JP7062481B2 - 電磁波計測装置 - Google Patents

電磁波計測装置 Download PDF

Info

Publication number
JP7062481B2
JP7062481B2 JP2018055516A JP2018055516A JP7062481B2 JP 7062481 B2 JP7062481 B2 JP 7062481B2 JP 2018055516 A JP2018055516 A JP 2018055516A JP 2018055516 A JP2018055516 A JP 2018055516A JP 7062481 B2 JP7062481 B2 JP 7062481B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
substrate
lattice constant
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018055516A
Other languages
English (en)
Other versions
JP2019169582A (ja
Inventor
喜彦 加茂
亮太 田中
暢之 栗田
孝寛 伊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP2018055516A priority Critical patent/JP7062481B2/ja
Publication of JP2019169582A publication Critical patent/JP2019169582A/ja
Application granted granted Critical
Publication of JP7062481B2 publication Critical patent/JP7062481B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、計測用の電磁波を発生させる光伝導素子及び当該電磁波を検出する光伝導素子を含む電磁波計測装置に関する。
従来から、電波と赤外光との間の周波数帯(例えば0.1~10THz)の電磁波であるテラヘルツ波を対象物に照射し、当該対象物からの反射波又は透過波を時間領域分光法によって計測(分析)する技術が知られている。このような分析システムは、テラヘルツ波を発生させる光伝導素子と、当該発生素子によって発生したテラヘルツ波の対象物からの反射波又は透過波を検出する光伝導素子と、を含む。例えば、特許文献1には、テラヘルツ波を発生するエミッタとしての光スイッチと、テラヘルツ波を検出するためのディテクタとしての光スイッチと、を備えるテラヘルツ波発生検出システムが開示されている。
特開2006-86227号公報
例えば、電磁波の計測を行う場合、電磁波発生素子としての光伝導素子は高出力の電磁波を発生させること、また、検出素子としての光伝導素子は高感度且つ高精度で電磁波を検出することが好ましい。
例えば、テラヘルツ時間領域分光法を用いて対象物の分析を行う場合、発生素子が高い出力のテラヘルツ波を発生させること、並びに、検出素子が高感度でテラヘルツ波を検出できること、検出素子によるテラヘルツ波の検出結果を示すS/N比やダイナミックレンジが大きいことが好ましい。
本発明は上記した点に鑑みてなされたものであり、高出力の電磁波を発生させ、かつ高感度かつ高ダイナミックレンジで電磁波を検出することが可能な電磁波計測装置を提供することを課題の1つとしている。
請求項1に記載の発明は、第1の基板と第1の基板上にエピタキシャル成長した第1の光伝導層とを含む電磁波発生素子と、第2の基板と第2の基板上にエピタキシャル成長した第2の光伝導層とを含む電磁波検出素子と、を含み、電磁波発生素子における第1の基板と第1の光伝導層との間の格子定数のずれ度合は、電磁波検出素子における第2の基板と第2の光伝導層との間の格子定数のずれ度合よりも小さいことを特徴としている。
実施例1に係る電磁波計測装置の斜視図である。 実施例1に係る電磁波計測装置における電磁波発生素子及び電磁波検出素子の構成を示す図である。 実施例1に係る電磁波計測装置を含む光学測定システムの模式的な回路図である。 実施例1に係る電磁波計測装置の電磁波発生素子及び電磁波検出素子の構成例を示す図である。 実施例1に係る電磁波計測装置の電磁波発生素子及び比較例に係る電磁波発生素子から発生した電磁波のダイナミックレンジを示す図である。 実施例1に係る電磁波計測装置の電磁波検出素子及び比較例に係る電磁波検出素子によって検出された電磁波のダイナミックレンジを示す図である。 実施例1に係る電磁波計測装置の電磁波発生素子における格子定数のずれ度合の好ましい範囲を示す図である。 実施例1に係る電磁波計測装置の電磁波検出素子における格子定数のずれ度合の好ましい範囲を示す図である。 実施例1の変形例1に係る電磁波計測装置における電磁波発生素子及び電磁波検出素子の斜視図である。 実施例1の変形例1に係る電磁波計測装置における電磁波発生素子及び電磁波検出素子の上面図である。
以下に本発明の実施例について詳細に説明する。
図1は、実施例1に係る電磁波計測装置(以下、単に計測装置と称する場合がある)10の斜視図である。計測装置10は、パルス光P1を受けて電磁波W1を発生させる電磁波発生素子(第1の光伝導素子、以下、発生素子と称する場合がある)20と、パルス光P2を受けて電磁波W2を検出する電磁波検出素子(第2の光伝導素子、以下、検出素子と称する場合がある)30と、を含む。
本実施例においては、検出素子30は、発生素子20によって発生された電磁波W1が試料Sに照射された後、試料Sによって反射又は透過された電磁波を電磁波W2として検出する。すなわち、計測装置10は、テラヘルツ波を発生させ、テラヘルツ波を用いて試料Sの分析を行う分析装置である。
まず、発生素子20は、半導体結晶からなる基板(以下、第1の基板と称する)21と、第1の基板21を成長基板として第1の基板21上にエピタキシャル成長した半導体結晶からなるバッファ層22と、バッファ層22上にエピタキシャル成長した光伝導性の半導体結晶からなる光伝導層(以下、第1の光伝導層と称する)23と、を有する。
