JP2012221756A - Separator for nonaqueous secondary battery and battery including the same - Google Patents

Separator for nonaqueous secondary battery and battery including the same Download PDF

Info

Publication number
JP2012221756A
JP2012221756A JP2011086644A JP2011086644A JP2012221756A JP 2012221756 A JP2012221756 A JP 2012221756A JP 2011086644 A JP2011086644 A JP 2011086644A JP 2011086644 A JP2011086644 A JP 2011086644A JP 2012221756 A JP2012221756 A JP 2012221756A
Authority
JP
Japan
Prior art keywords
separator
liquid absorption
battery
microporous
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011086644A
Other languages
Japanese (ja)
Inventor
Kazuishi Mitani
一石 三谷
Akimitsu Hishinuma
晶光 菱沼
Hisakazu Ino
寿一 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2011086644A priority Critical patent/JP2012221756A/en
Publication of JP2012221756A publication Critical patent/JP2012221756A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a nonaqueous secondary battery, having high porosity, high liquid absorbing performance and high heat resistance in an appropriate thickness range (20-40 μm).SOLUTION: In a separator for a nonaqueous secondary battery, a resin fine porous body having voids which are non-contiguous and flat in a direction along a surface of a fine porous sheet is formed inside the fine porous sheet comprising an inorganic material.

Description

本発明は、リチウムイオン二次電池等の非水系二次電池に使用され、耐熱性、吸液性に優れ、高い空隙率を有する非水系二次電池用セパレータ及びこれを用いた電池に関する。   The present invention relates to a separator for a non-aqueous secondary battery that is used in a non-aqueous secondary battery such as a lithium ion secondary battery, has excellent heat resistance and liquid absorption, and has a high porosity, and a battery using the same.

非水系二次電池用セパレータに必要とされる条件として以下の(1)〜(3)がある。
(1)適正な厚みを有するものであること
セパレータ厚みは、小型化(高エネルギー密度化)や低抵抗化の観点からはより薄い方が好ましいが、自動車用、定置型用などの大型電池での安全性(短絡・微短絡防止)を重視する場合にはより厚い方が好ましく、汎用小型携帯電話用電池用セパレータの厚み(Celgard LLC製の「Celgard(登録商標)#2500」では25μm)と同等もしくは若干厚くなる範囲の20μm〜40μmが実用的な厚みとされている。
The following conditions (1) to (3) are required for the separator for the non-aqueous secondary battery.
(1) It must have an appropriate thickness. The separator thickness is preferably thinner from the viewpoint of miniaturization (high energy density) and low resistance, but for large batteries for automobiles, stationary types, etc. Thickness is preferable when the safety (short circuit / slight short circuit prevention) is important, and the thickness of the battery separator for general-purpose small mobile phones (Celgard LLC's “Celgard (registered trademark) # 2500” is 25 μm) A practical thickness is 20 μm to 40 μm, which is equivalent or slightly thicker.

(2)微多孔を備えたものであること
非水系電池では設計電極間隔において電極同士の短絡又は微短絡(ここでは完全に接触してショートするわけではないが電場印加時に微弱な電流が流れる現象を「微短絡」と呼ぶ。)が生じないよう、セパレータに(a)隔壁機能が求められる。リチウムイオン電池の場合はリチウムイオンの移動が可能で且つ電極同士が接触しないための隔壁機能が求められる。
リチウムイオン電池の電極はアルミ箔又は銅箔の集電体と、活物質粒子をバインダーで固めた活物質層で構成され、電池内部において、ある確率で活物質粒子(導電性)の脱落が生じる。また、電池で充放電を繰り返す中でバインダーが劣化して活物質粒子が脱落する可能性がある。リチウムイオン以外の導電性異物が正極―負極間を自由に移動しないように、セパレータには(b)フィルター機能が求められる。また、負極からの金属リチウム針状結晶(デンドライド)が発生しセパレータを貫通して正極に達するのを防止する機能、いわゆる(c)デンドライド抑制機能が求められる。セパレータにイオン伝導性を持たせながら(a)隔壁機能、(b)フィルター機能、(c)デンドライド抑制機能を付与するためには実用的な厚みを持ったセパレータが微多孔を有することが効果的とされている。
リチウムイオン電池の場合、現在の活物質粒子径が数μmから数十μmが主体でありサブミクロンメートルサイズの活物質も存在することがあること、今後、活物質粒子の微細化が進みサブミクロンサイズのものの割合が多くなることを考えると、隔壁機能やフィルター機能には少なくともサブミクロンオーダーの均一な微多孔膜が必要になる。また、デンドライドは直径がミクロンサイズのものが問題になるが、サブミクロンの太さのデンドライドも存在し、デンドライド成長を抑制するためにはサブミクロンオーダー以下の均一な微多孔膜を用いることが有効である。
(2) It must have micro-porosity In a non-aqueous battery, the electrodes are short-circuited or short-circuited at the design electrode interval (here, a phenomenon in which a weak current flows when an electric field is applied, although not completely contacted and short-circuited) (A) partition function is required for the separator so as not to occur. In the case of a lithium ion battery, a partition function is required so that lithium ions can move and electrodes do not contact each other.
An electrode of a lithium ion battery is composed of a current collector made of aluminum foil or copper foil and an active material layer in which active material particles are hardened with a binder, and the active material particles (conductivity) fall off with a certain probability inside the battery. . Further, the active material particles may fall off due to deterioration of the binder during repeated charging and discharging of the battery. The separator is required to have a filter function (b) so that conductive foreign substances other than lithium ions do not freely move between the positive electrode and the negative electrode. In addition, a function of preventing metal lithium needle crystals (dendrid) from being generated from the negative electrode and penetrating the separator and reaching the positive electrode, that is, a so-called (c) dendride suppressing function is required. In order to provide (a) partition function, (b) filter function, and (c) dendride suppression function while providing ion conductivity to the separator, it is effective that the separator having a practical thickness has micropores. It is said that.
In the case of lithium ion batteries, the current active material particle size is mainly from several μm to several tens of μm, and there may be sub-micrometer-sized active materials. Considering that the proportion of size increases, a uniform microporous film of at least submicron order is required for the partition function and filter function. In addition, dendrites with micron diameters are a problem, but there are dendrites with submicron thickness, and it is effective to use a uniform microporous film of submicron order or less to suppress dendride growth. It is.

(3)実用的な機械強度を有すること
一方、量産工程におけるセパレータは通常は、ロールの形状で提供され、電池組み立て工程において所定張力で引張り加工がされる。電池組み立て装置やライン速度によってセパレータにかかる力は異なるが、組み立て工程でのセパレータ破損を避けるためには、目安としてターゲット厚み20μm〜40μmのセパレータにおける引張強度が10N/25mm以上であることが求められる。
(3) Having practical mechanical strength On the other hand, the separator in the mass production process is usually provided in the form of a roll, and is pulled with a predetermined tension in the battery assembly process. Although the force applied to the separator varies depending on the battery assembling apparatus and the line speed, in order to avoid the separator breakage in the assembling process, it is required that the tensile strength in the separator having a target thickness of 20 μm to 40 μm is 10 N / 25 mm or more as a guide. .

上記(1)〜(3)の条件に関して、従来のオレフィン系樹脂セパレータでは、適正厚みの範囲(20μm〜40μm)で、サブミクロンオーダーの均一な微多孔膜が形成され、実用的な機械強度(引張り強度10N/25mm以上)を有しているので、セパレータとしての必要条件を満たすものの、電池の大型化・高性能化が進む中、以下の(4)〜(6)の特性は不十分であった。   With regard to the above conditions (1) to (3), in the conventional olefin resin separator, a uniform microporous film on the order of submicron is formed within the appropriate thickness range (20 μm to 40 μm), and practical mechanical strength ( However, the following characteristics (4) to (6) are inadequate as the size and performance of the battery progresses, although the requirements for the separator are satisfied. there were.

(4)空隙率を高くすること
電池性能向上の観点からセパレータ抵抗はより低いことが好ましく、セパレータ抵抗(=単位厚み当たりのセパレータ抵抗×セパレータ厚み)、単位厚み当たりのセパレータ抵抗(=電解液抵抗×空隙率×(イオン経路長/膜厚))で記述され、適正厚み(20μm〜40μm)のセパレータにおいて空隙率を高くすることがセパレータ抵抗の低減に効果的と考えられる。セパレータ抵抗が小さいとより急速な充電が可能になる。また、空隙率を高くすることで放熱特性が良くなる。セパレータ抵抗が小さくなると同じ電流を流した際に、充放電中の発熱が少なくなり、電池系内の温度上昇が抑えられ、電池作動温度上昇を抑えることで電池寿命向上に繋がる。電池が大型化されるほど電池内部で発生する熱の放熱効率が悪くなり、発熱が少ないことが求められる。
空隙率は、特許文献1に記載のオレフィン樹脂微多孔膜セパレータは70%未満(40から60%程度)で十分とはいえず、より高い空隙率、例えば70%超、90%超が望まれる。空隙率が高い構造体としては特許文献2に記載のセルロースエアロゲル等のエアロゲルを使用した構造体があるがシート形状に加工されたエアロゲル単体は機械強度が小さいという問題がある。
(4) Increase porosity The separator resistance is preferably lower from the viewpoint of improving battery performance, separator resistance (= separator resistance per unit thickness × separator thickness), separator resistance per unit thickness (= electrolyte resistance) × Porosity × (ion path length / film thickness) 2 ), and increasing the porosity in a separator having an appropriate thickness (20 μm to 40 μm) is considered effective in reducing the separator resistance. If the separator resistance is small, more rapid charging is possible. Moreover, heat dissipation characteristics are improved by increasing the porosity. When the same current is applied when the separator resistance is reduced, heat generation during charging and discharging is reduced, temperature rise in the battery system is suppressed, and battery life is improved by suppressing battery operating temperature rise. The larger the battery, the worse the heat dissipation efficiency of the heat generated inside the battery, and the less heat generation is required.
The porosity of the olefin resin microporous membrane separator described in Patent Document 1 is less than 70% (about 40 to 60%), which is not sufficient, and a higher porosity, for example, more than 70% or more than 90% is desired. . As a structure having a high porosity, there is a structure using an airgel such as cellulose airgel described in Patent Document 2. However, an airgel processed into a sheet shape has a problem of low mechanical strength.

