記載されており、パワーモジュールを支持部材に直接接合することで、ダイボンド材を自由に選択し、絶縁シートの特性劣化を防止することはできる。 In paragraph [0096] of Patent Document 1, "In FIG. 15, as shown in FIG. 15A, first, the power semiconductor element unit includes the IGBTs 191A to 191D and the diodes 201A to 201C as Sn / Pb or the like. The insulating resin sheet 25 is temporarily bonded to the cooler 24 as shown in FIG. 15 (b) by joining to the conductor 22 with a low melting point solder 23 such as Sn / Ag / Cu. In addition, as shown in FIG. 15 (c), the conductor 22 is placed in a place where the IGBTs 191A to 191D and the diodes 201A to 201C are not joined, and an elastic body 45 such as silicon rubber is placed in order to equalize the pressing force. The conductor 22 and the cooler 24 are pressurized and heat-bonded by the insulating resin sheet 25 by arranging and pressurizing through the pressurizing plate 46. The pressurizing temperature is, for example, 160 ° C. to 170 ° C., and the pressing force is about 20 to 30 kgf. It is described as "/ cm2", and subsequently, in paragraph [0097], "In the power semiconductor element portion of FIG. 15, it is assumed that the conductor 22 and the cooler 24 are first bonded with an insulating resin sheet." When soldering the IGBTs 191A to 191D and the diodes 201A to 201C, it is necessary to heat the insulating resin sheet 25 to a glass transition temperature (for example, about 170 ° C.) or higher for a long time, and the characteristics of the insulating resin sheet deteriorate. On the other hand, in the present embodiment, since the above-mentioned manufacturing method is adopted, the characteristics of the insulating resin sheet are not deteriorated. " Can be freely selected to prevent deterioration of the characteristics of the insulating sheet.

ここで、例えば特許文献2における前記樹脂含浸セラミックス多孔質体を用いてパワーモジュールを支持部材に直接接合する場合、前記絶縁樹脂シートと同じく、空気ボイドによる絶縁性の低下が課題となる。前記板状樹脂含浸セラミックス多孔質体も、前記樹脂絶縁シートと同じく、数%程度の空気ボイドを含んでおり、空気ボイドの影響により、電圧が印加された際にパッシェンの法則に従い、部分放電が発生する。部分放電が発生すると絶縁劣化が進み、部分放電が繰り返されることで絶縁破壊に至る。
これを防ぐために、前記絶縁シートと同じく、前記板状樹脂含浸セラミックス多孔質体も加熱加圧接合によって接合する必要がある。加熱により、板状樹脂含浸セラミックス多孔質体内の含浸樹脂は一時的に粘度が下がり、加圧に伴い流動する。
この時、前記絶縁樹脂シートは加熱により粘度の低下した樹脂とセラミック粒が一体となって流動するのに対し、前記板状樹脂含浸セラミックス多孔質体では、セラミックス多孔質体の骨格の一部と加熱により粘度の低下した含浸樹脂が流動する。
この挙動の差により、前記絶縁樹脂シート、前記板状樹脂含浸セラミックス多孔質体内に発生する圧力(以下、内圧)が異なり、同一条件で加圧した場合でも、板状樹脂含浸セラミックス多孔質体の方が内圧が低くなる。これにより、ボイドが残存することによって、接合信頼性の低下、放熱性の低下、絶縁信頼性の低下が懸念される。
一方で、前記板状樹脂含浸セラミックス多孔質体の加圧時の前記挙動により、凹凸への追従性が良く、前記絶縁樹脂シートのように過剰に厚みを分厚くする必要が無く、大容量化に有利である。
Here, for example, when the power module is directly bonded to the support member by using the resin-impregnated ceramic porous body in Patent Document 2, the problem is the deterioration of the insulating property due to the air void, as in the case of the insulating resin sheet. Like the resin insulating sheet, the plate-shaped resin-impregnated ceramic porous body also contains about several% of air voids, and due to the influence of the air voids, partial discharge occurs according to Paschen's law when a voltage is applied. Occur. When partial discharge occurs, insulation deterioration progresses, and repeated partial discharge leads to dielectric breakdown.
In order to prevent this, it is necessary to join the plate-shaped resin-impregnated ceramic porous body by heat-pressing joining as well as the insulating sheet. By heating, the viscosity of the impregnated resin in the porous plate-shaped resin-impregnated ceramic body temporarily decreases, and the impregnated resin flows with pressure.
At this time, in the insulating resin sheet, the resin whose viscosity has decreased due to heating and the ceramic particles flow together, whereas in the plate-shaped resin-impregnated ceramic porous body, a part of the skeleton of the ceramic porous body is formed. The impregnated resin whose viscosity has decreased due to heating flows.
Due to this difference in behavior, the pressure generated in the insulating resin sheet and the plate-shaped resin-impregnated ceramic porous body (hereinafter referred to as internal pressure) differs, and even when pressurized under the same conditions, the plate-shaped resin-impregnated ceramic porous body The internal pressure is lower. As a result, there is a concern that the joining reliability may be lowered, the heat dissipation property may be lowered, and the insulation reliability may be lowered due to the remaining voids.
On the other hand, due to the behavior of the plate-shaped resin-impregnated ceramic porous body at the time of pressurization, it has good followability to unevenness, and it is not necessary to make the thickness excessively thick like the insulating resin sheet, so that the capacity can be increased. It is advantageous.

本願は、上記のような実情に鑑みてなされた技術を開示するものであり、その目的は、接合信頼性、放熱性、絶縁信頼性を向上し、実装面積の小型化、コストを抑制することで、近年求められているパワーモジュールの大容量化、低コスト化に対応した信頼性の高い電力用半導体装置を得ることを可能とすることにある。 The present application discloses a technique made in view of the above circumstances, and an object thereof is to improve joint reliability, heat dissipation, and insulation reliability, reduce the mounting area, and suppress costs. Therefore, it is possible to obtain a highly reliable power semiconductor device corresponding to the increase in capacity and cost reduction of power modules, which have been demanded in recent years.

本願に開示される電力半導体装置は、電力用半導体素子を封止した樹脂封止体に一部が露出するように封止され前記電力用半導体素子の通電による発熱を取り出すと共に前記露出した部分に前記発熱を伝熱するヒートスプレッダを有するパワーモジュール、および
前記ヒートスプレッダに前記ヒートスプレッダの側の面が熱的に接合し、前記ヒートスプレッダと反対側の面が冷却器と熱的に接合する板状樹脂含浸セラミックス多孔質体を備え、
前記パワーモジュールの前記冷却器の側の面と、前記冷却器の前記パワーモジュールの側の面と、前記板状樹脂含浸セラミックス多孔質体の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面とによって囲まれ、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面からの流出を許容する空間領域が設けられ、
前記板状樹脂含浸セラミックス多孔質体の延在方向の端面から前記ヒートスプレッダの前記延在方向の端面までの距離が、前記板状樹脂含浸セラミックス多孔質体の板状樹脂含浸セラミックス多孔質体の平均細孔径の150倍以上であり、かつ、前記平均細孔径が、前記板状樹脂含浸セラミックス多孔質体の前記延在方向と直交する方向の厚みの1/20よりも小さい
ことを特徴とするものである。
The power semiconductor device disclosed in the present application is sealed so as to be partially exposed in a resin encapsulant in which the power semiconductor element is sealed, and heat generated by energization of the power semiconductor element is taken out and the exposed portion is exposed. A power module having a heat spreader that transfers heat, and plate-shaped resin-impregnated ceramics in which the surface on the side of the heat spreader is thermally bonded to the heat spreader and the surface on the opposite side to the heat spreader is thermally bonded to the cooler. Equipped with a porous body,
The surface of the power module on the side of the cooler, the surface of the cooler on the side of the power module, and the plate-shaped resin-impregnated ceramic porous body in the extending direction of the plate-shaped resin-impregnated ceramic porous body. A space region surrounded by the end face and allowing the outflow of the impregnated resin of the plate-shaped resin-impregnated ceramic porous body from the end face in the extending direction of the plate-shaped resin-impregnated ceramic porous body is provided.
The distance from the end face of the plate-shaped resin-impregnated ceramic porous body in the extending direction to the end face of the heat spreader in the extending direction is the average of the plate-shaped resin-impregnated ceramic porous body of the plate-shaped resin-impregnated ceramic porous body. It is 150 times or more the pore diameter, and the average pore diameter is smaller than 1/20 of the thickness in the direction orthogonal to the extending direction of the plate-shaped resin-impregnated ceramic porous body.
It is characterized by that.

本願に開示される電力用半導体装置によれば、接合信頼性、放熱性、絶縁信頼性を向上し、実装面積の小型化、コストを抑制することで、近年求められているパワーモジュールの大容量化、低コスト化に対応した信頼性の高い電力用半導体装置を得ることが可能となる。 According to the power semiconductor device disclosed in the present application, the large capacity of the power module, which has been demanded in recent years, is required by improving the junction reliability, heat dissipation, and insulation reliability, reducing the mounting area, and reducing the cost. It is possible to obtain a highly reliable power semiconductor device that can be used for both high cost and low cost.

本願の実施の形態1および実施の形態2に係る電力用半導体装置の事例を示す図で、図2のA-A線における断面を矢印方向にみたA-A断面図である。It is a figure which shows the example of the electric power semiconductor device which concerns on Embodiment 1 and Embodiment 2 of this application, and is the cross-sectional view taken along the line AA of FIG. 2 as seen in the direction of an arrow. 本願の実施の形態1および実施の形態2に係る電力用半導体装置の事例を示す斜視図である。It is a perspective view which shows the example of the electric power semiconductor device which concerns on Embodiment 1 and Embodiment 2 of this application. 図1の一点鎖線で囲まれた被拡大部Bを拡大して例示するB部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a portion B which is an enlarged example of the enlarged portion B surrounded by the alternate long and short dash line in FIG. 本願の実施の形態2を示す図で、距離Uと樹脂含浸セラミック多孔質体内内圧の計算例を示す説明図である。It is a figure which shows Embodiment 2 of this application, and is explanatory drawing which shows the calculation example of the distance U and the resin impregnated ceramic porous internal pressure. 本願の実施の形態3に係る電力用半導体装置の事例を示す図で、図1のA-A断面に相当する図である。It is a figure which shows the example of the electric power semiconductor device which concerns on Embodiment 3 of this application, and is the figure which corresponds to the cross section AA of FIG. 図5の一点鎖線で囲まれた被拡大部Cを拡大して例示するC部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a portion C which is an enlarged example of the enlarged portion C surrounded by the alternate long and short dash line in FIG. 本願の実施の形態4,5,6に係る電力用半導体装置の実施例のデータと、比較例のデータと、を示す説明図である。It is explanatory drawing which shows the data of the Example of the electric power semiconductor device which concerns on Embodiments 4, 5 and 6 of this application, and the data of a comparative example. 本願の実施の形態4に係る半導体素子の縦横比とウェハ取れ数比との関係を例示する説明図である。It is explanatory drawing which illustrates the relationship between the aspect ratio of the semiconductor element which concerns on Embodiment 4 of this application, and the wafer removal number ratio. 本願の実施の形態7に係る電力用半導体装置の事例を示す図で、図1のA-A断面に相当する図である。It is a figure which shows the example of the electric power semiconductor device which concerns on Embodiment 7 of this application, and is the figure which corresponds to the cross section AA of FIG. 図9の一点鎖線で囲まれた被拡大部Dを拡大して例示するD部拡大断面図である。9 is an enlarged cross-sectional view of the D portion, which is an enlarged example of the enlarged portion D surrounded by the alternate long and short dash line in FIG. 本願の実施の形態8に係る電力用半導体装置の事例を示す図で、図1のA-A断面に相当する図である。It is a figure which shows the example of the electric power semiconductor device which concerns on Embodiment 8 of this application, and is the figure which corresponds to the cross section AA of FIG. 図11の一点鎖線で囲まれた被拡大部Eを拡大して例示するE部拡大断面図である。11 is an enlarged cross-sectional view of the E portion, which is an enlarged example of the enlarged portion E surrounded by the alternate long and short dash line in FIG. 本願の実施の形態10に係る電力用半導体装置の製造工程の各工程での第1段階の中間構造を例示する断面図である。It is sectional drawing which illustrates the intermediate structure of the 1st stage in each step of the manufacturing process of the power semiconductor device which concerns on Embodiment 10 of this application. 本願の実施の形態10に係る電力用半導体装置の製造工程の各工程での第2段階の中間構造を例示する断面図である。It is sectional drawing which illustrates the intermediate structure of the 2nd stage in each step of the manufacturing process of the electric power semiconductor device which concerns on Embodiment 10 of this application. 本願の実施の形態10に係る電力用半導体装置の製造工程の各工程での第3段階の中間構造を例示する断面図である。It is sectional drawing which illustrates the intermediate structure of the 3rd stage in each step of the manufacturing process of the electric power semiconductor device which concerns on Embodiment 10 of this application. 本願の実施の形態10に係る電力用半導体装置の製造工程の各工程での第4段階の構造を例示する断面図である。It is sectional drawing which illustrates the structure of the 4th stage in each step of the manufacturing process of the electric power semiconductor device which concerns on Embodiment 10 of this application. 本願の実施の形態10に係る電力用半導体装置の製造工程における接合中の不完全硬化状態の板状樹脂含浸セラミックス多孔質体の挙動を例示する図であり、図3の拡大断面図に相当する断面図である。It is a figure which illustrates the behavior of the plate-like resin impregnated ceramics porous body in the incompletely cured state in the manufacturing process of the electric power semiconductor device which concerns on Embodiment 10 of this application, and corresponds to the enlarged sectional view of FIG. It is a sectional view.

