JP7064821B2 - Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries - Google Patents

Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries Download PDF

Info

Publication number
JP7064821B2
JP7064821B2 JP2016106490A JP2016106490A JP7064821B2 JP 7064821 B2 JP7064821 B2 JP 7064821B2 JP 2016106490 A JP2016106490 A JP 2016106490A JP 2016106490 A JP2016106490 A JP 2016106490A JP 7064821 B2 JP7064821 B2 JP 7064821B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
secondary battery
electrolyte secondary
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016106490A
Other languages
Japanese (ja)
Other versions
JP2017212175A (en
Inventor
好治 栗原
光国 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016106490A priority Critical patent/JP7064821B2/en
Publication of JP2017212175A publication Critical patent/JP2017212175A/en
Application granted granted Critical
Publication of JP7064821B2 publication Critical patent/JP7064821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池等の非水系電解質二次電池の正極材料の抵抗評価を行う非水系電解質二次電池用正極材料の抵抗評価方法に関する。 The present invention relates to a method for evaluating the resistance of a positive electrode material for a non-aqueous electrolyte secondary battery, which evaluates the resistance of the positive electrode material of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

近年、携帯電話やノート型パソコン等の携帯機器の普及に伴い、高いエネルギー密度を有する小型かつ軽量な二次電池の開発が強く望まれている。また、XEVと呼ばれる環境対応自動車においても小型、軽量、高容量、高出力などの高性能化や低コスト化が求められている。さらに、環境対応自動車における1回の充電当たりの走行距離の向上や小型化の必要性が増し、更なる高容量化が求められている。 In recent years, with the widespread use of mobile devices such as mobile phones and notebook computers, the development of compact and lightweight secondary batteries having a high energy density is strongly desired. Further, even in an environment-friendly automobile called XEV, there is a demand for high performance and low cost such as small size, light weight, high capacity and high output. Further, there is an increasing need for improvement of the mileage per charge and miniaturization of environment-friendly automobiles, and further increase in capacity is required.

このような高容量の二次電池として、非水系電解質二次電池がある。非水系電解質二次電池の代表的な電池としてはリチウムイオン二次電池があり、リチウムイオン二次電池の正極材料には、リチウム金属複合酸化物が正極活物質として使用される。リチウムイオン二次電池に使用される各材料に対する要求、とりわけ、例えば、LiCoO、LiNiOまたはLiMnO4等の正極材料に対する高性能化の開発要求は、ますます高まっている。これらの開発を迅速かつ低コストで進めるためには評価手段が重要な一つであり、リチウムイオン二次電池正極材の開発における評価方法の重要性は、益々高まっている。 As such a high-capacity secondary battery, there is a non-aqueous electrolyte secondary battery. A typical battery of a non-aqueous electrolyte secondary battery is a lithium ion secondary battery, and a lithium metal composite oxide is used as a positive electrode active material as a positive electrode material of the lithium ion secondary battery. The demand for each material used in lithium-ion secondary batteries, especially the development demand for higher performance for positive electrode materials such as LiCoO 2 , LiNiO 2 or LiMnO 4 , is increasing. Evaluation means are one of the important factors for advancing these developments quickly and at low cost, and the importance of evaluation methods in the development of positive electrode materials for lithium ion secondary batteries is increasing.

具体的な評価方法としては、組成分析やXRD、SEM EDX、XPS等のいわゆる分析評価方法による正極材料の組成、粒度分布、粒子形状、結晶構造、構成元素の配置等と電池性能との相関評価があるが、電池を実際に作製して電池特性の評価を行うことは、不可欠である。また、電池特性の評価においては、充放電容量特性と出力特性が重要となり、特に、車載用電池では、出力特性の評価が不可欠となる。 Specific evaluation methods include composition analysis and correlation evaluation between battery performance and composition, particle size distribution, particle shape, crystal structure, arrangement of constituent elements, etc. of the positive electrode material by so-called analytical evaluation methods such as XRD, SEM EDX, and XPS. However, it is indispensable to actually manufacture the battery and evaluate the battery characteristics. Further, in the evaluation of the battery characteristics, the charge / discharge capacity characteristics and the output characteristics are important, and in particular, the evaluation of the output characteristics is indispensable for the in-vehicle battery.

電池の出力特性の評価方法には、直流法と交流法があり、直流法では、作製した電池を所定の充電深度の充電状態として短時間電流を印可し、その時間の電圧降下量(V)と印可した電流値(A)から抵抗を算出する方法(特許文献1参照)や、作製した電池について、定電流定電圧充電を行い、一定時間休止の後、所定の電池電圧まで定電流で放電させ、このとき一定時間休止後の開回路電圧(OCV)、及び放電開始一定短時間後の閉回路電圧(CCV)、放電開始一定短時間後の放電電流(I)から、当該電池の直流抵抗(R)を算出する方法(算出式は、R=(OCV-CCV)/Iである)(特許文献2参照)等がある。一方、交流法は、電池に微小な電流を重畳印可し、周波数を変化させることで抵抗を分離する交流インピーダンス法が用いられている。前者は、電池全体の抵抗(出力)評価となり、電池メーカー等で利用されることが多い。後者は、正極、負極などの各抵抗成分の分離ができることから、正極活物質や負極活物質の解析に用いられ、研究機関や正極、負極、電解液のメーカー等で利用されている。 There are two methods for evaluating the output characteristics of a battery: the DC method and the AC method. In the DC method, a short-time current is applied to the manufactured battery as a state of charge at a predetermined charging depth, and the amount of voltage drop (V) during that time is applied. The method of calculating the resistance from the current value (A) applied as (see Patent Document 1) and the manufactured battery are charged with a constant current constant voltage, paused for a certain period of time, and then discharged to a predetermined battery voltage with a constant current. At this time, the DC resistance of the battery is determined from the open circuit voltage (OCV) after a certain period of rest, the closed circuit voltage (CCV) after a certain short time after the start of discharge, and the discharge current (I) after a certain short time after the start of discharge. There is a method of calculating (R) (the calculation formula is R = (OCV-CCV) / I) (see Patent Document 2). On the other hand, as the AC method, an AC impedance method is used in which a minute current is superimposed on a battery and the resistance is separated by changing the frequency. The former is an evaluation of the resistance (output) of the entire battery and is often used by battery manufacturers and the like. Since the latter can separate each resistance component such as a positive electrode and a negative electrode, it is used for analysis of a positive electrode active material and a negative electrode active material, and is used by research institutes, manufacturers of positive electrodes, negative electrodes, electrolytic solutions, and the like.

