JP7067289B2 - 動作計画装置及び動作計画方法 - Google Patents

動作計画装置及び動作計画方法 Download PDF

Info

Publication number
JP7067289B2
JP7067289B2 JP2018110248A JP2018110248A JP7067289B2 JP 7067289 B2 JP7067289 B2 JP 7067289B2 JP 2018110248 A JP2018110248 A JP 2018110248A JP 2018110248 A JP2018110248 A JP 2018110248A JP 7067289 B2 JP7067289 B2 JP 7067289B2
Authority
JP
Japan
Prior art keywords
path
smoothing
point
time
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018110248A
Other languages
English (en)
Other versions
JP2019209457A (ja
Inventor
真太郎 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018110248A priority Critical patent/JP7067289B2/ja
Priority to CN201910433164.6A priority patent/CN110576437B/zh
Priority to US16/433,299 priority patent/US11167418B2/en
Publication of JP2019209457A publication Critical patent/JP2019209457A/ja
Application granted granted Critical
Publication of JP7067289B2 publication Critical patent/JP7067289B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1661Programme controls characterised by programming, planning systems for manipulators characterised by task planning, object-oriented languages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Description

本発明は、ロボットの動作計画装置及び動作計画方法に関する。
特許文献1は、ロボットの動作経路を計画する動作経路計画方法を開示している。具体的には、始点と終点との間でロボットが障害物と干渉しない経路となるように複数のノードを設定し、隣接するノード間に主要点をそれぞれ設定し、隣接した2つの該主要点の区間と所定関数との合成積を計算することで、該区間に対する平滑化関数の経路を算出している。
特開2018-69428号公報
特許文献1では、ロボットを動作させるに際し、最大許容速度や最大許容加速度に関する条件をどのように満足させるか具体的に開示していない。
本発明の目的は、障害物と干渉することがなく、最大許容速度や最大許容加速度に関する条件を満足したロボットの動作を計画する技術を提供することにある。
本願発明の第1の観点によれば、ロボットの動作計画装置であって、予め設定された始点と終点との間で前記ロボットが障害物と干渉しない非干渉経路を生成する非干渉経路生成部と、前記非干渉経路を空間的に平滑化した空間平滑化経路を生成する空間平滑化経路生成部と、前記空間平滑化経路に含まれる複数の主要点を通過する時間を決定することで、時空間における経路としての時空間経路を生成する時間決定部と、を備え、前記複数の主要点は、前記空間平滑化経路の始点と、前記空間平滑化経路の終点と、前記空間平滑化経路の始点と前記空間平滑化経路の終点の間における中間点と、を含み、前記時間決定部は、前記複数の主要点間で動作速度が最大許容速度を越えないように、各主要点毎に、前記始点から各主要点に至るまでに経過する時間である仮時間を設定する仮時間設定部と、前記主要点を含む第1の平滑化範囲において前記空間平滑化経路を軟化関数を用いて空間的に平滑化し、前記第1の平滑化範囲において前記動作速度が最大許容加速度を越えていたら、前記第1の平滑化範囲において前記動作速度が前記最大許容加速度を越えないように前記主要点以降の前記複数の主要点の前記仮時間を引き延ばす仮時間調整部と、を有する、動作計画装置が提供される。以上の構成によれば、簡単な演算で、障害物と干渉することがなく、最大許容速度や最大許容加速度に関する条件を満足したロボットの動作計画が実現される。
好ましくは、前記仮時間調整部は、前記第1の平滑化範囲において前記空間平滑化経路を前記軟化関数を用いて空間的に平滑化した結果、前記空間平滑化経路が前記障害物と干渉していた場合、前記主要点を含み前記第1の平滑化範囲よりも狭い範囲である第2の平滑化範囲において前記空間平滑化経路を前記軟化関数を用いて空間的に平滑化する。以上の構成によれば、前記空間平滑化経路と前記障害物との干渉を解消することができる。
好ましくは、前記仮時間調整部は、前記第2の平滑化範囲において前記空間平滑化経路を前記軟化関数を用いて空間的に平滑化した結果、前記第2の平滑化範囲において前記動作速度が最大許容加速度を越えていたら、前記第2の平滑化範囲において前記動作速度が前記最大許容加速度を越えないように前記主要点以降の前記複数の主要点の前記仮時間を再び引き延ばす。以上の構成によれば、簡単な演算で、かつ、確実に、障害物と干渉することがなく、最大許容速度や最大許容加速度に関する条件を満足したロボットの動作計画が実現される。