(5)高い吸液性能を有すること
非水系電池は、充放電時に負極及び正極の活物質層が膨張と収縮を繰り返す。活物質層膨張に伴い電極間距離が縮まると、セパレータが圧縮されてセパレータに保持されていた電解液がセパレータから滲み出る。セパレータから滲み出した電解液は、主に電池のデッドスペース(端部の隙間)に一時的に貯蔵され、活物質層収縮時(電極間距離が広がる際)にセパレータに戻る。充電時に膨張した活物質層が放電時に収縮する際に、セパレータから滲み出した液が完全に戻らず局所的にセパレータが乾燥する現象(液枯れ現象)が起こると、電解集中等が起こり、活物質への局所的な負荷が増大する、或いはデンドライドが発生するといったことに繋がり、それらは容量低下やサイクル寿命低下などさまざまな問題を引き起こす。
充放電時の電解液の液枯れを防ぐためには、充電時にセパレータから滲み出した電界液を放電時に速やかにセパレータに戻す機能(吸液機能)が重要となる。特許文献1に記載のオレフィン樹脂微多孔膜セパレータは電解液に対する濡れ性が悪いため吸液性能に問題がある。電池の大型化に伴い電極面積、セパレータ面積が大きくなると、充放電中にセパレータから滲み出して端部近傍に存在する電解液がきちんとセパレータ内部まで戻らない、つまり吸液性能が不十分であるという問題がある。オレフィン系樹脂の電解液に対する濡れ性をよくするために界面活性剤が使用されることがあるが、界面活性剤の使用は、界面活性剤の劣化や脱離が起こると局所的な液枯れに繋がるので電池寿命の観点から好ましくない。
(5) Having high liquid absorption performance In the non-aqueous battery, the active material layer of the negative electrode and the positive electrode repeatedly expands and contracts during charge and discharge. When the distance between the electrodes is reduced along with the expansion of the active material layer, the separator is compressed and the electrolytic solution held in the separator oozes out from the separator. The electrolyte that has oozed out of the separator is temporarily stored mainly in the dead space (edge gap) of the battery, and returns to the separator when the active material layer contracts (when the distance between the electrodes increases). When the active material layer expanded during charging contracts during discharge, if the phenomenon that the liquid exuded from the separator does not return completely and the separator is dried locally (liquid drainage phenomenon) occurs, electrolytic concentration occurs and the active This leads to an increase in local load on the material or generation of dendriides, which causes various problems such as capacity reduction and cycle life reduction.
In order to prevent the electrolyte from dying during charging and discharging, a function (liquid absorbing function) for quickly returning the electric field liquid that has oozed out of the separator during charging to the separator during discharging is important. The olefin resin microporous membrane separator described in Patent Document 1 has a problem in liquid absorption performance because of poor wettability with respect to the electrolytic solution. If the electrode area and the separator area increase with the increase in size of the battery, the electrolyte that oozes out from the separator during charge and discharge and does not return to the inside of the separator properly, that is, the liquid absorption performance is insufficient. There's a problem. Surfactants may be used to improve the wettability of olefinic resins to electrolytes. However, the use of surfactants may cause local erosion when the surfactant deteriorates or detaches. This is not preferable from the viewpoint of battery life.

(6)耐熱性を有すること
リチウムイオン電池では異常発熱時に電池が発火に至らずに安全に壊れることが切望されており、セパレータが溶けて短絡することで熱暴走に拍車をかけることが危惧されており、高温域での隔壁機能、即ち、防火壁機能が望まれる。しかしながら、現在の携帯電池用セパレータ(オレフィン樹脂微多孔膜)では樹脂の溶融温度近傍で熱収縮が起こり、或いは大きな孔があくといった問題があり、樹脂融点以上の高温域での防火壁機能がない。ポリエチレン樹脂で120℃〜130℃、ポリプロピレン樹脂で170℃〜180℃よりも高温域で熱収縮、溶融による穴あきが問題となる。
(6) Having heat resistance Lithium-ion batteries are eagerly desired to break safely without igniting during abnormal heat generation, and there is a concern that the separator melts and short-circuits, which may spur thermal runaway. Therefore, a partition function in a high temperature range, that is, a fire wall function is desired. However, current portable battery separators (olefin resin microporous membranes) have problems such as heat shrinkage near the melting temperature of the resin or large pores, and there is no fire wall function in a high temperature range above the resin melting point. . Holes due to heat shrinkage and melting at temperatures higher than 120 ° C. to 130 ° C. for polyethylene resins and 170 ° C. to 180 ° C. for polypropylene resins are problematic.

特許第3305006号公報Japanese Patent No. 3305006 特開2008−231258号公報JP 2008-231258 A

そこで、本発明は適正厚みの範囲(20μmから40μm)で高い空隙率、高い吸液性能、高い耐熱性を備えた非水系二次電池用セパレータを提供することを目的とする。   Then, this invention aims at providing the separator for non-aqueous secondary batteries provided with the high porosity, the high liquid absorption performance, and the high heat resistance in the range (20 micrometers-40 micrometers) of appropriate thickness.

本発明者らが鋭意検討を重ねた結果、図1に示すように、無機材料から構成される微多孔シート1の内部に、微多孔シート1の厚さ方向Tと直交する方向において、不連続で、且つ、同方向に延びるようにして扁平な空隙2を有する樹脂微多孔体3を形成することにより、適正な厚みの範囲(20μmから40μm)で、サブミクロンオーダー(0.1μm未満)の均一な微多孔を備えたシートとなり、実用的な機械強度(引張り強度10N/25mm以上)を有する、といったセパレータとしての必要条件を満たしつつ、「高い空隙率」、「高い吸液性能」、「高い耐熱性」を付与したセパレータが得られることを見出した。   As a result of intensive studies by the inventors, as shown in FIG. 1, discontinuity occurs in the direction perpendicular to the thickness direction T of the microporous sheet 1 inside the microporous sheet 1 made of an inorganic material. In addition, by forming the resin microporous body 3 having the flat voids 2 so as to extend in the same direction, in the appropriate thickness range (20 μm to 40 μm), the submicron order (less than 0.1 μm) While satisfying the requirements for a separator such as a sheet having uniform micropores and having a practical mechanical strength (tensile strength of 10 N / 25 mm or more), “high porosity”, “high liquid absorption performance”, “ It has been found that a separator having high heat resistance can be obtained.

無機材料から構成される微多孔シートは、電解液に対する濡れ性がよく、高温で熱収縮が生じず自立した隔壁機能を維持でき、且つ、実用的な機械強度を有するものであれば特に限定されないが、主成分が二酸化珪素のガラス繊維やアルミナ繊維からなる不織布を好適に使用できる。主成分が二酸化珪素のガラス繊維やアルミナ繊維からなる不織布は、適正厚み範囲(20μm〜40μm)において実用的な機械強度(引張り強度10N/25mm以上)を有し、90%以上の高い空隙率のものを抄紙法などによって作製することができ、繊維自体の電解液に対する濡れ性がよいため、高い吸液性能を有する。
しかしながら、例えば、ガラス繊維やアルミナ繊維単独からなる不織布は、セパレータの適正厚み範囲(20μm〜40μm)のものは、大きな孔が存在し(サブミクロンオーダーの均一な微多孔が必要であるセパレータとしての要件を満たしておらず)電池組みした際に初期短絡或いは微短絡が起こるという不具合があった。短絡・微短絡の対策としてサブミクロンオーダーの微多孔体で面を覆いつくす方法はいくつかあるが、例えば、極細の無機繊維や極細の有機繊維で充填する方法では、厚さ20μm〜40μmでサブミクロンオーダーの微多孔を有するセパレータが得られた際の空隙率が70%未満となりセパレータ抵抗が大きくなり好ましくない。
70%以上の高い空隙率を維持しつつサブミクロンオーダーの微多孔を付与するには、無機材料から構成される微多孔シートをガラス繊維からなる不織布から構成することが好ましく、この内部にセルロースや、PVDF・HFP、ポリエチレン等の樹脂を使用して微多孔を形成する。樹脂微多孔形成は自己組織化を用いた三次元網目形成の手法を用いて行う。自己組織化を用いた三次元網目形成により、造孔材を用いる方法で得られた多孔体に比べて樹脂の充填量を小さくすることができ(高い空隙率になる)、更にガラス繊維表面を電解液との濡れ性が悪い樹脂が被覆する面積が小さくなる効果があり、結果的に吸液性に優れるセパレータが得られることになる。
The microporous sheet made of an inorganic material is not particularly limited as long as it has good wettability to an electrolyte, can maintain a self-supporting partition function without causing thermal contraction at high temperatures, and has practical mechanical strength. However, the nonwoven fabric which consists of a glass fiber or an alumina fiber whose main component is silicon dioxide can be used conveniently. Nonwoven fabric made of glass fiber or alumina fiber whose main component is silicon dioxide has practical mechanical strength (tensile strength of 10 N / 25 mm or more) in an appropriate thickness range (20 μm to 40 μm), and has a high porosity of 90% or more. Since it can be manufactured by a papermaking method and the wettability of the fiber itself to the electrolyte is good, it has high liquid absorption performance.
However, for example, a nonwoven fabric composed solely of glass fiber or alumina fiber has a separator having an appropriate thickness range (20 μm to 40 μm) and has large pores (as a separator that requires uniform micropores on the order of submicrons). There was a problem in that an initial short circuit or a fine short circuit occurred when the battery was assembled. There are several methods to cover the surface with a microporous material of submicron order as a countermeasure against short circuit / micro short circuit. For example, in the method of filling with ultrafine inorganic fibers or ultrafine organic fibers, the thickness is 20 μm to 40 μm. The porosity when a separator having micropores on the order of microns is obtained is less than 70%, which is not preferable because the separator resistance increases.
In order to provide submicron-order microporosity while maintaining a high porosity of 70% or more, it is preferable that the microporous sheet made of an inorganic material is made of a nonwoven fabric made of glass fibers, and cellulose or A microporous material is formed using a resin such as PVDF / HFP or polyethylene. The resin microporous formation is performed using a method of forming a three-dimensional network using self-organization. By forming a three-dimensional network using self-organization, it is possible to reduce the amount of resin filling compared to the porous body obtained by the method using the pore former (high porosity), and further to the glass fiber surface This has the effect of reducing the area covered by the resin having poor wettability with the electrolytic solution, and as a result, a separator having excellent liquid absorbency can be obtained.