第1の基板21は、例えば、単結晶のGaAs、InP、Siなどからなる。また、バッファ層22及び第1の光伝導層23は、例えば、GaAs、AlGaAs、InGaP、AlAs、InP、InAlAs、InGaAs、GaAsSb、InGaAsP、InAs、InSbなどからなる。また、本実施例においては、第1の基板21、バッファ層22及び第1の光伝導層23は、矩形の上面形状を有する。
第1の光伝導層23は、パルス光P1が照射される領域であるパルス光P1の被照射領域23Gを有する。発生素子20は、第1の光伝導層23上に形成され、パルス光P1の被照射領域23G上において互いに離間する一対の駆動電極24A及び24B(以下、第1の電極対24と称する)を有する。第1の電極対24は、例えば第1の光伝導層23上にパターニングされた金属膜又は透明導電膜からなる。また、第1の電極対24には、電圧源などの電源PSが接続される。
なお、第1の光伝導層23におけるパルス光P1の被照射領域23Gは、第1の光伝導層23の上面における第1の電極対24の駆動電極24A及び24B間の領域に対応する。以下においては、パルス光P1の被照射領域23Gを第1の光伝導層23の電極間領域と称する。
第1の電極対24によって電圧が印加された状態で第1の光伝導層23の電極間領域23Gにパルス光(ポンプ光)P1が照射されると、第1の光伝導層23内に光励起キャリア(すなわち光電流)が生ずる。そして、第1の光伝導層23は、パルス光P1のパルス幅に応じた波長(周波数)の電磁波W1を放出する。
また、本実施例においては、発生素子20は、第1の光伝導層23の電極間領域23Gにパルス光P1としてフェムト秒のパルス幅を有するレーザ光が照射されることで、テラヘルツ波を放出するテラヘルツ波発生素子である。
次に、検出素子30は、半導体結晶からなる基板(以下、第2の基板と称する)31と、第2の基板31を成長基板として第2の基板31上にエピタキシャル成長した半導体結晶からなるバッファ層32と、バッファ層32上にエピタキシャル成長した光伝導性の半導体結晶からなる光伝導層(以下、第2の光伝導層と称する)33と、を有する。
第2の基板31は、例えば、単結晶のGaAs、InP、Siなどからなる。また、バッファ層32及び第2の光伝導層33は、例えば、GaAs、AlGaAs、InGaP、AlAs、InP、InAlAs、InGaAs、GaAsSb、InGaAsP、InAs、InSbなどからなる。本実施例においては、第2の基板31、バッファ層32及び第2の光伝導層33は、矩形の上面形状を有する。
また、第2の光伝導層33は、パルス光P2が照射される領域であるパルス光P2の被照射領域33Gを有する。検出素子30は、第2の光伝導層33上に形成され、パルス光P2の被照射領域33G上において互いに離間する一対の検出電極34A及び34B(以下、第2の電極対34と称する)を有する。第2の電極対34は、例えば第2の光伝導層33上にパターニングされた金属膜又は透明導電膜からなる。また、第2の電極対34には、電流計などの計測器MEが接続される。
なお、第2の光伝導層33におけるパルス光P2の被照射領域33Gは、第2の光伝導層33の上面における第2の電極対34の駆動電極34A及び34B間の領域に対応する。以下においては、パルス光P2の被照射領域33Gを第2の光伝導層33の電極間領域と称する。
第2の光伝導層33の電極間領域33Gにパルス光(プローブ光)P2が照射された状態で第2の光伝導層33内に電磁波W2が入射すると、第2の光伝導層33内に光励起キャリア(すなわち光電流)が変動する。この光励起キャリアは、第2の電極対34に電流(検出信号)として表れる。すなわち、検出素子30は、第2の光伝導層33の電極間領域33Gへのパルス光P2の照射によって電磁波W2を検出する。
また、本実施例においては、検出素子30は、第2の光伝導層33の電極間領域33Gにパルス光P2としてフェムト秒のパルス幅を有するレーザ光が照射されることで、テラヘルツ波を検出するテラヘルツ波検出素子である。
このように、本実施例においては、発生素子20は、パルス光P1としてフェムト秒のパルス幅を有するようにパルス化されたレーザ光を受けて、電磁波W1としてテラヘルツ波を放出する。また、検出素子30は、パルス光P2としてパルス光P1と同様のレーザ光を受けて、電磁波W2としてテラヘルツ波を検出する。
なお、本実施例においては、発生素子20及び検出素子30は、パルス光P1及びP2として、第1及び第2の光伝導層23及び33のバンドギャップよりも大きな光エネルギを有する光が第1及び第2の光伝導層23及び33に照射されることで、それぞれ電磁波W1の発生動作及び電磁波W2の検出動作を行う。
具体的には、第1及び第2の光伝導層23及び33内では、それぞれパルス光P1及びP2の光エネルギーによって光電効果が生じ、これによって電磁波W1及びW2を発生及び検出するための光励起キャリアが生成される。なお、本実施例においては、発生素子20及び検出素子30は、パルス光P1及びP2として、1.45~1.65μmの範囲内の波長の光が第1及び第2の光伝導層23及び33に照射されることで、それぞれ電磁波W1の発生動作及び電磁波W2の検出動作を行う。
図2は、発生素子20及び検出素子30の構成の関係を示す図である。本実施例においては、発生素子20の第1の基板21は、格子定数a1の立方晶系の半導体結晶からなる。また、発生素子20の第1の光伝導層23は、格子定数a2の立方晶系の半導体結晶からなる。なお、発生素子20のバッファ層22は、格子定数a1と格子定数a2との間の範囲内の格子定数の立方晶系の半導体結晶からなる。
また、検出素子30の第2の基板31は、格子定数a3の立方晶系の半導体結晶からなる。また、検出素子30の第2の光伝導層33は、格子定数a4の立方晶系の半導体結晶からなる。また、検出素子30のバッファ層32は、格子定数a3と格子定数a4との間の範囲内の格子定数の立方晶系の半導体結晶からなる。
ここで、本実施例においては、発生素子20における第1の基板21と第1の光伝導層23との格子定数のずれ度合D1を、以下の式1で定義する。
Figure 0007062481000001
また、検出素子30における第2の基板31と第2の光伝導層33との間の格子定数のずれ度合D2を、以下の式2で定義する。
Figure 0007062481000002
そして、計測装置10においては、発生素子20における上記した格子定数のずれ度合D1は、検出素子30における上記した格子定数のずれ度合D2よりも小さくなる(D1<D2の関係を満たす)ように構成されている。
