JP7070012B2 - Electroplating equipment and method for manufacturing metal-clad laminates - Google Patents

Electroplating equipment and method for manufacturing metal-clad laminates Download PDF

Info

Publication number
JP7070012B2
JP7070012B2 JP2018079092A JP2018079092A JP7070012B2 JP 7070012 B2 JP7070012 B2 JP 7070012B2 JP 2018079092 A JP2018079092 A JP 2018079092A JP 2018079092 A JP2018079092 A JP 2018079092A JP 7070012 B2 JP7070012 B2 JP 7070012B2
Authority
JP
Japan
Prior art keywords
anode
metal
base material
shielding plate
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018079092A
Other languages
Japanese (ja)
Other versions
JP2019183249A (en
Inventor
均 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018079092A priority Critical patent/JP7070012B2/en
Publication of JP2019183249A publication Critical patent/JP2019183249A/en
Application granted granted Critical
Publication of JP7070012B2 publication Critical patent/JP7070012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

本発明は、電解めっき装置、および金属張積層板の製造方法に関する。さらに詳しくは、本発明は、アノードと基材との間の電流を遮蔽するのに用いられるアノード遮蔽板を備える電解めっき装置、およびその電解めっき装置を用いた金属張積層板の製造方法に関する。 The present invention relates to an electrolytic plating apparatus and a method for manufacturing a metal-clad laminate. More specifically, the present invention relates to an electrolytic plating apparatus provided with an anode shielding plate used for shielding a current between an anode and a substrate, and a method for manufacturing a metal-clad laminate using the electrolytic plating apparatus. ..

液晶パネル、ノートパソコン、デジタルカメラ、携帯電話などには、樹脂フィルムの表面に配線パターンが形成されたフレキシブルプリント配線板が用いられる。フレキシブルプリント配線板は、例えば、銅張積層板から製造される。 For liquid crystal panels, notebook computers, digital cameras, mobile phones, etc., flexible printed wiring boards having a wiring pattern formed on the surface of a resin film are used. The flexible printed wiring board is manufactured from, for example, a copper-clad laminate.

銅張積層板の製造方法としてメタライジング法が知られている。メタライジング法による銅張積層板の製造は、例えば、つぎの手順で行なわれる。まず、樹脂フィルムの表面にニッケルクロム合金からなる下地金属層を形成する。つぎに、下地金属層の上に銅薄膜層を形成する。つぎに、銅薄膜層の上に銅めっき被膜を形成する。銅めっきにより、配線パターンを形成するのに適した膜厚となるまで導体層を厚膜化する。長尺帯状の樹脂フィルムを用いる場合、銅めっき被膜を形成する電解めっきはロールツーロールで行なわれる。 The metallizing method is known as a method for manufacturing a copper-clad laminate. The production of the copper-clad laminate by the metallizing method is performed, for example, by the following procedure. First, a base metal layer made of a nickel-chromium alloy is formed on the surface of the resin film. Next, a copper thin film layer is formed on the base metal layer. Next, a copper plating film is formed on the copper thin film layer. By copper plating, the conductor layer is thickened until the film thickness is suitable for forming the wiring pattern. When a long strip-shaped resin film is used, the electrolytic plating for forming the copper plating film is performed by roll-to-roll.

フレキシブルプリント配線板の製造に用いられる銅張積層板は、銅めっき被膜の厚さが均一であることが求められる。そこで、銅張積層板の規格値として銅めっき被膜の厚さの最大値、最小値などが定められる。一方、電解めっきではめっき面の端に電流が集中しやすいことから、銅張積層板の銅めっき被膜は幅中央部に比べて側部が厚くなりやすい。そのため、銅めっき被膜の厚さが規格値を満たす幅中央部のみがフレキシブルプリント配線板の製造に用いられる。銅張積層板を無駄なく用いるために、銅めっき被膜の厚さが規格値を満たす膜厚有効幅の拡大が求められる。 The copper-clad laminate used in the manufacture of flexible printed wiring boards is required to have a uniform thickness of the copper plating film. Therefore, the maximum and minimum values of the thickness of the copper plating film are set as the standard values of the copper-clad laminate. On the other hand, in electrolytic plating, the current tends to concentrate on the edge of the plated surface, so that the copper plating film of the copper-clad laminate tends to be thicker on the side than in the center of the width. Therefore, only the central portion of the width where the thickness of the copper plating film satisfies the standard value is used for manufacturing the flexible printed wiring board. In order to use the copper-clad laminate without waste, it is required to expand the effective film thickness in which the thickness of the copper plating film satisfies the standard value.

特許文献1には、電解めっき装置のアノードとシード層付長尺ポリイミドフィルムとの間に遮蔽板を設けて、アノードの有効幅を銅めっき被膜層幅の80~90%に調整することが開示されている。めっき面の端に集中する電流を遮蔽板で遮蔽することで、銅めっき被膜層の厚さを均一にできる。 Patent Document 1 discloses that an shielding plate is provided between the anode of an electrolytic plating apparatus and a long polyimide film with a seed layer, and the effective width of the anode is adjusted to 80 to 90% of the width of the copper plating film layer. Has been done. By shielding the current concentrated on the edge of the plated surface with a shielding plate, the thickness of the copper plating film layer can be made uniform.

特開2011-58057号公報Japanese Unexamined Patent Publication No. 2011-58057

特許文献1の技術を採用した場合、銅めっき被膜のうち電流が遮蔽された側部の厚さは薄くなり、規格値として定められた最小値を下回ることがある。そのため、膜厚有効幅は銅めっき被膜幅の80~90%程度となる。 When the technique of Patent Document 1 is adopted, the thickness of the side portion of the copper plating film in which the current is shielded becomes thin, and may be less than the minimum value defined as the standard value. Therefore, the effective film thickness width is about 80 to 90% of the copper plating film width.

遮蔽板の幅を狭くすれば、銅めっき被膜の側部を厚くすることが可能である。しかし、遮蔽板の幅を狭くすると、電流の回り込みにより銅めっき被膜の縁に電流が集中し、縁が極端に厚くなる。そうすると、銅張積層板をロール状に巻いたときに、ロールの端部が太くなり、長尺品を巻くことができなくなる。 By narrowing the width of the shielding plate, it is possible to thicken the side portion of the copper plating film. However, when the width of the shielding plate is narrowed, the current concentrates on the edge of the copper plating film due to the wraparound of the current, and the edge becomes extremely thick. Then, when the copper-clad laminate is wound into a roll, the end of the roll becomes thick and it becomes impossible to wind a long product.

本発明は上記事情に鑑み、金属めっき被膜の膜厚有効幅を拡大できる電解めっき装置を提供することを目的とする。
また、本発明は、金属めっき被膜の膜厚有効幅が広い金属張積層板の製造方法を提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide an electrolytic plating apparatus capable of expanding the effective film thickness of a metal plating film.
Another object of the present invention is to provide a method for manufacturing a metal-clad laminate having a wide effective film thickness of a metal plating film.

