JP7070250B2 - Method for Producing Copper Hydroxide Coated Nickel Cobalt Composite Hydroxide - Google Patents

Method for Producing Copper Hydroxide Coated Nickel Cobalt Composite Hydroxide Download PDF

Info

Publication number
JP7070250B2
JP7070250B2 JP2018160206A JP2018160206A JP7070250B2 JP 7070250 B2 JP7070250 B2 JP 7070250B2 JP 2018160206 A JP2018160206 A JP 2018160206A JP 2018160206 A JP2018160206 A JP 2018160206A JP 7070250 B2 JP7070250 B2 JP 7070250B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt composite
hydroxide
copper
composite hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018160206A
Other languages
Japanese (ja)
Other versions
JP2020033213A (en
Inventor
由隆 末繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018160206A priority Critical patent/JP7070250B2/en
Publication of JP2020033213A publication Critical patent/JP2020033213A/en
Application granted granted Critical
Publication of JP7070250B2 publication Critical patent/JP7070250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法に関する。 The present invention relates to a method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide.

近年、電子技術の進歩に伴って電子機器の小型軽量化や高機能化が進んでおり、スマートフォンやタブレットPCなどの小型情報端末が極めて急速な勢いで普及している。そのため、これら電子機器に使用する電源として、高いエネルギー密度を有し且つ小型軽量な二次電池が求められている。このような要求を満たす二次電池として、非水系電解質二次電池であるリチウムイオン二次電池が既に利用されている。 In recent years, with the progress of electronic technology, electronic devices have become smaller, lighter, and more sophisticated, and small information terminals such as smartphones and tablet PCs have become widespread at an extremely rapid pace. Therefore, as a power source used for these electronic devices, a secondary battery having a high energy density and being compact and lightweight is required. As a secondary battery satisfying such a requirement, a lithium ion secondary battery, which is a non-aqueous electrolyte secondary battery, has already been used.

リチウムイオン二次電池の正極活物質には、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)が主に使用されてきた。しかし、リチウムコバルト複合酸化物を製造する場合は、原料に希産で高価なコバルト化合物を必要とするため、リチウムコバルト複合酸化物を正極活物質として使用するリチウムイオン二次電池は、ニッケル水素二次電池などの旧来の二次電池に比べて高コストになる。したがって、リチウムコバルト複合酸化物に替わりより安価な正極活物質を用いることができれば、より安価なリチウムイオン二次電池を提供できるので極めて大きな意義を有する。また、リチウムイオン二次電池は上記の電子機器の用途に限られず、ハイブリッド自動車や電気自動車などの大型電源としての利用を目指した研究開発も近年盛んに進められている。 Lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, has been mainly used as the positive electrode active material of the lithium ion secondary battery. However, when producing a lithium cobalt composite oxide, a rare and expensive cobalt compound is required as a raw material. Therefore, a lithium ion secondary battery using the lithium cobalt composite oxide as a positive electrode active material is a nickel hydrogen secondary battery. The cost is higher than that of conventional secondary batteries such as secondary batteries. Therefore, if a cheaper positive electrode active material can be used instead of the lithium cobalt composite oxide, a cheaper lithium ion secondary battery can be provided, which is extremely significant. In addition, lithium-ion secondary batteries are not limited to the above-mentioned applications of electronic devices, and research and development aimed at using them as large-scale power sources for hybrid vehicles and electric vehicles have been actively promoted in recent years.

このような状況のもと、リチウムコバルト複合酸化物に代替可能なリチウムイオン二次電池用の正極活物質として、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)などの使用が検討されている。これらのうち、リチウムマンガン複合酸化物は、原料として用いるマンガンが安価である上、熱安定性や安全性に優れた材料であるという利点がある。しかしながら、リチウムマンガン複合酸化物は理論容量がリチウムコバルト複合酸化物の半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点がある。また、45℃以上の温度では自己放電が著しく、充放電寿命も低下するという欠点もある。 Under such circumstances, a lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, as a positive electrode active material for a lithium ion secondary battery that can be replaced with a lithium cobalt composite oxide. The use of lithium-nickel composite oxide (LiNiO 2 ) using nickel is being studied. Of these, the lithium manganese composite oxide has the advantages that manganese used as a raw material is inexpensive and has excellent thermal stability and safety. However, since the theoretical capacity of the lithium manganese composite oxide is only about half that of the lithium cobalt composite oxide, there is a drawback that it is difficult to meet the increasing demand for higher capacity lithium ion secondary batteries year by year. Further, there is a drawback that self-discharge is remarkable at a temperature of 45 ° C. or higher, and the charge / discharge life is shortened.

一方、リチウムニッケル複合酸化物は、主原料のニッケル化合物がマンガンと同様に安価かつ安定して入手可能であり、更には、リチウムコバルト複合酸化物に比べて高容量であるため、次世代の正極活物質の主流となることが期待されており、その研究開発が活発に進められている。しかしながら、リチウムとニッケルのみで構成されたリチウムニッケル複合酸化物は、リチウムコバルト複合酸化物に比べてサイクル特性に劣るという問題がある。これは、リチウムニッケル複合酸化物では、充電時にその結晶構造中からリチウムが脱離するに伴って、六方晶と単斜晶の間でその結晶構造が変化(相転移)し、かつその変化における可逆性に乏しいことに起因して、充放電反応を繰り返すうちにリチウムを脱離及び挿入することができるサイトを徐々に失ってしまうためと考えられている。 On the other hand, the lithium nickel composite oxide is a next-generation positive electrode because the nickel compound as the main raw material can be obtained inexpensively and stably like manganese, and has a higher capacity than the lithium cobalt composite oxide. It is expected to become the mainstream of active materials, and its research and development are being actively promoted. However, the lithium-nickel composite oxide composed only of lithium and nickel has a problem that the cycle characteristics are inferior to those of the lithium cobalt composite oxide. This is because, in the case of lithium-nickel composite oxide, the crystal structure changes (phase transition) between hexagonal crystals and monoclinic crystals as lithium is desorbed from the crystal structure during charging, and in that change. It is thought that due to the lack of reversibility, the site where lithium can be desorbed and inserted is gradually lost as the charge / discharge reaction is repeated.

そこで、リチウムニッケル複合酸化物とリチウムコバルト複合水酸化物の両者の特性を生かしたリチウムニッケルコバルト複合酸化物が提案されている。例えば特許文献1には、リチウムニッケルコバルト複合酸化物の前駆体であるニッケルコバルト水酸化物を、その主な製法である反応晶析法で作製する技術が開示されており、ニッケルの一部をコバルトで置換する量を制御することで均一にコバルトが分散した複合水酸化物が得られると記載されている。また、リチウムニッケルコバルト複合酸化物に銅を添加することでサイクル特性を向上させる技術が提案されており、例えば特許文献2には、ニッケルコバルト複合水酸化物の晶析過程において銅化合物を添加して共沈させるか、もしくは晶析により得たニッケルコバルト複合水酸化物粒子の表面に銅化合物を被覆させることでニッケルコバルト銅複合水酸化物が得られると記載されている。 Therefore, a lithium nickel-cobalt composite oxide that takes advantage of the characteristics of both the lithium-nickel composite oxide and the lithium-cobalt composite hydroxide has been proposed. For example, Patent Document 1 discloses a technique for producing nickel-cobalt hydroxide, which is a precursor of a lithium-nickel-cobalt composite oxide, by a reaction crystallization method, which is a main production method thereof. It is stated that a composite hydroxide in which cobalt is uniformly dispersed can be obtained by controlling the amount of cobalt substitution. Further, a technique for improving cycle characteristics by adding copper to a lithium nickel-cobalt composite oxide has been proposed. For example, in Patent Document 2, a copper compound is added in the crystallization process of a nickel-cobalt composite hydroxide. It is described that the nickel-cobalt-copper composite hydroxide can be obtained by co-precipitating the nickel-cobalt-copper composite hydroxide particles or coating the surface of the nickel-cobalt composite hydroxide particles obtained by crystallization with a copper compound.

更に、特許文献3には、リチウムイオン二次電池用の正極合剤スラリーに亜リン酸を混合することで正極中のバインダ及び導電助剤の分布を変え、これにより電極の巻回性を高めて電極の割れや切れを防止する技術が開示されており、正極材中に銅を含んでもよいことが記載されている。また、特許文献4には、電極端子の材質をウッドメタルにすることで安全性が高められたリチウムイオン二次電池が開示されており、その正極活物質に含まれる金属元素の一つの候補としてCuが挙げられている。 Further, in Patent Document 3, the distribution of the binder and the conductive auxiliary agent in the positive electrode is changed by mixing phosphite with the positive electrode mixture slurry for the lithium ion secondary battery, thereby improving the winding property of the electrode. A technique for preventing cracking or breaking of the electrode is disclosed, and it is described that copper may be contained in the positive electrode material. Further, Patent Document 4 discloses a lithium ion secondary battery whose safety is enhanced by using wood metal as the material of the electrode terminal, and as one candidate for a metal element contained in the positive electrode active material thereof. Cu is mentioned.