なお、本実施例においては、格子定数のずれ度合は、各格子定数の平均値を基準とした場合の格子定数の差の大きさを示すものとして定義される。また、本実施例においては、上記式で示したように、格子定数のずれ度合を百分率で数値化した。本実施例においては、発生素子20及び検出素子30は、この格子定数のずれ度合の数値が上記した関係を満たすように構成されている。
図3は、計測装置10を含むテラヘルツ時間領域分光法を用いた光学測定システム(以下、単に測定システムと称する)60の構成を模式的に示す回路図である。図3を参照して、この測定システム60について説明する。以下においては、発生素子20から放出される電磁波W1をテラヘルツ波として説明し、検出素子30に入射する電磁波W2をテラヘルツ波として説明する。
測定システム60は、発生素子20によって発生されたテラヘルツ波W1が伝播する経路中に試料(測定対象物)Sを配置し、試料Sを透過した(又は試料Sなどによって反射された)テラヘルツ波W2の時間波形と、試料Sの無い状態でのテラヘルツ波W2の時間波形と、をフーリエ変換して、テラヘルツ波W2の振幅と位相の情報を得るように構成されている。測定システム60によって、例えば、試料Sの複素屈折率や複素誘電率などの詳細な物性を測定することができる。
測定システム60は、パルス光P1及びP2としてフェムト秒のパルスレーザ光を発生するレーザ照射装置61と、レーザ照射装置61からのパルス光P1及びP2を分離するビームスプリッタ62と、発生素子20及び検出素子30と、検出素子30に入射するパルス光P2を遅延させる遅延回路63と、発生素子20に電圧を印加する電源PSと、検出素子30からの検出信号を計測する計測器ME及びこれを含む信号処理回路68と、を備えている。
また、測定システム60は、時間領域分光法を用いた測定システムとして一般的な構成を有している。例えば、測定システム60は、発生素子20に接合され、テラヘルツ波W1を効率良く取り出す半球レンズ等の第1の光学系64と、検出素子30に接合され、テラヘルツ波W2を効率よく取り込む半球レンズ等の第2の光学系65を含む。
まず、レーザ照射装置61から発せられたパルス光P1及びP2を含むレーザ光は、ビームスプリッタ62により、ポンプ光(パルス光P1)とプローブ光(パルス光P2)とに分けられる。
パルス光P1は、集光レンズCL1により集光され、発生素子20の電極間領域23Gに入射する。発生素子20は、第1の電極対24に電圧を印加しておくことで、テラヘルツ波W1を発生させる。テラヘルツ波W1は、第1の光学系64を通過して第3の光学系66で集光され、試料Sに照射される。試料Sを透過したテラヘルツ波W2は、第4の光学系67で集光され、第2の光学系65を介して検出素子30に入射される。
一方、パルス光P2は、複数の反射鏡Mを有する遅延回路63によって時間遅延を与えられ、集光レンズCL2により集光されて検出素子30の電極間領域33Gに入射する。検出素子30によって検出された信号は、計測器MEによって計測され、信号処理回路68に入力される。
信号処理回路68は、試料Sを透過したテラヘルツ波W2の時間波形及び試料Sが無い状態でのテラヘルツ波W2の時間波形を各々時系列データとして記憶し、これをフーリエ変換処理して周波数空間に変換する。このようにして、測定システム60は、試料Sからのテラヘルツ波W2の強度振幅や位相の分光スペクトルを得る。
図4は、発生素子20及び検出素子30の詳細な構成例を示す図である。本実施例においては、発生素子20の第1の基板21は、InPの組成を有する。この場合、第1の基板21の格子定数a1は、約5.8687Åである。また、発生素子20の第1の光伝導層23は、In53Ga47Asの組成を有する。この場合、第1の光伝導層23の格子定数a2は、約5.8687Åである。従って、格子定数a1と格子定数a2とのずれ度合D1は、約0%である。また、本実施例においては、発生素子20のバッファ層22は、第1の基板21及び第1の光伝導層23と同一の格子定数(約5.8687Å)の半導体結晶からなり、例えばInGaAsの組成を有する。
また、本実施例においては、検出素子30の第2の基板31は、GaAsの組成を有する。この場合、第2の基板31の格子定数a3は、約5.65325Åである。また、検出素子30の第2の光伝導層33は、In53Ga47Asの組成を有し、Beをドーパントとして含む。この場合、第2の光伝導層33の格子定数a4は、約5.8687Åである。従って、格子定数a3と格子定数a4とのずれ度合D2は、約3.7%である。また、本実施例においては、検出素子30のバッファ層32は、第2の基板31と第2の光伝導層33との間の格子定数の半導体結晶からなり、例えばInAlAsの組成を有する。
図5は、発生素子20によって発生した電磁波W1であるテラヘルツ波W1のダイナミックレンジと、比較例に係る発生素子110によって発生したテラヘルツ波のダイナミックレンジと、を示す図である。なお、比較例に係る発生素子110は、第1の基板21としてのInP基板に代えて、GaAsの組成を有するGaAs基板上にエピタキシャル成長したバッファ層22及び第1の光伝導層23を有する。発生素子110においては、GaAs基板と第1の光伝導層23との間の格子定数のずれ度合D01は、発生素子20と同様の式1を用いて計算すると、約3.7%である。
図5に示すように、発生素子20は、比較例に係る発生素子110よりも高いダイナミックレンジでテラヘルツ波を発生させたことがわかる。これは、発生素子20においては、第1の基板21の格子定数a1に対してずれ度合D1が小さい格子定数a2の第1の光伝導層23を成長させたことで、高い結晶性の第1の光伝導層23が形成されたことに起因すると考えられる。
具体的には、結晶性の高い第1の光伝導層23にほとんど結晶欠陥(例えば転位)が生じず、これによって、第1の光伝導層23内では高い移動度のキャリアが多く発生することとなる。従って、発生素子20から高出力なテラヘルツ波が発生したと考えられる。
次に、図6は、検出素子30による電磁波(テラヘルツ波)W2の検出結果を示すダイナミックレンジと、比較例に係る検出素子120によるテラヘルツ波の検出結果を示すダイナミックレンジと、を示す図である。
なお、比較例に係る検出素子120は、第2の基板31としてのGaAs基板に代えてInPの組成を有するInP基板上にエピタキシャル成長したバッファ層32及び第2の光伝導層33を有する。検出素子120においては、InP基板と第2の光伝導層33との間の格子定数のずれ度合D02は、検出素子30と同様の式2を用いて計算すると、約0%である。また、図6に示す結果を得るために、測定システム60内において検出素子30と検出素子120とを置き換えた測定システムを準備し、当該測定システムによって得られたテラヘルツ波を検出した。