第1発明の電解めっき装置は、ロールツーロールにより搬送される長尺帯状の基材に対向して配置された複数のアノードと、前記複数のアノードのうちの一部または全部と前記基材の側部との間に配置された一または複数のアノード遮蔽板と、前記基材の縁を囲う絶縁性の部材である一または複数のエッジ遮蔽部材と、を備え、前記アノード遮蔽板は表裏を貫通する複数の孔が形成された絶縁性の板であり、前記複数の孔はいずれも同一寸法であり、前記アノード遮蔽板の全体に渡って規則的に配置されており、前記アノード遮蔽板のかぶり量は前記エッジ遮蔽部材のかぶり量より大きいことを特徴とする。
第2発明の電解めっき装置は、第1発明において、前記一または複数のアノード遮蔽板は、前記複数のアノードのうち設定電流密度が2A/dm2以上のアノードと前記基材の側部との間に配置されていることを特徴とする。
第3発明の金属張積層板の製造方法は、第1または第2発明の電解めっき装置を用いて、前記基材の表面に金属めっき被膜を成膜して金属張積層板を得ることを特徴とする。
The electrolytic plating apparatus of the first invention comprises a plurality of anodes arranged facing a long strip-shaped substrate conveyed by roll-to-roll, and a part or all of the plurality of anodes and the substrate. The anode shielding plate comprises one or more anode shielding plates arranged between the side portions and one or more edge shielding members which are insulating members surrounding the edge of the base material, and the anode shielding plates have front and back surfaces. It is an insulating plate in which a plurality of through holes are formed, and the plurality of holes are all the same size and are regularly arranged over the entire anode shielding plate. The fog amount is larger than the fog amount of the edge shielding member .
In the electrolytic plating apparatus of the second invention, in the first invention, the one or more anode shielding plates are formed by the anode having a set current density of 2 A / dm 2 or more among the plurality of anodes and the side portion of the base material. It is characterized by being arranged between them.
The method for manufacturing a metal-clad laminate according to the third invention is characterized in that a metal-plated coating film is formed on the surface of the base material using the electrolytic plating apparatus of the first or second invention to obtain a metal-clad laminate. And.

第1発明によれば、アノード遮蔽板に形成された複数の孔により、電流の遮蔽力を弱めることができる。そのため、金属めっき被膜の側部への電流の集中を抑制しつつ、側部の膜厚を適度に増大できる。その結果、金属めっき被膜の幅中央部と側部との膜厚を均一にでき、膜厚有効幅を拡大できる。また、アノード遮蔽板の電流の遮蔽力が位置に依存せず均一となるので、金属めっき被膜の側部の膜厚を均一に増大させやすい。さらに、エッジ遮蔽部材により金属めっき被膜の縁近傍の電流を遮蔽することで、金属めっき被膜の縁が極端に厚くなることを抑制できる。
第2発明によれば、金属めっき被膜の側部に電流が集中しやすい高電流密度領域にアノード遮蔽板を設けることで、金属めっき被膜の幅中央部と側部とで電流密度を均一にできる。
第3発明によれば、金属めっき被膜の膜厚有効幅が広い金属張積層板を得ることができる。
According to the first invention, the current shielding force can be weakened by the plurality of holes formed in the anode shielding plate. Therefore, the film thickness of the side portion can be appropriately increased while suppressing the concentration of the current on the side portion of the metal plating film. As a result, the film thickness between the central portion and the side portion of the width of the metal plating film can be made uniform, and the effective film thickness can be expanded. Further , since the current shielding force of the anode shielding plate becomes uniform regardless of the position, it is easy to increase the film thickness of the side portion of the metal plating film uniformly. Further, by shielding the current in the vicinity of the edge of the metal plating film by the edge shielding member, it is possible to prevent the edge of the metal plating film from becoming extremely thick.
According to the second invention, by providing the anode shielding plate in the high current density region where the current tends to concentrate on the side portion of the metal plating coating, the current density can be made uniform between the central portion and the side portion of the width of the metal plating coating. ..
According to the third invention, it is possible to obtain a metal-clad laminate having a wide effective film thickness of the metal plating film.

本発明の一実施形態に係る電解めっき装置の概略図である。It is a schematic diagram of the electrolytic plating apparatus which concerns on one Embodiment of this invention. 図1の電解めっき装置が有する電解めっきセルの斜視図である。It is a perspective view of the electrolytic plating cell which the electrolytic plating apparatus of FIG. 1 has. アノード遮蔽板の正面図である。It is a front view of the anode shielding plate. アノード遮蔽板およびエッジ遮蔽部材の横断面図である。It is a cross-sectional view of an anode shielding plate and an edge shielding member. 金属張積層板の断面図である。It is sectional drawing of the metal-clad laminated board. 実施例における銅厚の測定結果を示すグラフである。It is a graph which shows the measurement result of the copper thickness in an Example.

つぎに、本発明の実施形態を図面に基づき説明する。
(金属張積層板)
まず、金属張積層板Lの構成を説明する。
図5に示すように、金属張積層板Lは、基材Bと、基材Bの表面に形成された金属めっき被膜15とからなる。図5に示すように基材Bの片面のみに金属めっき被膜15が形成されてもよいし、基材Bの両面に金属めっき被膜15が形成されてもよい。
Next, an embodiment of the present invention will be described with reference to the drawings.
(Metal-clad laminate)
First, the configuration of the metal-clad laminate L will be described.
As shown in FIG. 5, the metal-clad laminate L is composed of a base material B and a metal-plated coating film 15 formed on the surface of the base material B. As shown in FIG. 5, the metal plating film 15 may be formed on only one side of the base material B, or the metal plating film 15 may be formed on both sides of the base material B.

金属めっき被膜15は電解めっきにより成膜される。したがって、基材Bは金属めっき被膜15が成膜される側の表面に導電性を有する素材であればよい。例えば、基材Bは絶縁性を有するベースフィルム11の表面に金属層12が形成されたものである。ベースフィルム11としてポリイミドフィルムなどの樹脂フィルムを用いることができる。金属層12は、例えば、スパッタリング法により形成される。金属層12は下地金属層13と金属薄膜層14とからなる。下地金属層13と金属薄膜層14とはベースフィルム11の表面にこの順に積層されている。金属層12と金属めっき被膜15とにより導体層が構成されている。 The metal plating film 15 is formed by electrolytic plating. Therefore, the base material B may be any material having conductivity on the surface on the side where the metal plating film 15 is formed. For example, the base material B has a metal layer 12 formed on the surface of an insulating base film 11. A resin film such as a polyimide film can be used as the base film 11. The metal layer 12 is formed by, for example, a sputtering method. The metal layer 12 is composed of a base metal layer 13 and a metal thin film layer 14. The base metal layer 13 and the metal thin film layer 14 are laminated in this order on the surface of the base film 11. The conductor layer is composed of the metal layer 12 and the metal plating film 15.

下地金属層13の厚さは、特に限定されないが、5~50nmが一般的である。金属薄膜層14の厚さは、特に限定されないが、50~1,000nmが一般的であり、生産性の観点からは50~500nmが好ましい。金属めっき被膜15の厚さは、特に限定されないが、サブトラクティブ法により配線パターンを形成してフレキシブルプリント配線板を製造する場合には5~20μmが一般的である。 The thickness of the base metal layer 13 is not particularly limited, but is generally 5 to 50 nm. The thickness of the metal thin film layer 14 is not particularly limited, but is generally 50 to 1,000 nm, preferably 50 to 500 nm from the viewpoint of productivity. The thickness of the metal plating film 15 is not particularly limited, but is generally 5 to 20 μm when a wiring pattern is formed by a subtractive method to manufacture a flexible printed wiring board.