特開平9-270258号公報Japanese Unexamined Patent Publication No. 9-270258 特許第6094591号Patent No. 6094591 特開2012-160463号公報Japanese Unexamined Patent Publication No. 2012-160463 特表2016-522969号公報Special Table 2016-52269A

しかしながら、銅はニッケルやコバルトよりも優先的にアンミン錯体を形成しやすく、アンモニア存在下のアルカリ溶液中においては、アンミン錯体として反応液中に溶出しやすい。そのため、上記特許文献2に記載のようにニッケルコバルト複合酸化物の晶析過程で銅を共沈晶析させるには、アンミン錯体としてろ液中へ流出する銅を見越して多めに銅を添加する必要があり、ニッケルコバルト銅複合水酸化物の各金属元素の物質量比率を調整するのが難しかった。この物質量比率は、ニッケルコバルト複合酸化物の表面に銅化合物を被覆することで比較的容易に調整できるとも考えられるが、特許文献2~4のいずれにおいてもその具体的な方法について開示されていない。本発明は、上述した実状に鑑みてなされたものであり、リチウムニッケルコバルト銅複合酸化物の原料として使用される水酸化銅被覆ニッケルコバルト複合水酸化物の効率的な製造方法を提供することを目的とする。 However, copper tends to form an ammine complex preferentially over nickel and cobalt, and in an alkaline solution in the presence of ammonia, it tends to elute into the reaction solution as an ammine complex. Therefore, in order to co-precipitate and crystallize copper in the crystallization process of the nickel-cobalt composite oxide as described in Patent Document 2, a large amount of copper is added in anticipation of copper flowing out into the filtrate as an ammine complex. It was necessary, and it was difficult to adjust the material content ratio of each metal element of nickel-cobalt-copper composite hydroxide. It is considered that this substance amount ratio can be adjusted relatively easily by coating the surface of the nickel-cobalt composite oxide with a copper compound, but any of Patent Documents 2 to 4 discloses a specific method thereof. not. The present invention has been made in view of the above-mentioned actual conditions, and provides an efficient method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide used as a raw material for a lithium nickel-cobalt-copper composite oxide. The purpose.

上記目的を達成するため、発明者らは非水系電解質二次電池用の正極活物質の前駆体として使用する水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法について鋭意検討を重ねた結果、好適には連続晶析反応により作製したニッケルコバルト複合水酸化物に対して溶媒を添加してスラリーを調製した後、該スラリーに所定の条件で硫酸銅溶液を供給することによりリチウムイオン二次電池用の正極活物質の前駆体として好適な水酸化銅で被覆されたニッケルコバルト複合水酸化物粒子が得られることを見出し、本発明を完成するに至った。 In order to achieve the above object, the inventors have made extensive studies on a method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide used as a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, which is suitable. After preparing a slurry by adding a solvent to the nickel-cobalt composite hydroxide prepared by a continuous crystallization reaction, a copper sulfate solution is supplied to the slurry under predetermined conditions for a lithium ion secondary battery. We have found that nickel-cobalt composite hydroxide particles coated with copper hydroxide suitable as a precursor of the positive electrode active material can be obtained, and have completed the present invention.

すなわち、本発明に係る水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法は、リチウムイオン二次電池用の正極活物質の原料として使用される水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法であって、晶析により作製したニッケルコバルト複合水酸化物粒子に水を加えてスラリー濃度100g/L以上500g/L以下のスラリーを調製した後、該スラリーに対して、そのpHを7.0を超え12.0以下に調整しながら硫酸銅溶液を連続的に供給することで該ニッケルコバルト複合水酸化物粒子の表面に水酸化銅を被覆させることを特徴としている。 That is, the method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide according to the present invention is a method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide used as a raw material for a positive electrode active material for a lithium ion secondary battery. Therefore, water is added to the nickel-copper composite hydroxide particles prepared by crystallization to prepare a slurry having a slurry concentration of 100 g / L or more and 500 g / L or less, and then the pH of the slurry is 7.0. It is characterized in that the surface of the nickel-cobalt composite hydroxide particles is coated with copper hydroxide by continuously supplying a copper sulfate solution while adjusting the amount to 12.0 or less.

本発明によれば、リチウムイオン二次電池用の正極活物質の前駆体として好適な、水酸化銅で被覆されたニッケルコバルト複合水酸化物粒子を効率よく作製することができる。 According to the present invention, nickel-cobalt composite hydroxide particles coated with copper hydroxide, which are suitable as a precursor of a positive electrode active material for a lithium ion secondary battery, can be efficiently produced.

本発明の実施例で作製した水酸化銅被覆ニッケルコバルト複合水酸化物の模式図であり、水酸化銅で被覆されている部分(すなわち、水酸化銅粒子が付着している部分)が白色で示されている。It is a schematic diagram of the copper hydroxide-coated nickel-cobalt composite hydroxide produced in the examples of the present invention, and the portion coated with copper hydroxide (that is, the portion to which copper hydroxide particles are attached) is white. It is shown.

以下、本発明に係る水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法の実施形態について説明する。この水酸化銅被覆ニッケルコバルト複合水酸化物は、水酸化銅を被覆する前のニッケルコバルト複合水酸化物粒子(以下、基粒子とも称する)に対して、その表面に水酸化銅の微粒子によって被覆を行ったものであり、この基粒子は所定の濃度のニッケル塩及びコバルト塩を含む水溶液をアンモニウムイオン供給体を含む水溶液及び苛性アルカリ水溶液と共に反応槽に連続的に供給して中和晶析反応を生じさせることで生成することができる。得られた基粒子の表面に硫酸銅溶液の中和反応により析出する水酸化銅を被覆させることで水酸化銅被覆ニッケルコバルト複合水酸化物を生成することができる。 Hereinafter, embodiments of a method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide according to the present invention will be described. In this copper hydroxide-coated nickel-cobalt composite hydroxide, the surface of the nickel-cobalt composite hydroxide particles (hereinafter, also referred to as base particles) before coating copper hydroxide is coated with fine particles of copper hydroxide. The basic particles were prepared by continuously supplying an aqueous solution containing a nickel salt and a cobalt salt having a predetermined concentration to a reaction vessel together with an aqueous solution containing an ammonium ion feeder and a caustic alkaline aqueous solution for a neutralization crystallization reaction. Can be generated by causing. By coating the surface of the obtained base particles with copper hydroxide precipitated by the neutralization reaction of the copper sulfate solution, a copper hydroxide-coated nickel-cobalt composite hydroxide can be produced.

より具体例に説明すると、先ず基粒子の生成工程では、撹拌翼を先端部に有する攪拌機を備えた反応槽内にアンモニウムイオン供給体及び苛性アルカリを含む水溶液を所定量入れておき、この水溶液の液温を約35~60℃に保持しながら600~1400rpm程度の回転数で上記撹拌翼を回転させる。この撹拌状態の水溶液に、必要に応じてAl、Mg、Mn、Ti、Fe、Zn、及びGaからなる群から選ばれる1種以上の添加元素Mを含む塩の水溶液を所定量添加する。 More specifically, in a more specific example, first, in the process of producing basic particles, a predetermined amount of an aqueous solution containing an ammonium ion feeder and caustic alkali is placed in a reaction vessel equipped with a stirrer having a stirring blade at the tip, and the aqueous solution is prepared. The stirring blade is rotated at a rotation speed of about 600 to 1400 rpm while maintaining the liquid temperature at about 35 to 60 ° C. A predetermined amount of an aqueous solution of a salt containing one or more additive elements M selected from the group consisting of Al, Mg, Mn, Ti, Fe, Zn, and Ga is added to the aqueous solution in this stirred state, if necessary.

次に、この撹拌状態の水溶液に、ニッケル塩とコバルト塩の合計濃度が0.1~2.4モル/L程度のニッケル及びコバルトの硝酸塩、硫酸塩、又は塩酸塩などの水溶液を、アンモニウムイオン供給体を含む水溶液及び苛性アルカリ水溶液と共に供給する。これにより、アンモニウムイオン濃度3~10g/L程度、液温25℃基準でpH11.8~13.0程度に維持することで中和晶析反応が生じ、ニッケルコバルト複合水酸化物が析出する。このように、中和晶析反応の際に上記添加元素Mを添加することで、該添加元素Mを共沈させることができるので、該ニッケルコバルト複合水酸化粒子の内部に添加元素Mを均一に分散させることができる。 Next, in the aqueous solution in this stirred state, an aqueous solution of nickel and cobalt nitrate, sulfate, or hydrochloride having a total concentration of nickel salt and cobalt salt of about 0.1 to 2.4 mol / L is added to ammonium ion. It is supplied together with an aqueous solution containing a feeder and a caustic alkaline aqueous solution. As a result, a neutralization crystallization reaction occurs by maintaining an ammonium ion concentration of about 3 to 10 g / L and a pH of about 11.8 to 13.0 based on a liquid temperature of 25 ° C., and nickel-cobalt composite hydroxide is precipitated. As described above, by adding the additive element M during the neutralization crystallization reaction, the additive element M can be coprecipitated, so that the additive element M is uniformly contained inside the nickel cobalt composite hydroxide particles. Can be dispersed in.

上記のアンモニウムイオン供給体を含む水溶液としては、例えばアンモニア水、硫酸アンモニウムを含む水溶液、又は塩化アンモニウムを含む水溶液を挙げることができる。これらの中では、ハロゲンによる汚染防止の観点からアンモニア水又は硫酸アンモニウムを含む水溶液が好ましく、アンモニア水がより好ましい。アンモニア水の場合は、アンモニウムイオン濃度25~30質量%程度の市販品をそのまま使用することができる。 Examples of the aqueous solution containing the above-mentioned ammonium ion feeder include aqueous ammonia, an aqueous solution containing ammonium sulfate, and an aqueous solution containing ammonium chloride. Among these, ammonia water or an aqueous solution containing ammonium sulfate is preferable, and ammonia water is more preferable, from the viewpoint of preventing contamination by halogen. In the case of ammonia water, a commercially available product having an ammonium ion concentration of about 25 to 30% by mass can be used as it is.