図6に示すように、検出素子30は、比較例に係る検出素子120よりも高いダイナミックレンジでテラヘルツ波を検出したことがわかる。これは、検出素子30においては、第2の基板31の格子定数a3に対して、ずれ度合D2が比較的大きな格子定数a4の第2の光伝導層33を成長させたことで、比較的低い結晶性の第2の光伝導層33が形成されたことに起因すると考えられる。
具体的には、比較的低い結晶性の第2の光伝導層33は、比較的短いキャリア寿命を有する。すなわち、テラヘルツ波の入射によって発生したキャリアが比較的短時間で消滅する。これによって、検出素子30から高いダイナミックレンジでテラヘルツ波を検出できたと考えられる。
また、本実施例においては、第1の基板21及び第1の光伝導層23との間の単純な格子定数a1及びa2の差ではなく、より第1の光伝導層23の結晶性に直結する指標として格子定数のずれ度合D1を用い、発生素子20の構成が定められている。同様に、検出素子30についても格子定数のずれ度合D2を用いて第2の基板31及び第2の光伝導層33の構成が定められている。これは、結晶性を示す定量値が格子定数間の比に強く依存していたためである。従って、発生素子20は、電磁波W1を高出力で発生させるのに確実に好ましい構成を有することとなる。また、検出素子30は、高い精度及びダイナミックレンジで電磁波W2を検出するのに確実に好ましい構成を有することとなる。
なお、本実施例においては、発生素子20が約0%のずれ度合D1を有する第1の基板21及び第1の光伝導層23によって構成されている場合について説明した。また、本実施例においては、検出素子30が約3.7%のずれ度合D2を有する第2の基板31及び第2の光伝導層33によって構成されている場合について説明した。しかし、発生素子20及び検出素子30の構成はこれに限定されない。
図7は、発生素子20における格子定数のずれ度合D1の好ましい範囲を示す図である。図7は、ずれ度合D1と、発生したテラヘルツ波の検出信号の振幅との関係を示す図である。図7に示すように、例えば、1.45~1.65μmの範囲内の波長のパルス光P1を受けて30~3000μmの波長帯の高出力なテラヘルツ波を発生させかつ高振幅な検出信号を得ることを考慮すると、発生素子20における第1の基板21と第1の光伝導層23との格子定数のずれ度合D1は、1.3%以下であることが好ましく、さらには0~0.9%の範囲内であることが好ましいことがわかる。
また、図8は、検出素子30における格子定数のずれ度合D2の好ましい範囲を示す図である。図8は、ずれ度合D2と、テラヘルツ波の検出信号の振幅との関係を示す図である。図8に示すように、1.45~1.65μmの範囲内の波長のパルス光P2を受けて高い検出感度及びダイナミックレンジで30~3000μmの波長帯のテラヘルツ波を検出することを考慮すると、検出素子30における第2の基板31と第2の光伝導層33との格子定数のずれ度合D2は、2.5%以上であることが好ましく、さらには2.8~4.2%の範囲内であることが好ましいことがわかる。
しかし、発生素子20の第1の光伝導層23として用いる半導体結晶は比較的高い結晶性を有することが好ましく、検出素子30の第2の光伝導層33として用いる半導体結晶はこれよりも低い結晶性を有していることが好ましい。従って、上記したように、発生素子20における第1の基板21と第1の光伝導層23との格子定数のずれ度合D1は、検出素子30における第2の基板31と第2の光伝導層33との格子定数のずれ度合D2よりも小さければよい。
また、第1の光伝導層23及び第2の光伝導層33を好ましい範囲内の結晶性を有するように安定して成長させることを考慮すると、発生素子20及び検出素子30は、バッファ層22及び32をそれぞれ有することが好ましい。
特に、検出素子30は、安定して高い検出感度及び高い検出ダイナミックレンジを有することが好ましい。従って、検出素子30は、第2の基板31と第2の光伝導層33との間に設けられ、第2の基板31(格子定数a3)と第2の光伝導層33(格子定数a4)との間の格子定数を有する半導体結晶からなるバッファ層32を有することが好ましい。
同様に、発生素子20にバッファ層22を設ける場合、バッファ層22は、第1の基板21と第1の光伝導層23との間の格子定数を有する半導体結晶から構成されていることが好ましい。
また、本実施例においては、発生素子20の第1の基板21、バッファ層22及び第1の光伝導層23は、それぞれInP、InGaAs及びInGaAsの組成を有する場合について説明した。また、本実施例においては、検出素子30の第2の基板31、バッファ層32及び第2の光伝導層33は、それぞれ、GaAs、InAlAs及びInGaAsの組成を有する場合について説明した。
しかし、発生素子20及び検出素子30は、格子定数のずれ度合の関係を満たす範囲内で、上記した種々の半導体材料を用いて構成することができる。なお、テラヘルツ波を発生及び検出する素子として発生素子20及び検出素子30を構成し、また、好ましい結晶性を得ることを考慮すると、上記した組成の第1の基板21、第1の光伝導層23、第2の基板31及び第2の光伝導層33を用いることが好ましい。
また、上記した第1の電極対24及び第2の電極対34の構成は一例に過ぎない。例えば、本実施例においては、第1の電極対24及び第2の電極対34がダイポールアンテナを形成するように構成されている。しかし、第1の電極対24及び第2の電極対34は、例えば、ボウタイ型アンテナ、ストリップライン型アンテナ又はスパイラル型アンテナ等の任意のアンテナを形成するように構成及び配置されていてもよい。
上記したように、本実施例においては、計測装置10は、格子定数a1の半導体結晶からなる第1の基板21と格子定数a2の半導体結晶からなりかつ第1の基板21上にエピタキシャル成長した第1の光伝導層23とを含む電磁波発生素子20と、格子定数a3の半導体結晶からなる第2の基板31と格子定数a4の半導体結晶からなりかつ第2の基板31上にエピタキシャル成長した第2の光伝導層33とを含む電磁波検出素子30とを含む。
また、電磁波発生素子20における第1の基板21と第1の光伝導層23との間の格子定数のずれ度合D1を、