好ましくは、前記中間点は、前記空間平滑化経路上の通過点のうち、前記空間平滑化経路の距離に対する傾きが前記通過点の前後で所定量以上変化した通過点である。
好ましくは、前記ロボットは複数の関節を有する多関節ロボットであり、前記複数の関節間で前記仮時間は同期している。
本願発明の第2の観点によれば、ロボットの動作計画方法であって、予め設定された始点と終点との間で前記ロボットが障害物と干渉しない非干渉経路を生成する非干渉経路生成ステップと、前記非干渉経路を空間的に平滑化した空間平滑化経路を生成する空間平滑化経路生成ステップと、前記空間平滑化経路に含まれる複数の主要点を通過する時間を決定することで、時空間における経路としての時空間経路を生成する時間決定ステップと、を備え、前記複数の主要点は、前記空間平滑化経路の始点と、前記空間平滑化経路の終点と、前記空間平滑化経路の始点と前記空間平滑化経路の終点の間における中間点と、を含み、前記時間決定ステップは、前記複数の主要点間で動作速度が最大許容速度を越えないように、各主要点毎に、前記始点から各主要点に至るまでに経過する時間である仮時間を設定する仮時間設定ステップと、前記主要点を含む第1の平滑化範囲において前記空間平滑化経路を軟化関数を用いて空間的に平滑化し、前記第1の平滑化範囲において前記動作速度が最大許容加速度を越えていたら、前記第1の平滑化範囲において前記動作速度が前記最大許容加速度を越えないように前記主要点以降の前記複数の主要点の前記仮時間を引き延ばす仮時間調整ステップと、を有する、動作計画方法が提供される。以上の方法によれば、簡単な演算で、障害物と干渉することがなく、最大許容速度や最大許容加速度に関する条件を満足したロボットの動作計画が実現される。
本発明によれば、簡単な演算で、障害物と干渉することがなく、最大許容速度や最大許容加速度に関する条件を満足したロボットの動作計画が実現される。
本発明の一実施形態に係るロボットの概略的構成を示す図である。 本発明の一実施形態に係る動作計画装置の概略的なシステム構成を示すブロック図である。 本発明の一実施形態に係る時間決定部の概略的なシステム構成を示すブロック図である。 ロボットの関節部の関節角度と関節ベクトルの距離とのグラフを示す図である。 時間調整部による処理を示す説明図である。 時間調整部による処理を示す説明図である。 時間調整部による処理を示す説明図である。 時間調整部による処理を示す説明図である。 時間調整部による処理を示す説明図である。 動作計画装置の制御フローである。 時間決定部の制御フローである。 計画軌道が途中で変更軌道に変更された場合の時空間経路の接続方法を例示する図である。 計画軌道が途中で変更軌道に変更された場合の時空間経路の接続方法を例示する図である。 計画軌道が途中で変更軌道に変更された場合の時空間経路の接続方法を例示する図である。
以下、図面を参照して本発明の実施形態について説明する。
本発明の一実施形態に係る動作計画装置は、マニピュレータを備えた移動体に対して、移動軌道やマニピュレータの軌道であって、空間的に滑らかであり、かつ、速度や加速度、ジャーク等の制約条件を満足することで時間的にも滑らかであり、もって動作効率のよい時空間における軌道を低い演算コストで生成するものである。このような時空間における軌道に従って動作するロボットは、ロボットの周囲にいる人に対して親和性を期待でき、また、振動が少なくなるので例えばコップに入った液体をこぼしにくい、という効果を期待できる。
図1は、本発明の一実施形態に係るロボット100の概略的構成を示す図である。ロボット100は、例えば、人型のロボットであり、頭部101と、胴体部102と、一対のアーム部103(マニピュレータ)と、移動機構104と、制御装置105と、を有している。
頭部101には、カメラ及びデプスセンサが搭載されている。従って、ロボット100は、ロボット100の周囲にある障害物を検出することができる。
胴体部102には、複数の関節部C1~C5が設けられている。アーム部103は、複数の関節部R1~R4、L1~L4と、ハンドR5、L5と、を有している。各関節部R1~R4、L1~L4には、各関節部R1~R4、L1~L4を回転あるいはスライドさせるサーボモータなどのアクチュエータが設けらている。各関節部R1~R4、L1~L4には、各関節部R1~R4、L1~L4の回転あるいはスライドを検出するセンサが設けられている。
移動機構104は、車輪あるいは脚部を有し、これらを駆動してロボット100を移動させる。
制御装置105は、各関節部R1~R4、L1~L4のアクチュエータ及び移動機構104を制御する。制御装置105は、図2に示す動作計画装置1を含む。
図2に示す動作計画装置1は、ロボット100の各関節部R1~R4、L1~L4の位置を示す各関節部R1~R4、L1~L4の関節ベクトルの時空間における動作経路を計画する。
図2は、本実施形態に係る動作計画装置1の概略的なシステム構成を示すブロック図である。本実施形態に係る動作計画装置1は、外部情報取得部2と、非干渉経路生成部3と、空間的平滑化経路生成部4と、時間決定部5と、出力部6と、を備えている。
動作計画装置1は、例えば、CPU、RAM、ROMを備えている。CPUがROMに記録された制御プログラムを読み込み、CPU上で実行することで、制御プログラムは、CPU等のハードウェアを、外部情報取得部2と、非干渉経路生成部3と、空間的平滑化経路生成部4と、時間決定部5と、出力部6と、して機能させる。これに代えて、外部情報取得部2と、非干渉経路生成部3と、空間的平滑化経路生成部4と、時間決定部5と、出力部6と、をハードウェアで実現してもよい。
外部情報取得部2は、頭部101のカメラ及びデプスセンサを用いて、環境内の障害物の位置や形状などの外部情報を取得する。外部情報取得部2により取得された外部情報は、環境地図情報としてメモリなどに記憶される。