以下に、本願に係る電力用半導体装置、例えば車載用の電力用半導体装置として顕著な効果を奏する各実施の形態を図1から図17に基づいて説明する。なお、本願は以下の記述に限定されるものではなく、本願の要旨を逸脱しない範囲において適宜変更可能である。以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合があり、また、本願の特徴に関係しない構成の図示は省略する。また、各図中、同一符号は同一または相当部分を示す。 Hereinafter, embodiments of each embodiment that have a remarkable effect as a power semiconductor device according to the present application, for example, an in-vehicle power semiconductor device will be described with reference to FIGS. 1 to 17. The present application is not limited to the following description, and can be appropriately changed without departing from the gist of the present application. In the drawings shown below, the scale of each member may differ from the actual scale for the sake of easy understanding, and the illustration of the configuration not related to the features of the present application is omitted. Further, in each figure, the same reference numerals indicate the same or corresponding parts.

実施の形態1.
本実施の形態1は、図1から図3に例示されている。図1は本願の実施の形態1および実施の形態2に係る電力用半導体装置の事例を示す図で、図2のA-A線における断面を矢印方向にみたA-A断面図である。図2は本願の実施の形態1および実施の形態2に係る電力用半導体装置の事例を示す斜視図である。図3は図1の一点鎖線で囲まれた被拡大部Bを拡大して例示するB部拡大断面図である。
Embodiment 1.
The first embodiment is illustrated in FIGS. 1 to 3. FIG. 1 is a diagram showing an example of a power semiconductor device according to a first embodiment and a second embodiment of the present application, and is a cross-sectional view taken along the line AA of FIG. 2 in the direction of an arrow. FIG. 2 is a perspective view showing an example of a power semiconductor device according to the first embodiment and the second embodiment of the present application. FIG. 3 is an enlarged cross-sectional view of a portion B which is an enlarged example of the enlarged portion B surrounded by the alternate long and short dash line in FIG.

図1から図3において、電力用半導体装置101はパワーモジュール201と、支持部材である冷却器7と、パワーモジュール201と冷却器7との間に介在する板状樹脂含浸セラミックス多孔質体6とを備える。板状樹脂含浸セラミックス多孔質体6は、熱伝導性が高いいわゆる高熱伝導材であり電気的絶縁体である。
説明の便宜上、図1の上下方向を厚さ方向、左右方向を面内方向と記載し、面内方向において、金属配線部材2a、2bが露出している側を外側、金属配線部材2a、2bに挟まれた部分を中心部とする。
In FIGS. 1 to 3, the power semiconductor device 101 includes a power module 201, a cooler 7 as a support member, and a plate-shaped resin-impregnated ceramic porous body 6 interposed between the power module 201 and the cooler 7. To prepare for. The plate-shaped resin-impregnated ceramic porous body 6 is a so-called high thermal conductive material having high thermal conductivity and is an electrical insulator.
For convenience of explanation, the vertical direction of FIG. 1 is described as the thickness direction and the horizontal direction is described as the in-plane direction. In the in-plane direction, the side where the metal wiring members 2a and 2b are exposed is the outside, and the metal wiring members 2a and 2b. The part sandwiched between the two is the center.

パワーモジュール201は基本構成部分として、電力用半導体素子1a、1bと、金属配線部材2a、2b、2cと、高熱伝導材であり電気的導体であるヒートスプレッダ3を備え、樹脂封止体5によって封止されている。電力用半導体素子1a、1bは、ヒートスプレッダ3に、それぞれ配線部材でもある金属接合材4a、4bを用いて接合される。同様に電力用半導体素子1a、1bと金属配線部材2aとは金属接合材4c、4dを用いて接合される。
金属接合材4a、4b、4c、4dは例えば、はんだ、銀等の金属が考えられる。特に、金属接合材4a、4bは、例えば、300℃などの高温下で30MPaを超える加圧力を用いて焼結する焼結Agのような、超高信頼性、高放熱性の接合材を選択可能である。
金属配線部材2a、2b、2cは、例えばアルミニウム、銅等の金属が考えられ、金属配線部材2cと電力用半導体素子1a、1bとの接合部材は、アルミ、銅等の金属ワイヤが考えられる他、金属配線部材2aと電力用半導体素子1a、1bとの接続に金属ワイヤを用いる構造も選択できる。
The power module 201 is provided with power semiconductor elements 1a and 1b, metal wiring members 2a, 2b and 2c, and a heat spreader 3 which is a high thermal conductive material and an electric conductor as basic components, and is sealed by a resin sealant 5. It has been stopped. The power semiconductor elements 1a and 1b are joined to the heat spreader 3 by using metal bonding materials 4a and 4b, which are also wiring members, respectively. Similarly, the power semiconductor elements 1a and 1b and the metal wiring member 2a are joined by using the metal joining materials 4c and 4d.
As the metal bonding materials 4a, 4b, 4c, and 4d, for example, metals such as solder and silver can be considered. In particular, for the metal bonding materials 4a and 4b, select ultra-reliable and highly heat-dissipating bonding materials such as sintered Ag, which is sintered using a pressure exceeding 30 MPa at high temperatures such as 300 ° C. It is possible.
The metal wiring members 2a, 2b, and 2c may be made of metal such as aluminum and copper, and the joining member between the metal wiring member 2c and the power semiconductor elements 1a and 1b may be metal wires such as aluminum and copper. , A structure using a metal wire for connecting the metal wiring member 2a and the power semiconductor elements 1a and 1b can also be selected.

電力用半導体素子1a、1bは、例えば、電圧駆動型のMOS-FET、IGBT、ダイオードであり、シリコンの他に、窒化ケイ素、窒化ガリウム、炭化ケイ素といった次世代半導体が使用されており、パワーモジュール201における主たる発熱源となる。
電力用半導体素子1a、1bが通電されることにより電力用半導体素子1a、1bが発生した熱は、ヒートスプレッダ3により効率的に取り出され、ヒートスプレッダ3内で効率的に伝達され、更に、ヒートスプレッダ3から板状樹脂含浸セラミックス多孔質体6を介して冷却器7へ伝達され、冷却器7で外部へ熱放散される。
The power semiconductor elements 1a and 1b are, for example, voltage-driven MOS-FETs, IGBTs, and diodes. Next-generation semiconductors such as silicon nitride, gallium nitride, and silicon carbide are used in addition to silicon, and power modules are used. It is the main heat source in 201.
The heat generated by the power semiconductor elements 1a and 1b when the power semiconductor elements 1a and 1b are energized is efficiently taken out by the heat spreader 3, efficiently transferred in the heat spreader 3, and further from the heat spreader 3. It is transmitted to the cooler 7 via the plate-shaped resin-impregnated ceramic porous body 6, and heat is dissipated to the outside by the cooler 7.

金属配線部材2a、2b、2cは、樹脂封止体5の外側に露出した状態で成形され、外部との接続部分となる。金属配線部材2a、2bは主に大電力を通電し、金属配線部材2cは電力用半導体素子1a、1bへの制御信号を通電するのに用いられる。制御信号としては、例えば半導体素子がMOS-FETであれば、ゲート、制御ソース、温度センス、電流センス等が考えられる。 The metal wiring members 2a, 2b, and 2c are formed in a state of being exposed to the outside of the resin encapsulant 5, and serve as a connection portion with the outside. The metal wiring members 2a and 2b are mainly used to energize a large amount of electric power, and the metal wiring members 2c are used to energize control signals to power semiconductor elements 1a and 1b. As the control signal, for example, if the semiconductor element is a MOS-FET, a gate, a control source, a temperature sense, a current sense, and the like can be considered.

冷却器7は、電力用半導体素子1a、1bが動作時に発する熱を外部へ拡散するヒートシンクなどであり、例えばアルミニウム、銅など金属で構成される。本実施の形態では、放熱性を向上するため、図示するようにフィンが設けられている。また、冷却器7内に伝熱製溶液を流して、例えばラジエターなど周辺部品と接続した状態で冷却をおこなってもよい。冷却用溶液は例えば水などが考えられる。 The cooler 7 is a heat sink or the like that diffuses heat generated during operation of the power semiconductor elements 1a and 1b to the outside, and is made of a metal such as aluminum or copper. In this embodiment, fins are provided as shown in order to improve heat dissipation. Further, the heat transfer solution may be flowed in the cooler 7 to cool it in a state where it is connected to peripheral parts such as a radiator. The cooling solution may be, for example, water.

パワーモジュール201は、少なくとも1面が冷却器7と板状樹脂含浸セラミックス多孔質体6によって結合された構造を有しており、具体的には、例えば、絶縁機能を有していないヒートスプレッダ3の厚み方向の一部が樹脂封止体5から露出した構造に形成されている。実施の形態1では、パワーモジュール201のヒートスプレッダ3の露出面と冷却器7との間を板状樹脂含浸セラミックス多孔質体6で結合する構造が例示されている。 The power module 201 has a structure in which at least one surface is bonded to the cooler 7 and the plate-shaped resin-impregnated ceramic porous body 6, and specifically, for example, the heat spreader 3 having no insulating function. A part in the thickness direction is formed in a structure exposed from the resin encapsulant 5. In the first embodiment, a structure in which the exposed surface of the heat spreader 3 of the power module 201 and the cooler 7 are bonded by a plate-shaped resin-impregnated ceramic porous body 6 is exemplified.

板状樹脂含浸セラミックス多孔質体6は、例えば特許文献2に記載の、セラミックス一次粒子の多孔質体であり、気孔が三次元的に連続している多孔性の窒化物系セラミックス多孔質体中に、熱硬化性樹脂組成物が不完全硬化状態で含浸している窒化物系セラミックス樹脂複合体である。セラミックスは窒化ホウ素、窒化アルミニウム、窒化ケイ素等であり、1種類のみではなく2種類以上を組み合わせたものも選択できる。 The plate-shaped resin-impregnated ceramic porous body 6 is, for example, the porous body of the primary ceramic particles described in Patent Document 2, and is contained in the porous nitride-based ceramic porous body having three-dimensionally continuous pores. In addition, it is a nitride-based ceramic resin composite impregnated with the thermosetting resin composition in an incompletely cured state. The ceramics are boron nitride, aluminum nitride, silicon nitride and the like, and not only one type but a combination of two or more types can be selected.