Figure 0007062481000003
の式1で定義し、電磁波検出素子30における第2の基板31と第2の光伝導層33との間の格子定数のずれ度合D2を、
Figure 0007062481000004
の式2で定義した場合、当該ずれ度合D1は、当該ずれ度合D2よりも小さい。従って、高出力の電磁波W1を発生させ、かつ高感度かつ高ダイナミックレンジで電磁波W2を検出することが可能な電磁波計測装置10を提供することができる。
図9は、実施例1の変形例に係る計測装置10Aにおける発生素子20及び検出素子30Aの斜視図である。また、図10は、発生素子20及び検出素子30Aの模式的な上面図である。図9及び図10を用いて、計測装置10Aについて説明する。
計測装置10Aは、検出素子30Aの構成を除いては、計測装置10と同様の構成を有する。本変形例においては、検出素子30Aは、第2の光伝導層35の構成を除いては、検出素子30と同様の構成を有する。第2の光伝導層35は、第1の光伝導層23よりも小さな上面サイズを有する。
より具体的には、図10に示すように、第1の光伝導層23は、パルス光P1の被照射領域23Gを有する上面23Sを有する。一方、第2の光伝導層35は、パルス光P2の被照射領域35Gを有し、かつ第1の光伝導層23の上面23Sよりも小さな上面35Sを有する。
本変形例においては、検出素子30Aの第2の基板31は、発生素子20の第1の基板21と同様の形状を有し、同程度の上面サイズを有する。また、発生素子20の第1の光伝導層23は、第1の基板21上の全体に形成されている。
一方、検出素子30Aの第2の光伝導層35は、第2の基板31上の一部の領域のみに形成されている。例えば、第2の光伝導層35の上面35Sは、パルス光P2の被照射領域35Gを除いてそのほとんどが第2の電極対36(第1及び第2の検出電極36A及び36B)に覆われている。本変形例においては、バッファ層32の上面が部分的に露出している。
検出素子30Aの第2の光伝導層35が発生素子20の第1の光伝導層23よりも小さな上面35Sを有することで、検出素子30Aによるテラヘルツ波の検出結果を示すダイナミックレンジが高くなる。
具体的には、第2の光伝導層35は、電磁波W2の検出領域であるパルス光P2の被照射領域35Gを残し、他の領域が部分的に除去された構造を有する。これによって、パルス光P2が照射されない被照射領域35G以外の領域での励起キャリアの発生が抑制される。なお、この被照射領域35G以外の領域での励起キャリアの発生は、ノイズの発生につながる可能性がある。
一方、発生素子20においては、多くの電磁波W1を発生させることを考慮すると、第1の光伝導層23は大きな体積を有していることが好ましい。従って、第2の光伝導層35の上面35Sを小さくしてその面積(体積)を第1の光伝導層23よりも小さくすることで、検出素子30Aからの出力におけるノイズの発生が抑制され、検出感度及び検出精度が向上することとなる。
また、図10に示すように、本変形例においては、検出素子30Aは、第2の光伝導層35上に形成され、第2の光伝導層35におけるパルス光P2の被照射領域35G上において互いに離間する第1及び第2の検出電極36A及び36Bからなる第2の電極対36を有する。また、第2の電極対36は、発生素子20の第1の電極対24の離間距離よりも小さな距離だけ離間している。
より具体的には、本変形例においては、図10に示すように、発生素子20における第1及び第2の駆動電極24A及び24Bは、それぞれ、互いに対向する第1及び第2の対向部24A1及び24B1を有する。また、第1及び第2の対向部24A1及び24B1は、第1の距離G1をおいて互いに対向して配置されている。
また、第1の駆動電極24Aは、第1の対向部24A1に接続された第1の接続部24A2を有する。また、第2の駆動電極24Bは、第2の対向部24B1に接続された第2の接続部24B2を有する。
換言すれば、発生素子20は、第1の光伝導層23上に形成されかつ第1の光伝導層23におけるパルス光P1の被照射領域23G上において第1の距離G1をおいて互いに離間する第1の電極対24を有する。
また、検出素子30Aにおける第1及び第2の検出電極36A及び36Bは、それぞれ、
第2の距離G2をおいて互いに対向する第1及び第2の対向部36A1及び36B1を有する。また、第1の検出電極36Aは、第1の対向部36A1に接続された第1の接続部36A2を有する。また、第2の検出電極36Bは、第2の対向部36B1に接続された第2の接続部36B2を有する。
換言すれば、検出素子30Aは、第2の光伝導層35上に形成されかつ第2の光伝導層35におけるパルス光P2の被照射領域35G上において第1の距離G1よりも小さな第2の距離G2をおいて互いに離間する第2の電極対36を有する。
発生素子20における第1の電極対24の離間距離よりも検出素子30Aにおける第2の電極対36の離間距離を小さくすることで、発生素子20では電磁波W1の発生量が向上し、検出素子30Aでは電磁波W2の検出精度が向上する。
具体的には、発生素子20においては、第1の電極対23を比較的大きく離間させることでキャリアの発生領域が大きくなり、電磁波W1の出力が向上する。また、検出素子30Aにおいては、第2の電極対36の離間距離を小さくすることで検出精度を妨げ得る不要なキャリアの発生が抑制される。従って、検出におけるノイズ発生が抑制される。
このように、本変形例においては、発生素子20及び検出素子30A間で、格子定数のずれ度合のみならず、第1及び第2の光伝導層23及び35の上面形状、並びに、第1及び第2の電極対24及び36の離間距離が調節されている。これによって、高出力の電磁波W1を発生させ、かつ高感度かつ高ダイナミックレンジで電磁波W2を検出することが可能な電磁波計測装置10Aを提供することができる。
なお、本変形例においては、発生素子20は第1の基板21の全面上に形成された第1の光伝導層23を有し、検出素子30Aは部分的に除去された第2の光伝導層35を有する場合について説明した。
しかし、第1及び第2の光伝導層23及び35の構成はこれに限定されない。検出素子30Aの第2の光伝導層35の上面35Sの面積が発生素子20の第1の光伝導層23の上面23Sの面積よりも小さければよい。
10、10A 電磁波計測装置
20 電磁波発生素子
21 第1の基板
22 バッファ層
23 第1の光伝導層
30、30A 電磁波検出素子
31 第2の基板
32 バッファ層
33、35 第2の光伝導層