非干渉経路生成部3は、例えば、予め設定されたスタート位置(始点)及びゴール位置(終点)と、メモリに記憶されている環境地図情報と、に基づいて、ロボット100と環境地図情報の障害物とが干渉しない、ロボット本体や関節部R1~R4、L1~L4の空間的な非干渉動作経路を生成する。非干渉経路生成部3は、例えば、障害物が込み入った環境であっても動作経路の探索が可能な確率的な探索手法を用いて、動作経路を生成する。非干渉経路生成部3が生成した非干渉動作経路は、ジグザグの動作経路である。
なお、この確率的な探索手法の詳細は、例えば、非特許文献:LaValle Steven M, Kuffner Jr. James J.(2001). "Randomized kinodynamic planning". The International Journal of Robotics Research (IJRR)20(5).に開示されており、これを援用できるものとする。また、上述した動作経路の生成方法は一例であり、これに限定されない。
空間的平滑化経路生成部4は、非干渉経路生成部3により生成されたジグザグの非干渉動作経路を空間的に平滑化して空間平滑化経路する。ここで、平滑化とは、上述したように設定された非干渉動作経路を空間的に滑らかな曲線にすることを指す。平滑化に際して空間平滑化経路が障害物と干渉するか検証し、干渉する場合はその干渉が回避されるまで平滑化が再履行される。
空間的平滑化経路生成部4は、例えば、非干渉経路生成部3により生成されたジグザグの非干渉動作経路と、多項式の軟化関数(所定関数)と、の合成積を行うことにより、その非干渉動作経路を平滑化する。
上記の軟化関数は、例えば、テナリー多項式(Ternary Polynomial)関数である。テナリー多項式関数は、関数値の増加領域、一定領域、減少領域の三領域を有し、一定領域を挟んで増加領域と減少領域が対称に表される多項式関数である。なお、テナリー多項式の詳細については、本出願人が既に提出した特開2009-053926号公報に開示されており、これを援用できるものする。
この軟化関数T(x)は、例えば下記式(1)により表される。
Figure 0007067289000001
上記式(1)において、次数0のT(x)は、T(x)=C(-a/2<x<a/2)、T(x)=0(x≦-a/2、x≧a/2)である。C、aは定数である。iは0又は正の整数である。
次に、非干渉動作経路と多項式の軟化関数との合成積の演算方法について詳細に説明する。空間的平滑化経路生成部4は、非干渉経路生成部3により生成された非干渉動作経路f(y)と、上述した多項式の軟化関数T(x)と、に基づいて、下記式(2)を用いて合成積f(x)を行うことにより、空間平滑化経路を生成する。
Figure 0007067289000002
軟化関数T(x)は、n-1回微分可能な関数であり、パラメータa、a、・・・・、a、及びCを有する。d=(a、a、・・・・、a、C)と定義する。Cは、軟化関数の積分値が1となるように調整されている。f(x)はn-1回微分可能な関数で、f→fに一様に収束する。
時間決定部5は、空間平滑化経路に含まれる複数の主要点を通過する時間を決定することで、時空間における経路としての時空間経路を生成する。
出力部6は、時間決定部5によって生成された時空間経路を出力する。例えば、出力部6は、ロボット100の関節ベクトルの成分毎に、各関節の時間を同期させて、関節角度、関節角速度、関節ジャークと時間との関係を示すグラフデータを出力する。
次に、図3を参照して、時間決定部5について説明する。
図3に示すように、時間決定部5は、主要点抽出部7と、仮時間設定部8と、仮時間調整部9と、を有する。主要点抽出部7及び仮時間設定部8、仮時間調整部9は、前述したようにソフトウェアで実現してもよいし、ハードウェアで実現してもよい。
主要点抽出部7は、空間的平滑化経路生成部4から空間平滑化経路を取得し、空間平滑化経路を構成する複数の関節ベクトル列から主要関節ベクトル列(主要点)を抽出する。空間平滑化経路は、始点からの距離毎に定められた複数の関節ベクトル列によって構成されている。
ここで、複数の関節ベクトル列は、図4に示すように、始点における関節ベクトルである関節ベクトル1、終点における関節ベクトルである関節ベクトル8を含む。また、複数の関節ベクトル列は、関節ベクトル1と関節ベクトル8の間における複数の関節ベクトル2、3、4、・・・、7、8を含む。空間平滑化経路に含まれる関節ベクトルの個数は8に限定されない。複数の関節ベクトル列は、例えば以下のようなデータ構造を有する。ここで、Mは、関節の総数を意味している。
関節ベクトル1=(関節1角度1、関節2角度1、・・・、関節M角度1)
関節ベクトル2=(関節1角度2、関節2角度2、・・・、関節M角度2)
関節ベクトル3=(関節1角度3、関節2角度3、・・・、関節M角度3)
・・・
関節ベクトル8=(関節1角度8、関節2角度8、・・・、関節M角度8)
ここで、「関節a角度b」は、距離軸上でb番目の関節ベクトルにおけるa番目の関節の角度を意味している。
また、主要点抽出部7は、外部から、始点条件と終点条件を取得する。始点条件は、下記の関節ベクトル1と関節速度ベクトル1により構成されている。終点条件は、下記の関節ベクトル8と関節速度ベクトル8により構成されている。
関節ベクトル1=(関節1角度1、関節2角度1、・・・、関節M角度1)
関節速度ベクトル1=(関節1角速度1、関節2角速度1、・・・、関節M角速度1)
関節ベクトル8=(関節1角度8、関節2角度8、・・・、関節M角度8)
関節速度ベクトル8=(関節1角速度8、関節2角速度8、・・・、関節M角速度8)
次に、図4を参照して、主要関節ベクトル列について説明する。図4には、空間平滑化経路を構成する複数の関節ベクトル1、2、・・・、8を示している。横軸は、距離であり、縦軸は各関節における角度である。図4に示すように、各関節の角度は移動した距離に応じて増減している。図4には、1番目の関節の角度の遷移と、M番目の関節の角度の遷移を例示している。図4に示すように、空間平滑化経路においても個々の関節の角度の遷移が完全に平滑化されているわけではない。即ち、空間平滑化経路における個々の関節の角度は、ジグザグに遷移している。