一方、苛性アルカリ水溶液は、中和晶析反応時のpH調整剤として反応槽に添加するものであり、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム水溶液などを用いることができ、これらの中では取扱いやすさやコストの観点から水酸化ナトリウム水溶液が好ましい。添加する苛性アルカリ水溶液の濃度は10~30質量%程度が好ましい。この濃度が10質量%未満ではpH調整に必要な苛性アルカリ水溶液の量が増えすぎて生産性が低下するおそれがあり、逆に30質量%を超えると苛性アルカリ水溶中で苛性アルカリ結晶が析出したり苛性アルカリ水溶液の粘度が高くなりすぎたりするので好ましくない。 On the other hand, the caustic alkaline aqueous solution is added to the reaction vessel as a pH adjuster during the neutralization crystallization reaction, and sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, lithium hydroxide aqueous solution and the like can be used. Among them, an aqueous solution of sodium hydroxide is preferable from the viewpoint of ease of handling and cost. The concentration of the caustic alkaline aqueous solution to be added is preferably about 10 to 30% by mass. If this concentration is less than 10% by mass, the amount of the caustic alkaline aqueous solution required for pH adjustment may increase too much and the productivity may decrease. On the contrary, if it exceeds 30% by mass, caustic alkali crystals are precipitated in the caustic alkaline water. It is not preferable because the viscosity of the caustic alkaline aqueous solution becomes too high.

また、上記の反応槽に供給するニッケル塩とコバルト塩の合計濃度が0.1モル/L未満では、生成するニッケルコバルト複合水酸化物のスラリー濃度が低いため反応容積の大きな生産装置が必要となり、生産性が低下するので好ましくなく、逆に2.4モル/Lを超えると飽和溶解度を超えて金属塩が析出したり、低温時に配管内で金属塩が析出したりするおそれがあるので好ましくない。また、該水溶液の液温が35℃未満では生成したニッケルコバルト複合水酸化物のタップ密度が低くなりすぎて最終的に作製したリチウムイオン二次電池の電池特性が低下するおそれがあるので好ましくなく、逆に60℃を超えるとアンモニアの揮発量が多くなりすぎてニッケルやコバルトや添加元素の錯体濃度が不安定になるので好ましくない。 Further, when the total concentration of the nickel salt and the cobalt salt supplied to the above reaction tank is less than 0.1 mol / L, the slurry concentration of the nickel-cobalt composite hydroxide produced is low, so that a production apparatus having a large reaction volume is required. On the contrary, if it exceeds 2.4 mol / L, a metal salt may be precipitated in excess of the saturated solubility or a metal salt may be precipitated in a pipe at a low temperature, which is preferable because the productivity is lowered. not. Further, if the liquid temperature of the aqueous solution is less than 35 ° C., the tap density of the produced nickel-cobalt composite hydroxide becomes too low, which may deteriorate the battery characteristics of the finally produced lithium ion secondary battery, which is not preferable. On the contrary, if the temperature exceeds 60 ° C., the volatilization amount of ammonia becomes too large and the complex concentration of nickel, cobalt or an additive element becomes unstable, which is not preferable.

また、上記水溶液を入れた反応槽の攪拌機の回転数が600rpm未満では、ニッケル塩及びコバルト塩を含む水溶液に、アンモニウムイオン供給体を含む水溶液や苛性アルカリを均一に混合するのが困難になり、逆に1400rpmを超えると生成したニッケルコバルト複合水酸化物粒子同士が衝突しやすくなり、該衝突により破壊して細かくなるものが生ずるおそれがある。すなわち、該撹拌翼の回転数を600~1400rpmの範囲内で調整することで、ニッケルコバルト複合水酸化物粒子の粒度分布の広がりを調整することができる。なお、撹拌翼タイプや反応槽の大きさ、形状等が異なることで反応槽内において十分に撹拌される状態が確保される場合は、上記の回転数の範囲から外れてもよい。 Further, when the rotation speed of the stirrer of the reaction tank containing the above aqueous solution is less than 600 rpm, it becomes difficult to uniformly mix the aqueous solution containing the ammonium ion feeder and the caustic alkali with the aqueous solution containing the nickel salt and the cobalt salt. On the contrary, if it exceeds 1400 rpm, the generated nickel-cobalt composite hydroxide particles are likely to collide with each other, and the collision may cause the particles to break and become finer. That is, by adjusting the rotation speed of the stirring blade within the range of 600 to 1400 rpm, the spread of the particle size distribution of the nickel-cobalt composite hydroxide particles can be adjusted. If the stirring blade type, the size, shape, and the like of the reaction tank are different to ensure sufficient stirring in the reaction tank, the rotation speed may be out of the above range.

上記のように、中和晶析反応時の反応槽内の液温、pH、アンモニウムイオン濃度、攪拌翼の回転速度などの各種条件を調整することにより、生成されるニッケルコバルト複合水酸化物の粒度分布、比表面積、充填密度、結晶性などの物性値を所望の範囲内に調整することができる。生成したニッケルコバルト複合水酸化物を含むスラリーは、ろ過などの固液分離を行うことで該ニッケルコバルト複合水酸化物を固形分として回収する。 As described above, the nickel-cobalt composite hydroxide produced by adjusting various conditions such as the liquid temperature, pH, ammonium ion concentration, and the rotation speed of the stirring blade during the neutralization crystallization reaction. Physical property values such as particle size distribution, specific surface area, packing density, and crystallinity can be adjusted within a desired range. The generated slurry containing the nickel-cobalt composite hydroxide is recovered as a solid content by performing solid-liquid separation such as filtration.

回収したニッケルコバルト複合水酸化物は、水を加えてスラリーにした状態で撹拌することにより洗浄するいわゆるレパルプ洗浄と、該洗浄後のスラリーのろ過等の固液分離とを繰り返すことで、残留するアンモニアを可能な限り除去しておくことが好ましい。その理由は、上記中和晶析反応時に使用したアンモニウムイオン供給体由来のアンモニアがニッケルコバルト複合水酸化物に残留していると、後段の被覆工程において銅が当該アンモニアと優先的に反応して錯体化するため、銅が水酸化銅として析出して被覆するのを阻害し、銅の歩留まりを低下させる恐れがあるからである。なお、上記のアンモニアに起因する問題が生じないようにするため、ニッケルコバルト複合水酸化物に対して酸化分解-化学発光法で測定した窒素分の含有量が乾燥物基準で0.1質量%以下になるまで上記レパルプ洗浄を行うのが好ましい。 The recovered nickel-cobalt composite hydroxide remains by repeating so-called repulp washing, in which water is added and stirred in a slurry state, and solid-liquid separation such as filtration of the slurry after the washing. It is preferable to remove ammonia as much as possible. The reason is that if the ammonia derived from the ammonium ion feeder used in the neutralization crystallization reaction remains in the nickel-cobalt composite hydroxide, copper reacts preferentially with the ammonia in the subsequent coating step. This is because the complexing may prevent copper from precipitating and covering as copper hydroxide, which may reduce the yield of copper. In order to prevent the above-mentioned problems caused by ammonia, the nitrogen content measured by the oxidative decomposition-chemical emission method with respect to the nickel-cobalt composite hydroxide is 0.1% by mass based on the dry matter. It is preferable to carry out the above-mentioned repulp washing until the following results are obtained.

次に、被覆工程では、上記のようにして好適にはレパルプ洗浄とろ過が行われたニッケルコバルト複合水酸化物に対して、好ましくは純水からなる溶媒を混合してスラリー化する。溶媒に純水を用いる場合は、スラリー1L中に含まれる複合水酸化物が100g以上500g以下となるようにスラリー濃度を調整する。このスラリー濃度が100g/Lよりも低いと、析出により水酸化銅が生成した際にその近傍にニッケルコバルト複合水酸化物粒子が存在しない確率が高くなりすぎ、水酸化銅粒子としてスラリーの溶媒部に単独で晶析、析出しやすくなる。逆に、このスラリー濃度が500g/Lよりも高いと、スラリー中のニッケルコバルト複合水酸化物粒子の密度が高くなりすぎ、これら複合水酸化物粒子同士が近接する頻度が高くなるため、晶析析出した水酸化銅が媒介となって複数の複合水酸化物粒子が凝集しやすくなる。また、高スラリー濃度のスラリーを攪拌するために必要な攪拌動力が大きくなりすぎ、製造コストが高くなりすぎるおそれがある。 Next, in the coating step, a solvent consisting of preferably pure water is mixed with the nickel-cobalt composite hydroxide that has been preferably repulp washed and filtered as described above to form a slurry. When pure water is used as the solvent, the slurry concentration is adjusted so that the amount of the composite hydroxide contained in 1 L of the slurry is 100 g or more and 500 g or less. When this slurry concentration is lower than 100 g / L, the probability that nickel-cobalt composite hydroxide particles do not exist in the vicinity when copper hydroxide is generated by precipitation becomes too high, and the solvent portion of the slurry as copper hydroxide particles It becomes easy to crystallize and precipitate by itself. On the contrary, when the slurry concentration is higher than 500 g / L, the density of the nickel-cobalt composite hydroxide particles in the slurry becomes too high, and the frequency of close proximity of these composite hydroxide particles increases, so that crystallization occurs. Multiple composite hydroxide particles are likely to aggregate with the precipitated copper hydroxide as a medium. In addition, the stirring power required to stir the slurry having a high slurry concentration becomes too large, and the manufacturing cost may become too high.