また、発明者らが吸液性能について詳細に研究した結果、電池が大型化される、或いは、電池容量増加を目指して活物質層の厚みが厚くなる際に(それらはより液枯れが起こり易くなる方向であるが)、短時間域での吸液速度及び吸液速度の異方性がより重要になることが分かった。短時間域での吸液速度と吸液速度の異方性について更に詳しく説明する。
電池の種類は捲回型電池とラミネート型電池に大別されるが、何れの電池においてもセパレータは電極シート(集電体+活物質層)よりも大きなサイズのものが用いられ、端部において電極シート同士が接触しないよう留意されている。電極シートと交互に何層にも積層されたセパレータ端部はセパレータ同士が重なっており、重なったセパレータ端部近傍は完全に板状ではなく、やや変形したり(例えば、同じ方向に曲がったり)しており、電解液が一旦端部のデッドスペースに出されるとセパレータ同士の積層により局所的に厚くなった部分を介して電解液が戻らなければならない状況が出てくる場合がある。また、充電時に重力方向下部に電解液が偏る傾向があり上部で液枯れが起こり易い。局所的に厚くなったセパレータ部分を介しての電解液戻りや、電解液が偏った状態から電解液がセパレータ内部まで均等に戻らなければならないといった困難さを想定した、吸液機能の設計が重要になる。電池が大型化される、或いは電池の容量向上を目指して活物質層の厚みが厚くなることは、液枯れが起こり易くなる方向であり、より速やかに且つ均一に吸液させる機能をセパレータに持たせる必要がある。つまり短時間域における吸液速度の適正な設計が重要となる。吸液量はルーカス−ウォッシュバーン(Lucas-Washburn)式によって記述され、吸液量は短時間領域では時間の平方根に比例する。時間の平方根に対して吸液量をプロットさせたグラフの傾きから吸液速度を定義することができる。また、シート状のセパレータが異方性を持つこと(セパレータの厚さ方向に垂直な面上のx−y(MD−TD)方向の長さが、厚さzの長さに比べて非常に大きいこと)と、局所的に厚くなったセパレータ部分を介しての液戻り、電解液が偏った状態からの液戻りといった、より液が戻りにくいケースが想定されることを鑑みると、セパレータのx−y方向の吸液速度を、厚さz方向の吸液速度に比べてより大きくすること(吸液速度の異方性)かつ、Z方向の液戻りも想定してZ方向にも適切な吸液速度を有する(Z方向の吸液速度が極端に小さくなるのはZ方向の液戻りが不十分になりよくない。現在市販されているポリオレフィン系セパレータと同等以上が好適)ように設計することが、速やか且つ均一な吸液に重要になる。
In addition, as a result of detailed studies on the liquid absorption performance by the inventors, when the battery is enlarged or the thickness of the active material layer is increased with the aim of increasing the battery capacity (they are more liable to wither to liquid). However, it was found that the liquid absorption rate and the anisotropy of the liquid absorption rate in a short time range become more important. The liquid absorption rate in a short time region and the anisotropy of the liquid absorption rate will be described in more detail.
The types of batteries are roughly classified into wound type batteries and laminated type batteries. In any type of battery, a separator having a size larger than that of the electrode sheet (current collector + active material layer) is used. Care is taken to avoid contact between the electrode sheets. Separator ends that are stacked in layers alternately with the electrode sheet overlap each other, and the vicinity of the overlapped separator ends is not completely plate-shaped and is slightly deformed (for example, bent in the same direction) In some cases, once the electrolytic solution is discharged into the dead space at the end, the electrolytic solution must return through a portion locally thickened by stacking separators. Also, the electrolyte tends to be biased in the lower part of the gravitational direction during charging, and the liquid tends to wither at the upper part. It is important to design a liquid absorption function that assumes the difficulty of returning the electrolyte solution locally through the thickened separator part and the electrolyte solution from returning to the inside of the separator even when the electrolyte solution is biased. become. Increasing the size of the battery or increasing the thickness of the active material layer with the aim of improving the capacity of the battery tends to cause liquid drainage, and the separator has a function of absorbing liquid more quickly and uniformly. It is necessary to make it. In other words, an appropriate design of the liquid absorption speed in a short time region is important. The liquid absorption is described by the Lucas-Washburn equation, and the liquid absorption is proportional to the square root of time in the short time region. The liquid absorption speed can be defined from the slope of the graph in which the liquid absorption amount is plotted against the square root of time. In addition, the sheet-like separator has anisotropy (the length in the xy (MD-TD) direction on the surface perpendicular to the thickness direction of the separator is much larger than the thickness z). In view of the fact that the liquid is more difficult to return, such as liquid return through a locally thick separator portion and liquid return from a state where the electrolyte is biased, the x of the separator -The liquid absorption rate in the y direction is made larger than the liquid absorption rate in the thickness z direction (anisotropy in the liquid absorption rate), and it is also appropriate in the Z direction assuming liquid return in the Z direction. It is designed to have a liquid absorption speed (the liquid absorption speed in the Z direction becomes extremely small, so that the liquid return in the Z direction is not sufficient. It is preferable that it is equal to or better than the polyolefin-based separator currently on the market). This is important for quick and uniform liquid absorption.

本発明者らは、セパレータのx−y方向の吸液速度を、Z方向にも現在市販されているポリオレフィン系セパレータ“Celgard#2500”と同等以上の吸液速度を有するようにし、かつ厚さz方向の吸液速度に比べてより大きくする(吸液速度の異方性を出す)ために、ミクロンオーダー以上のサイズの不連続で扁平な空隙を有する微多孔シートを形成した。横向き(シート表面に平行)の繊維の密度が縦向き(シート表面に垂直)の繊維の密度よりも大きいガラス繊維不織布を用い、樹脂量を適宜調整することで、シート表面と裏面はサブミクロンの微多孔樹脂で覆われ、シート断面にミクロンオーダー以上のサイズの不連続で扁平な空隙を有する、所望のセパレータを得ることができる。シート断面写真で観察される不連続で扁平な空隙は、面方向の吸液速度増大(空隙半径増大による吸液速度の増加、ガラス繊維表面に付着する樹脂量の減少による吸液速度の増加)、空隙率増大(樹脂量が少なくなることによる)といった効果がある。尚、充填する樹脂量を単純に減らして空隙を設けることは、機械強度の必要条件であるシートの平面方向の引張強度が実用的であることや、デンドライド抑制に必要な面方向でサブミクロンの微多孔で覆われていることを損なうことが懸念されるが、本発明のように不連続で扁平な空隙をあけると実用的な機械強度を有し、デンドライド防止機能が維持されることが分かった。   The inventors have set the liquid absorption speed in the xy direction of the separator to be equal to or higher than that of the polyolefin-based separator “Celgard # 2500” currently marketed in the Z direction, and the thickness. In order to make it larger than the liquid absorption speed in the z direction (to produce anisotropy of the liquid absorption speed), a microporous sheet having discontinuous and flat voids having a size of micron order or more was formed. By using a glass fiber nonwoven fabric in which the density of the fibers in the horizontal direction (parallel to the sheet surface) is larger than the density of the fibers in the vertical direction (perpendicular to the sheet surface), the sheet surface and back surface are submicron by adjusting the resin amount as appropriate. A desired separator can be obtained which is covered with a microporous resin and has a discontinuous and flat void having a size of micron order or more in the sheet cross section. Discontinuous and flat voids observed in the sheet cross-section photograph show an increase in the liquid absorption rate in the surface direction (an increase in the liquid absorption rate due to an increase in the void radius and an increase in the liquid absorption rate due to a decrease in the amount of resin adhering to the glass fiber surface). , There is an effect of increasing the porosity (by reducing the amount of resin). It should be noted that simply reducing the amount of resin to be filled to provide a gap is that the tensile strength in the plane direction of the sheet, which is a necessary condition of mechanical strength, is practical, and the sub-micron direction in the plane direction required for dendride suppression. There is a concern that it may be damaged by being covered with fine pores, but it is found that if a discontinuous and flat gap is opened as in the present invention, it has practical mechanical strength and maintains a dendride prevention function. It was.

本発明の非水系二次電池用セパレータは、前記知見に基づきなされたもので、請求項1に記載の通り、無機材料から構成される微多孔シートの内部に、前記微多孔シートの表面に沿う方向に不連続で扁平な空隙を有する樹脂微多孔体が形成されていることを特徴とする。
請求項2記載の本発明は、請求項1に記載の非水系二次電池用セパレータにおいて、前記樹脂微多孔体は、前記微多孔シートの厚さ方向において層状に形成されることを特徴とする。
請求項3記載の本発明は、請求項1又は2に記載の非水系二次電池用セパレータにおいて、前記樹脂微多孔体は、網目状であることを特徴とする。
請求項4記載の本発明は、請求項1乃至3の何れか1項に記載の非水系二次電池用セパレータにおいて、前記微多孔シートがガラス繊維不織布であることを特徴とする。
請求項5記載の本発明は、請求項1乃至4の何れか1項に記載の非水系二次電池用セパレータにおいて、前記微多孔シートの厚さ方向の電解液に対する吸液速度をVzとし、前記厚さ方向と直交する方向の前記電解液に対する吸液速度をVxとし、Vxが2.0以上且つ吸液速度比Vx/Vzが2以上とし、空隙率が70%以上、透気度が5秒以上500秒以下であることを特徴とする。
請求項6記載の本発明は、請求項5に記載の非水系二次電池用セパレータにおいて、前記電解液の吸液速度Vxが2.5以上、且つ、前記吸液速度比Vx/Vzが4.5以上とし、前記空隙率が90%以上、前記透気度が5秒以上100秒以下であることを特徴とする。
また、本発明の非水系二次電池は、請求項7に記載の通り、請求項1乃至6の何れか1項に記載のセパレータを有することを特徴とする。
The separator for a non-aqueous secondary battery according to the present invention is based on the above knowledge, and as described in claim 1, the surface of the microporous sheet is formed inside the microporous sheet made of an inorganic material. A resin microporous body having discontinuous and flat voids in the direction is formed.
According to a second aspect of the present invention, in the separator for a non-aqueous secondary battery according to the first aspect, the resin microporous body is formed in layers in the thickness direction of the microporous sheet. .
According to a third aspect of the present invention, in the separator for a non-aqueous secondary battery according to the first or second aspect, the resin microporous material has a network shape.
According to a fourth aspect of the present invention, in the separator for a non-aqueous secondary battery according to any one of the first to third aspects, the microporous sheet is a glass fiber nonwoven fabric.
According to a fifth aspect of the present invention, in the separator for a non-aqueous secondary battery according to any one of the first to fourth aspects, the liquid absorption speed with respect to the electrolyte in the thickness direction of the microporous sheet is Vz, The liquid absorption speed with respect to the electrolyte solution in the direction orthogonal to the thickness direction is Vx, Vx is 2.0 or more, the liquid absorption speed ratio Vx / Vz is 2 or more, the porosity is 70% or more, and the air permeability is It is 5 seconds or more and 500 seconds or less.
According to a sixth aspect of the present invention, in the separator for a non-aqueous secondary battery according to the fifth aspect, the liquid absorption rate Vx of the electrolytic solution is 2.5 or more and the liquid absorption rate ratio Vx / Vz is 4 5 or more, the porosity is 90% or more, and the air permeability is 5 seconds or more and 100 seconds or less.
Moreover, the non-aqueous secondary battery of this invention has a separator as described in any one of Claims 1 thru | or 6 as described in Claim 7.