出力特性を評価する電池作製において、負極にカーボンを用いる場合は、カーボン粒子をバインダー(結着剤ともいう。)と共に溶媒を使ってスラリー化し混練、塗工、乾燥する作製方法が一般的であるが、工程が煩雑となる。また、均一な分散、塗工膜厚や空隙構造が求められるため、金属リチウムシートを所望のサイズに切り抜いたものを使用する方法が簡易で経済的である。しかし、電極にかかる圧力や電極間の電解液量、正、負極のサイズ、サイズ比等により負極表面のデンドライトの生成状態が変化することから、特に、電池の状態に過敏に反応する交流インピーダンス法等では、再現性のあるデータを得ることが難しいといった問題もある。 When carbon is used for the negative electrode in the production of a battery for evaluating output characteristics, a general method is to slurry carbon particles together with a binder (also referred to as a binder) using a solvent, kneading, coating, and drying. However, the process becomes complicated. Further, since uniform dispersion, coating film thickness and void structure are required, it is simple and economical to use a metal lithium sheet cut out to a desired size. However, since the generation state of dendrite on the negative electrode surface changes depending on the pressure applied to the electrodes, the amount of electrolytic solution between the electrodes, the size of the positive and negative electrodes, the size ratio, etc., the AC impedance method that reacts sensitively to the state of the battery in particular. There is also a problem that it is difficult to obtain reproducible data.

正極の作製方法は、正極活物質を導電材、結着材、溶媒と共に混練、塗工、乾燥し、所望のサイズに打ち抜く方法や、同様の部材を乾式混合し、ロールプレス等を使ってシートを作製し、所望のサイズに打ち抜く方法があるが、前者の塗工法は、塗工厚みを薄くすることが可能である。リチウムイオンの拡散が律速となるリチウムイオン二次電池において塗工厚みを薄く、リチウムの拡散距離を短くすることで、高レートでの充放電が可能となり、直流法による抵抗評価が可能なリチウムイオン二次電池を得ることができるが、負極作製と同様に工程が煩雑で、研究開発などの少量多品種の評価が必要な開発用電池作製には適当ではない。後者の乾式混合によるシート法では、塗工による電極作製法と比べ、手早く電極が作製できるメリットがあるが電極が厚くなることから高レートを印可する直流法による抵抗評価は難しい。 The positive electrode can be manufactured by kneading, coating, and drying the positive electrode active material together with a conductive material, a binder, and a solvent, and punching it to a desired size. There is a method of producing and punching to a desired size, but the former coating method can reduce the coating thickness. In a lithium-ion secondary battery in which the diffusion of lithium ions is the rate-determining factor, by reducing the coating thickness and shortening the diffusion distance of lithium, charging and discharging at a high rate becomes possible, and resistance evaluation by the DC method is possible. A secondary battery can be obtained, but the process is complicated as in the case of manufacturing a negative electrode, and it is not suitable for manufacturing a development battery that requires evaluation of a wide variety of small quantities such as research and development. The latter sheet method by dry mixing has the advantage that the electrodes can be manufactured more quickly than the electrode manufacturing method by coating, but the resistance evaluation by the DC method that can apply a high rate is difficult because the electrodes are thick.

このような電極が厚い電池の場合は、印可する電流が微小な交流インピーダンス法による抵抗評価が好ましい。交流インピーダンス法による抵抗評価として、特許文献3には、集電体上に電極活物質層が形成された電極の抵抗を交流インピーダンス法で簡便、かつ精度よく検査する電極の検査方法が開示されている。また、特許文献4には、電池を組み立てることなく、電極の状態で組立後の電池の特性を直接的に反映し得る電極の評価方法として、電極の抵抗を交流インピーダンス法で評価する方法が開示されている。 In the case of a battery having such a thick electrode, resistance evaluation by an AC impedance method in which the applied current is small is preferable. As a resistance evaluation by the AC impedance method, Patent Document 3 discloses an electrode inspection method for inspecting the resistance of an electrode having an electrode active material layer formed on a current collector simply and accurately by the AC impedance method. There is. Further, Patent Document 4 discloses a method of evaluating the resistance of an electrode by an AC impedance method as a method of evaluating an electrode that can directly reflect the characteristics of the assembled battery in the state of the electrode without assembling the battery. Has been done.

国際公開第2015/182560号International Publication No. 2015/182560 特開2015-167118号公報JP-A-2015-167118 特開2014-025850号公報Japanese Unexamined Patent Publication No. 2014-205850 特開2013-110082号公報Japanese Unexamined Patent Publication No. 2013-110082

出荷前検査等に作製される二次電池のセパレータには、厚み数十ミクロンのポリプロプレン、又はポリエチレン製多孔膜を用いることが一般的である。これらのセパレータは、短絡の際、発生する熱により収縮し、細孔を閉じることで電池としての機能を停止することが出来、これにより電池としての安全性を向上させることができる。しかし、これらのセパレータは、安全性の面では、メリットがあるものの、電解液の保液性や濡れ性が悪く、電極間の電解液量が安定せず、測定再現性が不安定になるという問題もある。特に、セルの小さな抵抗変化に敏感に反応する交流インピーダンス法においては、測定再現性の面で評価用セルとして用いるのは難しい。 As a separator for a secondary battery manufactured for pre-shipment inspection or the like, it is common to use a polyproprene having a thickness of several tens of microns or a polyethylene porous membrane. When these separators are short-circuited, they shrink due to the heat generated and close the pores to stop the function as a battery, thereby improving the safety of the battery. However, although these separators have merits in terms of safety, the liquid retention property and wettability of the electrolytic solution are poor, the amount of the electrolytic solution between the electrodes is not stable, and the measurement reproducibility becomes unstable. There is also a problem. In particular, in the AC impedance method that reacts sensitively to a small change in resistance of the cell, it is difficult to use it as an evaluation cell in terms of measurement reproducibility.

また、出荷前検査用電池の各部分の作製において、常に安定した品質を維持し、電池の組立精度を高く保つことは、当然必要とされるが、組立後の温度制御や通電によるコンディショニングは、抵抗測定のために重要である。この中でも特に負極上のLiデンドライトを一様に形成することが困難であり課題となっている。このように従来の電池作製及び測定方法では、開発の評価や生産品の出荷前検査を目的とした場合、安定性、作業性、即応性そしてコスト的に優れているとは言い難い。 In addition, in the manufacture of each part of the pre-shipment inspection battery, it is naturally necessary to maintain stable quality and maintain high battery assembly accuracy, but post-assembly temperature control and conditioning by energization are not possible. Important for resistance measurement. Of these, it is particularly difficult to uniformly form Lidendrites on the negative electrode, which is a problem. As described above, it cannot be said that the conventional battery manufacturing and measuring methods are excellent in stability, workability, responsiveness, and cost for the purpose of evaluation of development and pre-shipment inspection of products.