次に、上記の溶媒の混合により調製したニッケルコバルト複合水酸化物スラリーを反応槽に装入し、この反応槽内のスラリーを攪拌しながらアルカリを添加して所定のpH値に調整すると共に所定量の硫酸銅溶液を好ましくは滴下により供給する。これにより、ニッケルコバルト複合水酸化物粒子の表面を水酸化銅の微粒子で被覆することができる。上記の反応槽内では、該反応槽の底部にニッケルコバルト複合水酸化物粒子が沈殿することなく反応槽内の全ての部分でほぼ均一なスラリー濃度が維持される程度に攪拌を行うのが好ましい。このような撹拌状態を確保できるのであれば、撹拌機の型式や動力、攪拌機に用いる攪拌翼の形状などの具体的な攪拌条件については特に制約はなく、反応槽の形状や大きさ等に応じて適宜選択することができる。なお、上記水酸化銅の微粒子の粒径は、基粒子としてのニッケルコバルト複合水酸化物粒子の粒径よりも2オーダー程度小さい0.1~0.3μm程度である。 Next, the nickel-cobalt composite hydroxide slurry prepared by mixing the above solvents is charged into a reaction vessel, and an alkali is added while stirring the slurry in the reaction vessel to adjust the pH value to a predetermined value. A fixed amount of copper sulfate solution is preferably supplied by dropping. Thereby, the surface of the nickel-cobalt composite hydroxide particles can be coated with the fine particles of copper hydroxide. In the above reaction vessel, it is preferable to stir to such an extent that nickel-cobalt composite hydroxide particles do not settle on the bottom of the reaction vessel and a substantially uniform slurry concentration is maintained in all parts of the reaction vessel. .. As long as such a stirring state can be ensured, there are no particular restrictions on specific stirring conditions such as the model and power of the stirrer and the shape of the stirring blade used in the stirrer, depending on the shape and size of the reaction tank. Can be selected as appropriate. The particle size of the fine particles of copper hydroxide is about 0.1 to 0.3 μm, which is about two orders of magnitude smaller than the particle size of the nickel-cobalt composite hydroxide particles as the base particles.

上記の被覆処理の際に調整する反応槽内のスラリーのpHは下限値が7.0よりも高く、8.0以上であるのが好ましい。反応槽内のpHが7.0以下では水酸化銅の電位-pH関係から判断して水酸化銅が析出しにくくなり、水酸化銅による被覆処理が不可能になる。なお、反応槽内のpHが8.0より低い場合では水酸化銅は析出するものの、ニッケルコバルト複合水酸化物が一部溶解するので、ニッケルやコバルトの溶出ロスの量が増大すると共に、最終的に得られる水酸化銅被覆ニッケルコバルト複合水酸化物の好適な平均粒径である10~30μmよりも小さくなるおそれがある。一方、上記反応槽内のpHの上限値は12.0以下であるのが好まし。このpHが12.0を超えると水酸化物は晶析析出するものの、反応槽内において硫酸銅溶液の供給部分及びその近傍で直ちに析出する水酸化物が増えるため、ニッケルコバルト複合水酸化物粒子の表面を被覆しないで単独で存在する水酸化物の割合が多くなりすぎ、上記基粒子表面の均一な被覆が難しくなる。なお、上記の平均粒径は、レーザー回折散乱式粒度分析計で測定した体積積算値から求めた粒度分布の積算値50%に相当する粒径(D50)である。 The pH of the slurry in the reaction vessel adjusted during the above coating treatment has a lower limit of more than 7.0, preferably 8.0 or more. When the pH in the reaction vessel is 7.0 or less, copper hydroxide is less likely to precipitate, judging from the potential-pH relationship of copper hydroxide, and the coating treatment with copper hydroxide becomes impossible. When the pH in the reaction vessel is lower than 8.0, copper hydroxide precipitates, but the nickel-cobalt composite hydroxide partially dissolves, so that the amount of nickel and cobalt elution loss increases and the final result is increased. The resulting copper hydroxide-coated nickel-cobalt composite hydroxide may be smaller than the suitable average particle size of 10 to 30 μm. On the other hand, the upper limit of the pH in the reaction vessel is preferably 12.0 or less. When this pH exceeds 12.0, the hydroxide crystallizes and precipitates, but the hydroxide immediately precipitates in and near the supply portion of the copper sulfate solution in the reaction vessel increases, so that the nickel-cobalt composite hydroxide particles increase. The proportion of the hydroxide that exists alone without covering the surface of the base particle becomes too large, and it becomes difficult to uniformly cover the surface of the base particles. The average particle size is the particle size (D50) corresponding to 50% of the integrated value of the particle size distribution obtained from the volume integrated value measured by the laser diffraction / scattering type particle size analyzer.

上記のように反応槽内のスラリーのpH値を所定の範囲内に調整する方法としては、例えば反応槽内のスラリーの接液部に挿入したpH電極の測定値に基づいてアルカリの添加量を調整すればよい。例えば、該pH電極で測定した反応槽内のpHが下限値よりも低ければアルカリ溶液を供給し、上限値よりも高ければアルカリ溶液の供給を停止すればよい。このアルカリ溶液の供給と停止は、反応槽内へのアルカリ溶液の供給配管に設けた供給ポンプを該pH電極の測定値に基づいてオンオフするようにしてもよいが、該供給ポンプの供給流量を該pH電極で測定した測定値とその目標値との偏差の大きさに比例させた出力を出すP動作と、偏差の積分に比例した出力を出すI動作と、偏差の微分に比例した出力を出すD動作の和からなるPID制御でフィードバック制御するのが好ましく、これにより反応槽内のpHをより一層安定させることが可能になる。 As a method of adjusting the pH value of the slurry in the reaction vessel within a predetermined range as described above, for example, the amount of alkali added is adjusted based on the measured value of the pH electrode inserted into the wetted portion of the slurry in the reaction vessel. You can adjust it. For example, if the pH in the reaction vessel measured by the pH electrode is lower than the lower limit value, the alkaline solution may be supplied, and if it is higher than the upper limit value, the supply of the alkaline solution may be stopped. The supply and stop of the alkaline solution may be turned on and off based on the measured value of the pH electrode of the supply pump provided in the supply pipe of the alkaline solution into the reaction vessel, but the supply flow rate of the supply pump may be changed. The P operation that outputs the output proportional to the magnitude of the deviation between the measured value measured by the pH electrode and the target value, the I operation that outputs the output proportional to the integration of the deviation, and the output proportional to the differentiation of the deviation. It is preferable to perform feedback control by PID control consisting of the sum of the D operations to be output, which makes it possible to further stabilize the pH in the reaction vessel.

上記硫酸銅溶液は、ニッケルコバルト複合水酸化物粒子1kg当たり硫酸銅換算で0.05モル/分以上、0.4モル/分以下の速度で供給されるように該反応槽に供給することが好ましい。この供給量が硫酸銅で0.4モル/分よりも多い場合は、水酸化銅の生成速度に対して反応槽内に存在するニッケルコバルト複合水酸化物粒子の量が多すぎるので、基粒子としての該ニッケルコバルト複合水酸化物粒子に被覆量の多いものと少ないものが発生しやすくなるので好ましくない。このように基粒子において水酸化銅の被覆量のばらつきが顕著になると、後述するように正極活物質を作製したときに粒子内部への銅の拡散が不均一になるので好ましくない。 The copper sulfate solution may be supplied to the reaction vessel so as to be supplied at a rate of 0.05 mol / min or more and 0.4 mol / min or less in terms of copper sulfate per 1 kg of nickel-cobalt composite hydroxide particles. preferable. If this supply is greater than 0.4 mol / min for copper sulphate, the amount of nickel-cobalt composite hydroxide particles present in the reaction vessel is too large for the rate of copper hydroxide formation, and the base particles. It is not preferable because the nickel-cobalt composite hydroxide particles having a large amount of coating and those having a small amount of coating are likely to be generated. If the variation in the coating amount of copper hydroxide becomes remarkable in the base particles in this way, the diffusion of copper into the particles becomes non-uniform when the positive electrode active material is produced as described later, which is not preferable.

逆に、上記の供給速度が硫酸銅で0.05モル/分よりも少ない場合は、上記の被覆量のばらつきの問題は生じにくくなるものの、被覆工程に過度に時間がかかるので生産効率が低下する。上記の硫酸銅溶液の供給速度は上記範囲内であれば必ずしも一定の速度を維持する必要はないが、前述したようにpHを目標値に維持するためにアルカリ溶液の供給速度を制御しているため、また、各粒子の被覆状態をできるだけ均一にするためには、該硫酸銅溶液の供給速度は可能な限り変動しないことが好ましい。 On the contrary, when the above-mentioned supply rate is less than 0.05 mol / min for copper sulfate, the problem of the above-mentioned variation in the coating amount is less likely to occur, but the coating process takes an excessive time, so that the production efficiency is lowered. do. If the supply rate of the copper sulfate solution is within the above range, it is not always necessary to maintain a constant rate, but as described above, the supply rate of the alkaline solution is controlled in order to maintain the pH at the target value. Therefore, in order to make the coating state of each particle as uniform as possible, it is preferable that the supply rate of the copper sulfate solution does not fluctuate as much as possible.