金属張積層板Lとして、特に限定されないが、銅張積層板が挙げられる。銅張積層板の金属めっき被膜15は銅めっき被膜である。金属薄膜層14は銅薄膜層である。下地金属層13はニッケル、クロム、またはニッケルクロム合金からなることが一般的である。 The metal-clad laminate L is not particularly limited, and examples thereof include a copper-clad laminate. The metal plating film 15 of the copper-clad laminate is a copper plating film. The metal thin film layer 14 is a copper thin film layer. The base metal layer 13 is generally made of nickel, chromium, or a nickel-chromium alloy.

(電解めっき装置)
つぎに、本発明の一実施形態に係る電解めっき装置Aの基本的構成を説明する。
図1に示すように、電解めっき装置Aは、ロールツーロールにより長尺帯状の基材Bを搬送しつつ、基材Bに対して電解めっきを行ない、金属張積層板Lを製造する装置である。
(Electroplating equipment)
Next, the basic configuration of the electrolytic plating apparatus A according to the embodiment of the present invention will be described.
As shown in FIG. 1, the electrolytic plating apparatus A is an apparatus for manufacturing a metal-clad laminate L by performing electrolytic plating on the base material B while transporting a long strip-shaped base material B by roll-to-roll. be.

電解めっき装置Aは、ロール状に巻回された基材Bを繰り出す供給装置21と、基材Bにめっき処理が施された金属張積層板Lをロール状に巻き取る巻取装置22とを有する。基材Bの搬送経路にはめっき槽20が配置されている。基材Bはめっき槽20内を搬送されつつ、電解めっきによりその表面に金属めっき被膜15が成膜される。これにより、長尺帯状の金属張積層板Lが得られる。 The electrolytic plating device A includes a supply device 21 for feeding out a base material B wound in a roll shape, and a winding device 22 for winding up a metal-clad laminated plate L having a plating treatment on the base material B in a roll shape. Have. A plating tank 20 is arranged in the transport path of the base material B. While the base material B is conveyed in the plating tank 20, a metal plating film 15 is formed on the surface thereof by electrolytic plating. As a result, a long strip-shaped metal-clad laminate L can be obtained.

めっき槽20の内部にはめっき液が貯留されている。銅めっきを行なう場合、めっき液として銅めっき液が用いられる。銅めっき液は水溶性銅塩を含む。水溶性銅塩として、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、有機酸銅塩などが挙げられる。銅めっき液は硫酸を含んでもよい。めっき液は添加剤を含んでもよい。添加剤として、レベラー成分、ポリマー成分、ブライトナー成分、塩素成分などが挙げられる。 A plating solution is stored inside the plating tank 20. When performing copper plating, a copper plating solution is used as the plating solution. The copper plating solution contains a water-soluble copper salt. Examples of the water-soluble copper salt include an inorganic copper salt, an alkane sulfonic acid copper salt, an alkanol sulfonic acid copper salt, and an organic acid copper salt. The copper plating solution may contain sulfuric acid. The plating solution may contain additives. Examples of the additive include a leveler component, a polymer component, a Brightner component, a chlorine component and the like.

めっき液の温度は20~35℃が好ましい。また、めっき槽20内のめっき液を撹拌することが好ましい。めっき液を撹拌する手段は、特に限定されないが、噴流を利用した手段を用いることができる。例えば、ノズルから噴出させためっき液を基材Bに吹き付けることで、めっき液を撹拌できる。 The temperature of the plating solution is preferably 20 to 35 ° C. Further, it is preferable to stir the plating solution in the plating tank 20. The means for stirring the plating solution is not particularly limited, but a means using a jet can be used. For example, the plating solution can be agitated by spraying the plating solution ejected from the nozzle onto the base material B.

めっき槽20の液面より上方には複数の給電ロール23が並んで設けられている。また、めっき槽20内のめっき液中には複数の搬送ロール24が並んで設けられている。複数の給電ロール23と複数の搬送ロール24とはめっき槽20の長手方向に沿って互い違いに配置されている。基材Bは給電ロール23および搬送ロール24に交互に巻回され、それらの動作により搬送される。基材Bはめっき液中を上下に往復走行し、めっき液への浸漬と、引き上げとが繰り返される。 A plurality of power feeding rolls 23 are provided side by side above the liquid level of the plating tank 20. Further, a plurality of transport rolls 24 are provided side by side in the plating solution in the plating tank 20. The plurality of feeding rolls 23 and the plurality of transport rolls 24 are arranged alternately along the longitudinal direction of the plating tank 20. The base material B is alternately wound around the feeding roll 23 and the transport roll 24, and is transported by their operation. The base material B reciprocates up and down in the plating solution, and is repeatedly immersed in the plating solution and pulled up.

めっき槽20内のめっき液中には複数のアノード25が設けられている。各アノード25はめっき液中を上下に往復走行する基材Bに対向して配置されている。各アノード25は板状であり、基材Bと平行になるように鉛直方向に沿って設けられている。アノード25は基材Bの上向きおよび下向きの各走行区間に配置されている。各走行区間に1つのアノード25を配置してもよいし、各走行区間を上下に分割して2つのアノード25を配置してもよい。 A plurality of anodes 25 are provided in the plating solution in the plating tank 20. Each anode 25 is arranged to face the base material B that reciprocates up and down in the plating solution. Each anode 25 has a plate shape and is provided along the vertical direction so as to be parallel to the base material B. The anode 25 is arranged in each of the upward and downward traveling sections of the base material B. One anode 25 may be arranged in each traveling section, or each traveling section may be divided into upper and lower parts and two anodes 25 may be arranged.

アノード25として不溶性アノードが用いられる。不溶性アノードとして、白金、鉛などの金属アノード、チタン製フレームに酸化イリジウム、酸化ロジウム、酸化ルテニウムなどの導電性を有するセラミックスをコーティングしたセラミックス系アノードが挙げられる。 An insoluble anode is used as the anode 25. Examples of the insoluble anode include metal anodes such as platinum and lead, and ceramic anodes in which a titanium frame is coated with conductive ceramics such as iridium oxide, rhodium oxide and ruthenium oxide.

各給電ロール23は基材Bの金属層12側の面に接触しており、金属層12に給電可能となっている。また、各アノード25は基材Bの金属層12側の面に対向して配置されている。複数のアノード25はそれぞれ電気的に独立した複数の制御用電源の正極に接続されている。各制御用電源の負極は対応するアノード25の直近に配置された給電ロール23に接続されている。一の給電ロール23と、一のアノード25と、これらに接続する制御用電源と、基材Bとで一の電解めっきセルが構成されている。 Each feeding roll 23 is in contact with the surface of the base material B on the metal layer 12 side, and can feed the metal layer 12. Further, each anode 25 is arranged so as to face the surface of the base material B on the metal layer 12 side. The plurality of anodes 25 are connected to the positive electrodes of a plurality of electrically independent control power supplies. The negative electrode of each control power supply is connected to a feeding roll 23 located in the immediate vicinity of the corresponding anode 25. One feeding roll 23, one anode 25, a control power source connected to these, and a base material B constitute one electrolytic plating cell.