本発明は、上記課題に鑑みてなされたものであり、非水系電解質二次電池の正極材料の抵抗評価をより迅速、高精度かつ低コストで容易に行うことの可能な、新規かつ改良された非水系電解質二次電池用正極材料の抵抗評価方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is new and improved so that the resistance evaluation of the positive electrode material of the non-aqueous electrolyte secondary battery can be easily performed more quickly, with high accuracy and at low cost. It is an object of the present invention to provide a resistance evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery.

本発明者らは、前述した本発明の目的を達成するために鋭意検討を重ねた結果、非水系電解質二次電池の正極材料の交流抵抗を測定する場合に、充電及び放電を行った後に所定の充電深度まで充電することを交流抵抗測定前のコンディショニングとし、その後に交流抵抗測定を行うことで、高精度で安定した測定結果を得ることができること、また、かかるコンディショニングが初期充放電容量測定を兼ねることで効率的な電池評価ができることを見出し、本発明を完成するに至った。 As a result of diligent studies to achieve the above-mentioned object of the present invention, the present inventors have determined after charging and discharging when measuring the AC resistance of the positive electrode material of the non-aqueous electrolyte secondary battery. By charging to the charging depth of the above as the conditioning before the AC resistance measurement and then performing the AC resistance measurement, highly accurate and stable measurement results can be obtained, and such conditioning can measure the initial charge / discharge capacity. We have found that efficient battery evaluation can be achieved by combining them, and have completed the present invention.

本発明の一態様は、非水系電解質二次電池の正極材料の抵抗評価を行う非水系電解質二次電池用正極材料の抵抗評価方法であって、前記非水系電解質二次電池の評価用電池を作製後に、少なくとも該評価用電池の正極膜に電解液が完全に浸透するまで該評価用電池を所定時間静置する工程と、前記所定時間を静置後に定電流充電する工程と、前記定電流充電後に前記評価用電池を休止してから定電流放電をする工程と、前記定電流放電後に前記評価用電池を休止してから定電流定電圧充電を行う工程と、前記定電流定電圧充電後に交流インピーダンス法により前記正極材料の抵抗測定を行う工程と、を含むことを特徴とする。
One aspect of the present invention is a resistance evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery, which evaluates the resistance of the positive electrode material of the non-aqueous electrolyte secondary battery, wherein the evaluation battery for the non-aqueous electrolyte secondary battery is used. After production, a step of allowing the evaluation battery to stand for a predetermined time at least until the electrolytic solution completely permeates the positive electrode film of the evaluation battery, a step of charging the evaluation battery with a constant current after allowing it to stand for a predetermined time, and the constant current. A step of suspending the evaluation battery after charging and then performing a constant current discharge, a step of suspending the evaluation battery after the constant current discharge and then performing a constant current constant voltage charge, and a step of performing the constant current constant voltage charge. It is characterized by including a step of measuring the resistance of the positive electrode material by an AC impedance method.

本発明の一態様によれば、負極表面に形成されるデンドライトの形成量のばらつきが低減されて負極表面が安定するようになるので、交流インピーダンス法で正極材料の抵抗評価値の精度が向上する。 According to one aspect of the present invention, the variation in the amount of dendrites formed on the surface of the negative electrode is reduced and the surface of the negative electrode becomes stable, so that the accuracy of the resistance evaluation value of the positive electrode material is improved by the AC impedance method. ..

このとき、本発明の一態様では、前記評価用電池を作製後に静置する前記所定時間は、少なくとも4時間以上であることとしてもよい。 At this time, in one aspect of the present invention, the predetermined time for allowing the evaluation battery to stand after being manufactured may be at least 4 hours or more.

このようにすれば、評価用電池の正極膜に電解液が完全に浸透するようになるので、その後の交流インピーダンス法による正極材料の抵抗評価値の精度が向上する。 By doing so, the electrolytic solution completely permeates the positive electrode film of the evaluation battery, so that the accuracy of the resistance evaluation value of the positive electrode material by the subsequent AC impedance method is improved.

また、本発明の一態様では、前記非水系電解質二次電池は、リチウムを含む遷移金属酸化物の正極と、金属リチウム又はリチウムを主成分とする金属からなる負極とがセパレータを挟んで向かい合うように配置されたリチウムイオン二次電池であり、特に、前記セパレータは、主成分をSiOとするガラス繊維からなることとしてもよい。 Further, in one aspect of the present invention, in the non-aqueous electrolyte secondary battery, a positive electrode of a transition metal oxide containing lithium and a negative electrode made of metallic lithium or a metal containing lithium as a main component face each other with a separator interposed therebetween. It is a lithium ion secondary battery arranged in, and in particular, the separator may be made of a glass fiber having SiO 2 as a main component.

このようにすれば、特に、リチウムイオン二次電池における交流インピーダンス法による正極材料の抵抗評価値の精度が向上する。 By doing so, in particular, the accuracy of the resistance evaluation value of the positive electrode material by the AC impedance method in the lithium ion secondary battery is improved.

また、本発明の一態様では、前記正極は、多孔質の正極膜から構成されることとしてもよい。 Further, in one aspect of the present invention, the positive electrode may be composed of a porous positive electrode film.

このようにすれば、正極膜の孔部に電解液が完全に浸透するようになるので、その後の交流インピーダンス法による正極材料の抵抗評価値の精度が向上する。 By doing so, the electrolytic solution completely permeates the pores of the positive electrode film, so that the accuracy of the resistance evaluation value of the positive electrode material by the subsequent AC impedance method is improved.

また、本発明の一態様では、前記正極膜は、正極活物質、導電材、粉末バインダーを混合し、加圧成型することで形成され、又は、正極活物質、導電材、結着材、溶媒をスラリー混合し、集電体に塗布することで形成されることとしてもよい。 Further, in one aspect of the present invention, the positive electrode film is formed by mixing a positive electrode active material, a conductive material, and a powder binder and pressure-molding, or the positive electrode active material, a conductive material, a binder, and a solvent. May be formed by mixing the slurry and applying it to the current collector .

このようにすれば、リチウムイオン二次電池の正極材料として好適な正極膜を効率的に形成できる。 By doing so, it is possible to efficiently form a positive electrode film suitable as a positive electrode material for a lithium ion secondary battery.