上記反応槽に供給する硫酸銅溶液は、濃度0.5モル/L以上2.0モル/L以下であるのが好ましい。この硫酸銅溶液の濃度が0.5モル/Lよりも薄いと、反応槽内においてニッケルコバルト複合水酸化物粒子のスラリーが希釈され過ぎ、反応槽内で撹拌状態にあるニッケルコバルト複合水酸化物粒子群のうち晶析析出した水酸化銅によって粒子表面が被覆されないものが発生する割合が高くなる。逆に、上記硫酸銅溶液の濃度が2.0モル/Lを超えると、反応槽内のスラリーに硫酸銅溶液が滴下等により供給される部分又はその近傍で多量に水酸化銅が析出するため、この場合も反応槽内で撹拌状態にあるニッケルコバルト複合水酸化物粒子群のうち粒子表面が水酸化銅によって被覆されないものが発生する割合が高くなる。 The copper sulfate solution supplied to the reaction vessel preferably has a concentration of 0.5 mol / L or more and 2.0 mol / L or less. When the concentration of this copper sulfate solution is lower than 0.5 mol / L, the slurry of nickel-cobalt composite hydroxide particles is too diluted in the reaction vessel, and the nickel-cobalt composite hydroxide in a stirred state in the reaction vessel. Among the particle groups, the proportion of those in which the surface of the particles is not covered by the crystallization-precipitated copper hydroxide increases. On the contrary, when the concentration of the copper sulfate solution exceeds 2.0 mol / L, a large amount of copper hydroxide precipitates at or near the portion where the copper sulfate solution is supplied by dropping or the like to the slurry in the reaction vessel. In this case as well, the proportion of nickel-cobalt composite hydroxide particles whose surface is not covered with copper hydroxide among the group of nickel-cobalt composite hydroxide particles in a stirred state in the reaction vessel is high.

上記の被覆工程の終了後は、生成した水酸化銅被覆ニッケルコバルト複合水酸化物粒子を回収する前に反応槽内においてそのままスラリーを20~30分間程度撹拌し続けるのが好ましい。これにより反応槽内において化学反応をほぼ平衡状態に到達させることができるので、回収した水酸化銅被覆ニッケルコバルト複合水酸化物粒子は水酸化銅による被覆層がより均一になる。上記反応槽からの水酸化銅被覆ニッケルコバルト複合水酸化物粒子の回収方法は特に限定はなく、例えば吸引ろ過やフィルタープレスにスラリーを導入して固液分離を行えばよい。 After the completion of the above coating step, it is preferable to continue stirring the slurry as it is in the reaction vessel for about 20 to 30 minutes before recovering the produced copper hydroxide-coated nickel-cobalt composite hydroxide particles. As a result, the chemical reaction can be brought to a substantially equilibrium state in the reaction vessel, so that the recovered copper hydroxide-coated nickel-cobalt composite hydroxide particles have a more uniform coating layer with copper hydroxide. The method for recovering the copper hydroxide-coated nickel-cobalt composite hydroxide particles from the reaction vessel is not particularly limited, and for example, the slurry may be introduced into suction filtration or a filter press to perform solid-liquid separation.

このようにして回収した湿潤状態の水酸化銅被覆複合水酸化物粒子ケーキに対して、質量基準で8~10倍の水を数回に分けて混合して水洗した後に固液分離して固形分として回収するレパルプ洗浄を繰り返すことで該水酸化銅被覆複合水酸化物粒子の表面に残留するアルカリ性水溶液等の不純物を除去することができる。上記のレパルプ洗浄に使用する水は脱イオン水又は純水が好ましい。これにより不純物がほとんど含まれていない高品質の水酸化銅被覆ニッケルコバルト複合水酸化物粒子を得ることができる。このレパルプ洗浄後の水酸化銅被覆ニッケルコバルト複合水酸化物は、次に定置乾燥機や真空流動乾燥機などの乾燥機を用いて物質の温度を100℃以上に加熱して乾燥するのが好ましく、これにより正極活物質の前駆体としての水酸化銅被覆ニッケルコバルト複合水酸化物の乾燥粉末を得ることができる。 The wet copper hydroxide-coated composite hydroxide particle cake recovered in this manner is mixed with 8 to 10 times as much water on a mass basis in several batches, washed with water, and then solid-liquid separated into solids. By repeating the washing of the repulp collected as a portion, impurities such as an alkaline aqueous solution remaining on the surface of the copper hydroxide-coated composite hydroxide particles can be removed. The water used for the above-mentioned repulp washing is preferably deionized water or pure water. This makes it possible to obtain high-quality copper hydroxide-coated nickel-cobalt composite hydroxide particles containing almost no impurities. The copper hydroxide-coated nickel-cobalt composite hydroxide after washing the repulp is preferably dried by heating the temperature of the substance to 100 ° C. or higher using a dryer such as a stationary dryer or a vacuum flow dryer. As a result, a dry powder of a copper hydroxide-coated nickel-cobalt composite hydroxide as a precursor of the positive electrode active material can be obtained.

このように、本発明の実施形態の製造方法により、硫酸銅溶液から析出した水酸化銅をニッケルコバルト複合水酸化物粒子の表面に均一かつ効率よく被覆させることができ、また、反応後の残液への銅の流出等のロスを抑えることができるため、必要以上に銅が消費されるのを防ぐことができる。更に、正極活物質として作製したときの金属元素の物質量比を容易にコントロールできる。これにより、一般式がNi1-x-y-zCoCu(OH)(式中、MはAl、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群から選ばれる1種以上の添加元素であり、0.05≦x≦0.5、0≦y≦0.10、0.01≦z≦0.05である)の水酸化銅被覆ニッケルコバルト複合水酸化物を製造することができる。 As described above, according to the production method of the embodiment of the present invention, the copper hydroxide precipitated from the copper sulfate solution can be uniformly and efficiently coated on the surface of the nickel-cobalt composite hydroxide particles, and the residue after the reaction. Since it is possible to suppress loss such as outflow of copper to the liquid, it is possible to prevent copper from being consumed more than necessary. Further, the substance amount ratio of the metal element when produced as the positive electrode active material can be easily controlled. As a result, the general formula is selected from the group consisting of Ni 1-x-y-z Co x My Cu z (OH) 2 (in the formula, M is Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga). One or more additive elements, 0.05 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.10, 0.01 ≦ z ≦ 0.05) Copper hydroxide-coated nickel-cobalt composite hydroxylation You can make things.

上記にて作製した水酸化銅被覆ニッケルコバルト複合水酸化物粒子に対して、リチウム化合物として好ましくは水酸化リチウム若しくは炭酸リチウム又はそれらの両方を混合し、好適な熱処理条件として大気雰囲気下で700℃以上850℃以下で5~20時間かけて焼成を行うことで、銅を粒子内部に拡散固溶させることができる。これにより、銅が内部までほぼ均一に固溶したリチウムニッケルコバルト銅複合酸化物を作製することができる。このようにして得たリチウムニッケルコバルト銅複合酸化物を正極活物質として用いたリチウムイオン二次電池は品質が極めて安定しており、よって該リチウムイオン二次電池の信頼性を高めることができる。 The copper hydroxide-coated nickel-cobalt composite hydroxide particles prepared above are preferably mixed with lithium hydroxide, lithium carbonate, or both as a lithium compound, and are placed at 700 ° C. in an air atmosphere as suitable heat treatment conditions. By firing at 850 ° C. or lower for 5 to 20 hours, copper can be diffused and solid-dissolved inside the particles. This makes it possible to produce a lithium nickel-cobalt-copper composite oxide in which copper is dissolved almost uniformly to the inside. The quality of the lithium ion secondary battery using the lithium nickel cobalt copper composite oxide thus obtained as the positive electrode active material is extremely stable, and therefore the reliability of the lithium ion secondary battery can be enhanced.

以上、本発明の水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において種々の変形例や変更例を含むことができる。すなわち、本発明の権利範囲は特許請求の範囲及びその均等の範囲に及ぶものである。 Although the embodiment of the method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide of the present invention has been described above, the present invention is not limited to the above embodiment and is within the range not deviating from the gist of the present invention. Various modifications and modifications can be included in the above. That is, the scope of rights of the present invention extends to the scope of claims and the equivalent scope thereof.

[実施例1]
(ニッケルコバルト複合水酸化物の製造)
有効容積5Lの晶析用反応槽内に純水を2.5L入れ、ディスクタービン状攪拌翼を有する撹拌機を用いて500rpmで撹拌しながら槽内の液温を40±0.5℃に維持した。この反応槽内の雰囲気は、酸素濃度が1容量%以下の窒素雰囲気とした。この反応槽内の純水に25質量%水酸化ナトリウム水溶液と25質量%アンモニア水とを加えて、pH値が液温25℃基準で11.5であって且つアンモニア濃度が5g/Lの初期反応水溶液を調製した。また、別途用意した純水に硫酸ニッケルと硫酸コバルトとを溶解して、ニッケルとコバルトの物質量比がNi:Coで0.85:0.15であって且つニッケルとコバルトの合計物質量濃度が2.0モル/Lの原料金属塩溶液を調製した。
[Example 1]
(Manufacturing of nickel-cobalt composite hydroxide)
Put 2.5 L of pure water in a reaction tank for crystallization with an effective volume of 5 L, and maintain the liquid temperature in the tank at 40 ± 0.5 ° C while stirring at 500 rpm using a stirrer equipped with a disc turbine-like stirring blade. bottom. The atmosphere in this reaction vessel was a nitrogen atmosphere having an oxygen concentration of 1% by volume or less. An initial 25% by mass sodium hydroxide aqueous solution and 25% by mass ammonia water are added to pure water in this reaction vessel, and the pH value is 11.5 based on the liquid temperature of 25 ° C. and the ammonia concentration is 5 g / L. A reaction aqueous solution was prepared. In addition, nickel sulfate and cobalt sulfate are dissolved in pure water prepared separately, and the material content ratio of nickel and cobalt is 0.85: 0.15 for Ni: Co, and the total material content concentration of nickel and cobalt. Prepared a raw material metal salt solution of 2.0 mol / L.