本発明によれば、無機材料から構成される微多孔シートの内部に、前記微多孔シートの表面に沿う方向に不連続で扁平な空隙を有する樹脂微多孔体を形成するようにしたため、適正厚みの範囲(20μmから40μm)で高い空隙率、高い吸液性能、高い耐熱性を備えた非水系二次電池用セパレータが得られ、また、このセパレータを用いることにより短絡がなく、内部電池抵抗が小さくて、ハイレート特性の優れた非水二次電池が得られる。   According to the present invention, a resin microporous body having discontinuous and flat voids in a direction along the surface of the microporous sheet is formed inside the microporous sheet made of an inorganic material. In the range (20 μm to 40 μm), a separator for a non-aqueous secondary battery having a high porosity, high liquid absorption performance, and high heat resistance is obtained. A small non-aqueous secondary battery with excellent high rate characteristics can be obtained.

本発明のセパレータの概念図Conceptual diagram of the separator of the present invention 造孔法で作製した多孔体の概念図Conceptual diagram of a porous material produced by the pore making method 自己組織化で作製した網目の概念図Conceptual diagram of a mesh created by self-organization 相分離法で形成されたラメラ構造の概念図Conceptual diagram of lamellar structure formed by phase separation method 相分離法で形成されたシリンダー構造の概念図Conceptual diagram of cylinder structure formed by phase separation method 吸液速度の指標(吸液係数Ka)の説明図Explanatory drawing of liquid absorption speed index (liquid absorption coefficient Ka) 改良ラローズ法の説明図Illustration of the improved Larose method 実施例3のSEM像(セパレータ断面)SEM image of Example 3 (separator cross section) 実施例3のSEM像(セパレータ表面)SEM image of Example 3 (Separator surface) 実施例8(PVDF・HFP系)のセパレータ表面のSEM像SEM image of separator surface of Example 8 (PVDF / HFP system) 実施例11(PE系)のセパレータ表面のSEM像SEM image of separator surface of Example 11 (PE system) 実施例1〜11並びに比較例1及び2の試験結果を示す表Table showing test results of Examples 1 to 11 and Comparative Examples 1 and 2

以下、本発明を詳細に説明する。
本発明の非水系二次電池用セパレータは、無機材料から構成される微多孔シートの内部に、前記微多孔シートの表面に沿って不連続で扁平な空隙を有する樹脂微多孔体を形成したもので、セパレータとしての適正厚み20−40μm(2.0N加圧時)で、シート表面から見て或いはシートを剥離した表面から見てサブミクロンの均一な微多孔が形成されており、実用的な引張り強度が10N/25mm以上を有する。このようなセパレータとしての必要要件を満たしつつ、高い空隙率、優れた吸液性、高い耐熱性能を有する。
Hereinafter, the present invention will be described in detail.
The separator for a non-aqueous secondary battery of the present invention is obtained by forming a resin microporous body having a discontinuous and flat void along the surface of the microporous sheet inside the microporous sheet made of an inorganic material. With an appropriate thickness of 20-40 μm as a separator (at 2.0 N pressure), submicron uniform micropores are formed as viewed from the sheet surface or from the surface from which the sheet is peeled off. The tensile strength is 10 N / 25 mm or more. While satisfying the requirements for such a separator, it has high porosity, excellent liquid absorbency, and high heat resistance.

無機材料から構成される微多孔シートに用いられる無機材料は、電解液に対する濡れ性がよく、高温で熱収縮が起こらず自立した隔壁機能を維持でき、且つ実用的な機械強度を有するものであれば特に限定されないが、主成分が二酸化珪素のガラス繊維やアルミナ繊維からなる不織布を好適に使用できる。主成分が二酸化珪素のガラス繊維やアルミナ繊維からなる不織布は、適正厚み範囲(20μmから40μm)において実用的な機械強度(引張り強度10N/25mm以上)を有し、90%以上の高い空隙率のものを抄紙法などによって作製することができ、繊維自体の電解液に対する濡れ性がよいため、高い吸液性能を有する。ガラス繊維を用いたシート状構造体としては、ガラス織物(ガラスクロス)とガラス不織布が挙げられるが、ガラス不織布はガラスクロスよりも安価に製造でき、且つ高い空隙率が得られるので好ましい。
ガラス不織布の構成は、ガラス不織布内部に、ガラス不織布の厚さ方向と直交する方向において、不連続で扁平な空隙を有する樹脂微多孔体を形成するのに適するように、横向き(シート表面に平行)の繊維の密度が縦向き(シート表面に垂直)の繊維密度よりも大きいことが好ましい。このような構造体を形成する方法としては公知の不織布を製造する技術を用いて製造することができる。すなわち、湿式、乾式、乾式パルプ式、メルトブロー式などにより製造することができる。特に、傾斜単網方式や長網方式の湿式抄紙法は、走行する網に沿っては繊維を配向するさせるのが容易であり、横向き(シート表面に平行)の繊維の密度が縦向き(シート表面に垂直)の繊維密度よりも大きい構造体を得ることができるのでより好ましい。また、前記ガラス不織布におけるガラスは主成分が二酸化珪素のガラスが好適に使用できる。SiO以外の成分に関してはガラス形成に適した成分であれば特に限定されないが、LiO、NaO、KO、CaO、MgO、BaO、B、Al、ZrO等を挙げることができる。ここでNaO、KOのアルカリ成分は電解液中に溶出すると電池のイオン伝導を阻害する或いは電池の耐久性に悪影響を及ぼす可能性があるので、それらが溶出しない組成が好ましい。例えば、無アルカリガラスを用いることが好ましい。ガラス繊維の繊維径は、平均繊維径が0.1から5μmのものを好適に使用できる。平均繊維径が0.1から5μmのガラス繊維を単独配もしくは異なった繊維径のものを組み合わせて抄紙することで、セパレータ厚みが20から40μmで、機械強度と厚み均一性に優れたガラス不織布シートを作製することができる。
The inorganic material used for the microporous sheet composed of an inorganic material has good wettability to the electrolyte, can maintain a self-supporting partition function without causing thermal contraction at high temperature, and has practical mechanical strength. Although it will not specifically limit, the nonwoven fabric which consists of a glass fiber and an alumina fiber whose main component is a silicon dioxide can be used conveniently. Nonwoven fabric composed of glass fiber or alumina fiber whose main component is silicon dioxide has practical mechanical strength (tensile strength of 10 N / 25 mm or more) in an appropriate thickness range (20 μm to 40 μm), and has a high porosity of 90% or more. Since it can be manufactured by a papermaking method and the wettability of the fiber itself to the electrolyte is good, it has high liquid absorption performance. Examples of the sheet-like structure using glass fibers include a glass woven fabric (glass cloth) and a glass nonwoven fabric. A glass nonwoven fabric is preferable because it can be produced at a lower cost than a glass cloth and a high porosity can be obtained.
The configuration of the glass nonwoven fabric is horizontal (parallel to the sheet surface) so as to be suitable for forming a microporous resin body having discontinuous and flat voids in the direction perpendicular to the thickness direction of the glass nonwoven fabric. ) Is greater than the fiber density in the vertical direction (perpendicular to the sheet surface). As a method of forming such a structure, it can be manufactured using a technique for manufacturing a known nonwoven fabric. That is, it can be manufactured by a wet method, a dry method, a dry pulp method, a melt blow method, or the like. In particular, the slanted single-mesh and long-mesh wet papermaking methods make it easy to orient the fibers along the traveling net, and the fiber density in the horizontal direction (parallel to the sheet surface) is vertical (sheet). It is more preferable because a structure having a fiber density higher than the fiber density perpendicular to the surface can be obtained. Moreover, the glass in the said glass nonwoven fabric can use the glass whose main component is silicon dioxide suitably. Components other than SiO 2 are not particularly limited as long as they are suitable for glass formation, but Li 2 O, Na 2 O, K 2 O, CaO, MgO, BaO, B 2 O 3 , Al 2 O 3 , ZrO 2 etc. can be mentioned. Here, since the alkaline components of Na 2 O and K 2 O are dissolved in the electrolyte solution, they may inhibit the ionic conduction of the battery or adversely affect the durability of the battery. Therefore, a composition in which they are not eluted is preferable. For example, it is preferable to use alkali-free glass. A glass fiber having an average fiber diameter of 0.1 to 5 μm can be suitably used. A glass nonwoven fabric sheet with a separator thickness of 20 to 40 μm, excellent in mechanical strength and thickness uniformity, by making paper with glass fibers having an average fiber diameter of 0.1 to 5 μm alone or in combination with different fiber diameters Can be produced.