Claims (6)

  1. 格子定数aの半導体結晶からなる第1の基板と格子定数aの半導体結晶からなりかつ前記第1の基板上にエピタキシャル成長した第1の光伝導層と、前記第1の基板と前記第1の光伝導層との間に形成され、前記格子定数a と前記格子定数a との間の範囲内の格子定数の半導体結晶からなる第1のバッファ層と、を含む電磁波発生素子と、
    格子定数aの半導体結晶からなる第2の基板と格子定数aの半導体結晶からなりかつ前記第2の基板上にエピタキシャル成長した第2の光伝導層と、前記第2の基板と前記第2の光伝導層との間に形成され、前記格子定数a と前記格子定数a との間の範囲内の格子定数の半導体結晶からなる第2のバッファ層と、を含む電磁波検出素子と、を含み、
    前記第1の基板および前記第2の基板のそれぞれは、GaAs、InP、またはSiのいずれかの組成を有し、かつ前記第1の光伝導層、前記第1のバッファ層、前記第2の光伝導層、および前記第2のバッファ層のそれぞれは、GaAs、AlGaAs、InGaP、AlAs、InP、InAlAs、InGaAs、GaAsSb、InGaAsP、InAs、またはInSbのいずれかの組成を有し、
    前記第1の基板と前記第2の基板とは互いに異なる組成を有し、
    前記電磁波発生素子における前記第1の基板と前記第1の光伝導層との間の格子定数のずれ度合Dを、
    Figure 0007062481000005