このようにして調製した原料金属塩溶液を、反応槽内の上記初期反応水溶液に10mL/分の一定速度で供給して晶析反応を生じさせた。この際、反応槽内の反応液に対して、25質量%アンモニア水を一定速度で供給すると共に、25質量%水酸化ナトリウム水溶液を反応槽内の該反応液のpH値が液温25℃基準で11.5に維持されるように流量を調整しつつ供給した。そして、定期的に反応槽内の反応液のアンモニア濃度を測定し、反応中は5g/Lに維持されていることを確認した。係る操作により、ニッケルコバルト複合水酸化物の晶析反応を生じさせた。 The raw material metal salt solution thus prepared was supplied to the initial reaction aqueous solution in the reaction vessel at a constant rate of 10 mL / min to cause a crystallization reaction. At this time, 25% by mass aqueous ammonia is supplied to the reaction solution in the reaction vessel at a constant rate, and the pH value of the reaction solution in the reaction vessel is based on the liquid temperature of 25 ° C. It was supplied while adjusting the flow rate so that it was maintained at 11.5. Then, the ammonia concentration of the reaction solution in the reaction vessel was measured periodically, and it was confirmed that the concentration was maintained at 5 g / L during the reaction. By such an operation, a crystallization reaction of a nickel-cobalt composite hydroxide was caused.

生成したニッケルコバルト複合水酸化物を含むスラリーは、反応槽に設けられたオーバーフロー口から連続的に排出され、ろ過により固液分離し、固形分としてニッケルコバルト複合水酸化物を回収した。回収したニッケルコバルト複合水酸化物は、脱イオン水で水洗して水溶性の不純物を除去した後、120℃で18時間かけて乾燥した。これにより、粉末状のニッケルコバルト複合水酸化物を得た。 The generated nickel-cobalt composite hydroxide-containing slurry was continuously discharged from an overflow port provided in the reaction vessel, solid-liquid separated by filtration, and the nickel-cobalt composite hydroxide was recovered as a solid content. The recovered nickel-cobalt composite hydroxide was washed with deionized water to remove water-soluble impurities, and then dried at 120 ° C. for 18 hours. As a result, a powdery nickel-cobalt composite hydroxide was obtained.

(被覆工程)
上記ニッケルコバルト複合水酸化物粉末600gを有効容積5Lの容器内に入れ、純水を投入しながら攪拌し全容積2Lのスラリーとした。この時のスラリー濃度は300g/Lである。ディスクタービン形状の攪拌翼を取り付けた撹拌機にて300rpmで撹拌し、スラリー内のニッケルコバルト複合水酸化物が底部に沈降することなく、スラリー全体がほぼ均一に混合された状態であることを確認した。この撹拌状態のスラリーに対して、pHコントローラーを用いて供給量を自動制御しながら25質量%水酸化ナトリウム水溶液を供給することで、スラリーのpHを12.0に維持した。
(Coating process)
600 g of the nickel-cobalt composite hydroxide powder was placed in a container having an effective volume of 5 L and stirred while adding pure water to prepare a slurry having a total volume of 2 L. The slurry concentration at this time is 300 g / L. Stir at 300 rpm with a stirrer equipped with a disc turbine-shaped stirring blade, and confirm that the entire slurry is mixed almost uniformly without the nickel-cobalt composite hydroxide in the slurry settling to the bottom. bottom. The pH of the slurry was maintained at 12.0 by supplying a 25% by mass sodium hydroxide aqueous solution to the slurry in the stirred state while automatically controlling the supply amount using a pH controller.

上記のpH調整が行われているスラリーに、別途調製した0.8モル/Lの硫酸銅水溶液を、硫酸銅が0.08モル/分(すなわち、ニッケルコバルト複合水酸化物粒子1kg当たり0.13モル/分)で供給されるように滴下し、ニッケルコバルト複合水酸化物粒子表面に水酸化銅を析出させることで被覆した。この硫酸銅水溶液の滴下量が200mlとなった時点で滴下を終了した。このようにして生成した水酸化銅被覆ニッケルコバルト複合水酸化物のスラリーをブフナーロートを用いてろ過し、更に5Lの脱イオン水で掛け水洗浄した。その後、水分率10質量%以下になるまでろ過することで回収した湿潤状態の水酸化銅被覆ニッケルコバルト複合水酸化物ケーキを、大気乾燥機にて120℃で24時間かけて乾燥させた。 To the above pH-adjusted slurry, a separately prepared 0.8 mol / L copper sulfate aqueous solution was added to 0.08 mol / min of copper sulfate (that is, 0. per kg of nickel-cobalt composite hydroxide particles. It was dropped so as to be supplied at 13 mol / min), and the surface of the nickel-cobalt composite hydroxide particles was coated by precipitating copper hydroxide. The dropping was completed when the dropping amount of the copper sulfate aqueous solution reached 200 ml. The slurry of the copper hydroxide-coated nickel-cobalt composite hydroxide thus produced was filtered using a Büchner funnel, and further washed with 5 L of deionized water. Then, the wet copper hydroxide-coated nickel-cobalt composite hydroxide cake recovered by filtering until the moisture content became 10% by mass or less was dried at 120 ° C. for 24 hours in an air dryer.

このようにして得た前駆体としての試料1の水酸化銅被覆ニッケルコバルト複合水酸化物に対して、その銅の含有量をICP発光分析にて測定した。その結果、硫酸銅水溶液として供給した銅の98%が該前駆体に含有されていた。また、上記被覆前後の粒子の平均粒径D50をレーザー回折散乱式粒度分析計による体積積算値から求めたところ、被覆前のD50は8.2μm、被覆後のD50は8.6μmであり、その変化率すなわち被覆前の平均粒径に対する被覆後の平均粒径は+4.9%であった。更にSEM(走査電子顕微鏡)で撮影した水酸化銅被覆ニッケルコバルト複合水酸化物粒子群のSEM像から平均粒径±1.5μmの粒子をランダムに100個選択し、それら100個の粒子のうち水酸化銅微粒子の付着している粒子の個数を数えたところ98個(すなわち、被覆粒子の個数割合98%)であった。なお、SEM像において水酸化銅微粒子が付着している個数が10個未満のニッケルコバルト複合水酸化物粒子は、水酸化銅微粒子が付着していないと判断した。 The copper content of the copper hydroxide-coated nickel-cobalt composite hydroxide of Sample 1 as a precursor thus obtained was measured by ICP emission spectrometry. As a result, 98% of the copper supplied as the copper sulfate aqueous solution was contained in the precursor. Further, when the average particle size D50 of the particles before and after the coating was obtained from the volume integration value by the laser diffraction / scattering type particle size analyzer, the D50 before coating was 8.2 μm and the D50 after coating was 8.6 μm. The rate of change, that is, the average particle size after coating with respect to the average particle size before coating was + 4.9%. Furthermore, 100 particles having an average particle size of ± 1.5 μm were randomly selected from the SEM images of the copper hydroxide-coated nickel-cobalt composite hydroxide particles imaged by SEM (scanning electron microscope), and among these 100 particles. When the number of particles to which the copper hydroxide fine particles were attached was counted, it was 98 (that is, the number ratio of the coated particles was 98%). In the SEM image, it was determined that the nickel-cobalt composite hydroxide particles to which the number of copper hydroxide fine particles attached was less than 10 did not have the copper hydroxide fine particles attached.

次に、得られた前駆体を用いてLiと金属成分(Ni+Co+Cu)の原子比率が1:2となるように水酸化Li粉と前駆体を混合し、焼成炉にて酸素雰囲気下で700℃に加熱し、700℃に達してから7時間保持後に冷却して正極活物質粉を得た。得られた正極活物質粉の断面についてエネルギー分散型X線分光器(以降EDSと略する)による面分析を行い、Cuが均一に分散しているか確認を行ったところ、均一に分布しており、偏析は見られなかった。 Next, using the obtained precursor, Li hydroxide powder and the precursor are mixed so that the atomic ratio of Li and the metal component (Ni + Co + Cu) is 1: 2, and the temperature is 700 ° C. in an oxygen atmosphere in a firing furnace. After reaching 700 ° C. and holding for 7 hours, the mixture was cooled to obtain a positive electrode active material powder. The cross section of the obtained positive electrode active material powder was subjected to surface analysis using an energy dispersive X-ray spectroscope (hereinafter abbreviated as EDS) to confirm whether Cu was uniformly dispersed. , No segregation was seen.

上記と同様にしてスラリー濃度300g/Lのニッケルコバルト複合水酸化物を含むスラリー2Lが入れられた5L容器を6個用意し、それぞれのpHを12.0に代えて11.0(試料2)、10.0(試料3)、9.0(試料4)、8.0(試料5)、7.0(試料6)、及び6.0(試料7)にした以外は上記試料1の場合と同様にして試料2~6の水酸化銅被覆ニッケルコバルト複合水酸化物を得た。これら試料2~6の水酸化銅被覆ニッケルコバルト複合水酸化物に対して試料1の場合と同様にして評価した。その結果を試料1のものと併せて下記表1に示す。なお、試料7ではニッケルコバルト複合水酸化物が全て溶液中に溶解したため、ろ過物は残らなかった。 In the same manner as above, prepare 6 5L containers containing 2L of nickel-cobalt composite hydroxide having a slurry concentration of 300g / L, and change the pH of each to 12.0 (Sample 2). In the case of sample 1 above, except for 10.0 (sample 3), 9.0 (sample 4), 8.0 (sample 5), 7.0 (sample 6), and 6.0 (sample 7). In the same manner as above, the copper hydroxide-coated nickel-cobalt composite hydroxide of Samples 2 to 6 was obtained. The copper hydroxide-coated nickel-cobalt composite hydroxides of Samples 2 to 6 were evaluated in the same manner as in Sample 1. The results are shown in Table 1 below together with those of Sample 1. In Sample 7, all the nickel-cobalt composite hydroxide was dissolved in the solution, so no filter remained.