以下、図4に示すように、関節ベクトルcにおけるd番目の関節の角度を角度θ(c)と称する。
図4によると、1番目の関節の角度は、関節ベクトル4の前後において折り目状に変化している。換言すれば、角度θ(3)と角度θ(4)を結ぶ線分の傾きと、角度θ(4)と角度θ(5)を結ぶ線分の傾きは、大きく異なっている。このように、ある関節ベクトルの前後において関節の角度の距離に対する傾きが所定値以上に変化している場合、その関節ベクトルを主要関節ベクトルと称する。そして、そのような関節ベクトルを複数含むものを主要関節ベクトル列と定義する。更に、主要関節ベクトルに含まれる空間平滑化経路のプロットを主要点と称する。従って、角度θ(4)で示すプロットは主要点である。同様に、角度θ(5)で示すプロットは主要点である。角度θM(4)で示すプロットは、前後で傾きが所定値以上変化しているので主要点である。角度θM(5)で示すプロットは、距離軸上で対応する角度θ(5)が主要点であるので、同様に主要点となる。また、始点(関節ベクトル1)及び終点(関節ベクトル8)におけるプロットは主要点とみなす。従って、角度θ(1)及び角度θM(1)、角度θ(8)及び角度θM(8)は主要点である。
関節ベクトル1、関節ベクトル4、関節ベクトル5、関節ベクトル8は、主要関節ベクトルである。従って、以降、関節ベクトル1を主要関節ベクトル1、関節ベクトル4を主要関節ベクトル2、関節ベクトル5を主要関節ベクトル3、関節ベクトル8を主要関節ベクトル4と称する。また、主要関節ベクトルeにおけるf番目の関節の角度を角度θMAINf(e)と称する。以降の処理は、主要関節ベクトル1-4に含まれる主要点のみに対して行われる。
仮時間設定部8は、複数の主要点間で動作速度が最大許容速度を越えないように、各主要点毎に、始点から各主要点に至るまでに経過する時間である仮時間P(N)を設定する。具体的には、仮時間P(N)は、以下の式(3)で求められる。
Figure 0007067289000003
ここで、Mは関節の総数であり、Nは主要関節ベクトルの番号、vmaxは関節mにおける最大許容速度である。
従って、例えば、主要関節ベクトル2の仮時間P(2)は、以下の式(4)で求められる。
Figure 0007067289000004
P(3)及びP(4)についても同様に求められる。こうして、各主要点N(各主要関節ベクトルN)毎に仮時間P(N)が求められる。なお、上記式(3)は、主要点間の角度差を最大許容速度で割っているので、主要点間を許容される範囲で最も速く移動させた場合にかかる時間である。また、各関節において、最も時間のかかる関節の仮時間を採用することとし、他の関節はその関節に同期させている。
仮時間調整部9は、空間平滑化経路に沿って移動した場合に最大許容加速度及び最大ジャークを満足するように、空間平滑化経路の時間軸を調整する。即ち、仮時間調整部9は、空間平滑化経路に沿って移動した場合に最大許容加速度及び最大ジャークを満足するように、各主要点の仮時間を調整する。仮時間調整部9は、併せて、障害物との干渉チェックを行い、干渉していた場合は各主要点の仮時間を再度、調整する。
図5には、仮時間設定部8が設定した各主要点における仮時間P(N)に基づいて作成した時空間経路を示すグラフであって、ある関節の角度と仮時間との関係を示している。横軸は仮時間であり、縦軸は角度である。また、当該関節における主要点を時間の経過する方向に沿って順に、主要点Q1、主要点Q2、主要点Q3、主要点Q4と称する。図5に示すグラフは、前述した仮時間P(N)の設定により、既に最大許容速度に関する条件を満足している。例えば、主要点Q1と主要点Q2との間の線分の傾きの絶対値は最大許容速度以下となっている。
次に、図6に示すように、仮時間調整部9は、主要点Q2における最大加速度条件を満足すべく、主要点Q2-Q4の仮時間を引き延ばす。具体的には、まず、平滑化範囲R2において時空間経路を軟化関数を用いて空間的に平滑化する。
ここで、平滑化範囲R2は、仮時間軸上での範囲であって主要点Q2を含む範囲である。具体的には、まず、主要点Q1と主要点Q2の仮時間軸上での差分L12と、主要点Q2と主要点Q3の仮時間軸上での差分L23を比較する。そして、差分L12と差分L23のうち小さい方である差分を決定する。図6の例では、差分L23の方が差分L12より小さいので、平滑化範囲R2を決定する基準を差分L23とする。そして、平滑化範囲R2は、仮時間軸上で、主要点Q2を基準とし主要点Q3側へL23/2ずれた時点から主要点Q1側へL23/2ずれた時点までの範囲とする。
また、軟化関数は、前述したテナリー多項式関数を用いることができる。
主要点Q2において空間的に平滑化された曲線経路を以下、曲線経路B2と称する。
次に、仮時間設定部8は、曲線経路B2に沿って移動した際に最大許容加速度を越えているか判定し、判定結果がYESの場合は、曲線経路B2に沿って移動した際に最大許容加速度を越えないように、主要点Q2以降のすべての主要点の仮時間を十分に引き延ばす。具体的には、図6の下図に示すように、主要点Q2-Q4の仮時間を延ばす。これにより、曲線経路B2は仮時間軸に沿って引き伸ばされ、もって、曲線経路B2に沿って移動した際に動作速度が最大許容加速度内に収まる。
なお、曲線経路B2における加速度は曲線経路B2を時間で微分すれば容易に求めることができる。また、曲線経路B2におけるジャークは曲線経路B2を時間で二階微分すれば容易に求めることができる。従って、曲線経路B2に沿って移動した際にジャークを越えているか判定し、判定結果がYESの場合は、曲線経路B2に沿って移動した際にジャークを越えないように、主要点Q2以降のすべての主要点の仮時間を十分に引き延ばしてもよい。