    の式で定義し、前記電磁波検出素子における前記第2の基板と前記第2の光伝導層との間の格子定数のずれ度合Dを、
    Figure 0007062481000006

    の式で定義した場合、前記ずれ度合Dは、前記ずれ度合Dよりも小さいことを特徴とする電磁波計測装置。
  2. 前記第1の基板及び前記第1の光伝導層は、前記ずれ度合Dが1.3%以下となる格子定数の半導体結晶からなり、
    前記第2の基板及び前記第2の光伝導層は、前記ずれ度合Dが2.5%以上となる格子定数の半導体結晶からなることを特徴とする請求項1に記載の電磁波計測装置。
  3. 前記電磁波発生素子の前記第1の基板はInPの組成を有し、
    前記電磁波発生素子の前記第1の光伝導層はInGaAsの組成を有し、
    前記電磁波検出素子の前記第2の基板はGaAsの組成を有し、
    前記電磁波検出素子の前記第2の光伝導層は、InGaAsの組成を有することを特徴とする請求項1または2に記載の電磁波計測装置。
  4. 前記電磁波発生素子及び前記電磁波検出素子は、1.45~1.65μmの範囲内の波長のパルス光が照射されることで、それぞれ電磁波の発生動作及び検出動作を行うことを特徴とする請求項1乃至のいずれか1つに記載の電磁波計測装置。
  5. 前記電磁波発生素子の前記第1の光伝導層は、前記パルス光の被照射領域を有する上面を有し、
    前記電磁波検出素子の前記第2の光伝導層は、前記パルス光の被照射領域を有しかつ前記第1の光伝導層の前記上面よりも小さな上面を有することを特徴とする請求項に記載の電磁波計測装置。
  6. 前記電磁波発生素子は、前記第1の光伝導層上に形成されかつ前記パルス光の前記被照射領域上において第1の距離をおいて互いに離間する第1の電極対を有し、
    前記電磁波検出素子は、前記第2の光伝導層上に形成されかつ前記パルス光の前記被照射領域上において前記第1の距離よりも小さな第2の距離をおいて互いに離間する第2の電極対を有することを特徴とする請求項に記載の電磁波計測装置。
JP2018055516A 2018-03-23 2018-03-23 電磁波計測装置 Active JP7062481B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018055516A JP7062481B2 (ja) 2018-03-23 2018-03-23 電磁波計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055516A JP7062481B2 (ja) 2018-03-23 2018-03-23 電磁波計測装置