以上説明したように本発明によれば、リチウムイオン二次電池等の非水系電解質二次電池の電池材料開発や生産品の出荷前検査における抵抗評価の観点から、非水電解質二次電池の正極活物質の抵抗評価を迅速、高精度かつ低コストで容易に行うことができる。 As described above, according to the present invention, from the viewpoint of battery material development of non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries and resistance evaluation in pre-shipment inspection of products, the positive electrode of non-aqueous electrolyte secondary batteries. The resistance of the active material can be evaluated quickly, with high accuracy and at low cost.

本発明の一実施形態に係る非水系電解質二次電池用正極材料の抵抗評価方法で適用される評価用非水系電解質二次電池の構成を示す断面図である。It is sectional drawing which shows the structure of the non-aqueous electrolyte secondary battery for evaluation applied by the resistance evaluation method of the positive electrode material for the non-aqueous electrolyte secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る非水系電解質二次電池用正極活物質の抵抗評価方法の概略を示すフロー図である。It is a flow diagram which shows the outline of the resistance evaluation method of the positive electrode active material for a non-aqueous electrolyte secondary battery which concerns on one Embodiment of this invention.

以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. It should be noted that the present embodiment described below does not unreasonably limit the content of the present invention described in the claims, and all the configurations described in the present embodiment are indispensable as the means for solving the present invention. It is not always the case.

本発明の一実施形態に係る非水系電解質二次電池用正極材料の容量評価方法で適用される非水系電解質二次電池は、正極、負極及び非水系電解液等からなり、一般の非水系電解質二次電池と同様の構成要素により構成される。本発明の一実施形態に係る非水系電解質二次電池を2032型コイン電池に適用した例について、図面を使用しながら説明する。図1は、本発明の一実施形態に係る非水系電解質二次電池用正極材料の容量評価方法で適用される評価用非水系電解質二次電池の構成を示す断面図である。 The non-aqueous electrolyte secondary battery applied in the capacity evaluation method of the positive electrode material for the non-aqueous electrolyte secondary battery according to the embodiment of the present invention comprises a positive electrode, a negative electrode, a non-aqueous electrolyte solution and the like, and is a general non-aqueous electrolyte. It is composed of the same components as the secondary battery. An example in which the non-aqueous electrolyte secondary battery according to the embodiment of the present invention is applied to a 2032 type coin battery will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of an evaluation non-aqueous electrolyte secondary battery applied in the capacity evaluation method of a positive electrode material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

本発明の一実施形態に係る非水系電解質二次電池1は、2032型コイン電池であり、ケース2と、ケース2内に収容された電極3とから構成される。ケース2は、図1(B)に示すように、中空かつ一端が開口された正極缶2aと、この正極缶2aの開口部に配置される負極缶2bとを有しており、負極缶2bを正極缶2aの開口部に配置すると、負極缶2bと正極缶2aとの間に電極3を収容する空間が形成されるように構成される。電極3は、正極3a、セパレータ3c、及び負極3bとからなり、この順で並ぶように積層されており、正極3aが正極缶2aの内面に接触し、負極3bがウェーブワッシャー4を介して、負極缶2bの内面に接触するようにケース2に収容される。 The non-aqueous electrolyte secondary battery 1 according to the embodiment of the present invention is a 2032 type coin battery, and is composed of a case 2 and an electrode 3 housed in the case 2. As shown in FIG. 1B, the case 2 has a hollow positive electrode can 2a having one end open and a negative electrode can 2b arranged at the opening of the positive electrode can 2a, and the negative electrode can 2b. Is arranged in the opening of the positive electrode can 2a so that a space for accommodating the electrode 3 is formed between the negative electrode can 2b and the positive electrode can 2a. The electrode 3 is composed of a positive electrode 3a, a separator 3c, and a negative electrode 3b, and is laminated so as to be arranged in this order. It is housed in the case 2 so as to come into contact with the inner surface of the negative electrode can 2b.

なお、ケース2は、図1に示すように、ガスケット2cを備えており、このガスケット2cによって、正極缶2aと負極缶2bとの間が電気的に絶縁状態を維持するように固定される。また、ガスケット2cは、正極缶2aと負極缶2bとの隙間を密封して、ケース2内と外部との間を気密液密に遮断する機能も有している。 As shown in FIG. 1, the case 2 is provided with a gasket 2c, and the gasket 2c fixes the positive electrode can 2a and the negative electrode can 2b so as to electrically maintain an insulating state. Further, the gasket 2c also has a function of sealing the gap between the positive electrode can 2a and the negative electrode can 2b and airtightly blocking the space between the inside and the outside of the case 2.

次に、本発明の一実施形態に係る非水系電解質二次電池用正極活物質の抵抗評価方法のフローについて、図面を使用しながら説明する。図2は、本発明の一実施形態に係る非水系電解質二次電池用正極活物質の抵抗評価方法の概略を示すフロー図である。 Next, the flow of the resistance evaluation method of the positive electrode active material for a non-aqueous electrolyte secondary battery according to the embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a flow chart showing an outline of a resistance evaluation method for a positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

本発明の一実施形態に係る非水系電解質二次電池用正極活物質の抵抗評価方法は、リチウムイオン二次電池等の非水系電解質二次電池の開発評価や、生産品の出荷前検査における正極材料の抵抗評価を行う際に適用される。本発明の一実施形態に係る非水系電解質二次電池用正極活物質の抵抗評価方法は、図2に示すように、評価用電池作製工程S11、静置工程S12、定電流充電工程S13、休止工程S14、定電流放電工程S15、休止工程S16、定電流定電圧充電工程S17、及び交流インピーダンス測定工程S18を含む。 The resistance evaluation method for the positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention is a positive electrode in development evaluation of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery and pre-shipment inspection of a product. It is applied when evaluating the resistance of a material. As shown in FIG. 2, the resistance evaluation method of the positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention includes an evaluation battery manufacturing step S11, a stationary step S12, a constant current charging step S13, and a pause. It includes a step S14, a constant current discharge step S15, a pause step S16, a constant current constant voltage charging step S17, and an AC impedance measuring step S18.

評価用電池作製工程S11では、非水系電解質二次電池の評価用電池を作製する。本実施形態では、前述した図1(A)及び(B)に示すようなリチウムイオン二次電池として2032型コイン電池を評価用電池として、露点-30℃未満のグローブボックス又はドライルームの中で作成する。具体的には、リチウムを含む遷移金属酸化物の正極と、金属リチウム又はリチウムを主成分とする金属からなる負極とがセパレータを挟んで向かい合うように配置されたリチウムイオン二次電池を評価用電池として作製する。 In the evaluation battery manufacturing step S11, an evaluation battery for a non-aqueous electrolyte secondary battery is manufactured. In the present embodiment, a 2032 type coin battery as the lithium ion secondary battery as shown in FIGS. 1 (A) and 1 (B) described above is used as an evaluation battery in a glove box or a dry room having a dew point of less than −30 ° C. create. Specifically, an evaluation battery is a lithium ion secondary battery in which a positive electrode of a transition metal oxide containing lithium and a negative electrode made of metallic lithium or a metal containing lithium as a main component are arranged so as to face each other with a separator in between. Made as.