各電解めっきセルにおいて、アノード25と基材Bの金属層12との間に電位差が生じ、金属層12上に金属めっき被膜15が成膜される。各アノード25の電流密度は、特に限定されないが、基材Bの搬送方向の上流側から下流側に向かって段階的に上昇するように設定されることが一般的である。各アノード25の電流密度の設定は、金属めっき被膜15の膜厚などを考慮して適宜定められる。 In each electrolytic plating cell, a potential difference is generated between the anode 25 and the metal layer 12 of the base material B, and the metal plating film 15 is formed on the metal layer 12. The current density of each anode 25 is not particularly limited, but is generally set so as to gradually increase from the upstream side to the downstream side in the transport direction of the base material B. The setting of the current density of each anode 25 is appropriately determined in consideration of the film thickness of the metal plating film 15.

電解めっき装置Aには、基材Bの張力制御を行なう張力制御ロールなどの搬送用装置のほか、めっき液の供給装置などの各種装置も必要に応じて設けられる。また、図1の電解めっき装置Aは給電ロール23を5つ、アノード25を8つ備える構成であるが、給電ロール23およびアノード25の数は、これより多くてもよいし、少なくてもよい。 The electrolytic plating device A is provided with various devices such as a plating solution supply device as well as a transfer device such as a tension control roll that controls the tension of the base material B as needed. Further, the electrolytic plating apparatus A in FIG. 1 is configured to include five feeding rolls 23 and eight anodes 25, but the number of feeding rolls 23 and anodes 25 may be larger or smaller. ..

(アノード遮蔽板)
図2に示すように、基材Bの主面内において基材Bの搬送方向CDと直交する方向を幅方向WDと称する。また、基材Bの搬送方向CDに沿う縁EGを含み、幅方向WDに所定の幅を有する部分を側部SPと称する。
(Anode shield)
As shown in FIG. 2, the direction orthogonal to the transport direction CD of the base material B in the main surface of the base material B is referred to as a width direction WD. Further, a portion including the edge EG along the transport direction CD of the base material B and having a predetermined width in the width direction WD is referred to as a side portion SP.

電解めっき装置Aはアノード遮蔽板30を備えている。アノード遮蔽板30は基材Bの両方の側部SPとアノード25との間に配置されている。アノード遮蔽板30は絶縁性の板である。アノード遮蔽板30の素材は、特に限定されないが、絶縁性を有しめっき液に浸食されにくい樹脂、セラミックスなどである。 The electrolytic plating apparatus A includes an anode shielding plate 30. The anode shielding plate 30 is arranged between both side SPs of the substrate B and the anode 25. The anode shielding plate 30 is an insulating plate. The material of the anode shielding plate 30 is not particularly limited, but is a resin, ceramics, or the like which has insulating properties and is not easily eroded by the plating solution.

アノード遮蔽板30は基材Bの搬送方向CDに長い略長方形の板である。なお、アノード遮蔽板30を電解めっき装置Aに取り付けるために、または取り付け時の他の部材との干渉を避けるために、略長方形のアノード遮蔽板30に突起、切り欠きなどを設けてもよい。 The anode shielding plate 30 is a substantially rectangular plate long in the transport direction CD of the base material B. In order to attach the anode shielding plate 30 to the electrolytic plating apparatus A, or to avoid interference with other members at the time of attachment, the anode shielding plate 30 having a substantially rectangular shape may be provided with protrusions, notches, or the like.

図3に示すように、アノード遮蔽板30にはその表裏を貫通する複数の孔31が形成されている。孔31の形状は、円形でもよいし、四角形など他の形状でもよい。一のアノード遮蔽板30に異なる形状の孔31が混在してもよい。複数の孔31はそれぞれ、同一寸法であってもよいし、異なる寸法であってもよい。複数の孔31はアノード遮蔽板30の全体に渡って配置されてもよいし、アノード遮蔽板30の一部に偏って配置されてもよい。複数の孔31は、格子状、千鳥状など規則的に配置されてもよいし、不規則に配置されてもよい。 As shown in FIG. 3, the anode shielding plate 30 is formed with a plurality of holes 31 penetrating the front and back surfaces thereof. The shape of the hole 31 may be circular or may be another shape such as a quadrangle. Holes 31 having different shapes may be mixed in one anode shielding plate 30. The plurality of holes 31 may have the same dimensions or may have different dimensions. The plurality of holes 31 may be arranged over the entire anode shielding plate 30, or may be arranged unevenly on a part of the anode shielding plate 30. The plurality of holes 31 may be arranged regularly such as in a grid pattern or in a staggered pattern, or may be arranged irregularly.

図4に示すように、基材Bの金属層12はベースフィルム11の縁EG近傍を除く大部分に形成されることが一般的である。基材Bの表面のうち金属層12が形成された領域がめっき面となる。アノード遮蔽板30は基材Bのめっき面の側部と重なるように配置される。 As shown in FIG. 4, the metal layer 12 of the base film B is generally formed in most of the base film 11 except the vicinity of the edge EG. The region on the surface of the base material B on which the metal layer 12 is formed becomes the plating surface. The anode shielding plate 30 is arranged so as to overlap the side portion of the plating surface of the base material B.

前述のごとく、電解めっきではめっき面の端に電流が集中しやすい。そのため、金属めっき被膜15は幅方向WDの中央部に比べて側部が厚くなりやすい。これに対して、アノード25と基材Bとの間にアノード遮蔽板30を配置すると、めっき面のうちアノード遮蔽板30と重なる部分は電流が遮蔽される。基材Bのめっき面のうち電流が集中しやすい側部における電流密度の増加が抑制されることから、めっき面の全体に渡って電流密度を均一にできる。 As mentioned above, in electrolytic plating, current tends to concentrate on the edge of the plating surface. Therefore, the metal plating film 15 tends to have a thicker side portion than the central portion in the width direction WD. On the other hand, when the anode shielding plate 30 is arranged between the anode 25 and the base material B, the current is shielded from the portion of the plating surface that overlaps with the anode shielding plate 30. Since the increase in the current density is suppressed on the side portion of the plating surface of the base material B where the current tends to concentrate, the current density can be made uniform over the entire plating surface.

ここで、アノード遮蔽板30には複数の孔31が形成されている。この孔31から電流が漏洩する。したがって、孔31を有さない場合に比べてアノード遮蔽板30の電流の遮蔽力を弱めることができる。すなわち、本実施形態のアノード遮蔽板30は電流を完全に遮蔽するのではなく、電流を適度に遮蔽する。そのため、金属めっき被膜15の側部への電流の集中を抑制しつつ、その側部の膜厚を適度に増大できる。これにより、金属めっき被膜15の幅中央部と側部との膜厚を均一にできる。その結果、金属めっき被膜15の厚さが規格値を満たす膜厚有効幅を拡大できる。 Here, a plurality of holes 31 are formed in the anode shielding plate 30. Current leaks from this hole 31. Therefore, the current shielding force of the anode shielding plate 30 can be weakened as compared with the case where the hole 31 is not provided. That is, the anode shielding plate 30 of the present embodiment does not completely shield the current, but appropriately shields the current. Therefore, the film thickness of the side portion of the metal plating film 15 can be appropriately increased while suppressing the concentration of the current on the side portion. As a result, the film thickness of the central portion and the side portion of the width of the metal plating film 15 can be made uniform. As a result, the effective film thickness width in which the thickness of the metal plating film 15 satisfies the standard value can be expanded.