Publications (2)

Publication Number Publication Date
JP2019169582A JP2019169582A (ja) 2019-10-03
JP7062481B2 true JP7062481B2 (ja) 2022-05-06

Family

ID=68106875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055516A Active JP7062481B2 (ja) 2018-03-23 2018-03-23 電磁波計測装置

Country Status (1)

Country Link
JP (1) JP7062481B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026347A (ja) 2003-06-30 2005-01-27 Japan Science & Technology Agency 光伝導素子及びそれを用いた赤外放射素子並びにその検出素子
JP2006086227A (ja) 2004-09-14 2006-03-30 Osaka Univ 光スイッチ
JP2012212868A (ja) 2011-03-18 2012-11-01 Canon Inc 光伝導素子
JP2013062658A (ja) 2011-09-13 2013-04-04 Pioneer Electronic Corp アンテナ素子およびアンテナ素子の製造方法
US20140197425A1 (en) 2013-01-15 2014-07-17 Electronics And Telecommunications Research Institute Wide area array type photonic crystal photomixer for generating and detecting broadband terahertz wave
JP2014212301A (ja) 2013-04-03 2014-11-13 パイオニア株式会社 光伝導基板、電磁波発生検出装置および光伝導基板の製造方法
JP2015152430A (ja) 2014-02-14 2015-08-24 パイオニア株式会社 時間領域分光装置
JP2017044641A (ja) 2015-08-28 2017-03-02 国立研究開発法人物質・材料研究機構 偏光可変エミッタ、これを用いたテラヘルツ時間領域分光装置、および偏光可変エミッタのバイアス分布を決定する方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026347A (ja) 2003-06-30 2005-01-27 Japan Science & Technology Agency 光伝導素子及びそれを用いた赤外放射素子並びにその検出素子
JP2006086227A (ja) 2004-09-14 2006-03-30 Osaka Univ 光スイッチ
JP2012212868A (ja) 2011-03-18 2012-11-01 Canon Inc 光伝導素子
JP2013062658A (ja) 2011-09-13 2013-04-04 Pioneer Electronic Corp アンテナ素子およびアンテナ素子の製造方法
US20140197425A1 (en) 2013-01-15 2014-07-17 Electronics And Telecommunications Research Institute Wide area array type photonic crystal photomixer for generating and detecting broadband terahertz wave
JP2014212301A (ja) 2013-04-03 2014-11-13 パイオニア株式会社 光伝導基板、電磁波発生検出装置および光伝導基板の製造方法
JP2015152430A (ja) 2014-02-14 2015-08-24 パイオニア株式会社 時間領域分光装置
JP2017044641A (ja) 2015-08-28 2017-03-02 国立研究開発法人物質・材料研究機構 偏光可変エミッタ、これを用いたテラヘルツ時間領域分光装置、および偏光可変エミッタのバイアス分布を決定する方法

Also Published As

Publication number Publication date
JP2019169582A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
Hunsche et al. THz near-field imaging
US5729017A (en) Terahertz generators and detectors
JP5196779B2 (ja) 光伝導素子及びセンサ装置
US8405031B2 (en) Terahertz wave generator
US7681434B2 (en) Sensing device
JP5489906B2 (ja) テラヘルツ波トランシーバ及び断層像取得装置
JP5656428B2 (ja) 光伝導素子
JP6062640B2 (ja) 光伝導素子
EP2068140B1 (en) Electromagnetic wave generating device, electromagnetic wave integrated device, and electromagnetic wave detector
JP5610793B2 (ja) 光伝導素子
Pizzuto et al. Laser THz emission nanoscopy and THz nanoscopy
JP2011181708A (ja) 光素子
US20170322078A1 (en) Photoconductive antenna for terahertz waves, method for producing such photoconductive antenna and terahertz time domain spectroscopy system
JPWO2005022180A1 (ja) 半導体デバイスの電界分布測定方法と装置
JP2010050287A (ja) 光伝導素子
JP3806742B2 (ja) 光伝導素子及びそれを用いた赤外放射素子並びにその検出素子
JP7062481B2 (ja) 電磁波計測装置
JP6942006B2 (ja) 電磁波計測装置
CN208026605U (zh) 一种小型化的太赫兹时域光谱仪装置
US20150241348A1 (en) Information acquiring apparatus and information acquiring method
CN110231299B (zh) 光学测量装置和光学测量方法
JP6306363B2 (ja) 時間領域分光装置
JP3922463B2 (ja) 赤外光放射装置および赤外光検出装置ならびに時系列変換パルス分光計測装置
US20040262544A1 (en) Semiconductor surface-field emitter for T-ray generation
KR102062701B1 (ko) 준광학 밀리미터 및 테라헤르츠파를 이용한 반도체 캐리어 수명 측정 장치 및 그 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220420

R150 Certificate of patent or registration of utility model

Ref document number: 7062481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150