本実施形態では、負極を構成する負極板は、例えば、金属リチウム又はリチウムを主成分とする合金からなる直径14mm、厚み1.0mmのものを打ち抜いて作製される。正極を構成する正極膜は、正極活物質、導電材、及び粉末バインダーを任意の割合で均一に混合し、秤量した後に金型へ流し込み加圧成型することで作製される。具体的には、例えば、リチウムニッケル複合酸化物の粉末75wt%と、導電材となるカーボン粉末と結着剤となる例えばポリテトラフルオロエチレンを2対1で混ぜ合わせたものを25wt%とを混ぜ合わせた物からなる直径11mm、厚さ0.5mm前後、重さ10mg前後の多孔質の正極膜を効率的に作製する。なお、多孔質な正極膜は、スラリー混合し集電体に塗布する湿式混合によっても効率的に形成できる。 In the present embodiment, the negative electrode plate constituting the negative electrode is manufactured by punching, for example, a metal lithium or an alloy containing lithium as a main component, having a diameter of 14 mm and a thickness of 1.0 mm. The positive electrode film constituting the positive electrode is produced by uniformly mixing the positive electrode active material, the conductive material, and the powder binder in an arbitrary ratio, weighing them, and then pouring them into a mold to perform pressure molding. Specifically, for example, 75 wt% of lithium nickel composite oxide powder and 25 wt% of a 2: 1 mixture of carbon powder as a conductive material and, for example, polytetrafluoroethylene as a binder are mixed. Efficiently prepare a porous positive electrode film having a diameter of 11 mm, a thickness of about 0.5 mm, and a weight of about 10 mg, which is made of a combination material. The porous positive electrode film can also be efficiently formed by wet mixing in which the slurry is mixed and applied to the current collector.

セパレータは、電解液の吸液性が高いガラス繊維を用いることで、短時間に電極内部または電極間に十分な電解質の供給が可能となり、安定した電池評価をすることができるため好ましい。また、セパレータの厚みが厚くなると、正極と負極の間の距離が広くなるため、20~1000μmであることが好ましく、50~800μmであることがより好ましい。さらに、ガラス繊維の主成分をSiOとするものが好ましい。アルカリ成分が含まれると、条件によっては、電解液中に溶け出して電池の耐久性に影響する可能性があるために、出来れば含まれないことが好ましい。 It is preferable to use a glass fiber having a high liquid absorption property of the electrolytic solution as the separator because a sufficient electrolyte can be supplied to the inside of the electrode or between the electrodes in a short time, and stable battery evaluation can be performed. Further, as the thickness of the separator increases, the distance between the positive electrode and the negative electrode increases, so that the distance is preferably 20 to 1000 μm, more preferably 50 to 800 μm. Further, it is preferable that the main component of the glass fiber is SiO 2 . If an alkaline component is contained, it may dissolve in the electrolytic solution and affect the durability of the battery depending on the conditions. Therefore, it is preferable that the alkaline component is not contained.

非水系電解液としては、支持塩としてのリチウム塩を有機溶媒に溶解したものを用いることが好ましい。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独であるいは2種以上を混合して用いることができる。支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、及びそれらの複合塩を用いることができる。さらに、非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいてもよい。 As the non-aqueous electrolyte solution, it is preferable to use a solution in which a lithium salt as a supporting salt is dissolved in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, and tetrahydrofuran and 2-. Use one selected from ether compounds such as methyl tetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethyl sulfone and butane sulton, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc., alone or in combination of two or more. Can be done. As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , etc., and a composite salt thereof can be used. Further, the non-aqueous electrolyte solution may contain a radical catching agent, a surfactant, a flame retardant and the like.

評価用電池を作製したら、当該評価用電池を所定時間静置する(静置工程S12)。本実施形態では、評価用電池を作製後に静置する所定時間として、評価用電池の正極膜に電解液が完全に浸透させることによって、交流インピーダンス法による正極材料の抵抗評価値の精度を向上させるために、少なくとも4時間以上静置することを特徴とする。 After producing the evaluation battery, the evaluation battery is allowed to stand for a predetermined time (standing step S12). In the present embodiment, the accuracy of the resistance evaluation value of the positive electrode material by the AC impedance method is improved by completely infiltrating the positive electrode film of the evaluation battery with the electrolytic solution for a predetermined time to stand after the evaluation battery is manufactured. Therefore, it is characterized by being allowed to stand for at least 4 hours.

前述したように、正極膜は、多孔質であることから、正極膜への浸透具合がばらつくと正極材料のインピーダンス測定結果もばらつくため、電解液が完全に孔部へ入り込む浸透が必要となる。また、静置工程S12における静置時間が4時間未満では、電解液の正極膜への浸透が安定せず、一方、18時間以上とすると操業効率の観点から問題がある。静置時間は長い方が電解液を確実に浸透させることができるので、8時間以上がより好ましく、12時間以上が更に好ましい。このため、本実施形態では、交流インピーダンス法による正極材料の抵抗評価値の精度を高めるために、より確実に正極膜に電解液を完全に浸透させた上で評価方法の操業効率を鑑みて、評価用電池作製工程S11が終了した後の静置工程S12の静置時間を少なくとも4時間以上としている。 As described above, since the positive electrode film is porous, if the degree of penetration into the positive electrode film varies, the impedance measurement result of the positive electrode material also varies, so that it is necessary for the electrolytic solution to completely penetrate into the pores. Further, if the standing time in the standing step S12 is less than 4 hours, the permeation of the electrolytic solution into the positive electrode film is not stable, while if it is 18 hours or more, there is a problem from the viewpoint of operating efficiency. The longer the standing time, the more reliably the electrolytic solution can permeate, so 8 hours or more is more preferable, and 12 hours or more is further preferable. Therefore, in the present embodiment, in order to improve the accuracy of the resistance evaluation value of the positive electrode material by the AC impedance method, the electrolytic solution is more reliably permeated into the positive electrode film, and then the operational efficiency of the evaluation method is considered. The standing time of the standing step S12 after the evaluation battery manufacturing step S11 is completed is set to at least 4 hours or more.