無機材料から構成される微多孔シートの内部に形成する樹脂微多孔体は、微多孔を形成できる樹脂であれば特に限定されないが、非延伸の状態で自己組織化により微多孔を形成できる樹脂がより好ましい。樹脂単体で微多孔シートを作製する場合は、延伸により微多孔を形成する方法が好まれて用いられるが、無機材料から構成される微多孔シートは変形しないため、その内部に更に樹脂微多孔を形成するためには、非延伸の状態で微多孔を形成する必要がある。微多孔形成方法には造孔剤を用いてそれを後から抽出などで除去する方法(造孔材法)や自己組織化プロセスを用いて自発的に網目構造を形成する方法(自己組織化法)、相分離を利用して構造体(ラメラ、シリンダー)を形成する方法があるが、同じ均一な孔を作製する場合、自己組織化法は造孔材法に比べて空隙率が大きく、廉価でできるのでより好ましい。図2に造孔材法で作製した多孔体の概念図を、図3に自己組織化で作製した網目状多孔体の概念図を示す。自己組織化で作製した網目状多孔体は造孔材法で作製した多孔体に比べて空隙率を大きくできることが分かる。尚、相分離を利用してつくられるラメラ構造やシリンダー構造は、高い空隙率を保ちながら、イオンが通過可能でデンドライドを抑制する形状を提供できない。図4にラメラ構造(板状の層が並ぶ構造)を、図5にシリンダー構造(柱が一方向に並ぶ構造)を示した。
無機材料から構成される微多孔シートの内部に形成する樹脂微多孔体に使用される樹脂の種類は特に限定されないが、耐熱性に優れるセルロース、電気化学的な耐久性に優れるPVDF、現在の電池で使用実績のあるオレフィン樹脂などを好適に使用することができる。
The resin microporous body formed inside the microporous sheet made of an inorganic material is not particularly limited as long as it is a resin that can form micropores, but there is a resin that can form micropores by self-organization in a non-stretched state. More preferred. In the case of producing a microporous sheet with a single resin, a method of forming micropores by stretching is preferred and used. However, since microporous sheets made of inorganic materials are not deformed, resin micropores are further added to the inside. In order to form, it is necessary to form micropores in an unstretched state. The microporous formation method uses a pore-forming agent to remove it later by extraction (pore-forming material method) or a method of spontaneously forming a network structure using a self-organization process (self-organization method) ), There is a method of forming a structure (lamellar, cylinder) using phase separation, but when producing the same uniform pores, the self-organization method has a higher porosity and is less expensive than the pore former method. This is more preferable. FIG. 2 shows a conceptual diagram of a porous material produced by the pore former method, and FIG. 3 shows a conceptual diagram of a mesh-like porous material produced by self-organization. It can be seen that the reticulated porous material produced by self-organization can have a higher porosity than the porous material produced by the pore former method. Note that a lamella structure or a cylinder structure formed by utilizing phase separation cannot provide a shape that allows ions to pass therethrough and suppresses dendrites while maintaining a high porosity. FIG. 4 shows a lamella structure (a structure in which plate-like layers are arranged), and FIG. 5 shows a cylinder structure (a structure in which columns are arranged in one direction).
The type of resin used for the resin microporous material formed inside the microporous sheet made of an inorganic material is not particularly limited, but cellulose having excellent heat resistance, PVDF excellent in electrochemical durability, and current batteries And olefin resins having a track record of use can be suitably used.

以下に、本発明のセパレータの実施例について比較例とともに説明するが、これら実施例、比較例の評価指標は以下の通りである。
(1)空隙率
セパレータ抵抗の指標である空隙率(=100−固体占有率(%))を、無機材料から構成される構造体の質量W1と比重ρ1、樹脂微多孔体の質量W2と比重ρ2とセパレータ厚みd(2N加圧時)を用いて算出した。
(2)透気度
セパレータ厚み方向のイオン流の流れ易さの代用指標として空気の透過し易さを評価した。透気度(気体の透過性)は、JIS P 8117に準じる方法で求めた。体積300cmの空気がセパレータを通過するのに要した時間(秒)を透気度とした。透気度は、セパレータ抵抗や、短絡に関わる大きな孔の有無の指標として用いられる。
(3)吸液速度(Vx)
吸液量は時間の平方根に比例する。主要因子である(i)毛管輸送(Lucas-Washburn式に従う)、(ii)細孔内の蒸気拡散輸送や(iii)表面拡散(ii、iiiはFick型拡散則に従う)は何れも時間の平方根に比例する。短時間領域の吸液速度の指標Kaは以下の方法で算出した。サンプル端部を液体に接触させてからの経過時間Tの平方根に対して吸液量Vをプロットすると、図6に示すようなグラフが得られる。このとき、縦軸Vは吸液量(サンプルのサイズを固定したときは吸液高さに変換できる)、縦軸方向のずれVrは表面凹凸を埋めるのに必要な液量に相当する。横軸(接触してからの時間Tの平方根)のずれはブリストーらによって提唱された濡れ時間Twでサンプルが液で濡れるまでに要する時間である。電池系内では湿潤状態での吸液挙動を取り扱うので、前記VrやTmの影響を除いたKaが重要な指標となる。
Hereinafter, examples of the separator of the present invention will be described together with comparative examples. Evaluation indexes of these examples and comparative examples are as follows.
(1) Porosity The porosity (= 100−solid occupancy (%)), which is an index of separator resistance, is determined based on the mass W1 and specific gravity ρ1 of the structure composed of an inorganic material, and the mass W2 and specific gravity of the resin microporous body. It calculated using (rho) 2 and separator thickness d (at the time of 2N pressurization).
(2) Air permeability The ease of air permeation was evaluated as a substitute index for the ease of flow of ion flow in the separator thickness direction. The air permeability (gas permeability) was determined by a method according to JIS P 8117. The time required for air having a volume of 300 cm 2 to pass through the separator (seconds) was defined as the air permeability. The air permeability is used as an indicator of the presence or absence of a large hole related to a separator resistance or a short circuit.
(3) Liquid absorption speed (Vx)
The amount of liquid absorption is proportional to the square root of time. The main factors (i) capillary transport (according to the Lucas-Washburn equation), (ii) vapor diffusion transport in the pores, and (iii) surface diffusion (ii, iii follow Fick's diffusion law) are all square roots of time. Is proportional to The index Ka of the liquid absorption speed in the short time region was calculated by the following method. When the liquid absorption amount V is plotted against the square root of the elapsed time T after the end of the sample is brought into contact with the liquid, a graph as shown in FIG. 6 is obtained. At this time, the vertical axis V corresponds to the liquid absorption amount (can be converted to the liquid absorption height when the sample size is fixed), and the vertical axis shift Vr corresponds to the liquid amount necessary to fill the surface irregularities. The deviation of the horizontal axis (the square root of time T after contact) is the time required for the sample to get wet with the liquid at the wetting time Tw proposed by Bristow et al. Since the liquid absorption behavior in a wet state is handled in the battery system, Ka excluding the influence of Vr and Tm is an important index.

Lucas-Washburn式は、
V=(r*γ*cosθ*t/2/η)1/2
(V:吸液量、r:毛管半径、γ:液体の表面自由エネルギー、θ:接触角、η:粘度、t:時間)
で記述され、これに補正因子Vr、Twを加味した式は以下で記述される。
Lucas-Washburn formula is
V = (r * γ * cos θ * t / 2 / η) 1/2
(V: liquid absorption amount, r: capillary radius, γ: surface free energy of liquid, θ: contact angle, η: viscosity, t: time)
A formula including the correction factors Vr and Tw is described below.

V=Vr+Ka・(T−Tw)1/2
(V:吸液量、Vr:粗さ係数、T:サンプルが液に接触してから経過した時間、Tw:濡れ時間、Ka吸収係数)
V = Vr + Ka · (T−Tw) 1/2
(V: liquid absorption amount, Vr: roughness coefficient, T: time elapsed since the sample contacted the liquid, Tw: wetting time, Ka absorption coefficient)

尚、吸液量/時間の平方根(100・(ms)1/2当たりの吸液高さ)を指標として用いた。液はリチウムイオン電池で用いられる炭酸エステル系溶剤の代表例としてEC(エチレンカーボネート)/DMC(ジメチルカーボネート)=1/2の溶媒を用いた。 The square root of the liquid absorption amount / time (the liquid absorption height per 100 · (ms) 1/2 ) was used as an index. As a liquid, a solvent of EC (ethylene carbonate) / DMC (dimethyl carbonate) = 1/2 was used as a representative example of a carbonate ester solvent used in a lithium ion battery.

x−y方向の吸液速度Vx、Vyは、JIS L-1907 バイレック法/繊維、JIS P-8141 クレム法/紙と同様の装置を用い、25mm幅の短冊状サンプルの液に浸漬したときを測定開始時間として、時間の平方根に対して吸液高さをプロットした曲線の初期勾配Kaを用いた。Kaは100((ms)1/2)当たりの吸液高さmmの値を用いた。
Z方向の吸液速度Vzは、セパレータ厚みが薄く、短時間で吸い上げが完了するため、短時間域の測定に適している改良ラローズ法を用いた。図7に改良ラローズ法の原理を示した。改良ラローズ法では、液体充填容器4により抱水されたガラスフィルター5上に、サンプル6を押圧し、サンプル6が吸い上げた水の量を、液体充填容器4に接続されたガラス管7のメニスカス8の移動を読み取る方法で短時間域の吸液量を求めた。時間の平方根に対して吸液量をプロットした曲線の初期勾配を吸液速度とした。尚、定型に切り出したセパレータサンプルは隙間がないように積層し、端部からの液回り込みを避けるためのシール処理を施した。サンプルと液が接触する際に積層したサンプル間に隙間があかないよう適度にサンプルを押さえつけながら吸液測定を行った。
The liquid absorption speeds Vx and Vy in the xy directions are measured when immersed in a 25 mm width strip sample liquid using the same equipment as JIS L-1907 Bayrec method / fiber and JIS P-8141 Krem method / paper. As the measurement start time, the initial slope Ka of a curve in which the liquid absorption height was plotted against the square root of time was used. As the Ka, a value of the liquid absorption height mm per 100 ((ms) 1/2 ) was used.
As the liquid absorption speed Vz in the Z direction, an improved Larose method suitable for measurement in a short time region was used because the separator was thin and the suction was completed in a short time. FIG. 7 shows the principle of the improved Larose method. In the modified Larose method, the sample 6 is pressed onto the glass filter 5 held in water by the liquid-filled container 4, and the amount of water sucked up by the sample 6 is changed to the meniscus 8 of the glass tube 7 connected to the liquid-filled container 4. The amount of liquid absorption in a short time region was obtained by a method of reading the movement of the liquid. The initial slope of a curve plotting the liquid absorption amount against the square root of time was defined as the liquid absorption speed. In addition, the separator sample cut out into the standard shape was laminated so that there was no gap, and was subjected to a sealing treatment to avoid liquid sneaking from the end. The liquid absorption was measured while pressing the sample moderately so that there was no gap between the stacked samples when the sample and the liquid contacted.