アノード遮蔽板30の電流の遮蔽力は開孔率で調整できる。ここで、開孔率とはアノード遮蔽板30の主面の面積に対する孔31の総面積の割合を意味する。開孔率を高くするほど電流の遮蔽力を弱めることができる。開孔率を低くするほど電流の遮蔽力を強めることができる。 The current shielding force of the anode shielding plate 30 can be adjusted by the opening ratio. Here, the hole opening ratio means the ratio of the total area of the holes 31 to the area of the main surface of the anode shielding plate 30. The higher the opening rate, the weaker the current shielding force. The lower the opening rate, the stronger the current shielding force.

前述のごとく、孔31の寸法および配置は特に限定されない。ただし、アノード遮蔽板30に形成された複数の孔31を、いずれも同一寸法とし、アノード遮蔽板30の全体に渡って規則的に配置することが好ましい。そうすれば、アノード遮蔽板30の電流の遮蔽力が位置に依存せず均一となる。そのため、アノード遮蔽板30と重なる金属めっき被膜15の側部の膜厚を均一に増大させやすい。 As described above, the dimensions and arrangement of the holes 31 are not particularly limited. However, it is preferable that the plurality of holes 31 formed in the anode shielding plate 30 have the same dimensions and are regularly arranged over the entire anode shielding plate 30. Then, the current shielding force of the anode shielding plate 30 becomes uniform regardless of the position. Therefore, it is easy to uniformly increase the film thickness of the side portion of the metal plating film 15 that overlaps with the anode shielding plate 30.

基材Bのめっき面とアノード遮蔽板30とが重なる領域の幅寸法をかぶり量D1と称する。かぶり量D1は設定電流密度、金属めっき被膜15の厚さなどの条件に基づいて、めっき面の全体に渡って電流密度が均一になるように調整される。また、かぶり量D1を電解めっきセルごとに、設定電流密度などの条件に基づいて、個別に設定してもよい。例えば、設定電流密度が高い電解めっきセルではかぶり量D1を大きくし、設定電流密度が低い電解めっきセルではかぶり量D1を小さくしてもよい。かぶり量D1は、特に限定されないが、例えば、30~70mmに設定される。 The width dimension of the region where the plated surface of the base material B and the anode shielding plate 30 overlap is referred to as a cover amount D1. The fog amount D1 is adjusted so that the current density becomes uniform over the entire plated surface based on conditions such as the set current density and the thickness of the metal plating film 15. Further, the fog amount D1 may be individually set for each electrolytic plating cell based on conditions such as a set current density. For example, the fog amount D1 may be increased in the electroplating cell having a high set current density, and the fog amount D1 may be decreased in the electroplating cell having a low set current density. The fog amount D1 is not particularly limited, but is set to, for example, 30 to 70 mm.

図2に示すように、アノード遮蔽板30はアノード25の上端から下端まで全体に渡って設けられてもよいし、アノード25の上部、中央部、下部など、一部のみに設けられてもよい。アノード25が上下に2つ配置された構成の場合、両方のアノード25にアノード遮蔽板30を設けてもよいし、一方のアノード25のみにアノード遮蔽板30を設けてもよい。 As shown in FIG. 2, the anode shielding plate 30 may be provided over the entire area from the upper end to the lower end of the anode 25, or may be provided only in a part such as the upper part, the central part, and the lower part of the anode 25. .. In the case where two anodes 25 are arranged one above the other, the anode shielding plate 30 may be provided on both anodes 25, or the anode shielding plate 30 may be provided only on one anode 25.

ただし、一般に、一のアノード25においてもめっき液の液面に近い方が、電流密度が高くなる。これは、めっき液の液面より上方に配置された給電ロール23から基材Bのめっき面への給電が行なわれるためである。そのため、アノード遮蔽板30はアノード25の上部に設けることが好ましい。また、アノード25が上下に2つ配置された構成の場合、上側のアノード25のみにアノード遮蔽板30を設けることが好ましい。電流密度が高い方が電流の集中が起こりやすい。電流密度が高くなる位置にアノード遮蔽板30を設けることで、電流の集中を緩和する効果が高くなる。 However, in general, the current density of one anode 25 is higher as it is closer to the liquid level of the plating solution. This is because power is supplied to the plating surface of the base material B from the power supply roll 23 arranged above the liquid surface of the plating solution. Therefore, it is preferable that the anode shielding plate 30 is provided above the anode 25. Further, in the case of a configuration in which two anodes 25 are arranged one above the other, it is preferable to provide the anode shielding plate 30 only on the upper anode 25. The higher the current density, the more likely it is that current concentration will occur. By providing the anode shielding plate 30 at a position where the current density is high, the effect of alleviating the concentration of the current is enhanced.

電解めっき装置Aが有するアノード遮蔽板30の数は1つでもよいし、複数でもよい。ただし、通常、電解めっき装置Aは複数のアノード遮蔽板30を有する。電解めっき装置Aが有する複数のアノード25のうちの一部にアノード遮蔽板30を配置してもよいし、全部にアノード遮蔽板30を配置してもよい。 The number of the anode shielding plates 30 included in the electrolytic plating apparatus A may be one or a plurality. However, usually, the electrolytic plating apparatus A has a plurality of anode shielding plates 30. The anode shielding plate 30 may be arranged on a part of the plurality of anodes 25 included in the electrolytic plating apparatus A, or the anode shielding plate 30 may be arranged on all of them.

電解めっき装置Aが有する複数のアノード25のうち、設定電流密度が比較的高い、例えば設定電流密度が2A/dm2以上のアノード25のみに、アノード遮蔽板30を配置してもよい。金属めっき被膜15の側部に電流が集中しやすい高電流密度領域にアノード遮蔽板30を設けることで、電流の集中を緩和し、金属めっき被膜15の幅中央部と側部とで電流密度を均一にできる。 Of the plurality of anodes 25 included in the electrolytic plating apparatus A, the anode shielding plate 30 may be arranged only on the anode 25 having a relatively high set current density, for example, a set current density of 2 A / dm 2 or more. By providing the anode shielding plate 30 in the high current density region where the current tends to concentrate on the side portion of the metal plating coating 15, the concentration of the current is alleviated, and the current density is increased between the central portion and the side portion of the width of the metal plating coating 15. Can be made uniform.

一の電解めっき装置Aにおいて、孔31を有するアノード遮蔽板30と孔31を有さないアノード遮蔽板とを組み合わせて用いてもよい。すなわち、ある電解めっきセルには孔31を有するアノード遮蔽板30を設け、他の電解めっきセルには孔31を有さないアノード遮蔽板を設けてもよい。 In one electrolytic plating apparatus A, an anode shielding plate 30 having a hole 31 and an anode shielding plate having no hole 31 may be used in combination. That is, one electrolytic plating cell may be provided with an anode shielding plate 30 having a hole 31, and another electrolytic plating cell may be provided with an anode shielding plate having no hole 31.