図7には、主要点Q2において最大許容加速度に関する条件を満足した時空間経路を示している。主要点Q2においては、軟化関数を用いて空間的に平滑化したので、曲線経路B2に沿って移動すると障害物と干渉する可能性が新たに生じる。従って、仮時間調整部9は、曲線経路B2と障害物との干渉の有無を判定し、判定結果がYESの場合は、曲線経路B2を破棄し、曲線経路B2を生成した際に使用した平滑化範囲R2の範囲を狭めて再度、主要点Q2における平滑化を実行する。平滑化範囲R2の範囲の狭め方としては、例えば、新たな平滑化範囲R2を、仮時間軸上で、主要点Q2を基準とし主要点Q3側へL23/4ずれた時点から主要点Q1側へL23/4ずれた時点までの範囲とすることが挙げられるがこれに限定されない。このように平滑化範囲R2を狭めることで、新たな曲線経路B2は主要点Q2のより近くを通過することになり、もって、上記の干渉を解消することができる。
ただし、平滑化範囲R2を狭めて生成した曲線経路B2は鋭利な曲線となっているので最大許容加速度を越えてしまうことが考えられる。従って、仮時間調整部9は、新たな平滑化範囲R2において時空間経路を軟化関数を用いて空間的に平滑化した結果、新たな平滑化範囲R2において動作速度が最大許容加速度を越えていたら、新たな平滑化範囲R2において動作速度が最大許容加速度を越えないように主要点Q2以降の主要点の仮時間を再び引き延ばす。一度干渉が解消されたことが確認されているので、この引き伸ばしによって新たに干渉の有無を判定する必要性は実質的にないと言える。
次に、仮時間調整部9は、図8に示すように、主要点Q3における最大加速度条件を満足すべく、主要点Q3-Q4の仮時間を引き延ばす。具体的には、まず、平滑化範囲R3において時空間経路を軟化関数を用いて空間的に平滑化する。
ここで、平滑化範囲R3は、仮時間軸上での範囲であって主要点Q3を含む範囲である。平滑化範囲R3の決定方法は、平滑化範囲R2におけるものを援用することができる。ただし、主要点Q2における最大加速度条件を満足させる際に差分L23は増加する方向に変化しているが、差分L23と差分L34を比較するに際し、増加後の差分L23を用いてもよいし、増加前の差分L23を用いてもよい。計算の簡略化にとっては後者である増加前の差分L23を用いることが好ましい。
主要点Q3において空間的に平滑化された曲線経路を以下、曲線経路B3と称する。
次に、仮時間設定部8は、曲線経路B3に沿って移動した際に最大許容加速度を越えているか判定し、判定結果がYESの場合は、曲線経路B3に沿って移動した際に最大許容加速度を越えないように、主要点Q3以降のすべての主要点の仮時間を十分に引き延ばす。具体的には、図8の下図に示すように、主要点Q3及びQ4の仮時間を延ばす。これにより、曲線経路B3は仮時間軸に沿って引き伸ばされ、もって、曲線経路B3に沿って移動した際に動作速度が最大許容加速度内に収まる。
また、上記同様に、曲線経路B3に沿って移動した際にジャークを越えているか判定し、判定結果がYESの場合は、曲線経路B3に沿って移動した際にジャークを越えないように、主要点Q3以降のすべての主要点の仮時間を十分に引き延ばしてもよい。
図9には、主要点Q3において最大許容加速度に関する条件を満足した時空間経路を示している。上記同様に、仮時間調整部9は、曲線経路B3と障害物との干渉の有無を判定し、判定結果がYESの場合は、曲線経路B3を破棄し、曲線経路B3を生成した際に使用した平滑化範囲R3の範囲を狭めて再度、主要点Q3における平滑化を実行する。また、仮時間調整部9は、新たな平滑化範囲R3において時空間経路を軟化関数を用いて空間的に平滑化した結果、新たな平滑化範囲R3において動作速度が最大許容加速度を越えていたら、新たな平滑化範囲R3において動作速度が最大許容加速度を越えないように主要点Q3以降の主要点の仮時間を再び引き延ばす。一度干渉が解消されたことが確認されているので、この引き伸ばしによって新たに干渉の有無を判定する必要性は実質的にないと言える。
このように、仮時間設定部8が仮時間を設定することで、空間平滑化経路について最大許容速度に関する条件が満足され、仮時間調整部9が仮時間を調整することで、時空間経路について最大許容加速度及び干渉に関する条件が満足される。こうして、時間決定部5は、空間平滑化経路の時間軸上でのスピードプロファイルを決定することで、障害物と干渉することがなく、最大許容速度や最大許容加速度に関する条件を満足したロボットの時空間経路を生成する。
次に、図10及び図11を参照して、動作計画装置1の制御フローを説明する。
まず、外部情報取得部2は、外部情報を取得する(S100)。
次に、非干渉経路生成部3は、予め設定された始点と終点との間でロボット100が障害物と干渉しない非干渉経路を生成する(S110)。
次に、空間的平滑化経路生成部4は、非干渉経路を空間的に平滑化した空間平滑化経路を生成する(S120)。
次に、時間決定部5は、空間平滑化経路に含まれる複数の主要点を通過する時間を決定することで、時空間における経路としての時空間経路を生成する(S130)。
次に、出力部6は、時間決定部5が生成した時空間経路を出力する(S140)。
図11に示すように、時間決定ステップ(S130)においては、更に、以下のフローを実行する。
まず、主要点抽出部7が、空間平滑化経路から主要点を抽出する(S150)。
次に、仮時間設定部8が、複数の主要点間で動作速度が最大許容速度を越えないように、各主要点毎に、始点から各主要点に至るまでに経過する時間である仮時間を設定する(S160)。
次に、仮時間調整部9が、主要点を含む平滑化範囲R2(第1の平滑化範囲)において空間平滑化経路を軟化関数を用いて空間的に平滑化し、平滑化範囲R2において動作速度が最大許容加速度を越えていたら、平滑化範囲R2において動作速度が最大許容加速度を越えないように主要点以降の複数の主要点の仮時間を引き延ばす(S170)。
以上に、本願発明の好適な実施形態を説明したが、上記実施形態は、以下の特徴を有する。