Figure 0007070250000001
Figure 0007070250000001

上記表1の結果から、晶析により作製したニッケルコバルト複合水酸化物粒子に水を加えて調製したスラリーに対して、そのpHを7.0を超え12.0以下に調整しながら硫酸銅溶液を連続的に供給することで、該ニッケルコバルト複合水酸化物粒子の表面にほぼ均一且つ効率よく水酸化銅微粒子を被覆できるので、Cuによる偏析のない正極活物質が得られることが分かる。 From the results in Table 1 above, a copper sulfate solution was prepared by adding water to the nickel-cobalt composite hydroxide particles prepared by crystallization while adjusting the pH to more than 7.0 and 12.0 or less. By continuously supplying the nickel-cobalt composite hydroxide particles, the surface of the nickel-cobalt composite hydroxide particles can be coated with the copper hydroxide fine particles substantially uniformly and efficiently, so that it can be seen that a positive electrode active material without segregation by Cu can be obtained.

[実施例2]
ニッケルコバルト複合水酸化物のスラリー濃度を、300g/Lに代えて、それぞれ50g/L(試料8)、100g/L(試料9)、500g/L(試料10)、及び550g/L(試料11)のニッケルコバルト複合水酸化物を含むスラリーを調製した以外は上記実施例1の試料3の場合と同様にして試料8~11の水酸化銅被覆ニッケルコバルト複合水酸化物を得た。これら試料8~11の水酸化銅被覆ニッケルコバルト複合水酸化物に対して実施例1と同様にして評価した。その結果を下記表2に示す。
[Example 2]
The nickel-cobalt composite hydroxide slurry concentration was changed to 50 g / L (Sample 8), 100 g / L (Sample 9), 500 g / L (Sample 10), and 550 g / L (Sample 11), respectively, instead of 300 g / L. ), A copper hydroxide-coated nickel-cobalt composite hydroxide of Samples 8 to 11 was obtained in the same manner as in Sample 3 of Example 1 above, except that a slurry containing the nickel-cobalt composite hydroxide was prepared. The copper hydroxide-coated nickel-cobalt composite hydroxides of these samples 8 to 11 were evaluated in the same manner as in Example 1. The results are shown in Table 2 below.

Figure 0007070250000002
Figure 0007070250000002

上記表2の結果から、用いるニッケルコバルト複合水酸化物のスラリー濃度が100g/Lよりも低いと析出した水酸化銅粒子が付着しないニッケルコバルト複合水酸化物粒子の存在割合が増加してしまい、付着しなかった水酸化銅粒子が工程ロスとなることで銅の回収効率が低下する。一方、ニッケルコバルト複合水酸化物のスラリー濃度が500g/Lを超えると析出した水酸化銅を媒介としてニッケルコバルト複合水酸化物の凝集が起こり、銅添加後に得られる複合水酸化物粒子の平均粒径が増加することが分かる。 From the results in Table 2 above, if the slurry concentration of the nickel-cobalt composite hydroxide used is lower than 100 g / L, the abundance ratio of the nickel-cobalt composite hydroxide particles to which the precipitated copper hydroxide particles do not adhere increases. The copper hydroxide particles that did not adhere become a process loss, and the copper recovery efficiency decreases. On the other hand, when the slurry concentration of the nickel-cobalt composite hydroxide exceeds 500 g / L, aggregation of the nickel-cobalt composite hydroxide occurs via the precipitated copper hydroxide, and the average grain of the composite hydroxide particles obtained after the addition of copper occurs. It can be seen that the diameter increases.

[実施例3]
反応槽内のpH調整されたニッケルコバルト複合水酸化物のスラリーに滴下する硫酸銅水溶液の濃度を、0.8モル/Lに代えて、それぞれ0.3モル/L(試料12)、0.5モル/L(試料13)、2.0モル/L(試料14)、及び2.5モル/L(試料15)にした以外は上記実施例1の試料3の場合と同様にして試料12~15の水酸化銅被覆ニッケルコバルト複合水酸化物を得た。これら試料12~15の水酸化銅被覆ニッケルコバルト複合水酸化物に対して実施例1と同様にして評価した。その結果を下記表3に示す。
[Example 3]
The concentration of the copper sulfate aqueous solution dropped on the pH-adjusted nickel-cobalt composite hydroxide slurry in the reaction vessel was 0.3 mol / L (sample 12) and 0. Sample 12 in the same manner as in Sample 3 of Example 1 above, except that 5 mol / L (Sample 13), 2.0 mol / L (Sample 14), and 2.5 mol / L (Sample 15) were used. To 15 copper hydroxide-coated nickel-cobalt composite hydroxides were obtained. The copper hydroxide-coated nickel-cobalt composite hydroxides of these samples 12 to 15 were evaluated in the same manner as in Example 1. The results are shown in Table 3 below.

Figure 0007070250000003
Figure 0007070250000003

上記表3の結果から、反応に用いる硫酸銅水溶液の濃度が0.5モル/Lよりも低いとニッケルコバルト複合水酸化物粒子のスラリーが希釈され過ぎ、ニッケルコバルト複合水酸化物粒子群のうち晶析析出した水酸化銅によって粒子表面が被覆されないものが発生する割合が高く、すなわち水酸化銅微粒子の付着してる複合水酸化物粒子の割合が低くなる。逆に、硫酸銅溶液の濃度が2.0モル/Lを超えると、反応槽内のスラリーに硫酸銅溶液が滴下等により供給される部分又はその近傍で多量に水酸化銅が析出するため、この場合も反応槽内で撹拌状態にあるニッケルコバルト複合水酸化物粒子群のうち粒子表面が水酸化銅微粒子によって被覆されないものが発生する割合が高くなることが分かる。 From the results in Table 3 above, when the concentration of the copper sulfate aqueous solution used in the reaction is lower than 0.5 mol / L, the slurry of the nickel-cobalt composite hydroxide particles is too diluted, and the nickel-cobalt composite hydroxide particles are included in the group. The proportion of those in which the surface of the particles is not covered by the crystallization-precipitated copper hydroxide is high, that is, the proportion of the composite hydroxide particles to which the copper hydroxide fine particles are attached is low. On the contrary, when the concentration of the copper sulfate solution exceeds 2.0 mol / L, a large amount of copper hydroxide precipitates at or near the portion where the copper sulfate solution is supplied by dropping or the like to the slurry in the reaction vessel. In this case as well, it can be seen that among the group of nickel-cobalt composite hydroxide particles in a stirred state in the reaction vessel, the proportion of particles whose surface is not covered with copper hydroxide fine particles is high.

[実施例4]
反応槽内のpH調整されたニッケルコバルト複合水酸化物スラリーに滴下する硫酸銅水溶液の供給速度を、硫酸銅0.08モル/分に代えて、それぞれ0.03モル/分(試料16)、0.05モル/分(試料17)、0.2モル/分(試料18)、及び0.25モル/分(試料19)にした以外は上記実施例1の試料3の場合と同様にして試料16~19の水酸化銅被覆ニッケルコバルト複合水酸化物を得た。なお、上記の供給速度は、ニッケルコバルト複合水酸化物粒子1kg当たりで換算すると、それぞれ0.05モル/分(試料16)、0.08モル/分(試料17)、0.33モル/分(試料18)、及び0.42モル/分(試料19)となる。これら試料16~19の水酸化銅被覆ニッケルコバルト複合水酸化物に対して実施例1と同様にして評価した。その結果を下記表4に示す。
[Example 4]
The supply rate of the copper sulfate aqueous solution dropped onto the pH-adjusted nickel-cobalt composite hydroxide slurry in the reaction vessel was 0.03 mol / min (sample 16) instead of 0.08 mol / min of copper sulfate. In the same manner as in the case of sample 3 of Example 1 above, except that the values were 0.05 mol / min (sample 17), 0.2 mol / min (sample 18), and 0.25 mol / min (sample 19). Copper hydroxide-coated nickel-cobalt composite hydroxides of Samples 16-19 were obtained. The above supply rates are 0.05 mol / min (sample 16), 0.08 mol / min (sample 17), and 0.33 mol / min, respectively, when converted per 1 kg of nickel-cobalt composite hydroxide particles. (Sample 18) and 0.42 mol / min (Sample 19). The copper hydroxide-coated nickel-cobalt composite hydroxides of these samples 16 to 19 were evaluated in the same manner as in Example 1. The results are shown in Table 4 below.

Figure 0007070250000004
Figure 0007070250000004

上記表4の結果から、硫酸銅水溶液の供給速度がニッケルコバルト複合水酸化物粒子1kg当たり0.05モル/分以下では、水酸化銅微粒子の被覆量のバラツキは小さいが被覆工程にかかる時間が長くなり生産効率が低下する。逆に硫酸銅水溶液の供給速度がニッケルコバルト複合水酸化物粒子1kg当たり0.4モル/分よりも大きいと、ニッケルコバルト複合水酸化物粒子に被覆量のバラツキが大きくなることが分かる。なお、水酸化銅微粒子の付着した粒子のうち、最も水酸化銅微粒子の付着数の多い粒子の水酸化銅微粒子の付着数が200個以上の場合は被覆量のバラツキが大きいと判断し、該付着数が200個未満50個以上はバラツキが平均的と判断し、該付着数が50個未満の場合はばらつきが小さいと判断した。また、被覆工程にかかる時間が5分以上の場合は生産効率「×」と判断し、5分未満の場合は生産効率「○」と判断した。 From the results in Table 4 above, when the supply rate of the copper sulfate aqueous solution is 0.05 mol / min or less per 1 kg of nickel-cobalt composite hydroxide particles, the variation in the coating amount of the copper hydroxide fine particles is small, but the time required for the coating step is small. It becomes longer and the production efficiency decreases. On the contrary, when the supply rate of the copper sulfate aqueous solution is larger than 0.4 mol / min per 1 kg of the nickel-cobalt composite hydroxide particles, it can be seen that the coating amount of the nickel-cobalt composite hydroxide particles varies widely. Among the particles to which the copper hydroxide fine particles are attached, when the number of the copper hydroxide fine particles attached to the particles having the largest number of copper hydroxide fine particles is 200 or more, it is judged that the coating amount varies widely. When the number of adhered particles was less than 200 and 50 or more, the variation was judged to be average, and when the number of adhered particles was less than 50, the variation was judged to be small. Further, when the time required for the coating process was 5 minutes or more, the production efficiency was judged to be “×”, and when it was less than 5 minutes, the production efficiency was judged to be “◯”.