作製した評価用電池を4時間静置した後に、評価用電池の定電流充電を行う(定電流充電工程S13)。本実施形態では、0.4mAで4.3Vまで定電流充電を行う。その後、評価用電池を1時間の休止の後(休止工程S14)、定電流放電を行う(定電流放電工程S15)。本実施形態では、3.0Vまで定電流放電を行う。このようにして、本実施形態では、定電流充電工程S13、休止工程S14,及び定電流放電工程S15のサイクルを1サイクル行う。 After allowing the produced evaluation battery to stand for 4 hours, the evaluation battery is constantly charged with a constant current (constant current charging step S13). In this embodiment, constant current charging is performed at 0.4 mA up to 4.3 V. Then, after the evaluation battery is paused for 1 hour (pause step S14), constant current discharge is performed (constant current discharge step S15). In this embodiment, constant current discharge is performed up to 3.0V. In this way, in the present embodiment, one cycle of the constant current charging step S13, the resting step S14, and the constant current discharging step S15 is performed.

その後、評価用電池を1時間休止後(工程S16)、定電流定電圧充電を行う(定電流定電圧充電工程S17)。本実施形態では、4.0Vまで1.6mA―0.2mAの電流で定電流定電圧充電を行う。そして、定電流定電圧充電工程S17で4.0Vに充電された評価用電池の正極材料の抵抗測定を交流インピーダンス法にて行う(交流インピーダンス測定工程S18)。 Then, after the evaluation battery is paused for 1 hour (step S16), constant current constant voltage charging is performed (constant current constant voltage charging step S17). In this embodiment, constant current and constant voltage charging is performed with a current of 1.6 mA to 0.2 mA up to 4.0 V. Then, the resistance of the positive electrode material of the evaluation battery charged to 4.0 V in the constant current / constant voltage charging step S17 is measured by the AC impedance method (AC impedance measuring step S18).

このように本実施形態では、まず、評価用電池の組み立て後に4時間以上静置することにより、電解液を多孔質状である正極の電極膜に浸透させる。その後にインピーダンス測定を行う充電状態まで充電してからインピーダンス測定をする場合、正極活物質LiNiOからLiが負極のLi金属表面に到達するようになる。このとき、負極の表面にLiデンドライトが斑状に形成されるが、この形成量には、ばらつきがあるため、負極表面の状態が安定しない状態となる。 As described above, in the present embodiment, first, the electrolytic solution is allowed to permeate into the porous electrode film of the positive electrode by allowing it to stand for 4 hours or more after assembling the evaluation battery. After that, when the impedance is measured after charging to a charged state where the impedance is measured, Li reaches the Li metal surface of the negative electrode from the positive electrode active material LiNi 2 O. At this time, Lidendrite is formed in a mottled manner on the surface of the negative electrode, but the amount of this formation varies, so that the state of the surface of the negative electrode is not stable.

このため、本実施形態では、正極材料の初期評価として、充放電容量とインピーダンスを測定するが、充放電を1サイクル実施した後、インピーダンスを測定する充電状態まで充電すると、正極からLiを引き出して負極のLi金属表面にLiが到達する量が2度の充電をすることによって、前述の2倍以上になり、Li金属の表面に形成されるLiデンドライトを一様にしている。充放電のサイクル数を1回増やして2回にすると、時間、コストがかかる上に、負極のLi金属表面にLiが到達する量が更に増えて、Liデンドライトの結晶が成長して、セパレータを突き抜けることによるショートの危険性が高まる。 Therefore, in the present embodiment, the charge / discharge capacity and the impedance are measured as the initial evaluation of the positive electrode material. However, after one cycle of charge / discharge is performed, when the battery is charged to the charged state where the impedance is measured, Li is pulled out from the positive electrode. By charging the Li metal surface of the negative electrode twice, the amount of Li reaching the surface of the Li metal is more than doubled as described above, and the Li dendrite formed on the surface of the Li metal is made uniform. If the number of charge / discharge cycles is increased by 1 to 2 times, it takes time and cost, and the amount of Li reaching the Li metal surface of the negative electrode further increases, and Li dendrite crystals grow to form a separator. The risk of short circuit due to penetration increases.

通常は、1サイクルすることで評価結果の精度を向上させることができるが、最適なサイクル数は、充放電条件や負極板の大きさも考慮して、実験等で適宜最適な回数を決めることができる。この結果、インピーダンスが安定して測定できるようになる。このようにして、本実施形態では、負極表面に形成されるデンドライトの形成量のばらつきが低減されて負極表面が安定するようになるので、交流インピーダンス法で正極材料の抵抗評価値の精度が向上するようになる。 Normally, the accuracy of the evaluation result can be improved by one cycle, but the optimum number of cycles can be appropriately determined by experiments, etc., taking into consideration the charge / discharge conditions and the size of the negative electrode plate. can. As a result, impedance can be measured stably. In this way, in the present embodiment, the variation in the amount of dendrite formed on the negative electrode surface is reduced and the negative electrode surface becomes stable, so that the accuracy of the resistance evaluation value of the positive electrode material is improved by the AC impedance method. Will come to do.

次に、本発明の一実施形態に係るリチウムイオン二次電池用正極材料の抵抗評価方法について実施例により詳しく説明する。なお、本発明は、これらの実施例に限定されるものではない。 Next, the resistance evaluation method of the positive electrode material for a lithium ion secondary battery according to the embodiment of the present invention will be described in detail with reference to Examples. The present invention is not limited to these examples.

(実施例1)
電池評価に使用する負極板として厚み1.0mmの金属リチウムを直径14mmに打ち抜いた物を用い、正極材としては、ニッケル酸リチウムの粉末75wt%と、導電材となるカーボン粉末としてアセチレンブラック粉末を、結着剤であるポリテトラフルオロエチレンとで2対1で混ぜ合わせたもの25wt%とを混ぜ合わせた直径11mm重さ75mgを用いる。この正極膜の活物質重量物は、52.5mg相当である。セパレータは、JIS P 3801の保留粒子系0.3mであり、厚さ0.20mmであるガラス繊維製のフィルタを直径16mmに切り取ったものを用いた。
(Example 1)
The negative electrode plate used for battery evaluation is made by punching out metallic lithium with a thickness of 1.0 mm to a diameter of 14 mm. As the positive electrode material, 75 wt% of lithium nickelate powder and acetylene black powder as the carbon powder as the conductive material are used. , A mixture of 25 wt% with polytetrafluoroethylene as a binder in a ratio of 2: 1 is used, and a diameter of 11 mm and a weight of 75 mg are used. The weight of the active material of this positive electrode film is equivalent to 52.5 mg. The separator used was a JIS P 3801 reserved particle system 0.3 m, and a glass fiber filter having a thickness of 0.20 mm cut out to a diameter of 16 mm.