(4)吸液速度比(Vx/Vz)
吸液速度比(吸液速度の異方性)は、上記(3)の吸液速度Vx、Vzを用いて、Vx/Vzとして定義した。
(4) Liquid absorption speed ratio (Vx / Vz)
The liquid absorption speed ratio (anisotropy of liquid absorption speed) was defined as Vx / Vz using the liquid absorption speeds Vx and Vz in (3) above.

(5)短絡試験
HSセル及び20mAhラミネートセルを用いて、LIB電池のサイクル試験を行い初期短絡及びサイクル試験中の微短絡を評価した。短絡又は微短絡ありを×印で、短絡・微短絡なしを○印で表記した。短絡、又は微短絡が起こることは実用的な電池として作動しないことを意味する。
(5) Short-circuit test Using the HS cell and the 20 mAh laminate cell, the cycle test of the LIB battery was performed to evaluate the initial short circuit and the micro short circuit during the cycle test. “Short-circuited” or “Slightly short-circuited” is indicated by “X”, and “Short-circuited / not slightly short-circuited” is indicated by “◯”. The occurrence of a short circuit or fine short circuit means that the battery does not operate as a practical battery.

(6)セパレータ抵抗評価
マンガン酸リチウム正極シートとセパレータとグラファイト負極シートを積層し、電解液としてEC(エチレンカーボネート)/DMC(ジメチルカーボネート)/DEC(ジエチルカーボネート)=25/60/15(体積比)を溶媒として電解質LiPF6を濃度が1mol/Lになるように溶解させたものを使用した。20mAhラミネートセルを作製した。作製したラミネートセルを電池として安定させるために以下の充電・放電操作を施した。ラミネートセルを25℃雰囲気下で、3.2mA(約0.2C)の電流値で電池電圧4.2Vまで充電し、合計5時間充電を行う。そして3.2mAの電流値で電池電圧2.5Vまで放電する。この充電・放電操作を3回繰り返した。セパレータ抵抗は、交流インピーダンス法を用いてコールコールプロットから算出した。以下に説明する比較例1(セルガード#2500)に比べてセパレータ抵抗が10%以上良化(低減)したものを◎印、5%以上良化(低減)したものを○印、良化(低減)が5%未満の増加に留まったものを×印で表記した。尚、電池の内部抵抗が低いということは、より急速な充電が可能になり、また、放熱特性が良くなることを意味する。
(6) Separator resistance evaluation A lithium manganate positive electrode sheet, a separator, and a graphite negative electrode sheet are laminated, and EC (ethylene carbonate) / DMC (dimethyl carbonate) / DEC (diethyl carbonate) = 25/60/15 (volume ratio) as an electrolytic solution. ) Was used as a solvent and the electrolyte LiPF6 was dissolved so as to have a concentration of 1 mol / L. A 20 mAh laminate cell was produced. In order to stabilize the produced laminate cell as a battery, the following charging and discharging operations were performed. The laminate cell is charged to a battery voltage of 4.2 V at a current value of 3.2 mA (about 0.2 C) in an atmosphere of 25 ° C., and charged for a total of 5 hours. And it discharges to battery voltage 2.5V with the electric current value of 3.2mA. This charging / discharging operation was repeated three times. The separator resistance was calculated from the Cole-Cole plot using the AC impedance method. Compared to Comparative Example 1 (Celguard # 2500) described below, the separator resistance improved by 10% or more (reduced) is marked with ◎, and the one improved by 5% or more is marked with ○, improved (reduced). ) Is an increase of less than 5% and is indicated by a cross. Note that the low internal resistance of the battery means that more rapid charging is possible and the heat dissipation characteristics are improved.

(7)ハイレート試験
ハイレート特性とは、バッテリーの性能を表す指標のひとつで、エンジン始動のような高負荷に強い特性のことである。20mAhラミネートセルを用いて、作製したラミネートセルを電池として安定させるために0.2C充電+2.5Vまでの放電操作を3回繰り返したのちに、0.2C、1.0C、3.0Cのハイレート試験を行い、放電容量比率の低下度を評価した。
ハイレート試験の具体的な方法を以下に示す。25℃雰囲気下、3.2mA(約0.2C)の電流値で電池電圧4.2Vまで充電し、電流値が0.8mA(0.05C)になるまで放電を行う。このときの放電容量を0.2Cでの放電容量A(0.2)mAhとする。25℃雰囲気下、16mA(約1C)の電流値で電池電圧4.2Vまで充電し、電流値が0.8mA(0.05C)になるまで放電を行う。このときの放電容量を1.0Cでの放電容量A(1.0)mAhとする。25℃雰囲気下、48mA(約3C)の電流値で電池電圧4.2Vまで充電し、電流値が0.8mA(0.05C)になるまで放電を行う。このときの放電容量を3.0Cでの放電容量A(3.0)mAhとする。0.2Cの放電容量A(0.2)を基準にA(x)、x=1.0、3.0の容量比率B(x)%をB(x)=A(x)/A(0.2)×100で定義した。
比較例1(セルガード#2500)に比べて容量比率B(1.0)、B(3.0)の両者ともにで3%以上の優位性がある(低下率低い)ものを◎印で表記した。容量比率B(1.0)、B(3.0)の両者ともに1%以上の優位性があるものを○印で表記した。差が1%未満のもの或いは優位性がないものを×印で表記した。
(7) High-rate test The high-rate characteristic is one of the indexes indicating the performance of the battery, and is a characteristic that is strong against high loads such as engine starting. In order to stabilize the produced laminate cell as a battery using a 20 mAh laminate cell, after repeating the discharge operation up to 0.2 C charge + 2.5 V three times, a high rate of 0.2 C, 1.0 C, 3.0 C A test was conducted to evaluate the degree of decrease in the discharge capacity ratio.
The specific method of the high rate test is shown below. In a 25 ° C. atmosphere, the battery is charged to a battery voltage of 4.2 V at a current value of 3.2 mA (about 0.2 C), and discharged until the current value reaches 0.8 mA (0.05 C). The discharge capacity at this time is set to discharge capacity A (0.2) mAh at 0.2C. The battery is charged to a battery voltage of 4.2 V at a current value of 16 mA (about 1 C) in a 25 ° C. atmosphere, and discharged until the current value reaches 0.8 mA (0.05 C). The discharge capacity at this time is set to a discharge capacity A (1.0) mAh at 1.0 C. Under a 25 ° C. atmosphere, the battery is charged to a battery voltage of 4.2 V at a current value of 48 mA (about 3 C), and discharged until the current value reaches 0.8 mA (0.05 C). The discharge capacity at this time is set to discharge capacity A (3.0) mAh at 3.0C. Based on the discharge capacity A (0.2) of 0.2C, the capacity ratio B (x)% of A (x), x = 1.0, 3.0 is B (x) = A (x) / A ( 0.2) × 100.
Compared with Comparative Example 1 (Celguard # 2500), both of the capacity ratios B (1.0) and B (3.0) have an advantage of 3% or more (lower rate of decrease) are marked with ◎. . The capacity ratios B (1.0) and B (3.0) both have an advantage of 1% or more and are marked with a circle. Those with a difference of less than 1% or those without superiority are indicated by crosses.

以下に、実施例1〜11及び比較例1,2の具体的な構成について説明する。
[実施例1]
以下AからDの工程を順に行い実施例1のサンプルとした。
A:無機材から構成される微多孔シートを作製する工程
B:無機材から構成される微多孔シートに樹脂溶液をコーティングする工程
C:コーティングされた樹脂を微多孔化する工程
D:その内部に微多孔化された樹脂が形成された、無機材から構成される微多孔シートを乾燥する工程

工程A
平均繊維径0.5から1.0μmのガラス繊維を用いて、湿式抄紙法にて厚さ30μm(押し圧2.0N)空隙率94%のシート状ガラス不織布を作製した。
工程B
8wt%水酸化リチウムと15wt%尿素を含む水溶液に1.5wt%相当のろ紙パルプ(アドバンテック製)を入れて攪拌したものを凍結させたのち、室温にて解凍処理を施して1.5wt%セルロース水溶液を得た。1.5wt%セルロース水溶液をリップコート法で工程Aで作製したシート状ガラス不織布に塗布し、シート状ガラス不織布の内部にセルロース水溶液を充填した。
工程C
工程Bにてシート状ガラス不織布に充填したセルロース水溶液から網目状セルロースを析出させるための凝固浴として、25℃の硫酸・メタノール浴(60wt%硫酸/メタノール=60/40(重量比))を用いた。セルロース水溶液が充填されたシート状ガラス不織布を前記凝固浴に浸漬させてセルロース樹脂微多孔を析出させた後、水洗浄を行い、アルカリ塩などセルロースとガラス以外の成分を除去した。
工程D
凍結乾燥は、ヘプタフルオロシクロペンテン(日本ゼオン製“ゼオローラH”)を用いて行った。凍結乾燥の前処理として、試料が含む液体を水からゼオローラHに置換する処理を行った。最初にエタノール浴に浸漬し、水とゼオローラHの両者に相溶性があるエタノールに置換し、次に水を系内から排除するために脱水エタノール浴に浸漬した。エタノールを含んだ試料をゼオローラH浴に浸漬し、試料に含まれる液体をエタノールからゼオローラHに溶媒置換した。試料に含まれる液を水からゼオローラHに置換したのちに凍結乾燥処理を施し、実施例1のセパレータとした。
Below, the concrete structure of Examples 1-11 and Comparative Examples 1 and 2 is demonstrated.
[Example 1]
Hereinafter, the steps A to D were sequentially performed to obtain a sample of Example 1.
A: Process for producing a microporous sheet composed of an inorganic material B: Process for coating a microporous sheet composed of an inorganic material with a resin solution C: Process for microporousizing a coated resin D: Inside the process A step of drying a microporous sheet made of an inorganic material on which a microporous resin is formed

Process A
Using glass fibers having an average fiber diameter of 0.5 to 1.0 μm, a sheet-like glass nonwoven fabric having a thickness of 30 μm (pressing pressure 2.0 N) and a porosity of 94% was prepared by a wet papermaking method.
Process B
An aqueous solution containing 8 wt% lithium hydroxide and 15 wt% urea in which 1.5 wt% equivalent filter paper pulp (manufactured by Advantech) is stirred and frozen is subjected to thawing treatment at room temperature to give 1.5 wt% cellulose. An aqueous solution was obtained. A 1.5 wt% cellulose aqueous solution was applied to the sheet-like glass nonwoven fabric prepared in step A by the lip coating method, and the cellulose aqueous solution was filled inside the sheet-like glass nonwoven fabric.
Process C
A 25 ° C. sulfuric acid / methanol bath (60 wt% sulfuric acid / methanol = 60/40 (weight ratio)) is used as a coagulation bath for precipitating reticulated cellulose from the cellulose aqueous solution filled in the sheet-like glass nonwoven fabric in Step B. It was. A sheet-like glass nonwoven fabric filled with a cellulose aqueous solution was immersed in the coagulation bath to precipitate microporous cellulose resin, and then washed with water to remove components other than cellulose and glass such as alkali salts.
Process D
Freeze-drying was performed using heptafluorocyclopentene (“Zeorolla H” manufactured by Nippon Zeon Co., Ltd.). As a pretreatment for lyophilization, a treatment for replacing the liquid contained in the sample with water from Zeolola H was performed. First, it was immersed in an ethanol bath, replaced with ethanol compatible with both water and Zeolora H, and then immersed in a dehydrated ethanol bath to remove water from the system. A sample containing ethanol was immersed in a Zeolora H bath, and the solvent contained in the sample was solvent-substituted from ethanol to Zeolola H. After the liquid contained in the sample was replaced with water from Zeolola H, freeze-drying treatment was performed to obtain the separator of Example 1.