即ち、ロボット100の動作計画装置1は、予め設定された始点と終点との間でロボットが障害物と干渉しない非干渉経路を生成する非干渉経路生成部3と、非干渉経路を空間的に平滑化した空間平滑化経路を生成する空間的平滑化経路生成部4と、空間平滑化経路に含まれる複数の主要点を通過する時間を決定することで、時空間における経路としての時空間経路を生成する時間決定部5と、を備える。複数の主要点は、空間平滑化経路の始点と、空間平滑化経路の終点と、空間平滑化経路の始点と空間平滑化経路の終点の間における中間点と、を含む。時間決定部5は、複数の主要点間で動作速度が最大許容速度を越えないように、各主要点毎に、始点から各主要点に至るまでに経過する時間である仮時間を設定する仮時間設定部8と、主要点を含む第1の平滑化範囲(例えば、平滑化範囲R2)において空間平滑化経路を軟化関数を用いて空間的に平滑化し、第1の平滑化範囲において動作速度が最大許容加速度を越えていたら、第1の平滑化範囲において動作速度が最大許容加速度を越えないように主要点以降の複数の主要点の仮時間を引き延ばす仮時間調整部9と、を有する。以上の構成によれば、簡単な演算で、障害物と干渉することがなく、最大許容速度や最大許容加速度に関する条件を満足したロボットの動作計画が実現される。
仮時間調整部9は、平滑化範囲R2において空間平滑化経路を軟化関数を用いて空間的に平滑化した結果、空間平滑化経路が障害物と干渉していた場合、主要点を含み平滑化範囲R2よりも狭い範囲である新たな平滑化範囲R2(第2の平滑化範囲)において空間平滑化経路を軟化関数を用いて空間的に平滑化する。以上の構成によれば、空間平滑化経路と障害物との干渉を解消することができる。
また、仮時間調整部9は、新たな平滑化範囲R2において空間平滑化経路を軟化関数を用いて空間的に平滑化した結果、新たな平滑化範囲R2において動作速度が最大許容加速度を越えていたら、新たな平滑化範囲R2において動作速度が最大許容加速度を越えないように主要点以降の複数の主要点の仮時間を再び引き延ばす。以上の構成によれば、簡単な演算で、かつ、確実に、障害物と干渉することがなく、最大許容速度や最大許容加速度に関する条件を満足したロボットの動作計画が実現される。
なお、主要点となり得る中間点は、図4に示すように、空間平滑化経路上の通過点のうち、空間平滑化経路の距離に対する傾きが通過点の前後で所定量以上変化した通過点とする。
また、ロボット100は複数の関節を有する多関節ロボットである。複数の関節間で仮時間は同期している。
上記実施形態において、ロボット100は、例えば、1つのアーム部103を有する片腕ロボットとして構成されてもよく、アーム部103のみを有するアーム型ロボットであってもよい。さらに、ロボット100は、自律型の車両などの移動体であってもよい。
次に、図12に示すように、ロボットが動作中に動作軌道を計画軌道から変更軌道へと変更する場合であって、始点や終点での速度がゼロでない場合を考える。以下、変更軌道の始点における速度がゼロでない場合における、変更軌道の始点を含めた空間平滑化、及び、時間平滑化の方法を説明する。
まず、図12に示す計画軌道の終点と変更軌道の始点を接続するには、図13において二点鎖線で示すように、計画軌道の終点と変更軌道の始点を最大許容速度を越えない範囲で線形補間する。
次に、図13に示すように、線形補完した線分と計画軌道との接続箇所において最大加速度を越えないように軌道を平滑化する。同様に、線形補間した線分と変更軌道との接続箇所において最大加速度を越えないように軌道を平滑化する。以上の方法により、2つの曲線軌道が生成され、もって、計画軌道と変更軌道を最大許容速度及び最大許容加速度に関する条件を満足しつつ空間的に滑らかに接続することが可能となる。
1 動作計画装置
2 外部情報取得部
3 非干渉経路生成部
4 空間的平滑化経路生成部
5 時間決定部
6 出力部
7 主要点抽出部
8 仮時間設定部
9 仮時間調整部

Claims (6)

  1. ロボットの動作計画装置であって、
    予め設定された始点と終点との間で前記ロボットが障害物と干渉しない非干渉経路を生成する非干渉経路生成部と、
    前記非干渉経路を空間的に平滑化した空間平滑化経路を生成する空間平滑化経路生成部と、
    前記空間平滑化経路に含まれる複数の主要点を通過する時間を決定することで、時空間における経路としての時空間経路を生成する時間決定部と、
    を備え、
    前記複数の主要点は、前記空間平滑化経路の始点と、前記空間平滑化経路の終点と、前記空間平滑化経路の始点と前記空間平滑化経路の終点の間における中間点と、を含み、
    前記時間決定部は、
    前記複数の主要点間で動作速度が最大許容速度を越えないように、各主要点毎に、前記始点から各主要点に至るまでに経過する時間である仮時間を設定する仮時間設定部と、
    前記複数の主要点のうちの主要点を含む第1の平滑化範囲において前記空間平滑化経路を軟化関数を用いて空間的に平滑化し、前記第1の平滑化範囲において動作加速度が最大許容加速度を越えていたら、前記第1の平滑化範囲において前記動作加速度が前記最大許容加速度を越えないように前記主要点以降の複数の主要点のみの前記仮時間を引き延ばす仮時間調整部と、
    を有する、
    動作計画装置。
  2. 請求項1に記載の動作計画装置であって、
    前記仮時間調整部は、前記第1の平滑化範囲において前記空間平滑化経路を前記軟化関数を用いて空間的に平滑化した結果、前記空間平滑化経路が前記障害物と干渉していた場合、前記主要点を含み前記第1の平滑化範囲よりも狭い範囲である第2の平滑化範囲において前記空間平滑化経路を前記軟化関数を用いて空間的に平滑化する、
    動作計画装置。
  3. 請求項2に記載の動作計画装置であって、