電解液は、電解質LiClO、1モル/Lを含有するエチレンカーボネート(EC)とジエチルメチルカーボネート(DEC)の等量混合液を用いた。これらの材料を用いて露点-30℃未満のグローブボックス又はドライルームの中で2032型コイン電池を2個作製した。 As the electrolytic solution, an equal amount mixture of ethylene carbonate (EC) and diethyl methyl carbonate (DEC) containing 1 mol / L of electrolyte LiClO 4 was used. Using these materials, two 2032 type coin batteries were manufactured in a glove box or a dry room with a dew point of less than −30 ° C.

抵抗評価は、作製した電池を4時間静置し、0.4mAで4.3Vまで定電流充電を行い、1時間の休止の後、3.0Vまで放電するサイクルを1サイクル行い、1時間休止後に4.0Vまで1.6mA―0.2mAの電流で定電流定電圧充電を行った。4.0Vに充電された電池を交流インピーダンス法にて測定を行い、コールコールプロットにて得られた曲線に対し、等価回路を用いて正極の界面抵抗を計算した。 For resistance evaluation, the prepared battery is allowed to stand for 4 hours, charged at a constant current of 0.4 mA to 4.3 V, paused for 1 hour, then discharged to 3.0 V for 1 cycle, and then paused for 1 hour. Later, constant current and constant voltage charging was performed with a current of 1.6 mA to 0.2 mA up to 4.0 V. A battery charged to 4.0 V was measured by the AC impedance method, and the interface resistance of the positive electrode was calculated using an equivalent circuit with respect to the curve obtained by the Cole-Cole plot.

(比較例1)
実施例1と同等の電池構成で作製した電池を1時間静置した後に、4.0Vまで1.6mA―0.2mAの電流で定電流定電圧充電をおこなった。4.0Vに充電された電池を交流インピーダンス法にて測定を行ったことを除いて実施例1と同様に実施した。
(Comparative Example 1)
After allowing the battery produced with the same battery configuration as in Example 1 to stand for 1 hour, constant current and constant voltage charging was performed with a current of 1.6 mA to 0.2 mA up to 4.0 V. The same procedure as in Example 1 was carried out except that the battery charged to 4.0 V was measured by the AC impedance method.

(比較例2)
実施例1と同等の電池構成で作製した電池を12時間静置した後に、4.0Vまで1.6mA―0.2mAの電流で定電流定電圧充電を行った。4.0Vに充電された電池を交流インピーダンス法にて測定を行ったことを除いて実施例1と同様に実施した。
(Comparative Example 2)
After allowing the battery produced with the same battery configuration as in Example 1 to stand for 12 hours, constant current and constant voltage charging was performed with a current of 1.6 mA to 0.2 mA up to 4.0 V. The same procedure as in Example 1 was carried out except that the battery charged to 4.0 V was measured by the AC impedance method.

これら実施例1、比較例1、及び比較例2の抵抗評価結果を以下の表1に示す。 The resistance evaluation results of Example 1, Comparative Example 1, and Comparative Example 2 are shown in Table 1 below.

Figure 0007064821000001
Figure 0007064821000001

実施例1の抵抗評価結果では、電池2個の正極界面抵抗の値のばらつき(2個の電池の正極界面抵抗値の差異)が1個目の測定値の約2.0%であり、ばらつきの小さな、安定した抵抗評価結果が得られることが分かった。一方、比較例1では、電池2個の正極界面抵抗のばらつきが1個目の測定値の約40%であり、比較例2では、電池2個の正極界面抵抗のばらつきが1個目の測定値の25%であった。以上の結果から、本発明の一実施形態に係るリチウムイオン二次電池用正極材料の抵抗評価方法を用いることによって、リチウムイオン二次電池の抵抗評価結果のばらつきを小さくして、精度を向上させることができることが分かった。 In the resistance evaluation result of Example 1, the variation in the positive electrode interface resistance values of the two batteries (difference in the positive electrode interface resistance values of the two batteries) is about 2.0% of the first measured value, which is a variation. It was found that a small and stable resistance evaluation result was obtained. On the other hand, in Comparative Example 1, the variation in the positive electrode interface resistance of the two batteries is about 40% of the first measured value, and in Comparative Example 2, the variation in the positive electrode interface resistance of the two batteries is the first measurement. It was 25% of the value. From the above results, by using the resistance evaluation method for the positive electrode material for a lithium ion secondary battery according to the embodiment of the present invention, the variation in the resistance evaluation result of the lithium ion secondary battery is reduced and the accuracy is improved. I found that I could do it.

なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although each embodiment and each embodiment of the present invention have been described in detail as described above, those skilled in the art will be able to make many modifications that do not substantially deviate from the new matters and effects of the present invention. , Will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、非水系電解質二次電池の構成、非水系電解質二次電池用正極材料の抵抗評価方法の動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, in a specification or drawing, a term described at least once with a different term having a broader meaning or a synonym may be replaced with the different term in any part of the specification or the drawing. Further, the configuration of the non-aqueous electrolyte secondary battery and the operation of the resistance evaluation method of the positive electrode material for the non-aqueous electrolyte secondary battery are not limited to those described in each embodiment and each embodiment of the present invention, and various modifications are carried out. Is possible.

1 非水系電解質二次電池(リチウムイオン二次電池)、2 ケース、2a 正極缶、2b 負極缶、2c ガスケット、3 電極、3a 正極(正極膜)、3b 負極、3c セパレータ、4 ウェーブワッシャー、S11 評価用電池作製工程、S12 静置工程、S13 定電流充電工程、S14 休止工程、S15 定電流放電工程、S16休止工程、S17 定電流定電圧充電工程、S18 交流インピーダンス測定工程 1 Non-aqueous electrolyte secondary battery (lithium ion secondary battery), 2 cases, 2a positive electrode can, 2b negative electrode can, 2c gasket, 3 electrode, 3a positive electrode (positive electrode film), 3b negative electrode, 3c separator, 4 wave washer, S11 Evaluation battery manufacturing process, S12 static process, S13 constant current charging process, S14 pause process, S15 constant current discharge process, S16 pause process, S17 constant current constant voltage charging process, S18 AC impedance measurement process.