Claims (6)

リチウムイオン二次電池用の正極活物質の原料として使用される水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法であって、
晶析により作製したニッケルコバルト複合水酸化物粒子に水を加えてスラリー濃度100g/L以上500g/L以下のスラリーを調製した後、該スラリーに対して、そのpHを7.0を超え12.0以下に調整しながら硫酸銅溶液を連続的に供給することで該ニッケルコバルト複合水酸化物粒子の表面に水酸化銅を被覆させることを特徴とする水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法。
A method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide used as a raw material for a positive electrode active material for a lithium ion secondary battery.
Water is added to the nickel-cobalt composite hydroxide particles prepared by crystallization to prepare a slurry having a slurry concentration of 100 g / L or more and 500 g / L or less, and then the pH of the slurry exceeds 7.0 to 12. A copper hydroxide-coated nickel-cobalt composite hydroxide characterized by coating the surface of the nickel-cobalt composite hydroxide particles with copper hydroxide by continuously supplying a copper sulfate solution while adjusting the concentration to 0 or less. Production method.
前記水酸化銅被覆ニッケルコバルト複合水酸化物は、一般式:Ni1-x-y-zCoCu(OH)(式中、MはAl、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群から選ばれる1種以上の添加元素であり、0.05≦x≦0.5、0≦y≦0.10、0.01≦z≦0.05である)で表されることを特徴とする、請求項1に記載の水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法。 The copper hydroxide-coated nickel-cobalt composite hydroxide has a general formula: Ni 1-x-y-z Co x My Cu z (OH) 2 (in the formula, M is Al, Mg, Mn, Ti, Fe, One or more additive elements selected from the group consisting of Cu, Zn, and Ga, 0.05 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.10, 0.01 ≦ z ≦ 0.05) The method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide according to claim 1, wherein the method is represented by. 前記ニッケルコバルト複合水酸化物粒子1kg当たり硫酸銅が0.05モル/分を超え0.4モル/分以下の速度で供給されるように前記硫酸銅溶液を供給することを特徴とする、請求項1又は2に記載の水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法。 Claimed, wherein the copper sulfate solution is supplied so that copper sulfate is supplied at a rate of more than 0.05 mol / min and 0.4 mol / min or less per 1 kg of the nickel-cobalt composite hydroxide particles. Item 2. The method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide according to Item 1 or 2. 前記硫酸銅溶液は、硫酸銅濃度が0.5モル/L以上2.0モル/L以下であることを特徴とする、請求項3に記載の水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法。 The copper hydroxide-coated nickel-cobalt composite hydroxide according to claim 3, wherein the copper sulfate solution has a copper sulfate concentration of 0.5 mol / L or more and 2.0 mol / L or less. Method. 前記晶析により作製したニッケルコバルト複合水酸化物粒子に水を加えてスラリーを調製する前に、該ニッケルコバルト複合水酸化物をレパルプ洗浄して残留するアンモニアを除去することを特徴とする、請求項1~4のいずれか1項に記載の水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法。 Claimed, wherein the nickel-cobalt composite hydroxide is repulped to remove residual ammonia before adding water to the nickel-cobalt composite hydroxide particles prepared by the crystallization to prepare a slurry. Item 6. The method for producing a nickel-cobalt composite hydroxide coated with copper hydroxide according to any one of Items 1 to 4. ニッケルコバルト複合水酸化物に対して酸化分解-化学発光法で測定した窒素分の含有量が乾燥物基準で0.1質量%以下になるまで前記レパルプ洗浄を行うことを特徴とする、請求項5に記載の水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法。 The claim is characterized in that the repulp washing is performed until the nitrogen content measured by the oxidative decomposition-chemical luminescence method with respect to the nickel-cobalt composite hydroxide becomes 0.1% by mass or less based on the dry matter. 5. The method for producing a copper hydroxide-coated nickel-cobalt composite hydroxide according to 5.
JP2018160206A 2018-08-29 2018-08-29 Method for Producing Copper Hydroxide Coated Nickel Cobalt Composite Hydroxide Active JP7070250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018160206A JP7070250B2 (en) 2018-08-29 2018-08-29 Method for Producing Copper Hydroxide Coated Nickel Cobalt Composite Hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018160206A JP7070250B2 (en) 2018-08-29 2018-08-29 Method for Producing Copper Hydroxide Coated Nickel Cobalt Composite Hydroxide

Publications (2)

Publication Number Publication Date
JP2020033213A JP2020033213A (en) 2020-03-05
JP7070250B2 true JP7070250B2 (en) 2022-05-18

Family

ID=69667010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160206A Active JP7070250B2 (en) 2018-08-29 2018-08-29 Method for Producing Copper Hydroxide Coated Nickel Cobalt Composite Hydroxide

Country Status (1)

Country Link
JP (1) JP7070250B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057212A (en) 1999-08-20 2001-02-27 Sanyo Electric Co Ltd Non-sintered nickel electrode for alkaline storage battery
JP2012252844A (en) 2011-06-01 2012-12-20 Sumitomo Metal Mining Co Ltd Transition metal complex hydroxide suitable for precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery comprising the positive electrode active material
WO2014051089A1 (en) 2012-09-28 2014-04-03 住友金属鉱山株式会社 Nickel-cobalt compound hydroxide and method and device for producing same, positive electrode active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JP2014103003A (en) 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd Coated nickel hydroxide powder for alkaline secondary battery positive electrode active material and method for producing the same
JP2016160126A (en) 2015-02-27 2016-09-05 住友金属鉱山株式会社 Transition metal complex hydroxide particle and production method of the same, positive electrode active substance for non-aqueous electrolyte secondary battery and production method of the same, and non-aqueous electrolyte secondary battery
JP2016222483A (en) 2015-05-28 2016-12-28 住友金属鉱山株式会社 Cathode active material for nonaqueous electrolyte secondary cell and production method therefor and nonaqueous electrolyte secondary cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057212A (en) 1999-08-20 2001-02-27 Sanyo Electric Co Ltd Non-sintered nickel electrode for alkaline storage battery
JP2012252844A (en) 2011-06-01 2012-12-20 Sumitomo Metal Mining Co Ltd Transition metal complex hydroxide suitable for precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery comprising the positive electrode active material
WO2014051089A1 (en) 2012-09-28 2014-04-03 住友金属鉱山株式会社 Nickel-cobalt compound hydroxide and method and device for producing same, positive electrode active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JP2014103003A (en) 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd Coated nickel hydroxide powder for alkaline secondary battery positive electrode active material and method for producing the same
JP2016160126A (en) 2015-02-27 2016-09-05 住友金属鉱山株式会社 Transition metal complex hydroxide particle and production method of the same, positive electrode active substance for non-aqueous electrolyte secondary battery and production method of the same, and non-aqueous electrolyte secondary battery
JP2016222483A (en) 2015-05-28 2016-12-28 住友金属鉱山株式会社 Cathode active material for nonaqueous electrolyte secondary cell and production method therefor and nonaqueous electrolyte secondary cell

Also Published As

Publication number Publication date
JP2020033213A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP4789066B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6766322B2 (en) Aluminum-coated nickel-cobalt composite hydroxide particles and their manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
EP3012889B1 (en) Nickel-cobalt-manganese composite hydroxide, and production method therefor
US9221693B2 (en) Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
JP6428105B2 (en) Nickel cobalt manganese compound and method for producing the same
JP6201895B2 (en) Method for producing nickel cobalt manganese composite hydroxide
JP5464348B2 (en) Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
JP4826147B2 (en) Aluminum-containing nickel hydroxide particles and method for producing the same
JP6044463B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP6341313B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5021892B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
CN111370683A (en) Preparation method of mono-like nickel cobalt lithium manganate
JP7452570B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7315887B2 (en) A method for producing a positive electrode active material precursor for lithium ion secondary batteries, a method for producing a positive electrode active material intermediate for lithium ion secondary batteries, and a method for producing a positive electrode active material for lithium ion secondary batteries combining them
JP7070250B2 (en) Method for Producing Copper Hydroxide Coated Nickel Cobalt Composite Hydroxide
CN110114917B (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery
CN112136231A (en) Method for preparing particle precursor and particle precursor prepared thereby
JP6546117B2 (en) Method of manufacturing positive electrode active material for lithium ion battery
JP7210957B2 (en) Nickel composite compound particles, method for producing same, and method for producing positive electrode active material for lithium ion secondary battery
JP6245081B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
WO2023095548A1 (en) Transition metal-containing hydroxide, positive electrode active material obtained using transition metal-containing hydroxide as precursor, and method for producing transition metal-containing hydroxide
JP7371354B2 (en) Method for producing nickel composite hydroxide
RU2749604C1 (en) Method for production of precursor particles, precursor particle produced by this method, and method for production of active cathode particles
WO2024014558A1 (en) Composite metal hydroxide and method for producing positive electrode active substance for lithium secondary battery
WO2022030608A1 (en) Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7070250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150