    前記仮時間調整部は、前記第2の平滑化範囲において前記空間平滑化経路を前記軟化関数を用いて空間的に平滑化した結果、前記第2の平滑化範囲において前記動作加速度前記最大許容加速度を越えていたら、前記第2の平滑化範囲において前記動作加速度が前記最大許容加速度を越えないように前記主要点以降の前記複数の主要点の前記仮時間を再び引き延ばす、
    動作計画装置。
  4. 請求項1から3までの何れか1項に記載の動作計画装置であって、
    前記中間点は、前記空間平滑化経路上の通過点のうち、前記空間平滑化経路の距離に対する傾きが前記通過点の前後で所定量以上変化した通過点である、
    動作計画装置。
  5. 請求項1から4までの何れか1項に記載の動作計画装置であって、
    前記ロボットは複数の関節を有する多関節ロボットであり、
    前記複数の関節間で前記仮時間は同期している、
    動作計画装置。
  6. ロボットの動作計画方法であって、
    予め設定された始点と終点との間で前記ロボットが障害物と干渉しない非干渉経路を生成する非干渉経路生成ステップと、
    前記非干渉経路を空間的に平滑化した空間平滑化経路を生成する空間平滑化経路生成ステップと、
    前記空間平滑化経路に含まれる複数の主要点を通過する時間を決定することで、時空間における経路としての時空間経路を生成する時間決定ステップと、
    を備え、
    前記複数の主要点は、前記空間平滑化経路の始点と、前記空間平滑化経路の終点と、前記空間平滑化経路の始点と前記空間平滑化経路の終点の間における中間点と、を含み、
    前記時間決定ステップは、
    前記複数の主要点間で動作速度が最大許容速度を越えないように、各主要点毎に、前記始点から各主要点に至るまでに経過する時間である仮時間を設定する仮時間設定ステップと、
    前記複数の主要点のうちの主要点を含む第1の平滑化範囲において前記空間平滑化経路を軟化関数を用いて空間的に平滑化し、前記第1の平滑化範囲において動作加速度が最大許容加速度を越えていたら、前記第1の平滑化範囲において前記動作加速度が前記最大許容加速度を越えないように前記主要点以降の複数の主要点のみの前記仮時間を引き延ばす仮時間調整ステップと、
    を有する、
    動作計画方法。
JP2018110248A 2018-06-08 2018-06-08 動作計画装置及び動作計画方法 Active JP7067289B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018110248A JP7067289B2 (ja) 2018-06-08 2018-06-08 動作計画装置及び動作計画方法
CN201910433164.6A CN110576437B (zh) 2018-06-08 2019-05-23 动作计划装置及动作计划方法
US16/433,299 US11167418B2 (en) 2018-06-08 2019-06-06 Operation planning apparatus and operation planning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018110248A JP7067289B2 (ja) 2018-06-08 2018-06-08 動作計画装置及び動作計画方法

Publications (2)

Publication Number Publication Date
JP2019209457A JP2019209457A (ja) 2019-12-12
JP7067289B2 true JP7067289B2 (ja) 2022-05-16

Family

ID=68763972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018110248A Active JP7067289B2 (ja) 2018-06-08 2018-06-08 動作計画装置及び動作計画方法

Country Status (3)

Country Link
US (1) US11167418B2 (ja)
JP (1) JP7067289B2 (ja)
CN (1) CN110576437B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023034620A (ja) * 2021-08-31 2023-03-13 TechMagic株式会社 ロボット装置
CN114589695B (zh) * 2022-03-08 2023-09-22 苏州艾利特机器人有限公司 一种机器人运动轨迹的转接方法、装置及存储介质
CN114310921B (zh) * 2022-03-16 2022-06-10 珞石(北京)科技有限公司 一种最小曲率的直线过渡路径生成方法
CN116197917B (zh) * 2023-04-28 2023-08-01 苏州艾利特机器人有限公司 自适应最大加速度计算方法、装置、存储介质及电子设备
CN116922398B (zh) * 2023-09-15 2023-12-22 华侨大学 一种绳索机器人及其路径规划方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309990A (ja) 2004-04-23 2005-11-04 Toyota Motor Corp 経路設定方法
JP2009053926A (ja) 2007-08-27 2009-03-12 Toyota Motor Corp 経路計画装置及び経路計画方法
JP2014161917A (ja) 2013-02-21 2014-09-08 Seiko Epson Corp ロボット制御システム、ロボット、ロボット制御方法及びプログラム
JP2018069428A (ja) 2016-11-04 2018-05-10 トヨタ自動車株式会社 動作経路計画方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228810A (ja) * 1985-07-31 1987-02-06 Matsushita Electric Ind Co Ltd ロボツトの制御装置