前述の通り、板状樹脂含浸セラミックス多孔質体6も、エポキシ樹脂にセラミックス粒を充填した絶縁シートと同じく、数%~10%程度のボイドを含んでおり、ボイドにより接着性、絶縁性、放熱性が低下する懸念がある。そのため、製造時にはパワーモジュール201と冷却器7とをより強固に接合し、絶縁性、放熱性を向上するために、事前に樹脂封止体で封止されたパワーモジュール201が破壊されない範囲で加圧、加熱して接合される。加圧加熱接合時、板状樹脂含浸セラミックス多孔質体6内の含浸樹脂6bは一時的に粘度が下がり、加圧に伴い流動する。 As described above, the plate-shaped resin-impregnated ceramic porous body 6 also contains a few percent to 10% of voids like the insulating sheet in which the epoxy resin is filled with ceramic particles, and the voids provide adhesiveness, insulation, and heat dissipation. There is a concern that the sex will deteriorate. Therefore, in order to bond the power module 201 and the cooler 7 more firmly at the time of manufacture and improve the insulation and heat dissipation, the power module 201 previously sealed with the resin sealant is added to the extent that it is not destroyed. It is joined by pressure and heating. At the time of pressure-heating joining, the viscosity of the impregnated resin 6b in the plate-shaped resin-impregnated ceramic porous body 6 temporarily decreases, and flows with pressure.

この時、前記絶縁樹脂シートは加熱により粘度の低下した樹脂とセラミック粒が一体となって流動するのに対し、前記板状樹脂含浸セラミックス多孔質体6では、セラミックス多孔質体部6a(以下骨格6a)の一部と加熱により粘度の低下した含浸樹脂6bが流動する。
この挙動の差により、前記板状樹脂含浸セラミックス多孔質体6内に発生する圧力(以下、内圧)が異なり、同一条件で加圧した場合でも、板状樹脂含浸セラミックス多孔質体6の方が内圧が低くなる。これにより、ボイドが残存することによって、接合信頼性の低下、放熱性の低下、絶縁信頼性の低下が懸念され、例えば、車載品のような高信頼性が求められる用途においては十分な機能を満足しない場合もあり得る。
本願は、上記課題に対しパワーモジュール201と冷却器7、板状樹脂含浸セラミックス多孔質体6の構造を工夫したものであり、不完全硬化状態の板状樹脂含浸セラミックス多孔質体を用いてパワーモジュール201を冷却器7と結合し、ロバスト性の高い電力用半導体装置101を実現するものである。
At this time, in the insulating resin sheet, the resin whose viscosity has decreased due to heating and the ceramic particles flow together, whereas in the plate-shaped resin-impregnated ceramic porous body 6, the ceramic porous body portion 6a (hereinafter referred to as the skeleton) is used. A part of 6a) and the impregnated resin 6b whose viscosity has decreased due to heating flow.
Due to this difference in behavior, the pressure generated in the plate-shaped resin-impregnated ceramic porous body 6 (hereinafter referred to as internal pressure) differs, and even when pressurized under the same conditions, the plate-shaped resin-impregnated ceramic porous body 6 is better. The internal pressure becomes low. As a result, there is a concern that the voids will remain, resulting in a decrease in joint reliability, heat dissipation, and insulation reliability. For example, sufficient functions are provided in applications that require high reliability, such as in-vehicle products. You may not be satisfied.
In this application, the structures of the power module 201, the cooler 7, and the plate-shaped resin-impregnated ceramic porous body 6 are devised to solve the above problems, and the power is supplied by using the plate-shaped resin-impregnated ceramic porous body in an incompletely cured state. The module 201 is combined with the cooler 7 to realize a highly robust power semiconductor device 101.

前記板状樹脂含浸セラミックス多孔質体特有の接合時の課題を解決する構造を図1から3を用いて説明する。図2に電力用半導体装置101の斜視図を示し、図1に電力用半導体装置101のA-A断面図を示す。図3は、図1において一点鎖線で囲まれた被拡大部Bを拡大して例示するB部拡大断面図を示す。
加圧、加熱による接合時に板状樹脂含浸セラミックス多孔質体6の内部に発生する内圧は、パワーモジュール201と、前記冷却器7の前記パワーモジュール201の側の面とに囲まれた領域を流路と置き換えて、流体力学的に考えることができる。
例えば、前記板状樹脂含浸セラミックス多孔質体6の延在方向(図1および図3における左右方向)の端面と、パワーモジュール201の延材方向端面の位置が一致している場合、加熱、加圧による接合時に、板状樹脂含浸セラミックス多孔質体6内部の含浸樹脂6bが流動し、板状樹脂含浸セラミックス多孔質体6の端部に到達すると、板状樹脂含浸セラミックス多孔質体6の内圧がゼロとなり、ボイドが全く潰れなくなる。一方で、前記パワーモジュール201と前記冷却器7の前記パワーモジュール201側の面に、前記板状樹脂含浸セラミックス多孔質体6の含浸樹脂6bの前記板状樹脂含浸セラミックス多孔質体6の延在方向の端面からの流出を許容する空間領域567aが設けられている場合は、板状樹脂含浸セラミックス多孔質体6内の内圧がゼロとならず、ボイドを潰し、絶縁性を高めることが可能となる。
換言すれば、パワーモジュール201と冷却器7との対向方向(図3における上下方向)に見た板状樹脂含浸セラミックス多孔質体6の面積を、ヒートスプレッダ3の前記対向方向に見た面積より大きく、しかもパワーモジュール201および冷却器のそれぞれのパワーモジュール201より小さいく構成されていることにより、板状樹脂含浸セラミックス多孔質体6の内圧を高め、板状樹脂含浸セラミックス多孔質体6が有する本来の実力を使いきることにより、接合信頼性、放熱性、絶縁信頼性を向上させ、余分な設計マージンを設けることによる実装面積の大型化、コストアップを抑制することができる。
更に観点を変えれば、図1および図3に例示の電力用半導体装置101は、電力用半導体素子1a,1bを封止した樹脂封止体5に一部が露出するように封止され前記電力用半導体素子1a,1bの通電による発熱を取り出すと共に前記露出した部分に前記発熱を伝熱するヒートスプレッダ3を有するパワーモジュール201、および前記ヒートスプレッダ3に前記ヒートスプレッダ3の側の面が熱的に接合し、前記ヒートスプレッダ3と反対側の面が冷却器7と熱的に接合する板状樹脂含浸セラミックス多孔質体6を備え、前記パワーモジュール201の前記冷却器7の側の面と、前記冷却器7の前記パワーモジュール201の側の面と、前記板状樹脂含浸セラミックス多孔質体6の前記板状樹脂含浸セラミックス多孔質体6の延在方向(図1および図3における左右方向)の端面とによって囲まれ、前記板状樹脂含浸セラミックス多孔質体6の含浸樹脂6bの前記板状樹脂含浸セラミックス多孔質体6の延在方向の端面からの流出を許容する空間領域567aが設けられている電力用半導体装置である。
尚、加熱により軟化し板状樹脂含浸セラミックス多孔質体6の骨格6aから溢れ出た含浸樹脂6bは、前記対向方向に見た板状樹脂含浸セラミックス多孔質体6の外周面とパワーモジュール201の冷却器7との対向面と冷却器7のパワーモジュール201との対向面とに囲まれる空間領域567a内に流入し、場合によっては空間領域567aを埋め、場合によってはパワーモジュール201より外側に流出する場合もある。空間領域567aの板状樹脂含浸セラミックス多孔質体6の延在方向の長さは、例えば0.6mm、1mm等であり、長いほど内圧が高くなり、絶縁性が高くなるが、パワーモジュール201の投影面積が大きくなり、電力変換器の大型化につながる。
The structure for solving the problem at the time of joining peculiar to the plate-shaped resin-impregnated ceramic porous body will be described with reference to FIGS. 1 to 3. FIG. 2 shows a perspective view of the power semiconductor device 101, and FIG. 1 shows a sectional view taken along the line AA of the power semiconductor device 101. FIG. 3 shows an enlarged cross-sectional view of a portion B which is an enlarged example of the enlarged portion B surrounded by the alternate long and short dash line in FIG.
The internal pressure generated inside the plate-shaped resin-impregnated ceramic porous body 6 during joining by pressurization and heating flows through a region surrounded by the power module 201 and the surface of the cooler 7 on the side of the power module 201. It can be considered hydrodynamically by replacing it with a path.
For example, when the positions of the end faces of the plate-shaped resin-impregnated ceramic porous body 6 in the extending direction (left-right direction in FIGS. 1 and 3) and the end faces in the extending direction of the power module 201 are the same, heating and applying are performed. When the impregnated resin 6b inside the plate-shaped resin-impregnated ceramic porous body 6 flows at the time of joining by pressure and reaches the end of the plate-shaped resin-impregnated ceramic porous body 6, the internal pressure of the plate-shaped resin-impregnated ceramic porous body 6 is reached. Becomes zero and the void does not collapse at all. On the other hand, the plate-shaped resin-impregnated ceramic porous body 6 of the impregnated resin 6b of the plate-shaped resin-impregnated ceramic porous body 6 extends on the surface of the power module 201 and the cooler 7 on the power module 201 side. When a space region 567a that allows outflow from the end face in the direction is provided, the internal pressure in the plate-shaped resin-impregnated ceramic porous body 6 does not become zero, and it is possible to crush voids and improve insulation. Become.
In other words, the area of the plate-shaped resin-impregnated ceramic porous body 6 seen in the facing direction (vertical direction in FIG. 3) between the power module 201 and the cooler 7 is larger than the area seen in the facing direction of the heat spreader 3. Moreover, by being smaller than the power module 201 of the power module 201 and the cooler, the internal pressure of the plate-shaped resin-impregnated ceramic porous body 6 is increased, and the plate-shaped resin-impregnated ceramic porous body 6 originally has. By making full use of the ability of the above, it is possible to improve the joining reliability, heat dissipation, and insulation reliability, and to suppress the increase in mounting area and cost due to the provision of an extra design margin.
From a further viewpoint, the power semiconductor device 101 illustrated in FIGS. 1 and 3 is sealed so that a part of the power semiconductor device 101 is sealed in the resin sealant 5 in which the power semiconductor elements 1a and 1b are sealed so that the power is partially exposed. The power module 201 having a heat spreader 3 that extracts heat generated by energization of the semiconductor elements 1a and 1b and transfers the heat to the exposed portion, and the heat spreader 3 are thermally bonded to the surface on the side of the heat spreader 3. A plate-like resin-impregnated ceramic porous body 6 having a surface opposite to the heat spreader 3 thermally bonded to the cooler 7 is provided, and the surface of the power module 201 on the side of the cooler 7 and the cooler 7 are provided. By the side surface of the power module 201 and the end surface of the plate-shaped resin-impregnated ceramic porous body 6 in the extending direction (left-right direction in FIGS. 1 and 3) of the plate-shaped resin-impregnated ceramic porous body 6. Enclosed and provided with a space region 567a that allows the impregnated resin 6b of the plate-shaped resin-impregnated ceramic porous body 6 to flow out from the end face of the plate-shaped resin-impregnated ceramic porous body 6 in the extending direction. It is a semiconductor device.
The impregnated resin 6b that was softened by heating and overflowed from the skeleton 6a of the plate-shaped resin-impregnated ceramic porous body 6 was the outer peripheral surface of the plate-shaped resin-impregnated ceramic porous body 6 and the power module 201 as viewed in the opposite direction. It flows into the space area 567a surrounded by the surface facing the cooler 7 and the surface facing the power module 201 of the cooler 7, fills the space area 567a in some cases, and flows out of the power module 201 in some cases. In some cases. The length of the plate-shaped resin-impregnated ceramic porous body 6 in the space region 567a in the extending direction is, for example, 0.6 mm, 1 mm, etc. The longer it is, the higher the internal pressure and the higher the insulation, but the projection of the power module 201. The area becomes large, which leads to the increase in size of the power converter.

本実施の形態1に開示された車載用の電力用半導体装置によれば、接合信頼性、放熱性、絶縁信頼性を向上し、実装面積の小型化、コストを抑制することで、近年求められているパワーモジュールの大容量化、低コスト化に対応した電力用半導体装置を得ることができると同時に、事前に樹脂封止体で封止したパワーモジュールをマザー工場で生産し、冷却器と結合する工程を一般工場で行うことが可能となり、生産性を向上することができ、製造コストを低減できる。特に、半導体素子にSiCを使用した場合、SiCウェハは高価であるため、高放熱化によるコスト低減効果は顕著である。 According to the in-vehicle electric power semiconductor device disclosed in the first embodiment, it has been required in recent years by improving the junction reliability, heat dissipation, and insulation reliability, reducing the mounting area, and suppressing the cost. It is possible to obtain electric power semiconductor devices that can handle larger capacities and lower costs, and at the same time, produce power modules that are pre-sealed with a resin encapsulation at the mother factory and combine them with a cooler. The process can be performed in a general factory, productivity can be improved, and manufacturing cost can be reduced. In particular, when SiC is used for a semiconductor element, the SiC wafer is expensive, so that the cost reduction effect due to high heat dissipation is remarkable.