(エッジ遮蔽部材)
図2に示すように、電解めっき装置Aは基材Bの縁EGを囲うエッジ遮蔽部材40を備えてもよい。エッジ遮蔽部材40は絶縁性の部材である。エッジ遮蔽部材40の素材は、特に限定されないが、絶縁性を有しめっき液に浸食されにくい樹脂、セラミックスなどである。
(Edge shielding member)
As shown in FIG. 2, the electroplating apparatus A may include an edge shielding member 40 that surrounds the edge EG of the base material B. The edge shielding member 40 is an insulating member. The material of the edge shielding member 40 is not particularly limited, but is a resin, ceramics, or the like which has insulating properties and is not easily eroded by the plating solution.

エッジ遮蔽部材40は基材Bの搬送方向CDに長い長尺の部材である。エッジ遮蔽部材40は基材Bが鉛直方向に走行する区間の全体に渡って設けられてもよいし、その区間の一部のみに設けられてもよい。ただし、電流密度が高くなるめっき液の液面に近い部分にエッジ遮蔽部材40を設けることが好ましい。 The edge shielding member 40 is a long member that is long in the transport direction CD of the base material B. The edge shielding member 40 may be provided over the entire section in which the base material B runs in the vertical direction, or may be provided only in a part of the section. However, it is preferable to provide the edge shielding member 40 in a portion close to the liquid surface of the plating solution having a high current density.

図4に示すように、エッジ遮蔽部材40は、一対の側板41、41とそれら側板41、41の一方の端部同士を接続する端板42とからなる横断面が略U字形の部材である。一対の側板41、41と端板42とで形成された空間内に基材Bの縁EGが挿入されている。エッジ遮蔽部材40の少なくとも一方の側板41は基材Bのめっき面の縁と重なっている。 As shown in FIG. 4, the edge shielding member 40 is a member having a substantially U-shaped cross section including a pair of side plates 41, 41 and an end plate 42 connecting one end of the side plates 41, 41 to each other. .. The edge EG of the base material B is inserted into the space formed by the pair of side plates 41, 41 and the end plate 42. At least one side plate 41 of the edge shielding member 40 overlaps with the edge of the plated surface of the base material B.

エッジ遮蔽部材40により金属めっき被膜15の縁近傍に回り込む電流が遮蔽される。金属めっき被膜15の縁への電流の集中を抑制できることから、金属めっき被膜15の縁が極端に厚くなることを抑制できる。 The edge shielding member 40 shields the current that wraps around the edge of the metal plating film 15. Since the concentration of the current on the edge of the metal plating film 15 can be suppressed, it is possible to suppress the edge of the metal plating film 15 from becoming extremely thick.

基材Bのめっき面と側板41とが重なる領域の幅寸法をかぶり量D2と称する。かぶり量D2は電解めっき装置Aの特性に応じて調整される。かぶり量D2は、特に限定されないが、例えば、5~30mmに設定される。 The width dimension of the region where the plated surface of the base material B and the side plate 41 overlap is referred to as a cover amount D2. The fog amount D2 is adjusted according to the characteristics of the electrolytic plating apparatus A. The fog amount D2 is not particularly limited, but is set to, for example, 5 to 30 mm.

電流の回り込み抑制するために、側板41と基材Bとの間隔は可能な限り狭い方が好ましい。ただし、搬送される基材Bがエッジ遮蔽部材40に干渉することは避ける必要がある。そこで、側板41と基材Bとの間隔は、例えば、3~30mmに設定される。 In order to suppress the wraparound of the current, it is preferable that the distance between the side plate 41 and the base material B is as narrow as possible. However, it is necessary to prevent the conveyed base material B from interfering with the edge shielding member 40. Therefore, the distance between the side plate 41 and the base material B is set to, for example, 3 to 30 mm.

電解めっき装置Aが有するエッジ遮蔽部材40の数は1つでもよいし、複数でもよい。ただし、通常、電解めっき装置Aは複数のエッジ遮蔽部材40を有する。電解めっき装置Aが有する複数のアノード25のうちの一部にエッジ遮蔽部材40を配置してもよいし、全部にエッジ遮蔽部材40を配置してもよい。 The number of edge shielding members 40 included in the electrolytic plating apparatus A may be one or a plurality. However, usually, the electrolytic plating apparatus A has a plurality of edge shielding members 40. The edge shielding member 40 may be arranged in a part of the plurality of anodes 25 included in the electrolytic plating apparatus A, or the edge shielding member 40 may be arranged in all of them.

一のアノード25に対してアノード遮蔽板30およびエッジ遮蔽部材40の両方を設けてもよいし、一方のみを設けてもよい。一のアノード25に対してアノード遮蔽板30およびエッジ遮蔽部材40の両方を設ける場合、アノード遮蔽板30のかぶり量D1をエッジ遮蔽部材40のかぶり量D2より大きくすることが好ましい。そうすれば、金属めっき被膜15の側部の膜厚を増大する効果が得られやすい。 Both the anode shielding plate 30 and the edge shielding member 40 may be provided for one anode 25, or only one of them may be provided. When both the anode shielding plate 30 and the edge shielding member 40 are provided for one anode 25, it is preferable that the covering amount D1 of the anode shielding plate 30 is larger than the covering amount D2 of the edge shielding member 40. Then, the effect of increasing the film thickness of the side portion of the metal plating film 15 can be easily obtained.

(金属張積層板の製造方法)
つぎに、電解めっき装置Aを用いた金属張積層板Lの製造方法を説明する。
図1に示すように、供給装置21から繰り出された基材Bはめっき槽20に供給される。めっき槽20において基材Bは給電ロール23および搬送ロール24の動作により搬送される。基材Bはめっき液中を上下に往復走行し、めっき液への浸漬と、引き上げとが繰り返される。
(Manufacturing method of metal-clad laminate)
Next, a method of manufacturing the metal-clad laminate L using the electrolytic plating apparatus A will be described.
As shown in FIG. 1, the base material B fed out from the supply device 21 is supplied to the plating tank 20. In the plating tank 20, the base material B is conveyed by the operation of the feeding roll 23 and the conveying roll 24. The base material B reciprocates up and down in the plating solution, and is repeatedly immersed in the plating solution and pulled up.

基材Bがめっき液中を搬送される過程において、基材Bの金属層12とアノード25との間に電流が流れて、電解めっきが行なわれる。電解めっきにより基材Bの表面に金属めっき被膜15が成膜され、金属張積層板Lが得られる。金属張積層板Lは巻取装置22によりロール状に巻き取られる In the process of transporting the base material B in the plating solution, a current flows between the metal layer 12 of the base material B and the anode 25, and electrolytic plating is performed. A metal plating film 15 is formed on the surface of the base material B by electrolytic plating, and a metal-clad laminate L is obtained. The metal-clad laminate L is wound into a roll by the winding device 22.

ここで、電解めっき装置Aが有する複数のアノード25のうち一部または全部にはアノード遮蔽板30が設けられている。アノード遮蔽板30により金属めっき被膜15の側部への電流の集中を抑制しつつ、その側部の膜厚を適度に増大できる。これにより、金属めっき被膜15の幅中央部と側部との膜厚を均一にできる。その結果、金属めっき被膜15の膜厚有効幅が広い金属張積層板Lを得ることができる。 Here, the anode shielding plate 30 is provided on a part or all of the plurality of anodes 25 included in the electrolytic plating apparatus A. The anode shielding plate 30 can suppress the concentration of current on the side portion of the metal plating film 15, and can appropriately increase the film thickness on the side portion. As a result, the film thickness of the central portion and the side portion of the width of the metal plating film 15 can be made uniform. As a result, it is possible to obtain a metal-clad laminate L having a wide effective film thickness of the metal plating film 15.