Claims (6)

非水系電解質二次電池の正極材料の抵抗評価を行う非水系電解質二次電池用正極材料の抵抗評価方法であって、
前記非水系電解質二次電池の評価用電池を作製後に、少なくとも該評価用電池の正極膜に電解液が完全に浸透するまで該評価用電池を所定時間静置する工程と、
前記所定時間を静置後に定電流充電する工程と、
前記定電流充電後に前記評価用電池を休止してから定電流放電をする工程と、
前記定電流放電後に前記評価用電池を休止してから定電流定電圧充電を行う工程と、
前記定電流定電圧充電後に交流インピーダンス法により前記正極材料の抵抗測定を行う工程と、を含むことを特徴とする非水系電解質二次電池用正極材料の抵抗評価方法。
It is a resistance evaluation method for the positive electrode material for a non-aqueous electrolyte secondary battery, which evaluates the resistance of the positive electrode material of the non-aqueous electrolyte secondary battery.
After manufacturing the evaluation battery of the non-aqueous electrolyte secondary battery, the evaluation battery is allowed to stand for a predetermined time at least until the electrolytic solution completely permeates the positive electrode film of the evaluation battery.
The process of constant current charging after standing for a predetermined time and
A step of suspending the evaluation battery after the constant current charge and then discharging the constant current.
A step of suspending the evaluation battery after the constant current discharge and then performing a constant current constant voltage charge.
A method for evaluating the resistance of a positive electrode material for a non-aqueous electrolyte secondary battery , which comprises a step of measuring the resistance of the positive electrode material by an AC impedance method after charging with a constant current and a constant voltage.
前記評価用電池を作製後に静置する前記所定時間は、少なくとも4時間以上であることを特徴とする請求項1に記載の非水系電解質二次電池用正極材料の抵抗評価方法。 The resistance evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the predetermined time for standing after producing the evaluation battery is at least 4 hours or more. 前記非水系電解質二次電池は、リチウムを含む遷移金属酸化物の正極と、金属リチウム又はリチウムを主成分とする金属からなる負極とがセパレータを挟んで向かい合うように配置されたリチウムイオン二次電池であることを特徴とする請求項1又は2に記載の非水系電解質二次電池用正極材料の抵抗評価方法。 The non-aqueous electrolyte secondary battery is a lithium ion secondary battery in which a positive electrode of a transition metal oxide containing lithium and a negative electrode made of metallic lithium or a metal containing lithium as a main component face each other with a separator in between. The resistance evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the positive electrode material is characterized by the above. 前記セパレータは、主成分をSiOとするガラス繊維からなることを特徴とする請求項3に記載の非水系電解質二次電池用正極材料の抵抗評価方法。 The resistance evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 3, wherein the separator is made of glass fiber having SiO 2 as a main component. 前記正極は、多孔質の正極膜から構成されることを特徴とする請求項3又は4に記載の非水系電解質二次電池用正極材料の抵抗評価方法。 The resistance evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 3 or 4, wherein the positive electrode is composed of a porous positive electrode film. 前記正極膜は、正極活物質、導電材、結着剤を混合し、加圧成型することで形成され、又は、正極活物質、導電材、結着剤、溶媒をスラリー混合し集電体に塗布することで形成されることを特徴とする請求項5に記載の非水系電解質二次電池用正極材料の抵抗評価方法。 The positive electrode film is formed by mixing a positive electrode active material, a conductive material, and a binder and molding under pressure, or a slurry of a positive electrode active material, a conductive material, a binder, and a solvent is mixed into a current collector. The resistance evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 5, wherein the electrode is formed by coating.
JP2016106490A 2016-05-27 2016-05-27 Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries Active JP7064821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016106490A JP7064821B2 (en) 2016-05-27 2016-05-27 Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016106490A JP7064821B2 (en) 2016-05-27 2016-05-27 Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries

Publications (2)

Publication Number Publication Date
JP2017212175A JP2017212175A (en) 2017-11-30
JP7064821B2 true JP7064821B2 (en) 2022-05-11

Family

ID=60475611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016106490A Active JP7064821B2 (en) 2016-05-27 2016-05-27 Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries

Country Status (1)

Country Link
JP (1) JP7064821B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103065A (en) 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2012221756A (en) 2011-04-08 2012-11-12 Nippon Sheet Glass Co Ltd Separator for nonaqueous secondary battery and battery including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773636B2 (en) * 2001-06-20 2011-09-14 Agcセイミケミカル株式会社 Method for producing lithium cobalt composite oxide
JP5409174B2 (en) * 2009-08-04 2014-02-05 住友金属鉱山株式会社 Lithium nickel composite oxide for positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP5729613B2 (en) * 2012-10-09 2015-06-03 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the battery
WO2014132660A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery
JP2015138617A (en) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103065A (en) 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2012221756A (en) 2011-04-08 2012-11-12 Nippon Sheet Glass Co Ltd Separator for nonaqueous secondary battery and battery including the same

Also Published As

Publication number Publication date
JP2017212175A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP5754358B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN107658472B (en) Negative electrode comprising mesh-type current collector, lithium secondary battery comprising same, and method for manufacturing same
KR101799669B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP6541035B2 (en) Method of evaluating battery characteristics using non-aqueous electrolyte coin type battery and method of evaluating battery characteristics of positive electrode active material for non-aqueous electrolyte secondary battery
WO2018025469A1 (en) Lithium ion secondary battery and method for manufacturing same
CN111699585A (en) Stack-folding type electrode assembly and lithium metal battery including the same
JP6988084B2 (en) Capacity evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries
JP6627621B2 (en) Output evaluation method of lithium ion secondary battery
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
JP2019021465A (en) Method for analyzing lithium ion concentration distribution in lithium ion secondary battery electrode and cell for evaluation
Ranque et al. Performance based materials evaluation for Li batteries through impedance spectroscopy-A critical review
JP6689512B2 (en) Method for manufacturing lithium secondary battery
US20180108945A1 (en) Lithium battery, solid electrolyte membrane and their manufacturing methods thereof
KR102045478B1 (en) Electrolyte dosing calculation method for lithium secondary battery
JP2014232578A (en) Method for manufacturing sealed battery
JP7064821B2 (en) Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries
JP5708510B2 (en) Non-aqueous electrolyte secondary battery
JP2017091804A (en) Method for analyzing lithium ion concentration distribution in lithium ion secondary battery electrode, and cell for evaluation
CN117203821A (en) Method for manufacturing secondary battery
CN115084512A (en) Method for manufacturing nonaqueous electrolyte secondary battery and negative electrode active material
JP2003100351A (en) Method of measuring self-discharge amount of lithium ion secondary cell and method of manufacturing lithium ion secondary cell
JP5447176B2 (en) Nonaqueous electrolyte secondary battery charging method and manufacturing method
JP2017117541A (en) Nonaqueous electrolyte secondary battery for positive electrode active material evaluation, and method for measuring positive electrode resistance
CN114072952B (en) Method for determining the degree of wetting by using a low current test
JP2003173769A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201009

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201020

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201027

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201218

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201222

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210616

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220301

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220329

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R150 Certificate of patent or registration of utility model

Ref document number: 7064821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150