US7979158B2 (en) * 2007-07-31 2011-07-12 Rockwell Automation Technologies, Inc. Blending algorithm for trajectory planning
US9821458B1 (en) * 2016-05-10 2017-11-21 X Development Llc Trajectory planning with droppable objects
JP7196101B2 (ja) * 2017-02-15 2022-12-26 パーシモン テクノロジーズ コーポレイション 複数のエンドエフェクタを備えた材料取り扱いロボット
CN107030697B (zh) * 2017-04-28 2019-05-28 广州大学 一种机器人笛卡尔空间平滑轨迹的规划方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309990A (ja) 2004-04-23 2005-11-04 Toyota Motor Corp 経路設定方法
JP2009053926A (ja) 2007-08-27 2009-03-12 Toyota Motor Corp 経路計画装置及び経路計画方法
JP2014161917A (ja) 2013-02-21 2014-09-08 Seiko Epson Corp ロボット制御システム、ロボット、ロボット制御方法及びプログラム
JP2018069428A (ja) 2016-11-04 2018-05-10 トヨタ自動車株式会社 動作経路計画方法

Also Published As

Publication number Publication date
CN110576437B (zh) 2023-03-24
US20190375100A1 (en) 2019-12-12
US11167418B2 (en) 2021-11-09
CN110576437A (zh) 2019-12-17
JP2019209457A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
JP7067289B2 (ja) 動作計画装置及び動作計画方法
JP6717164B2 (ja) 動作経路計画方法
KR101262778B1 (ko) 경로 계획 장치, 및 자율 이동 장치
KR102003216B1 (ko) 로봇을 위한 모터 제어 및/또는 조정
US8019145B2 (en) Legged locomotion robot
EP1975878B1 (en) Projective transformation convergence calculation method
Haddadin et al. Real-time reactive motion generation based on variable attractor dynamics and shaped velocities
US8055383B2 (en) Path planning device
KR101196374B1 (ko) 이동 로봇의 경로 생성 시스템
KR102330754B1 (ko) 궤도 생성 장치 및 궤도 생성 방법
JP2009053926A (ja) 経路計画装置及び経路計画方法
JP4667764B2 (ja) 経路設定方法
JP5480799B2 (ja) 移動装置およびロボットならびにこれらの制御システム
JP6217089B2 (ja) ロボット制御システム、ロボット、ロボット制御方法及びプログラム
JP2007257200A (ja) 移動体及びその制御方法
Yang et al. State estimation for legged robots using contact-centric leg odometry
JPWO2020161910A1 (ja) 制御装置、制御方法、プログラム
Gaskett et al. Reinforcement learning for visual servoing of a mobile robot
JP2009134642A (ja) 移動装置および移動装置システム
Sartoretti et al. Autonomous decentralized shape-based navigation for snake robots in dense environments
Philippsen et al. Towards real-time sensor-based path planning in highly dynamic environments
Transeth et al. Snake robot obstacle-aided locomotion on inclined and vertical planes: Modeling, control strategies and simulation
JP7067435B2 (ja) 軌道生成装置
Luebbers et al. Vision‐based path following by using a neural network Guidance System
Yu et al. Efficient Motion Planning for Manipulators with Control Barrier Function-Induced Neural Controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7067289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151