つぎに、実施例を説明する。
(実施例1)
電解めっき装置を用いて基材に銅めっきを行ない、銅張積層板を製造した。使用した基材のベースフィルムの幅は524mmである。また、ベースフィルムの表面に形成された金属層の幅は514mmである。ベースフィルム両縁の金属層が形成されていない非めっき面の幅は、左右それぞれ5mmである。
Next, an embodiment will be described.
(Example 1)
The base material was copper-plated using an electrolytic plating apparatus to manufacture a copper-clad laminate. The width of the base film of the base film used is 524 mm. The width of the metal layer formed on the surface of the base film is 514 mm. The width of the non-plated surface on which the metal layers on both edges of the base film are not formed is 5 mm on each side.

アノードと基材の側部との間にアノード遮蔽板を配置した。アノード遮蔽板にはその全体に渡って直径3mmの丸孔が6mm間隔で格子状に配置されている。アノード遮蔽板の開孔率は19.6%である。アノード遮蔽板のかぶり量を65mmに設定した。また、エッジ遮蔽部材を設けた。基材の右側に配置されたエッジ遮蔽部材のかぶり量を12.5mmに設定した。基材の左側に配置されたエッジ遮蔽部材のかぶり量を10.7mmに設定した。 An anode shielding plate was placed between the anode and the side of the substrate. Round holes having a diameter of 3 mm are arranged in a grid pattern at intervals of 6 mm over the entire anode shielding plate. The opening rate of the anode shielding plate is 19.6%. The amount of fog on the anode shielding plate was set to 65 mm. In addition, an edge shielding member is provided. The cover amount of the edge shielding member arranged on the right side of the base material was set to 12.5 mm. The fog amount of the edge shielding member arranged on the left side of the base material was set to 10.7 mm.

上記の条件で製造された銅張積層板について、幅方向の位置に対する銅めっき被膜の厚さ(以下、「銅厚」と称する。)を測定した。銅厚は蛍光X線膜厚計(エスアイアイ・ナノテクノロジー株式会社製、形式SFT9250)を用いて測定した。コリメータを直径0.5mmに設定し、測定点ごとの測定時間を30秒/点とした。銅張積層板の幅方向中心を原点、銅張積層板の右側をマイナス、左側をプラスとし、以下のように測定点を領域ごとの間隔として設定した。
-261~-230mm:1mm間隔
-230~-220mm:5mm間隔
-220~-200mm:10mm間隔
-200~ 0mm:20mm間隔
0~+200mm:20mm間隔
+200~+220mm:10mm間隔
+220~+230mm:5mm間隔
+230~+261mm:1mm間隔
With respect to the copper-clad laminate manufactured under the above conditions, the thickness of the copper plating film with respect to the position in the width direction (hereinafter referred to as "copper thickness") was measured. The copper thickness was measured using a fluorescent X-ray film thickness meter (manufactured by SII Nanotechnology Co., Ltd., type SFT9250). The collimator was set to a diameter of 0.5 mm, and the measurement time for each measurement point was set to 30 seconds / point. The center of the copper-clad laminate in the width direction was set as the origin, the right side of the copper-clad laminate was set as minus, and the left side was set as plus, and the measurement points were set as the intervals for each region as shown below.
-261 to -230 mm: 1 mm interval -230 to -220 mm: 5 mm interval -220 to -200 mm: 10 mm interval -200 to 0 mm: 20 mm interval 0 to +200 mm: 20 mm interval +200 to +220 mm: 10 mm interval +220 to +230 mm: 5 mm interval +230 ~ + 261mm: 1mm interval

銅厚の結果を、図6のグラフに示す。図6のグラフの横軸は銅張積層板の幅方向の位置を示す。横軸は、銅張積層板の幅方向中心を原点とし、銅張積層板の右側をマイナス、左側をプラスとしたものである。図6のグラフの縦軸は銅厚を示す。 The results of copper thickness are shown in the graph of FIG. The horizontal axis of the graph of FIG. 6 indicates the position of the copper-clad laminate in the width direction. The horizontal axis has the center in the width direction of the copper-clad laminate as the origin, the right side of the copper-clad laminate as minus, and the left side as plus. The vertical axis of the graph of FIG. 6 shows the copper thickness.

(比較例1)
実施例1で用いたアノード遮蔽板の全てを、孔を有さないものに交換した。その余の条件は実施例1と同様である。製造された銅張積層板について、幅方向の位置に対する銅厚を測定した。その結果を、図6のグラフに示す。
(Comparative Example 1)
All of the anode shielding plates used in Example 1 were replaced with those having no holes. The other conditions are the same as in Example 1. The copper thickness of the manufactured copper-clad laminate was measured with respect to the position in the width direction. The results are shown in the graph of FIG.

図6のグラフより、アノード遮蔽板とめっき面とが重なる領域、すなわち-192~-257mmの領域および+192~+257mmの領域における銅厚は、比較例1に比べて実施例1の方が全体的に厚いことが分かる。これより、アノード遮蔽板に孔を形成することで、銅めっき被膜の側部の膜厚を増大できることが確認された。 From the graph of FIG. 6, the copper thickness in the region where the anode shielding plate and the plated surface overlap, that is, the region of -192 to -257 mm and the region of +192 to +257 mm is overall in Example 1 as compared with Comparative Example 1. You can see that it is thick. From this, it was confirmed that the film thickness of the side portion of the copper plating film can be increased by forming holes in the anode shielding plate.

また、-230~-240mmの領域における銅厚の平均値は、比較例1が8.32μmであるのに対して、実施例1が8.42μmであり、0.10μm増大されている。+230~+240mmの領域における銅厚の平均値は、比較例1が8.49μmであるのに対して、実施例1が8.77μmであり、0.28μm増大されている。 Further, the average value of the copper thickness in the region of −230 to −240 mm is 8.32 μm in Comparative Example 1 and 8.42 μm in Example 1, which is an increase of 0.10 μm. The average value of the copper thickness in the region of +230 to +240 mm is 8.49 μm in Comparative Example 1 and 8.77 μm in Example 1, which is an increase of 0.28 μm.

このように、銅めっき被膜の側部の銅厚を増大できることから、膜厚有効幅を拡大できることが確認された。例えば、-230~+230mmであった膜厚有効幅を-240~+240mmに20mm拡大できる。 In this way, it was confirmed that the effective width of the film thickness can be expanded because the copper thickness on the side of the copper plating film can be increased. For example, the effective film thickness width of −230 to +230 mm can be expanded by 20 mm to −240 to +240 mm.