実施の形態2.
実施の形態1と異なる部分のみ記載する。
図3の、パワーモジュール201における、樹脂封止体5とヒートスプレッダ3外周面との境界面Zから、前記板状樹脂含浸セラミックス多孔質体6の含浸樹脂流出部(板状樹脂含浸セラミックス多孔質体6の骨格6a)との境界部yまでの間の距離Uは、板状樹脂含浸セラミックス多孔質体6の骨格6aの細孔分布径(細孔径分布)のピーク値の50倍以上に設定されている。
Embodiment 2.
Only the part different from the first embodiment is described.
From the boundary surface Z between the resin encapsulating body 5 and the outer peripheral surface of the heat spreader 3 in the power module 201 of FIG. 3, the impregnated resin outflow portion of the plate-shaped resin-impregnated ceramic porous body 6 (plate-shaped resin-impregnated ceramic porous body). The distance U to the boundary portion y with the skeleton 6a) of 6 is set to be 50 times or more the peak value of the pore distribution diameter (pore diameter distribution) of the skeleton 6a of the plate-shaped resin-impregnated ceramic porous body 6. ing.

ここでいう板状樹脂含浸セラミックス多孔質体6の骨格6aの平均細孔径は、板状樹脂含浸セラミックス多孔質体6を大気雰囲気中において、500℃から900℃で灰化することによって、樹脂を含まない骨格6aのみを抽出し、水銀圧入法で細孔径分布を測定、そのピーク値を抽出したものである。 The average pore diameter of the skeleton 6a of the plate-shaped resin-impregnated ceramic porous body 6 referred to here is the resin obtained by incinerating the plate-shaped resin-impregnated ceramic porous body 6 at 500 ° C to 900 ° C in an air atmosphere. Only the skeleton 6a, which does not contain the skeleton, was extracted, the pore size distribution was measured by the mercury intrusion method, and the peak value was extracted.

前述のように、製造時の加圧、加熱による接合により板状樹脂含浸セラミックス多孔質体6内を含浸樹脂6bが流動するが、流動方向は板状樹脂含浸セラミックス多孔質体6の側面(図3における側面であり、板状樹脂含浸セラミックス多孔質体6の外周面でもある)が解放されているため、板状樹脂含浸セラミックス多孔質体6の中心部が最も圧力が高く、面内方向の外周辺上は圧力が最も低くなる。加圧、加熱接合時の流動はこの圧力差によって板状樹脂含浸セラミックス多孔質体6の中心部から外周辺上に向かう方向に流動して空間領域567a内に流入し、図3に例示のように、完成製品の状態では、空間領域567a内に板状樹脂含浸セラミックス多孔質体6の樹脂が固化した状態で存在している。 As described above, the impregnated resin 6b flows in the plate-shaped resin-impregnated ceramic porous body 6 by joining by pressurization and heating during manufacturing, but the flow direction is the side surface of the plate-shaped resin-impregnated ceramic porous body 6 (Fig.). Since the side surface in 3 and the outer peripheral surface of the plate-shaped resin-impregnated ceramic porous body 6) is released, the central portion of the plate-shaped resin-impregnated ceramic porous body 6 has the highest pressure and is in the in-plane direction. The pressure is lowest on the outer periphery. Due to this pressure difference, the flow during pressurization and heat bonding flows in the direction from the center of the plate-shaped resin-impregnated ceramic porous body 6 toward the outer periphery and flows into the space region 567a, as illustrated in FIG. In addition, in the state of the finished product, the resin of the plate-shaped resin-impregnated ceramic porous body 6 exists in the space region 567a in a solidified state.

板状樹脂含浸セラミックス多孔質体6の中で中心部から外周に向かって含浸樹脂6b、ボイドが流動する際、接合時の加圧力を駆動力として板状樹脂含浸セラミックス多孔質体の骨格6a内の流体抵抗を反力としながら流動する。この加圧力と流体抵抗の差が板状樹脂含浸セラミックス多孔質体6内に発生する内圧であり、内圧が低いと不完全硬化状態の板状樹脂含浸セラミックス多孔質体にもともと存在するボイドを十分潰すことができず、ボイドが残存することによって、接合信頼性の低下、放熱性の低下、絶縁信頼性の低下が懸念される。 When the impregnated resin 6b and voids flow from the center to the outer periphery in the plate-shaped resin-impregnated ceramic porous body 6, the pressing force at the time of joining is used as a driving force in the skeleton 6a of the plate-shaped resin-impregnated ceramic porous body. It flows while using the fluid resistance of the above as a reaction force. The difference between this pressing force and the fluid resistance is the internal pressure generated in the plate-shaped resin-impregnated ceramic porous body 6, and when the internal pressure is low, the voids originally present in the plate-shaped resin-impregnated ceramic porous body in an incompletely cured state are sufficient. Since the voids cannot be crushed and the voids remain, there is a concern that the joining reliability is lowered, the heat dissipation property is lowered, and the insulation reliability is lowered.

板状樹脂含浸セラミックス多孔質体6内に発生する内圧は、エルガン(Ergun)の経験式を用いて概算することができ、図4に示すように中心部からの距離に応じて変化する。
エルガン(Ergun)の経験式を以下に(式1)として示す。

Figure 0007072624000002

ここでΔP:圧力損失、L:長さ、μ:樹脂粘度、ρ:樹脂密度、V:流速、ε:気孔率、dp:平均細孔径。 The internal pressure generated in the plate-shaped resin-impregnated ceramic porous body 6 can be estimated using an empirical formula of Ergun, and changes according to the distance from the central portion as shown in FIG.
The empirical formula of Ergun is shown below as (Equation 1).
Figure 0007072624000002

Here, ΔP: pressure loss, L: length, μ: resin viscosity, ρ: resin density, V: flow velocity, ε: pore ratio, dp: average pore diameter.

図4は、平均細孔径7μmの計算例である。ボイドをつぶすのに必要な内圧は、加圧力よりも内圧計算値が高くなる領域であり、十分な内圧が得られる領域は距離U=1.0mmより内側となる。エルガン(Ergun)の式に従い、内圧は細孔径の2乗倍に比例するため、平均細孔径が7μm以下の場合にも、距離Uを平均細孔径の150倍以上とすることで、パワーモジュール201内で電圧が印加されるヒートスプレッダ3の直下にあたる板状樹脂含浸セラミックス多孔質体6は内圧が十分高い領域となり、接合信頼性、放熱性、絶縁信頼性が担保される。一方、平均細孔径が7μmより大きい場合は、距離Uを平均細孔径の150倍では十分な内圧が得られない。しかしながら、平均細孔径が板状樹脂含浸セラミックス多孔質体6の厚みの1/20より大きくなるような場合は、板状樹脂含浸セラミックス多孔質体6の骨格6aと樹脂6b間の接触面が大きくなり、絶縁性が低下するため、選択されない。
換言すれば、本実施の形態2における電力用半導体装置は、前記板状樹脂含浸セラミックス多孔質体6の延在方向の端面でもある前記境界部y(板状樹脂含浸セラミックス多孔質体6の外周面)から前記ヒートスプレッダ3の前記延在方向の端面である境界面Z(ヒートスプレッダ3の外周面と樹脂封止体5との境界面)までの距離(スプレッダ端-板状樹脂含浸セラミックス多孔質体端部間距離)Uが、前記板状樹脂含浸セラミックス多孔質体6の平均細孔径の150倍以上であり、かつ、前記平均細孔径のピーク値が、前記板状樹脂含浸セラミックス多孔質体6の前記延在方向と直交する方向の厚みの1/20より小さい電力用半導体装置である。
FIG. 4 is a calculation example with an average pore diameter of 7 μm. The internal pressure required to crush the void is a region where the calculated internal pressure value is higher than the applied pressure, and the region where a sufficient internal pressure can be obtained is inside the distance U = 1.0 mm. According to the Ergun equation, the internal pressure is proportional to the square of the pore diameter. Therefore, even when the average pore diameter is 7 μm or less, the distance U can be set to 150 times or more the average pore diameter to make the power module 201. The plate-shaped resin-impregnated ceramic porous body 6 directly under the heat spreader 3 to which the voltage is applied is in a region where the internal pressure is sufficiently high, and the joining reliability, heat dissipation, and insulation reliability are guaranteed. On the other hand, when the average pore diameter is larger than 7 μm, a sufficient internal pressure cannot be obtained when the distance U is 150 times the average pore diameter. However, when the average pore diameter is larger than 1/20 of the thickness of the plate-shaped resin-impregnated ceramic porous body 6, the contact surface between the skeleton 6a and the resin 6b of the plate-shaped resin-impregnated ceramic porous body 6 is large. Therefore, it is not selected because the insulation property is reduced.
In other words, the power semiconductor device according to the second embodiment is the boundary portion y (the outer periphery of the plate-shaped resin-impregnated ceramic porous body 6) which is also the end face of the plate-shaped resin-impregnated ceramic porous body 6 in the extending direction. Surface) to the distance (spreader end-plate-like resin-impregnated ceramic porous body) from the boundary surface Z (the boundary surface between the outer peripheral surface of the heat spreader 3 and the resin encapsulant 5), which is the end surface of the heat spreader 3 in the extending direction. The distance between the ends) U is 150 times or more the average pore diameter of the plate-shaped resin-impregnated ceramic porous body 6, and the peak value of the average pore diameter is the plate-shaped resin-impregnated ceramic porous body 6. This is a power semiconductor device having a thickness smaller than 1/20 of the thickness in the direction orthogonal to the extending direction.

実施の形態3.
以下、本実施の形態3について、実施の形態1と異なる部分のみ記載する。
図5は実施の形態3における図2のA-A断面図である。図6は、図5の一点鎖線で囲まれた被拡大部Cを拡大して例示するC部拡大断面図である。ヒートスプレッダ34は、厚み方向において樹脂封止体5の、板状樹脂含浸セラミックス多孔質体6との被着面よりも3a突出している。
Embodiment 3.
Hereinafter, only the parts different from the first embodiment of the third embodiment will be described.
FIG. 5 is a sectional view taken along the line AA of FIG. 2 in the third embodiment. FIG. 6 is an enlarged cross-sectional view of a portion C which is an enlarged example of the enlarged portion C surrounded by the alternate long and short dash line of FIG. The heat spreader 34 protrudes 3a from the adherend surface of the resin encapsulant 5 with the plate-shaped resin-impregnated ceramic porous body 6 in the thickness direction.

本願の電力用半導体装置104は上述の通り、電力用半導体素子1a、1bの発熱をヒートスプレッダ、板状樹脂含浸セラミックス多孔質体6、冷却器7へと放熱する。例えば、ヒートスプレッダ34の突出量3aが負の値をとり、ヒートスプレッダ34が凹んでいる場合、板状樹脂含浸セラミックス多孔質体6の特徴である、含浸樹脂6bの流動によって、ヒートスプレッダ34直下に含浸樹脂6bのみの層が発生し、電力用半導体素子1a、1bの発熱をヒートスプレッダ、含浸樹脂6b、板状樹脂含浸セラミックス多孔質体6、冷却器7へと放熱することになり、半導体装置の放熱性が低下する。ヒートスプレッダ34を3aだけ突出することでこの課題を解決する。尚、突出量3aは0以上の値をとる。
換言すれば、本実施の形態3の電力用半導体装置は、図5および図6に例示のように、前記ヒートスプレッダ34の前記露出の面が、前記樹脂封止体5の前記板状樹脂含浸セラミックス多孔質体6の側の面よりも凹んでいないように形成されている電力用半導体装置である。
As described above, the power semiconductor device 104 of the present application dissipates heat generated by the power semiconductor elements 1a and 1b to the heat spreader, the plate-shaped resin-impregnated ceramic porous body 6, and the cooler 7. For example, when the protrusion amount 3a of the heat spreader 34 takes a negative value and the heat spreader 34 is recessed, the impregnated resin directly under the heat spreader 34 due to the flow of the impregnated resin 6b, which is a feature of the plate-shaped resin-impregnated ceramic porous body 6. A layer of only 6b is generated, and the heat generated by the power semiconductor elements 1a and 1b is dissipated to the heat spreader, the impregnated resin 6b, the plate-shaped resin impregnated ceramic porous body 6, and the cooler 7, and the heat dissipation of the semiconductor device is increased. Decreases. This problem is solved by protruding the heat spreader 34 by 3a. The protrusion amount 3a takes a value of 0 or more.
In other words, in the power semiconductor device of the third embodiment, as illustrated in FIGS. 5 and 6, the exposed surface of the heat spreader 34 is the plate-shaped resin-impregnated ceramics of the resin encapsulant 5. It is a power semiconductor device formed so as not to be recessed from the surface on the side of the porous body 6.