[実施例2]
実施例1の工程Bのセルロース水溶液の濃度を2.0wt%にしたこと以外は、実施例1と同様の処理を行い実施例2のセパレータとした。
[Example 2]
The separator of Example 2 was obtained by performing the same treatment as in Example 1 except that the concentration of the cellulose aqueous solution in Step B of Example 1 was 2.0 wt%.

[実施例3]
実施例1の工程Bのセルロース水溶液の濃度を3.0wt%にしたこと以外は、実施例1と同様の処理を行い実施例3のセパレータとした。
[Example 3]
The separator of Example 3 was obtained by performing the same treatment as in Example 1 except that the concentration of the cellulose aqueous solution in Step B of Example 1 was changed to 3.0 wt%.

[実施例4]
実施例3の工程Cのセルロース凝固浴を25℃の20wt%硫酸にしたこと以外は、実施例3と同様の処理を行い実施例4のセパレータとした。
[Example 4]
The separator of Example 4 was obtained by performing the same treatment as in Example 3 except that the cellulose coagulation bath in Step C of Example 3 was changed to 20 ° C. sulfuric acid at 25 ° C.

[実施例5]
実施例1の工程Bのセルロース水溶液の濃度を1.5wt%にし、工程Cのセルロース再生浴を25℃のメタノールにしたこと以外は、実施例1と同様の処理を行い実施例5のセパレータとした。
[Example 5]
The separator of Example 5 was subjected to the same treatment as Example 1 except that the concentration of the aqueous cellulose solution in Step B of Example 1 was 1.5 wt% and the cellulose regeneration bath in Step C was methanol at 25 ° C. did.

[実施例6]
実施例1の工程Bのセルロース水溶液の濃度を2.0wt%にし、工程Cのセルロース再生浴を25℃のメタノールにしたこと以外は、実施例1と同様の処理を行い実施例6のセパレータとした。
[Example 6]
The separator of Example 6 was subjected to the same treatment as Example 1 except that the concentration of the cellulose aqueous solution in Step B of Example 1 was 2.0 wt% and the cellulose regeneration bath in Step C was methanol at 25 ° C. did.

[実施例7]
実施例1の工程Bのセルロース水溶液の濃度を3.0wt%にし、工程Cのセルロース再生浴を25℃のメタノールにしたこと以外は、実施例1と同様の処理を行い実施例7のセパレータとした。
[Example 7]
The separator of Example 7 was subjected to the same treatment as Example 1 except that the concentration of the cellulose aqueous solution in Step B of Example 1 was 3.0 wt% and the cellulose regeneration bath in Step C was methanol at 25 ° C. did.

[実施例8]
以下AからDの工程を順に行い実施例8のサンプルとした。
A:無機材から構成される微多孔シートを作製する工程
B:無機材から構成される微多孔シートに樹脂溶液をコーティングする工程
C:コーティングされた樹脂を微多孔化する工程
D:その内部に微多孔化された樹脂が形成された、無機材から構成される微多孔シートを乾燥する工程
工程A及びDは実施例1と同じで、工程B及びCは以下の操作を行った。
工程B
PVDF・HFP溶液は、フッ化ビニリデン(PVDF)とヘキサフルオロプロピレン(HFP)の共重合体(アルケマ製KYNAR FLEX 2800)をNメチルピロリドン(NMP)に溶解し、PVDF・HFPの4.0wt%溶液を得た。4.0wt%PVDF・HFP溶液をリップコート法で工程Aで作製したシート状ガラス不織布に塗布し、シート状ガラス不織布の内部にPVDF・HFP溶液を充填した。
工程C
工程Bにてシート状ガラス不織布に充填したPVDF・HFP溶液から網目状PVDF・HFPを析出させるための凝固浴として0℃の水浴を用いた。PVDF・HFP溶液が充填されたシート状ガラス不織布を前記凝固浴に浸漬させてPVDF・HFP樹脂微多孔を析出させた後、水洗浄を行いNMPを除去した。
[Example 8]
Thereafter, the steps A to D were sequentially performed to obtain a sample of Example 8.
A: A process for producing a microporous sheet composed of an inorganic material B: A process for coating a microporous sheet composed of an inorganic material with a resin solution C: A process for micronizing a coated resin D: Inside the process Process steps A and D for drying a microporous sheet made of an inorganic material on which a microporous resin is formed are the same as those in Example 1, and steps B and C were performed as follows.
Process B
The PVDF / HFP solution is obtained by dissolving a copolymer of vinylidene fluoride (PVDF) and hexafluoropropylene (HFP) (KYNAR FLEX 2800 manufactured by Arkema) in N methylpyrrolidone (NMP), and a 4.0 wt% solution of PVDF / HFP. Got. A 4.0 wt% PVDF / HFP solution was applied to the sheet-like glass nonwoven fabric prepared in Step A by the lip coat method, and the PVDF / HFP solution was filled inside the sheet-like glass nonwoven fabric.
Process C
A water bath at 0 ° C. was used as a coagulation bath for precipitating reticulated PVDF / HFP from the PVDF / HFP solution filled in the sheet-like glass nonwoven fabric in Step B. A sheet-like glass nonwoven fabric filled with the PVDF / HFP solution was immersed in the coagulation bath to precipitate PVDF / HFP resin micropores, and then washed with water to remove NMP.

[実施例9]
実施例1の工程Bのセルロース水溶液の濃度を4.0wt%にし、工程Cのセルロース再生浴を25℃のメタノールにしたこと以外は、実施例1と同様の処理を行い実施例9のセパレータとした。
[Example 9]
The separator of Example 9 was subjected to the same treatment as Example 1 except that the concentration of the cellulose aqueous solution in Step B of Example 1 was 4.0 wt% and the cellulose regeneration bath in Step C was methanol at 25 ° C. did.

[実施例10]
実施例3の工程Bから工程Dまでの操作を2回繰り返して実施例10のセパレータとした。
[Example 10]
The operation from Step B to Step D in Example 3 was repeated twice to obtain a separator in Example 10.

[実施例11]
平均繊維径0.5から1.0μmのガラス繊維を用いて、湿式抄紙法にて厚さ30μm(押し圧2.0N)空隙率94%のシート状ガラス不織布を作製した。つぎに、このシート状ガラス不織布に、20wt%ポリエチレン溶液(フタル酸イソデシル溶液)を200℃で塗布した後、180℃で一旦保持した後に80℃の温水浴に浸漬させて、シート状ガラス不織布の内部にポリエチレン樹脂微多孔を析出させた。その後エタノール洗浄、90℃での加熱乾燥処理を施し、実施例11のセパレータとした。
[Example 11]
Using glass fibers having an average fiber diameter of 0.5 to 1.0 μm, a sheet-like glass nonwoven fabric having a thickness of 30 μm (pressing pressure 2.0 N) and a porosity of 94% was prepared by a wet papermaking method. Next, a 20 wt% polyethylene solution (isodecyl phthalate solution) was applied to this sheet-like glass nonwoven fabric at 200 ° C., and then held at 180 ° C. and then immersed in a warm water bath at 80 ° C. Polyethylene resin micropores were deposited inside. Thereafter, ethanol washing and heat drying at 90 ° C. were performed to obtain the separator of Example 11.

[比較例1]
ポリオレフィン系セパレータ(Celgard LLC製 Celgarad#2500、ポリプロピレン製)を比較例1とした。
[Comparative Example 1]
A polyolefin separator (Celgard LLC Celgarad # 2500, polypropylene) was used as Comparative Example 1.

[比較例2]
実施例1〜11において使用した厚さ30μm(押し圧2.0N)、空隙率94%のシート状ガラス不織布を比較例2とした。
[Comparative Example 2]
A sheet-like glass nonwoven fabric having a thickness of 30 μm (pressing pressure 2.0 N) and a porosity of 94% used in Examples 1 to 11 was used as Comparative Example 2.

実施例1〜11及び比較例1及び2について、空隙率、透気度、吸液特性(Vx、Vx/Vz)、電池特性(短絡試験、電池内部抵抗、ハイレート試験)を試験して、その結果を表にまとめ、図12として添付した。   For Examples 1 to 11 and Comparative Examples 1 and 2, the porosity, air permeability, liquid absorption characteristics (Vx, Vx / Vz), battery characteristics (short circuit test, battery internal resistance, high rate test) were tested. The results are summarized in a table and attached as FIG.