A 電解めっき装置
20 めっき槽
21 供給装置
22 巻取装置
23 給電ロール
24 搬送ロール
25 アノード
30 アノード遮蔽板
31 孔
40 エッジ遮蔽部材
A Electrolytic plating equipment 20 Plating tank 21 Supply equipment 22 Winding equipment 23 Feeding roll 24 Conveying roll 25 Anode 30 Anode shielding plate 31 Hole 40 Edge shielding member

Claims (3)

ロールツーロールにより搬送される長尺帯状の基材に対向して配置された複数のアノードと、
前記複数のアノードのうちの一部または全部と前記基材の側部との間に配置された一または複数のアノード遮蔽板と、
前記基材の縁を囲う絶縁性の部材である一または複数のエッジ遮蔽部材と、を備え、
前記アノード遮蔽板は表裏を貫通する複数の孔が形成された絶縁性の板であり、
前記複数の孔はいずれも同一寸法であり、前記アノード遮蔽板の全体に渡って規則的に配置されており、
前記アノード遮蔽板のかぶり量は前記エッジ遮蔽部材のかぶり量より大きい
ことを特徴とする電解めっき装置。
With multiple anodes placed facing the long strip of substrate transported by roll-to-roll,
A plurality of anode shielding plates arranged between a part or all of the plurality of anodes and a side portion of the substrate, and a plurality of anode shield plates.
It comprises one or more edge shielding members, which are insulating members surrounding the edges of the substrate .
The anode shielding plate is an insulating plate having a plurality of holes penetrating the front and back surfaces .
The plurality of holes are all the same size and are regularly arranged throughout the anode shielding plate.
The fog amount of the anode shielding plate is larger than the fog amount of the edge shielding member.
Electroplating equipment characterized by this.
前記一または複数のアノード遮蔽板は、前記複数のアノードのうち設定電流密度が2A/dm2以上のアノードと前記基材の側部との間に配置されている
ことを特徴とする請求項記載の電解めっき装置。
Claim 1 is characterized in that the one or more anode shielding plates are arranged between an anode having a set current density of 2 A / dm 2 or more among the plurality of anodes and a side portion of the base material. The electrolytic plating apparatus described.
請求項1または2記載の電解めっき装置を用いて、前記基材の表面に金属めっき被膜を成膜して金属張積層板を得る
ことを特徴とする金属張積層板の製造方法。
A method for manufacturing a metal-clad laminate, which comprises forming a metal-plated coating film on the surface of the base material to obtain a metal-clad laminate by using the electrolytic plating apparatus according to claim 1 or 2 .
JP2018079092A 2018-04-17 2018-04-17 Electroplating equipment and method for manufacturing metal-clad laminates Active JP7070012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018079092A JP7070012B2 (en) 2018-04-17 2018-04-17 Electroplating equipment and method for manufacturing metal-clad laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018079092A JP7070012B2 (en) 2018-04-17 2018-04-17 Electroplating equipment and method for manufacturing metal-clad laminates

Publications (2)

Publication Number Publication Date
JP2019183249A JP2019183249A (en) 2019-10-24
JP7070012B2 true JP7070012B2 (en) 2022-05-18

Family

ID=68339953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079092A Active JP7070012B2 (en) 2018-04-17 2018-04-17 Electroplating equipment and method for manufacturing metal-clad laminates

Country Status (1)

Country Link
JP (1) JP7070012B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763963B (en) * 2020-06-19 2021-01-19 广东嘉元科技股份有限公司 Copper foil thickness uniformity treatment method and copper foil surface treatment method
JP2022105808A (en) * 2021-01-05 2022-07-15 住友金属鉱山株式会社 Copper clad laminate
CN116516445A (en) * 2022-11-28 2023-08-01 粤海中粤(中山)马口铁工业有限公司 Edge shielding device and method for soluble anode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054000A (en) 2000-08-02 2002-02-19 Nitto Denko Corp Electroplating method for substrate
JP2006144120A (en) 2004-10-19 2006-06-08 Bridgestone Corp Method for producing electromagnetic wave shielding light transmission window material and plating apparatus used for the method
JP2008266670A (en) 2007-04-16 2008-11-06 Sumitomo Electric Ind Ltd Electroplating apparatus
JP2010138483A (en) 2008-12-15 2010-06-24 Samsung Electro-Mechanics Co Ltd Shielding plate and electroplating device
JP2010236037A (en) 2009-03-31 2010-10-21 Hitachi Cable Ltd Plating method of copper foil and plating apparatus therefor
JP2011058057A (en) 2009-09-10 2011-03-24 Sumitomo Metal Mining Co Ltd Method of manufacturing copper coating polyimide substrate and electroplating apparatus
JP2015155563A (en) 2014-02-20 2015-08-27 住友金属鉱山株式会社 Apparatus and method for continuous electrolytic plating, metalized resin film and production method of the film
JP2017222907A (en) 2016-06-15 2017-12-21 住友金属鉱山株式会社 Plating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106992A (en) * 1997-09-30 1999-04-20 Kawasaki Steel Corp Method for controlling edge mask position of electroplating

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054000A (en) 2000-08-02 2002-02-19 Nitto Denko Corp Electroplating method for substrate
JP2006144120A (en) 2004-10-19 2006-06-08 Bridgestone Corp Method for producing electromagnetic wave shielding light transmission window material and plating apparatus used for the method
JP2008266670A (en) 2007-04-16 2008-11-06 Sumitomo Electric Ind Ltd Electroplating apparatus
JP2010138483A (en) 2008-12-15 2010-06-24 Samsung Electro-Mechanics Co Ltd Shielding plate and electroplating device
JP2010236037A (en) 2009-03-31 2010-10-21 Hitachi Cable Ltd Plating method of copper foil and plating apparatus therefor
JP2011058057A (en) 2009-09-10 2011-03-24 Sumitomo Metal Mining Co Ltd Method of manufacturing copper coating polyimide substrate and electroplating apparatus
JP2015155563A (en) 2014-02-20 2015-08-27 住友金属鉱山株式会社 Apparatus and method for continuous electrolytic plating, metalized resin film and production method of the film
JP2017222907A (en) 2016-06-15 2017-12-21 住友金属鉱山株式会社 Plating device

Also Published As

Publication number Publication date
JP2019183249A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP7070012B2 (en) Electroplating equipment and method for manufacturing metal-clad laminates
US9708724B2 (en) Anode unit and plating apparatus having such anode unit
JP5652587B2 (en) Method for producing copper-coated polyimide substrate and electroplating apparatus
JP7107190B2 (en) Method for manufacturing copper-clad laminate
JP2012057191A (en) Method for electroplating long conductive substrate, method for manufacturing copper-coated long conductive substrate using the method and roll-to-roll type electroplating apparatus
TWI513859B (en) Electroplating apparatus for manufacturing flexible printed circuit board
JP5212225B2 (en) Copper foil plating method and plating apparatus therefor
JP6221817B2 (en) Continuous electrolytic plating apparatus and method, metallized resin film and method for producing the same
WO2020071321A1 (en) Plating device
JP7107189B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP5751530B2 (en) Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
JP5858286B2 (en) Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
JP6367664B2 (en) Partial plating method and apparatus
JP6646331B2 (en) Partial plating method and apparatus therefor
JP6403097B2 (en) Insoluble anode, plating apparatus, electroplating method, and copper clad laminate manufacturing method
JPH0722473A (en) Continuous plating method
JP2017222907A (en) Plating device
KR101630980B1 (en) Apparatus for continuous electroforming
JP2002371399A (en) Plating method and plating apparatus therefor
CN110777423B (en) Tin stripping liquid and method for recovering tin
JP6839992B2 (en) Plating method and its equipment
JP2022105808A (en) Copper clad laminate
JP6793063B2 (en) Partial plating equipment, partial plating method, and manufacturing method of partial plating members
JP6893849B2 (en) Plating equipment for printed wiring boards and metal jigs
JPH09157897A (en) Electroplating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7070012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150