実施の形態4.
以下、本実施の形態4について、実施の形態1と異なる部分のみ記載する。
半導体素子の縦横比とウェハ取れ数比との関係を例示する説明図である図8は、請求項4、5、6に関係し、電力用半導体素子1a,1b、ヒートスプレッダ3、パワーモジュール201と冷却器7の板状樹脂含浸セラミックス多孔質体6との被接着面の表面性状を振り、電力用半導体装置101を製造後に特性評価した実施例および比較例をまとめたものである。
Embodiment 4.
Hereinafter, only the parts different from the first embodiment of the fourth embodiment will be described.
FIG. 8, which is an explanatory diagram illustrating the relationship between the aspect ratio of the semiconductor element and the wafer removal number ratio, is related to claims 4, 5 and 6, and includes the power semiconductor elements 1a and 1b, the heat spreader 3 and the power module 201. This is a summary of examples and comparative examples in which the surface texture of the surface to be adhered to the plate-shaped resin-impregnated ceramic porous body 6 of the cooler 7 is shaken and the characteristics of the power semiconductor device 101 are evaluated after manufacturing.

評価項目は、(1) 素子の主電極間に電圧を印加した際のリーク電流測定(最大1200V、リーク電流1mA)、(2) 超音波探傷試験によるモールド割れ、剥離検査、(3) 板状樹脂含浸セラミックス多孔質体の厚み方向間の部分放電試験および絶縁評価(最大15kV、放電電荷量100pC)、(4) 熱サイクル試験後の超音波探傷試験による剥離進展(-40℃~125℃ 3kcyc)、(5) 熱サイクル試験後の熱抵抗測定値の熱抵抗劣化とした。 The evaluation items are (1) measurement of leakage current when a voltage is applied between the main electrodes of the element (maximum 1200V, leakage current 1mA), (2) mold cracking and peeling inspection by ultrasonic flaw detection test, (3) plate shape. Partial discharge test and insulation evaluation (maximum 15 kV, discharge charge amount 100 pC) between resin-impregnated ceramic porous bodies in the thickness direction, (4) Peeling progress (-40 ° C to 125 ° C 3 kcyc) by ultrasonic flaw detection test after thermal cycle test ), (5) The thermal resistance deterioration of the thermal resistance measurement value after the thermal cycle test was taken.

実施の形態4では、電力用半導体素子1a、1bの外形寸法および厚みを振って評価した。前述の通り、板状樹脂含浸セラミックス多孔質体6を用いてパワーモジュール201と冷却器7を接合する際、加圧、加熱が必要であり、加圧力は例えば、10MPaである。パワーモジュール201は、ヒートスプレッダ3、金属配線部材2a、2b、2cと電力用半導体素子1a、1bと樹脂封止体5の線膨張係数との差により反りが発生する。加圧、加熱による接合時は板状樹脂含浸セラミックス多孔質体6もパワーモジュール201も変形する。半導体素子の外形寸法、厚みによって、パワーモジュール201の変形に伴い、電力用半導体素子1a、1bが割れたり、樹脂封止体5と電力用半導体素子1a、1b間が剥離したりし、(1)素子特性、(2)モールド不良が発生する。実施例1~7と8の比較により、一辺20mmでは(1)素子特性不良が発生し、実施例8と9の比較により厚み60μm以上であれば(1)素子特性不良が発生しないことが分かった。本実施例において、電力用半導体素子1a、1bを一辺が15mm以下、厚み60μm以上とすることで、これらの不良が発生せず、良好な電力用半導体装置が得られる。 In the fourth embodiment, the external dimensions and the thickness of the power semiconductor elements 1a and 1b are shaken for evaluation. As described above, when joining the power module 201 and the cooler 7 using the plate-shaped resin-impregnated ceramic porous body 6, pressurization and heating are required, and the pressing force is, for example, 10 MPa. The power module 201 is warped due to the difference between the heat spreader 3, the metal wiring members 2a, 2b, 2c, the power semiconductor elements 1a, 1b, and the linear expansion coefficient of the resin encapsulant 5. When joining by pressurization and heating, both the plate-shaped resin-impregnated ceramic porous body 6 and the power module 201 are deformed. Depending on the external dimensions and thickness of the semiconductor element, the power semiconductor elements 1a and 1b may crack or the resin encapsulant 5 and the power semiconductor elements 1a and 1b may peel off due to the deformation of the power module 201 (1). ) Element characteristics, (2) Mold failure occurs. A comparison of Examples 1 to 7 and 8 revealed that (1) element characteristic defects occurred at a side of 20 mm, and a comparison of Examples 8 and 9 revealed that (1) element characteristic defects did not occur if the thickness was 60 μm or more. rice field. In this embodiment, by setting the power semiconductor elements 1a and 1b to have a side of 15 mm or less and a thickness of 60 μm or more, these defects do not occur and a good power semiconductor device can be obtained.

図8に半導体素子の縦横の長さの比と、半導体ウェハ上の素子取れ数の関係を示す。縦横の長さの比が5以上になると、取れ数は縦横比1(正方形)よりも8%低下し、取れ数低下によって素子コストが高くなる。特にウェハコストが高い次世代半導体、SiCではより顕著であり、実施の形態4では半導体素子の縦横比を5以下として電力用半導体装置101の高コスト化を防止している。
換言すれば、本実施の形態4の電力用半導体装置は、一辺が15mm以下、縦横の長さの比が5以下、かつ厚み60μm以上の半導体素子が、複数個並列に並べて前記樹脂封止体5に封止されて前記パワーモジュール204が構成されている電力用半導体装置である。
FIG. 8 shows the relationship between the ratio of the length and width of the semiconductor element and the number of elements removed on the semiconductor wafer. When the aspect ratio is 5 or more, the number of picks is 8% lower than that of the aspect ratio of 1 (square), and the element cost increases due to the lower number of picks. This is particularly remarkable in the next-generation semiconductor and SiC, which have a high wafer cost, and in the fourth embodiment, the aspect ratio of the semiconductor element is set to 5 or less to prevent the cost of the power semiconductor device 101 from increasing.
In other words, in the power semiconductor device of the fourth embodiment, a plurality of semiconductor elements having a side of 15 mm or less, a length-to-width ratio of 5 or less, and a thickness of 60 μm or more are arranged in parallel to the resin-sealed body. It is a power semiconductor device sealed in 5 and constituting the power module 204.

実施の形態5.
以下、本実施の形態5について、実施の形態1および6と異なる部分のみ記載する。
図7の通り、実施例1と実施例2の比較により、ヒートスプレッダ3の厚みが2mm以下では(1)半導体素子特性、(2)モールド不良が発生することがわかる。また、逆にヒートスプレッダ3の厚みが5mmを超える場合では、電力用半導体素子1a、1bの発熱を放熱するために必要な放熱面積を熱広がり角度45度と仮定した場合、電力用半導体素子1a、1bの端からヒートスプレッダ3の端までの距離が5mmとなり、パワーモジュールが大型化してしまう。よって本実施の形態ではヒートスプレッダ3の厚みを2mm以上、5mm以下と規定して、半導体装置の小型化と信頼性を両立している。
換言すれば、本実施の形態5の電力用半導体装置における、前記ヒートスプレッダ3、34は、その厚みが2mmから5mmの範囲内である。
Embodiment 5.
Hereinafter, only the parts different from the first and sixth embodiments of the fifth embodiment will be described.
As shown in FIG. 7, by comparing Example 1 and Example 2, it can be seen that (1) semiconductor element characteristics and (2) mold defects occur when the thickness of the heat spreader 3 is 2 mm or less. Conversely, when the thickness of the heat spreader 3 exceeds 5 mm, assuming that the heat dissipation area required to dissipate the heat generated by the power semiconductor elements 1a and 1b is a heat spread angle of 45 degrees, the power semiconductor element 1a, The distance from the end of 1b to the end of the heat spreader 3 becomes 5 mm, which makes the power module larger. Therefore, in the present embodiment, the thickness of the heat spreader 3 is defined as 2 mm or more and 5 mm or less, and both the miniaturization and reliability of the semiconductor device are achieved.
In other words, the heat spreaders 3 and 34 in the power semiconductor device of the fifth embodiment have a thickness in the range of 2 mm to 5 mm.

実施の形態6.
以下、本実施の形態6について、実施の形態1,4および5と異なる部分のみ記載する。
図8の比較例として、表面性状を規定したAl板2枚を板状樹脂含浸セラミックス多孔質体6で貼り合わせた試験片を作成し、半導体装置の熱サイクル試験で印加される熱応力と同等の応力を、Al板の一方向に印加した疲労試験を行った。比較例1~6の結果より、表面性状をRz3以上とすれば電力用半導体装置の熱サイクル試験で破壊しないことを確認したが、実際に半導体装置で試験を行うと、Rz20以上になると板状樹脂含浸セラミックス多孔質体6の骨格6aが粗面に追従できず、熱抵抗が大きくなる結果となった。本実施の形態ではパワーモジュール201と、冷却器7の、板状樹脂含浸セラミックス多孔質体6と接合される面の内、少なくとも一方の表面性状がその最大高さ(Rz)3μm以上、20μm以下であることを特徴とすることで接合信頼性と低熱抵抗を両立する。
換言すれば、本実施の形態6の電力用半導体装置は、前記パワーモジュール201および前記冷却器7の、前記板状樹脂含浸セラミックス多孔質体6と接合される面の内、少なくとも一方の表面性状は、その最大高さ(Rz)が3μmから20μmの範囲内である電力用半導体装置である。
Embodiment 6.
Hereinafter, only the parts different from the first, fourth, and fifth embodiments of the sixth embodiment will be described.
As a comparative example of FIG. 8, a test piece is prepared by laminating two Al plates having a defined surface texture with a plate-shaped resin-impregnated ceramic porous body 6, which is equivalent to the thermal stress applied in the thermal cycle test of a semiconductor device. A fatigue test was conducted in which the stress of was applied in one direction of the Al plate. From the results of Comparative Examples 1 to 6, it was confirmed that if the surface texture is Rz3 or higher, it will not be destroyed in the thermal cycle test of the power semiconductor device. The skeleton 6a of the resin-impregnated ceramic porous body 6 could not follow the rough surface, resulting in an increase in thermal resistance. In the present embodiment, at least one of the surfaces of the power module 201 and the cooler 7 to be joined to the plate-shaped resin-impregnated ceramic porous body 6 has a maximum height (Rz) of 3 μm or more and 20 μm or less. The feature is that both joining reliability and low thermal resistance are achieved.
In other words, the power semiconductor device of the sixth embodiment has at least one surface texture of the surface of the power module 201 and the cooler 7 to be joined to the plate-shaped resin-impregnated ceramic porous body 6. Is a power semiconductor device whose maximum height (Rz) is in the range of 3 μm to 20 μm.