セルロース系微多孔の代表例として実施例3におけるSEM像を図8及び図9に示した。これらのSEM像から、微多孔シートの内部に、微多孔シートの厚さ方向と直交する方向において、不連続で扁平な空隙を有する微多孔体が形成されていることが分かった。
樹脂系(PVDF・HFP系)微多孔の例として実施例8におけるSEM像(セパレータ表面)を図10に示した。このSEM像からも、微多孔シートの内部に、微多孔シートの厚さ方向と直交する方向において、不連続で扁平な空隙を有する微多孔体が形成されていることが分かった。
また、樹脂系(ポリエチレン微多孔)の例として実施例11におけるSEM像(セパレータ表面)を図11に示した。このSEM像からも、微多孔シートの内部に、微多孔シートの厚さ方向と直交する方向において、不連続で扁平な空隙を有する微多孔体が形成されていることが分かった。
また、図9、図10及び図11から自己組織化によりサブミクロンの微多孔が形成されていることが分かった。
The SEM image in Example 3 was shown in FIG.8 and FIG.9 as a typical example of a cellulose microporous. From these SEM images, it was found that a microporous body having discontinuous and flat voids was formed inside the microporous sheet in a direction perpendicular to the thickness direction of the microporous sheet.
FIG. 10 shows an SEM image (separator surface) in Example 8 as an example of resin-based (PVDF / HFP-based) microporous material. Also from this SEM image, it turned out that the microporous body which has a discontinuous and flat space | gap in the direction orthogonal to the thickness direction of a microporous sheet is formed inside the microporous sheet.
Moreover, the SEM image (separator surface) in Example 11 was shown in FIG. 11 as an example of a resin system (polyethylene microporous). Also from this SEM image, it turned out that the microporous body which has a discontinuous and flat space | gap in the direction orthogonal to the thickness direction of a microporous sheet is formed inside the microporous sheet.
Moreover, it was found from FIG. 9, FIG. 10 and FIG. 11 that submicron micropores were formed by self-assembly.

図12として添付した表から明らかな通り、本発明の実施例1乃至11は全て、空隙率、透気度、吸液性、電池特性(短絡、電池内部抵抗、ハイレート)において、良好な値を示していることが分かった。
実施例11と比較例2の空隙率、透気度及び電池内部抵抗の比較から、空隙率が70%以上、透気度が500秒以下が電池内部抵抗が低くなり好ましいことが分かる。実施例5と比較例2の透気度と短絡試験結果の比較から微短絡防止の観点からセパレータの透気度が5秒以上が好ましいことが分かった。
実施例11と比較例1の吸液速度Vx、吸液速度比Vx/Vz及びハイレート試験結果の比較から、電解液の吸液速度Vxが2.0、且つ、吸液速度比Vx/Vzが2以上が好ましいことが分かった。
実施例1〜8と実施例9〜11とを、電池内部抵抗及びハイレート試験結果から比較すると、空隙率が90%以上、透気度が5秒以上100秒以下、電解液の吸液速度Vxが2.5以上、且つ、吸液速度比Vx/Vzが4.5以上であることがより好ましいことが分かった。
As is apparent from the table attached as FIG. 12, all of Examples 1 to 11 of the present invention have good values in porosity, air permeability, liquid absorption, battery characteristics (short circuit, battery internal resistance, high rate). I found out that
From the comparison of the porosity, air permeability, and battery internal resistance of Example 11 and Comparative Example 2, it can be seen that a porosity of 70% or more and an air permeability of 500 seconds or less are preferable because the battery internal resistance decreases. From the comparison of the air permeability of Example 5 and Comparative Example 2 and the short circuit test results, it was found that the air permeability of the separator is preferably 5 seconds or more from the viewpoint of preventing a fine short circuit.
From the comparison of the liquid absorption speed Vx, the liquid absorption speed ratio Vx / Vz and the high rate test results of Example 11 and Comparative Example 1, the liquid absorption speed Vx of the electrolytic solution is 2.0, and the liquid absorption speed ratio Vx / Vz is Two or more were found to be preferable.
When Examples 1 to 8 and Examples 9 to 11 are compared from the battery internal resistance and the high rate test results, the porosity is 90% or more, the air permeability is 5 seconds or more and 100 seconds or less, and the liquid absorption speed Vx of the electrolytic solution. Is more preferably 2.5 and the liquid absorption speed ratio Vx / Vz is 4.5 or more.

1 微多孔シート
2 不連続で扁平な空隙
3 樹脂微多孔体
4 液体充填容器
5 ガラスフィルター
6 サンプル
7 ガラス管
8 メニスカス
DESCRIPTION OF SYMBOLS 1 Microporous sheet 2 Discontinuous and flat space 3 Resin microporous material 4 Liquid filling container 5 Glass filter 6 Sample 7 Glass tube 8 Meniscus

Claims (7)

無機材料から構成される微多孔シートの内部に、前記微多孔シートの表面に沿う方向に不連続で扁平な空隙を有する樹脂微多孔体が形成されていることを特徴とする非水系二次電池用セパレータ。   A non-aqueous secondary battery characterized in that a resin microporous body having discontinuous and flat voids in a direction along the surface of the microporous sheet is formed inside a microporous sheet made of an inorganic material. Separator for use. 前記樹脂微多孔体は、前記微多孔シートの厚さ方向において層状に形成されることを特徴とする請求項1に記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to claim 1, wherein the resin microporous body is formed in layers in the thickness direction of the microporous sheet. 前記樹脂微多孔体は、網目状であることを特徴とする請求項1又は2に記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to claim 1 or 2, wherein the resin microporous body has a mesh shape. 前記微多孔シートがガラス繊維不織布であることを特徴とする請求項1乃至3の何れか1項に記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to any one of claims 1 to 3, wherein the microporous sheet is a glass fiber nonwoven fabric. 前記微多孔シートの厚さ方向の電解液に対する吸液速度をVzとし、前記厚さ方向と直交する方向の前記電解液に対する吸液速度をVxとし、Vxが2.0以上且つ吸液速度比Vx/Vzが2以上とし、空隙率が70%以上、透気度が5秒以上500秒以下であることを特徴とする請求項1乃至4の何れか1項に記載の非水系二次電池用セパレータ。   The liquid absorption rate for the electrolyte solution in the thickness direction of the microporous sheet is Vz, the liquid absorption rate for the electrolyte solution in the direction orthogonal to the thickness direction is Vx, and Vx is 2.0 or more and the liquid absorption rate ratio 5. The non-aqueous secondary battery according to claim 1, wherein Vx / Vz is 2 or more, the porosity is 70% or more, and the air permeability is 5 seconds or more and 500 seconds or less. Separator for use. 前記電解液の吸液速度Vxが2.5以上、且つ、前記吸液速度比Vx/Vzが4.5以上とし、前記空隙率が90%以上、前記透気度が5秒以上100秒以下であることを特徴とする請求項5に記載の非水系二次電池用セパレータ。   The liquid absorption speed Vx of the electrolytic solution is 2.5 or more, the liquid absorption speed ratio Vx / Vz is 4.5 or more, the porosity is 90% or more, and the air permeability is 5 seconds or more and 100 seconds or less. The separator for a non-aqueous secondary battery according to claim 5, wherein: 請求項1乃至6の何れか1項に記載のセパレータを有することを特徴とする非水系二次電池。   A non-aqueous secondary battery comprising the separator according to claim 1.
JP2011086644A 2011-04-08 2011-04-08 Separator for nonaqueous secondary battery and battery including the same Withdrawn JP2012221756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011086644A JP2012221756A (en) 2011-04-08 2011-04-08 Separator for nonaqueous secondary battery and battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086644A JP2012221756A (en) 2011-04-08 2011-04-08 Separator for nonaqueous secondary battery and battery including the same

Publications (1)

Publication Number Publication Date
JP2012221756A true JP2012221756A (en) 2012-11-12

Family

ID=47273041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086644A Withdrawn JP2012221756A (en) 2011-04-08 2011-04-08 Separator for nonaqueous secondary battery and battery including the same

Country Status (1)

Country Link
JP (1) JP2012221756A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212175A (en) * 2016-05-27 2017-11-30 住友金属鉱山株式会社 Method for resistance evaluation of positive electrode material for nonaqueous electrolyte secondary battery
CN109950609A (en) * 2017-12-20 2019-06-28 成都市银隆新能源有限公司 Liquid storage gummed paper, preparation method and battery core for lithium ion soft pack cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212175A (en) * 2016-05-27 2017-11-30 住友金属鉱山株式会社 Method for resistance evaluation of positive electrode material for nonaqueous electrolyte secondary battery
JP7064821B2 (en) 2016-05-27 2022-05-11 住友金属鉱山株式会社 Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries
CN109950609A (en) * 2017-12-20 2019-06-28 成都市银隆新能源有限公司 Liquid storage gummed paper, preparation method and battery core for lithium ion soft pack cell
CN109950609B (en) * 2017-12-20 2024-03-15 成都市银隆新能源有限公司 Liquid storage gummed paper for lithium ion soft package battery core, preparation method and battery core

Similar Documents

Publication Publication Date Title
JP6367713B2 (en) Separator, manufacturing method thereof, and lithium ion secondary battery
KR101585839B1 (en) Secondary battery
KR101592355B1 (en) Secondary battery using the flexible current collector and manufacturing method of flexible current collector
JP6738339B2 (en) Electrochemical element separator, method for producing the same, and method for producing the electrochemical element
JP6219113B2 (en) Secondary battery
JP5882549B1 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
WO2012049748A1 (en) Nonaqueous electrolyte lithium secondary battery
US9755208B2 (en) Non-aqueous-secondary-battery separator and non-aqueous secondary battery
JP5906698B2 (en) Nonaqueous electrolyte secondary battery
JP2020532845A (en) Separation membrane for electrochemical device including low resistance coating layer and its manufacturing method
JP2015069957A (en) Separator for lithium ion secondary battery and method for manufacturing the same, and lithium ion secondary battery and method for manufacturing the same
JP2023058647A (en) Improved battery separators, electrodes, cells, lithium batteries and related methods
JP2016178083A (en) Nonaqueous electrolyte secondary battery
US20150318528A1 (en) Non-aqueous-secondary-battery separator and non-aqueous secondary battery
KR20220151707A (en) Electrochemical device and electronic device including the electrochemical device
JP2015195191A (en) Laminate battery and sheath material for laminate battery
KR20190005946A (en) Non-aqueous electrolyte secondary battery
KR20220062856A (en) Electrode assembly, method for preparing thereof, and electrochemical device comprising the electrode assembly
JP2003323878A (en) Composite sheet, its manufacturing method, and nonaqueous electrolyte secondary battery using its composite sheet
JP6377586B2 (en) Electrode, electrode manufacturing method, and nonaqueous electrolyte battery
JP2012221756A (en) Separator for nonaqueous secondary battery and battery including the same
JP2014060123A (en) Lithium ion secondary battery
JP7413180B2 (en) Non-aqueous secondary battery
JP7463534B2 (en) Electrode assembly, electrochemical device including the electrode assembly, and electronic device
JP6702903B2 (en) Secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701