実施の形態7.
以下、本実施の形態7について、実施の形態1と異なる部分のみ記載する。
図10は実施の形態7における電力用半導体装置109の図2のA-A断面図に相当する断面を示し、図11は、図10における一点鎖線で囲まれた被拡大部Dを拡大して例示するD部拡大断面図を示す。パワーモジュール209内の段付きヒートスプレッダ39の、板状樹脂含浸セラミックス多孔質体6と接する面の外周辺を、全周にわたって少なくとも一段の段差を設け、段差部が樹脂封止体5に封止されていることを特徴とする。
換言すれば、本実施の形態7の電力変換装置は、前記ヒートスプレッダ3,39の、前記板状樹脂含浸セラミックス多孔質体6と接する面の外周部に、その全周にわたって少なくとも一段の段差39sが設けられており、前記段差39sの部分が前記樹脂封止体5で封止されている電力用半導体装置である。
Embodiment 7.
Hereinafter, only the parts different from those of the first embodiment will be described with respect to the seventh embodiment.
FIG. 10 shows a cross section corresponding to the AA cross-sectional view of FIG. 2 of the power semiconductor device 109 in the seventh embodiment, and FIG. 11 is an enlarged example of the enlarged portion D surrounded by the alternate long and short dash line in FIG. The enlarged sectional view of part D is shown. At least one step is provided around the outer periphery of the surface of the stepped heat spreader 39 in the power module 209 in contact with the plate-shaped resin-impregnated ceramic porous body 6, and the step portion is sealed in the resin sealant 5. It is characterized by being.
In other words, in the power conversion device of the seventh embodiment, at least one step 39s is formed on the outer peripheral portion of the surface of the heat spreaders 3 and 39 in contact with the plate-shaped resin-impregnated ceramic porous body 6 over the entire circumference thereof. It is a power semiconductor device provided, and the portion of the step 39s is sealed with the resin sealant 5.

このような構造にすることで、ヒートスプレッダ39と樹脂封止体5の間の密着が弱い部分の密着性を改善でき、前述の加圧、加熱による接合時の板状樹脂含浸セラミックス多孔質体6の含浸樹脂6bがパワーモジュール内部に流入し、パワーモジュール209が破壊されることを防止できる。段差の数が多いほど密着性が改善でき、より高信頼性を有した電力用半導体装置を得ることができる。 With such a structure, the adhesion of the portion where the adhesion between the heat spreader 39 and the resin sealant 5 is weak can be improved, and the above-mentioned plate-shaped resin-impregnated ceramic porous body 6 at the time of joining by pressurization and heating can be improved. It is possible to prevent the impregnated resin 6b of the above from flowing into the power module and destroying the power module 209. As the number of steps increases, the adhesion can be improved, and a power semiconductor device with higher reliability can be obtained.

実施の形態8.
以下、本実施の形態8について、実施の形態1と異なる部分のみ記載する。
図12は実施の形態8における電力用半導体装置110の図2のA-A断面図に相当する断面を示し、図13は図12の一点鎖線で囲まれた被拡大部Eを拡大して例示するE部拡大断面図を示す。板状樹脂含浸セラミックス多孔質体6の含浸樹脂6bと、骨格6aと含浸樹脂6bの混合部間の境界部から、枠8の間に隙間W1,W2を空けて、隙間合計W1+W2が以下の不等式(式2)の範囲内になることを特徴とする。
具体的には、不完全硬化状態の板状樹脂含浸セラミックス多孔質体の1辺の長さをX、前記1辺と直交する他辺の長さをY、高さをt、含有ボイド体積割合をs、前記隙間をW1,W2とした時、以下の式2を満たす。

Figure 0007072624000003
Embodiment 8.
Hereinafter, only the parts different from those of the first embodiment will be described with respect to the eighth embodiment.
FIG. 12 shows a cross section corresponding to the AA cross-sectional view of FIG. 2 of the power semiconductor device 110 in the eighth embodiment, and FIG. 13 is an enlarged example of the enlarged portion E surrounded by the alternate long and short dash line in FIG. An enlarged cross-sectional view of the part is shown. From the boundary between the impregnated resin 6b of the plate-shaped resin-impregnated ceramic porous body 6 and the mixed portion of the skeleton 6a and the impregnated resin 6b, gaps W1 and W2 are opened between the frames 8, and the total gaps W1 + W2 are as follows. It is characterized in that it is within the range of the inequality (Equation 2) of.
Specifically, the length of one side of the incompletely cured plate-shaped resin-impregnated ceramic porous body is X, the length of the other side orthogonal to the one side is Y, the height is t, and the contained void volume ratio. When s and the gaps are W1 and W2, the following equation 2 is satisfied.
Figure 0007072624000003

上記の式2は、不完全硬化状態の板状樹脂含浸セラミックス多孔質体の加圧、加熱による接合前後の体積変化量を考慮したものであり、板状樹脂含浸セラミックス多孔質体6の変形時の挙動を考慮し、必要十分なクリアランスである隙間W1、W2を設ける枠を具備することで、上述の板状樹脂含浸セラミックス多孔質体6の含浸樹脂6bの流動によるパワーモジュール210の破壊を防止しつつ、枠の効果によって板状樹脂含浸セラミックス多孔質体6端部の内圧を高くすることができるため、実施の形態2に記載の距離Uを設けない場合でも絶縁性を向上でき、電力用半導体装置のさらなる小型、大出力化が可能である。実施の形態2に記載の距離Uと併用する場合には、板状樹脂含浸セラミックス多孔質体6の厚み、平均細孔径の選択肢を広げることが可能となる。 The above formula 2 takes into consideration the amount of volume change before and after joining the plate-shaped resin-impregnated ceramic porous body in an incompletely cured state due to pressurization and heating, and when the plate-shaped resin-impregnated ceramic porous body 6 is deformed. By providing a frame that provides gaps W1 and W2, which are necessary and sufficient clearances, the power module 210 is prevented from being destroyed by the flow of the impregnated resin 6b of the above-mentioned plate-shaped resin-impregnated ceramic porous body 6. However, since the internal pressure of the 6-ended end of the plate-shaped resin-impregnated ceramic porous body can be increased by the effect of the frame, the insulating property can be improved even when the distance U described in the second embodiment is not provided, and it is used for electric power. It is possible to further reduce the size and output of semiconductor devices. When used in combination with the distance U described in the second embodiment, it is possible to expand the options for the thickness and the average pore diameter of the plate-shaped resin-impregnated ceramic porous body 6.

枠8は、パワーモジュール210と冷却器7の加圧接合時の例えば10MPaなどの高い加圧力を受けて変形、流動する含浸樹脂6bを抑え込める材料を選択する必要があり、加圧接合前は不完全硬化状態の板状樹脂含浸セラミックス多孔質体6よりも厚さが分厚く、加圧接合によって変形し、接合後の板状樹脂含浸セラミックス多孔質体6の厚みと同等または板状樹脂含浸セラミックス多孔質体6よりも分厚くなる材料を選定することが望まれる。枠8は必ずしもパワーモジュール210、冷却器7と別部材である必要はない。 For the frame 8, it is necessary to select a material that can suppress the impregnated resin 6b that deforms and flows under high pressure such as 10 MPa when the power module 210 and the cooler 7 are pressure-bonded. Plate-shaped resin-impregnated ceramics in an incompletely cured state The thickness is thicker than that of the porous body 6, and it is deformed by pressure bonding and is equivalent to the thickness of the plate-shaped resin-impregnated ceramics porous body 6 after bonding or plate-shaped resin-impregnated ceramics. It is desirable to select a material that is thicker than the porous body 6. The frame 8 does not necessarily have to be a separate member from the power module 210 and the cooler 7.

実施の形態9.
以下、本実施の形態9について、実施の形態1と異なる部分のみ記載する。
実施の形態9では、図2のパワーモジュール201を冷却器7上に複数個搭載したものでも良い。板状樹脂含浸セラミックス多孔質体6によって冷却器7上にパワーモジュール201を接合する構造であるので、例えば、電力用半導体装置に求められる出力に応じてパワーモジュール201の冷却器7への搭載数を変更することによって、パワーモジュール201の設計変更を行わず、対応することが可能である。これによって、生産設備の変更が不要となり、製造コストを低減でき、安価で大出力な半導体装置を提供可能となる。
Embodiment 9.
Hereinafter, only the parts different from those of the first embodiment will be described with respect to the ninth embodiment.
In the ninth embodiment, a plurality of power modules 201 of FIG. 2 may be mounted on the cooler 7. Since the power module 201 is joined to the cooler 7 by the plate-shaped resin impregnated ceramic porous body 6, for example, the number of power modules 201 mounted on the cooler 7 according to the output required for the power semiconductor device. By changing the above, it is possible to deal with the problem without changing the design of the power module 201. This eliminates the need to change the production equipment, reduces the manufacturing cost, and makes it possible to provide an inexpensive and high-output semiconductor device.

実施の形態10.
以下、本実施の形態10について、実施の形態1と異なる部分のみ記載する。
図13、図14、図15、図16は、それぞれ電力用半導体装置100の製造工程における中間構造を示す側面図である。電力用半導体装置100は、パワーモジュール200を製造後、冷却器7とパワーモジュール200とを、不完全硬化状態の板状樹脂含浸セラミックス多孔質体6cを用いて接合する。接合の際は不完全硬化状態の板状樹脂含浸セラミックス多孔質体内の含浸樹脂が再溶融する適切な温度に昇温された状態で加圧、一定時間保持した後、板状樹脂含浸セラミックス多孔質体を完全硬化させて接合する。
Embodiment 10.
Hereinafter, only the portion different from the first embodiment will be described with respect to the tenth embodiment.
13, FIG. 14, FIG. 15, and FIG. 16 are side views showing intermediate structures in the manufacturing process of the power semiconductor device 100, respectively. After manufacturing the power module 200, the power semiconductor device 100 joins the cooler 7 and the power module 200 using a plate-shaped resin-impregnated ceramic porous body 6c in an incompletely cured state. At the time of joining, the porous plate-shaped resin impregnated ceramics in an incompletely cured state is pressurized to an appropriate temperature at which the impregnated resin in the body is remelted, held for a certain period of time, and then the porous plate-shaped resin impregnated ceramics. The body is completely cured and joined.

図13は、ヒートスプレッダ3上に電力用半導体素子1a、1bを金属接合材4a、4bで、電力用半導体素子1a、1bと金属配線部材2a、2bを金属接合材4c、4dとそれぞれ接合した後、金属配線部材2cと電力用半導体素子1aを金属ワイヤからなる金属接合材4eで接合した後の側面図を示し、この状態をパワーモジュール中間体199として示している。尚、電力用半導体素子1a、1bをヒートスプレッダ3上に金属接合材4a、4bで接合した後、電力用半導体素子1a、1bと金属配線部材2a、2bを接合してもよいし、同時に接合してもよい。 FIG. 13 shows that the power semiconductor elements 1a and 1b are joined to the metal bonding materials 4a and 4b on the heat spreader 3, and the power semiconductor elements 1a and 1b and the metal wiring members 2a and 2b are joined to the metal bonding materials 4c and 4d, respectively. , A side view of the metal wiring member 2c and the power semiconductor element 1a after being joined by a metal bonding material 4e made of a metal wire is shown, and this state is shown as a power module intermediate 199. After joining the power semiconductor elements 1a and 1b on the heat spreader 3 with the metal bonding materials 4a and 4b, the power semiconductor elements 1a and 1b may be joined to the metal wiring members 2a and 2b, or they may be joined at the same time. You may.

図14はパワーモジュール中間体199を樹脂封止体5で封止した状態を示し、この状態をパワーモジュール200とする。尚、金属配線部材2a、2b、2cは図13のように事前に曲げた状態で封止してもよいし、封止した後に曲げてもよい。 FIG. 14 shows a state in which the power module intermediate 199 is sealed with the resin sealing body 5, and this state is referred to as a power module 200. The metal wiring members 2a, 2b, and 2c may be sealed in a pre-bent state as shown in FIG. 13, or may be bent after being sealed.

図15は、パワーモジュール200と冷却器7とを不完全硬化状態の板状樹脂含浸セラミックス多孔質体6cを用いて接合する工程を示す。図17は、接合中の不完全硬化状態の板状樹脂含浸セラミックス多孔質体6cの挙動を示しており、不完全硬化状態の板状樹脂含浸セラミックス多孔質体6cをパワーモジュール200と冷却器7との間に挟んだ状態で適切な温度に加熱し、含浸樹脂6bの粘度が低下したタイミングで加圧ブロック9のようなフラットなブロックを用いて加圧し、厚み低減量v(板状樹脂含浸セラミックス多孔質体の加圧接合前後の厚み変形量v)だけ変形させ、余剰分の含浸樹脂6bが流出して接合される。この時、加圧力と温度、加圧保持時間を適切に管理することで良好な接着が得られ、信頼性の高い電力用半導体装置100を構成することができる。 FIG. 15 shows a step of joining the power module 200 and the cooler 7 using the plate-shaped resin-impregnated ceramic porous body 6c in an incompletely cured state. FIG. 17 shows the behavior of the plate-shaped resin-impregnated ceramic porous body 6c in the incompletely cured state during joining, and the plate-shaped resin-impregnated ceramic porous body 6c in the incompletely cured state is used in the power module 200 and the cooler 7. It is heated to an appropriate temperature while being sandwiched between the two, and when the viscosity of the impregnated resin 6b decreases, it is pressurized using a flat block such as the pressurizing block 9, and the thickness reduction amount v (plate-shaped resin impregnation). The ceramic porous body is deformed by the amount of thickness deformation v) before and after pressure bonding, and the excess impregnated resin 6b flows out and is bonded. At this time, good adhesion can be obtained by appropriately controlling the pressing force, the temperature, and the pressurizing holding time, and a highly reliable power semiconductor device 100 can be configured.

図16は、これらの工程を経て得られる電力用半導体装置100であり、不完全硬化状態の板状樹脂含浸セラミックス多孔質体6cを用いてパワーモジュール200と冷却器7とを接合する工程をとることによって、余剰な熱ストレスを板状樹脂含浸セラミックス多孔質体6に印加することなく半導体装置100を製造することができ、半導体装置100の信頼性を向上できる。例えば、パワーモジュール中間体199を製造する前の段階で、板状樹脂含浸セラミックス多孔質体6を用いてヒートスプレッダ3と冷却器7とを接合した場合、電力用半導体素子1a、1bとヒートスプレッダ3を金属接合材4a、4bを接合する工程において、金属接合材4a、4bが焼結Ag等の高温、高加圧(例えば、300℃、30MPa)等を必要とされる、次世代金属接合材を選択できず、半導体装置の大出力化ができない。 FIG. 16 shows a semiconductor device 100 for electric power obtained through these steps, and takes a step of joining the power module 200 and the cooler 7 using a plate-shaped resin-impregnated ceramic porous body 6c in an incompletely cured state. As a result, the semiconductor device 100 can be manufactured without applying excess heat stress to the plate-shaped resin-impregnated ceramic porous body 6, and the reliability of the semiconductor device 100 can be improved. For example, when the heat spreader 3 and the cooler 7 are bonded using the plate-shaped resin-impregnated ceramic porous body 6 at the stage before the power module intermediate 199 is manufactured, the power semiconductor elements 1a and 1b and the heat spreader 3 are used. In the process of joining metal bonding materials 4a and 4b, next-generation metal bonding materials that require high temperature and high pressure (for example, 300 ° C, 30MPa) such as sintered Ag for metal bonding materials 4a and 4b. It cannot be selected, and the output of semiconductor devices cannot be increased.

換言すれば、本実施の形態10の電力用半導体装置の製造方法は、パワーモジュールと、前記パワーモジュールに板状樹脂含浸セラミックス多孔質体を用いて接合された冷却器と、を備えた半導体装置であって、
前記パワーモジュールは、複数の半導体素子と、前記半導体素子を接合材を介して一方の面部に搭載したヒートスプレッダと、前記ヒートスプレッダに接合材を介して接合された主端子となる第1のリードフレームと、前記半導体素子に接合材を介して接合された主端子となる第2のリードフレームと、前記半導体素子と、前記ヒートスプレッダの前記半導体素子と接合される部分と、前記第1のリードフレームの一部分と、前記第2のリードフレームの一部分以外と、を封止する樹脂封止体と、を備え、
前記板状樹脂含浸セラミックス多孔質体の側面部に、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂が存在することを特徴とする半導体装置の製造方法において、
前記パワーモジュールと前記冷却器との間に上記板状樹脂含浸セラミックス多孔質体を配置し、板状樹脂含浸セラミックス多孔質体を加熱して、板状樹脂含浸セラミックス多孔質体内の含浸樹脂が半硬化状態から軟化するタイミングで、前記板状樹脂含浸セラミックス多孔質体の厚み方向に加圧を開始し、
この加圧によって、前記板状樹脂含浸セラミックス多孔質体の厚み方向に直行する方向において、含浸樹脂が染み出し、加熱を続行することで板状樹脂含浸セラミックス多孔質体を本硬化させ、パワーモジュールと冷却器を接合する、ことを特徴とする電力用半導体装置の製造方法である。
In other words, the method for manufacturing a power semiconductor device according to the tenth embodiment is a semiconductor device including a power module and a cooler bonded to the power module using a ceramic porous body impregnated with a plate-like resin. And
The power module includes a plurality of semiconductor elements, a heat spreader in which the semiconductor elements are mounted on one surface thereof via a bonding material, and a first lead frame as a main terminal bonded to the heat spreader via a bonding material. , A second lead frame which is a main terminal bonded to the semiconductor element via a bonding material, a portion where the semiconductor element is bonded to the semiconductor element of the heat spreader, and a part of the first lead frame. And a resin encapsulant for encapsulating other than a part of the second lead frame.
In a method for manufacturing a semiconductor device, characterized in that an impregnated resin of the plate-shaped resin-impregnated ceramic porous body is present on a side surface portion of the plate-shaped resin-impregnated ceramic porous body.
The plate-shaped resin-impregnated ceramic porous body is placed between the power module and the cooler, and the plate-shaped resin-impregnated ceramic porous body is heated to half the impregnated resin in the plate-shaped resin-impregnated ceramic porous body. At the timing of softening from the cured state, pressurization is started in the thickness direction of the plate-shaped resin-impregnated ceramic porous body.
By this pressurization, the impregnated resin exudes in the direction perpendicular to the thickness direction of the plate-shaped resin-impregnated ceramic porous body, and by continuing heating, the plate-shaped resin-impregnated ceramic porous body is finally cured, and the power module is used. It is a method for manufacturing a semiconductor device for electric power, which is characterized by joining a cooler and a cooler.

更に換言すれば、本実施の形態10における電力用半導体装置の製造方法は、電力用半導体素子を封止した樹脂封止体に一部が露出するように封止され前記電力用半導体素子の通電による発熱を取り出すと共に前記露出した部分に前記発熱を伝熱するヒートスプレッダを有するパワーモジュール、および前記ヒートスプレッダに前記ヒートスプレッダ側の面が熱的に接合し、前記ヒートスプレッダと反対側の面が冷却器と熱的に接合する板状樹脂含浸セラミックス多孔質体を備え、前記パワーモジュールの前記冷却器の側の面と、前記冷却器の前記パワーモジュールの側の面と、前記板状樹脂含浸セラミックス多孔質体の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面とによって囲まれ、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面からの流入を許容する空間領域が設けられている電力用半導体装置の製造方法であって、前記板状樹脂含浸セラミックス多孔質体を加熱して、板状樹脂含浸セラミックス多孔質体の内部の含浸樹脂が半硬化状態から軟化するタイミングで、前記板状樹脂含浸セラミックス多孔質体への前記延在方向と直交する方向の加圧を開始し、この加圧によって、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂が前記空間領域に流入した状態で前記板状樹脂含浸セラミックス多孔質体を本硬化させることにより前記パワーモジュールと前記冷却器とを接合する電力用半導体装置の製造方法である。 Further, in other words, in the method of manufacturing the power semiconductor device according to the tenth embodiment, the power semiconductor element is energized by being sealed so as to be partially exposed in a resin encapsulating body in which the power semiconductor element is sealed. A power module having a heat spreader that transfers the heat to the exposed portion while taking out the heat generated by the heat spreader, and the surface on the heat spreader side is thermally bonded to the heat spreader, and the surface on the opposite side to the heat spreader heats with the cooler. The plate-shaped resin-impregnated ceramic porous body to be joined is provided, and the surface of the power module on the side of the cooler, the surface of the cooler on the side of the power module, and the plate-shaped resin-impregnated ceramic porous body. Surrounded by the end face of the plate-shaped resin-impregnated ceramic porous body in the extending direction, and from the end face of the plate-shaped resin-impregnated ceramic porous body impregnated resin in the extending direction of the plate-shaped resin-impregnated ceramic porous body. It is a method of manufacturing a semiconductor device for electric power provided with a space region that allows the inflow of plastic, and the impregnated resin inside the plate-shaped resin-impregnated ceramic porous body is heated by heating the plate-shaped resin-impregnated ceramic porous body. At the timing of softening from the semi-cured state, pressurization of the plate-shaped resin-impregnated ceramic porous body in a direction orthogonal to the extending direction is started, and by this pressurization, the plate-shaped resin-impregnated ceramic porous body is pressed. This is a method for manufacturing a power semiconductor device that joins the power module and the cooler by main curing the plate-shaped resin-impregnated ceramic porous body in a state where the impregnated resin of the above is flowing into the space region.

尚、以上で述べた実施の形態1から10は、それぞれ組み合わせて使用してもよい。また、技術的に好ましい種々の限定が付されているが、本願の技術的範囲は以上の説明において特に本願を限定する旨の記載がない限り、これらの形態に限られるものではない。 The embodiments 1 to 10 described above may be used in combination. Further, although various technically preferable limitations are attached, the technical scope of the present application is not limited to these forms unless it is specifically stated in the above description that the present application is limited.

なお、本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although various exemplary embodiments and examples are described in the present application, the various features, embodiments, and functions described in one or more embodiments are specific embodiments. It is not limited to the application of, but can be applied to the embodiment alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the art disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

100,101,104,109,110 電力用半導体装置、200,201,204,209,210 パワーモジュール、199 パワーモジュール中間体、1a 電力用半導体素子、1b 電力用半導体素子、2a,2b,2c 金属配線部材、3,34 ヒートスプレッダ、3a 突出量、39 段付きヒートスプレッダ、39s 段差、4a,4b,4c,4d,4e 金属接合材、5 樹脂封止体、6 板状樹脂含浸セラミックス多孔質体、6a 骨格、6b 含浸樹脂、6c 不完全硬化状態の板状樹脂含浸セラミックス多孔質体、7 冷却器、8 枠、9 加圧ブロック、567a 空間領域、B,C,D,E 被拡大部、U 距離、Z 境界面、y 境界部、W1,W2 隙間、v 厚み低減量。 100,101,104,109,110 Power semiconductor device, 200,201,204,209,210 Power module, 199 Power module intermediate, 1a power semiconductor element, 1b power semiconductor element, 2a, 2b, 2c metal wiring member, 3,34 heat spreader, 3a protrusion amount, 39-step heat spreader , 39s step, 4a, 4b, 4c, 4d, 4e metal joint, 5 resin encapsulation, 6 plate-shaped resin impregnated ceramic porous body, 6a skeleton, 6b impregnated resin, 6c incompletely cured plate-shaped resin impregnation Ceramic porous body, 7 cooler, 8 frame, 9 pressure block, 567a space area, B, C, D, E expanded part, U distance, Z boundary surface, y boundary part, W1, W2 gap, v thickness Amount of reduction.

Claims (10)

電力用半導体素子を封止した樹脂封止体に一部が露出するように封止され前記電力用半導体素子の通電による発熱を取り出すと共に前記露出した部分に前記発熱を伝熱するヒートスプレッダを有するパワーモジュール、および
前記ヒートスプレッダに前記ヒートスプレッダの側の面が熱的に接合し、前記ヒートスプレッダと反対側の面が冷却器と熱的に接合する板状樹脂含浸セラミックス多孔質体を備え、
前記パワーモジュールの前記冷却器の側の面と、前記冷却器の前記パワーモジュールの側の面と、前記板状樹脂含浸セラミックス多孔質体の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面とによって囲まれ、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面からの流出を許容する空間領域が設けられ、
前記板状樹脂含浸セラミックス多孔質体の延在方向の端面から前記ヒートスプレッダの前記延在方向の端面までの距離が、前記板状樹脂含浸セラミックス多孔質体の板状樹脂含浸セラミックス多孔質体の平均細孔径の150倍以上であり、かつ、前記平均細孔径が、前記板状樹脂含浸セラミックス多孔質体の前記延在方向と直交する方向の厚みの1/20よりも小さい
ことを特徴とする電力用半導体装置。
A power having a heat spreader that is sealed so as to be partially exposed in a resin encapsulant that encloses a power semiconductor element and takes out heat generated by energization of the power semiconductor element and transfers the heat to the exposed part. The module and the heat spreader are provided with a plate-like resin-impregnated ceramic porous body in which the surface on the side of the heat spreader is thermally bonded and the surface on the opposite side to the heat spreader is thermally bonded to the cooler.
The surface of the power module on the side of the cooler, the surface of the cooler on the side of the power module, and the plate-shaped resin-impregnated ceramic porous body in the extending direction of the plate-shaped resin-impregnated ceramic porous body. A space region surrounded by the end face and allowing the outflow of the impregnated resin of the plate-shaped resin-impregnated ceramic porous body from the end face in the extending direction of the plate-shaped resin-impregnated ceramic porous body is provided.
The distance from the end face of the plate-shaped resin-impregnated ceramic porous body in the extending direction to the end face of the heat spreader in the extending direction is the average of the plate-shaped resin-impregnated ceramic porous body of the plate-shaped resin-impregnated ceramic porous body. It is 150 times or more the pore diameter, and the average pore diameter is smaller than 1/20 of the thickness in the direction orthogonal to the extending direction of the plate-shaped resin-impregnated ceramic porous body.
A semiconductor device for electric power, which is characterized by this.
前記パワーモジュールと前記冷却器との対向方向に見た前記板状樹脂含浸セラミックス多孔質体の面積は、前記ヒートスプレッダの前記対向方向に見た面積より大きい
ことを特徴とする請求項1に記載の電力用半導体装置。
The claim is characterized in that the area of the plate-shaped resin-impregnated ceramic porous body seen in the facing direction between the power module and the cooler is larger than the area seen in the facing direction of the heat spreader. The electric power semiconductor device according to 1.
前記ヒートスプレッダの前記露出した面が、前記樹脂封止体の前記板状樹脂含浸セラミックス多孔質体の側の面よりも凹んでいない
ことを特徴とする請求項1または請求項2に記載の電力用半導体装置。
The power device according to claim 1 or 2, wherein the exposed surface of the heat spreader is not recessed from the surface of the resin encapsulant on the side of the plate-shaped resin-impregnated ceramic porous body. Semiconductor device.
一辺が15mm以下、縦横の長さの比が5以下、かつ厚み60μm以上の半導体素子が、複数個並列に並べて前記樹脂封止体に封止されて前記パワーモジュールが構成されている
ことを特徴とする請求項1から3のいずれか一項記載の電力用半導体装置。
The power module is characterized in that a plurality of semiconductor elements having a side of 15 mm or less, a length / width ratio of 5 or less, and a thickness of 60 μm or more are arranged in parallel and sealed in the resin encapsulant. The power semiconductor device according to any one of claims 1 to 3.
前記ヒートスプレッダは、その厚みが2mmから5mmの範囲内である
ことを特徴とする請求項1から4のいずれか一項記載の電力用半導体装置。
The power semiconductor device according to any one of claims 1 to 4, wherein the heat spreader has a thickness in the range of 2 mm to 5 mm.
前記パワーモジュールおよび前記冷却器の、前記板状樹脂含浸セラミックス多孔質体と接合される面の内、少なくとも一方の表面性状は、その最大高さが3μmから20μmの範囲内である
ことを特徴とする請求項1から5のいずれか一項記載の電力用半導体装置。
The surface texture of at least one of the surfaces of the power module and the cooler to be joined to the plate-shaped resin-impregnated ceramic porous body is characterized in that the maximum height thereof is within the range of 3 μm to 20 μm. The power semiconductor device according to any one of claims 1 to 5.
前記ヒートスプレッダの、前記板状樹脂含浸セラミックス多孔質体の板状樹脂含浸セラミックス多孔質体と接する面の外周部に、その全周にわたって少なくとも一段の段差が設けられており、前記段差の部分が前記樹脂封止体で封止されている
ことを特徴とする請求項1から6のいずれか一項記載の電力用半導体装置。
At least one step is provided on the outer peripheral portion of the surface of the heat spreader in contact with the plate-shaped resin-impregnated ceramic porous body in contact with the plate-shaped resin-impregnated ceramic porous body, and the step portion is the step portion. The power semiconductor device according to any one of claims 1 to 6, wherein the device is sealed with a resin-sealed body.
請求項1から7のいずれか一項記載の電力用半導体装置において、前記パワーモジュールの前記板状樹脂含浸セラミックス多孔質体の板状樹脂含浸セラミックス多孔質体の延在方向の両側面部の前記空間領域に、隙間W1および隙間W2を空けて前記含浸樹脂の流動を阻害する枠が設けられており、
前記板状樹脂含浸セラミックス多孔質体の1辺の長さをX、前記1辺と直交する他辺の長さをY、高さをt、含有ボイド体積割合をs、と置いたとき、
前記隙間W1+前記隙間W2が、下式における範囲内に設定されていることを特徴とする電力用半導体装置。
Figure 0007072624000004
In the power semiconductor device according to any one of claims 1 to 7, the space on both side surfaces in the extending direction of the plate-shaped resin-impregnated ceramic porous body of the plate-shaped resin-impregnated ceramic porous body of the power module. A frame is provided in the region to open a gap W1 and a gap W2 to hinder the flow of the impregnated resin.
When the length of one side of the plate-shaped resin-impregnated ceramic porous body is X, the length of the other side orthogonal to the one side is Y, the height is t, and the contained void volume ratio is s.
A power semiconductor device characterized in that the gap W1 + the gap W2 are set within the range in the following equation.
Figure 0007072624000004
前記パワーモジュールが、前記冷却器に複数並べて搭載されていることを特徴とする請求項1から8のいずれか一項記載の電力用半導体装置。 The power semiconductor device according to any one of claims 1 to 8, wherein a plurality of the power modules are mounted side by side in the cooler. 請求項1に記載の電力用半導体装置の製造方法であって、
前記板状樹脂含浸セラミックス多孔質体を加熱して、前記板状樹脂含浸セラミックス多孔質体の内部の含浸樹脂が半硬化状態から軟化するタイミングで、前記板状樹脂含浸セラミックス多孔質体への前記延在方向と直交する方向の加圧を開始し、
この加圧によって、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂が前記空間領域に流入した状態で前記板状樹脂含浸セラミックス多孔質体を本硬化させることにより前記パワーモジュールと前記冷却器とを接合する
ことを特徴とする電力用半導体装置の製造方法。
The method for manufacturing a power semiconductor device according to claim 1.
The plate-shaped resin-impregnated ceramic porous body is heated to soften the impregnated resin inside the plate-shaped resin-impregnated ceramic porous body from the semi-cured state. Start pressurizing in the direction orthogonal to the extending direction,
By this pressurization, the power module and the cooler are brought together by main curing the plate-shaped resin-impregnated ceramic porous body in a state where the impregnated resin of the plate-shaped resin-impregnated ceramic porous body has flowed into the space region. A method for manufacturing a power semiconductor device, which comprises joining.
JP2020193040A 2020-11-20 2020-11-20 Power semiconductor devices and methods for manufacturing power semiconductor devices Active JP7072624B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020193040A JP7072624B1 (en) 2020-11-20 2020-11-20 Power semiconductor devices and methods for manufacturing power semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020193040A JP7072624B1 (en) 2020-11-20 2020-11-20 Power semiconductor devices and methods for manufacturing power semiconductor devices

Publications (2)

Publication Number Publication Date
JP7072624B1 true JP7072624B1 (en) 2022-05-20
JP2022081849A JP2022081849A (en) 2022-06-01

Family

ID=81654321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020193040A Active JP7072624B1 (en) 2020-11-20 2020-11-20 Power semiconductor devices and methods for manufacturing power semiconductor devices

Country Status (1)

Country Link
JP (1) JP7072624B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048206A1 (en) * 2022-08-30 2024-03-07 デンカ株式会社 Laminate, method for producing laminate, laminated substrate, and method for producing laminated substrate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196512A (en) 2000-01-11 2001-07-19 Mitsubishi Electric Corp Semiconductor device
JP2008255410A (en) 2007-04-04 2008-10-23 Sumitomo Electric Ind Ltd Heat radiation material and method of manufacturing the same
JP2013073964A (en) 2011-09-26 2013-04-22 Hitachi Automotive Systems Ltd Power module
JP2013125893A (en) 2011-12-15 2013-06-24 Hitachi Automotive Systems Ltd Power semiconductor module and power module
JP2013143439A (en) 2012-01-10 2013-07-22 Hitachi Automotive Systems Ltd Power semiconductor module, power module and power module manufacturing method
JP2014047362A (en) 2012-08-29 2014-03-17 Hitachi Automotive Systems Ltd Power semiconductor module and method for producing power semiconductor module
JP2016021450A (en) 2014-07-14 2016-02-04 日立オートモティブシステムズ株式会社 Power semiconductor module and power module arranged by use thereof
JP2017135150A (en) 2016-01-25 2017-08-03 日東シンコー株式会社 Heat dissipation member and semiconductor module
JP2019145744A (en) 2018-02-23 2019-08-29 イビデン株式会社 Heat transfer substrate
WO2020203586A1 (en) 2019-03-29 2020-10-08 デンカ株式会社 Composite, method for producing composite, laminate, and method for producing laminate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196512A (en) 2000-01-11 2001-07-19 Mitsubishi Electric Corp Semiconductor device
JP2008255410A (en) 2007-04-04 2008-10-23 Sumitomo Electric Ind Ltd Heat radiation material and method of manufacturing the same
JP2013073964A (en) 2011-09-26 2013-04-22 Hitachi Automotive Systems Ltd Power module
JP2013125893A (en) 2011-12-15 2013-06-24 Hitachi Automotive Systems Ltd Power semiconductor module and power module
JP2013143439A (en) 2012-01-10 2013-07-22 Hitachi Automotive Systems Ltd Power semiconductor module, power module and power module manufacturing method
JP2014047362A (en) 2012-08-29 2014-03-17 Hitachi Automotive Systems Ltd Power semiconductor module and method for producing power semiconductor module
JP2016021450A (en) 2014-07-14 2016-02-04 日立オートモティブシステムズ株式会社 Power semiconductor module and power module arranged by use thereof
JP2017135150A (en) 2016-01-25 2017-08-03 日東シンコー株式会社 Heat dissipation member and semiconductor module
JP2019145744A (en) 2018-02-23 2019-08-29 イビデン株式会社 Heat transfer substrate
WO2020203586A1 (en) 2019-03-29 2020-10-08 デンカ株式会社 Composite, method for producing composite, laminate, and method for producing laminate

Also Published As

Publication number Publication date
JP2022081849A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP6272512B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI415228B (en) Semiconductor package structures, flip chip packages, and methods for manufacturing semiconductor flip chip package
JP4569473B2 (en) Resin-encapsulated power semiconductor module
CN101335263B (en) Semiconductor module and manufacturing method thereof
CN107112316B (en) Semiconductor module
CN108242401A (en) For manufacturing the method for electronic module assembly and electronic module assembly
JP5472498B2 (en) Power module manufacturing method
JP6824913B2 (en) Power semiconductor devices and their manufacturing methods
US11862542B2 (en) Dual side cooling power module and manufacturing method of the same
WO2011040313A1 (en) Semiconductor module, process for production thereof
JP6287789B2 (en) Power module and manufacturing method thereof
JP2011216564A (en) Power module and method of manufacturing the same
CN111357099A (en) Method for packaging electronic devices and bonding techniques
WO2015132969A1 (en) Insulating substrate and semiconductor device
JP2010192591A (en) Power semiconductor device and method of manufacturing the same
JP7072624B1 (en) Power semiconductor devices and methods for manufacturing power semiconductor devices
JP5899952B2 (en) Semiconductor module
CN113140528A (en) Semiconductor device with a plurality of semiconductor chips
JP7204919B2 (en) Power module and manufacturing method thereof
JP5368357B2 (en) Electrode member and semiconductor device using the same
JP2017191826A (en) Semiconductor device and manufacturing method of the same
WO2022239154A1 (en) Power module and power converting device
JP7487614B2 (en) Semiconductor device, manufacturing method thereof, and power conversion device
JP6906654B2 (en) Semiconductor devices and their manufacturing methods
JP2023054418A (en) Power semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R151 Written notification of patent or utility model registration

Ref document number: 7072624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151