JP7059784B2 - 空調装置 - Google Patents

空調装置 Download PDF

Info

Publication number
JP7059784B2
JP7059784B2 JP2018089387A JP2018089387A JP7059784B2 JP 7059784 B2 JP7059784 B2 JP 7059784B2 JP 2018089387 A JP2018089387 A JP 2018089387A JP 2018089387 A JP2018089387 A JP 2018089387A JP 7059784 B2 JP7059784 B2 JP 7059784B2
Authority
JP
Japan
Prior art keywords
air
blower
condenser
refrigerant
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018089387A
Other languages
English (en)
Other versions
JP2019196846A (ja
Inventor
茜 武藤
茂 川野
道夫 西川
達博 鈴木
佳之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018089387A priority Critical patent/JP7059784B2/ja
Priority to PCT/JP2019/015763 priority patent/WO2019216106A1/ja
Publication of JP2019196846A publication Critical patent/JP2019196846A/ja
Application granted granted Critical
Publication of JP7059784B2 publication Critical patent/JP7059784B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/028Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by air supply means, e.g. fan casings, internal dampers or ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0323Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は、冷凍サイクル等の構成機器を筐体の内部に収容した空調装置に関する。
従来、空調装置の一態様として、蒸気圧縮式の冷凍サイクル装置や送風機等の構成機器が筐体の内部に収容されているものが開発されている。このような空調装置は、例えば、車両に配置されたシートの座面部と床面との間に配置され、シートを空調対象空間として、その快適性を向上させている。
このような空調装置に関する発明として、例えば、特許文献1に記載された発明が知られている。特許文献1に記載された空調機は、コンデンサ及びエバポレータを含む冷凍サイクルと、一台の遠心ファンを本体ケースの内部に収容している。
特開2017-187218号公報
しかしながら、上記特許文献1に記載された空調機では、1つの筐体内に全ての構成機器を配置しているので、凝縮器および蒸発器に対して十分に空気を流すことができない。したがって、凝縮器および蒸発器の熱交換性能を十分に発揮させることができないという問題がある。
本発明は上記点に鑑みて、冷凍サイクル装置および送風機等を1つの筐体の内部に収容した空調装置において、冷凍サイクル装置の熱交換器における熱交換性能を向上させることを目的とする。
上記目的を達成するため、請求項1に記載の発明では、高圧冷媒を凝縮させる凝縮器(22)および低圧冷媒を蒸発させる蒸発器(24)を有する冷凍サイクル装置(20)と、
凝縮器にて加熱された加熱空気を送風する第1送風機(30)と、
蒸発器にて冷却された冷却空気を送風する第2送風機(31)と、
冷凍サイクル装置、第1送風機および第2送風機を収容する筐体(10)と、を備え、
第1送風機は、凝縮器の冷媒流れ出口側よりも入口側の近くに配置されており、
凝縮器は、冷媒が流入する冷媒入口(226)と、冷媒が流出する冷媒出口(227)とを有しているとともに、冷媒が冷媒入口から冷媒出口に向かって一方向に流れるように構成されており、
第1送風機は、冷媒出口よりも冷媒入口の近くに配置されている
これによれば、凝縮器のうち相対的に高温となる部分において、加熱空気を熱交換させることができる。このため、凝縮器において、高圧冷媒と加熱空気とを効率的に熱交換させることができる。したがって、冷凍サイクル装置の熱交換器における熱交換性能を向上させることができる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態に係る空調装置の外観斜視図である。 第1実施形態に係る空調装置の上部カバーを外した状態を示す斜視図である。 第1実施形態に係る空調装置の第1送風機、第2送風機を外した状態を示す斜視図である。 第1実施形態に係る空調装置の内部構成を示す平面図である。 図4におけるV-V断面を示す断面図である。 図4におけるVI-VI断面を示す断面図である。 第1実施形態に係る空調装置の制御系を示すブロック図である。 第1実施形態に係る空調装置の暖房モード時の内部構成を示す平面図である。 第1実施形態に係る暖房モードにおいて、供給口側への空気の流れを示す説明図である。 第1実施形態に係る暖房モードにおいて、排気口側への空気の流れを示す説明図である。 第1実施形態に係る空調装置のエアミックスモード時の内部構成を示す平面図である。 第1実施形態に係るエアミックスモードにおいて、供給口側への空気の流れを示す説明図である。 第1実施形態に係るエアミックスモードにおいて、排気口側への空気の流れを示す説明図である。 第1実施形態に係る凝縮器を示す平面図である。 第1実施形態に係る空調装置の第1送風機および凝縮器等の配置関係を説明するための説明図である。 第2実施形態に係る空調装置の第1送風機および凝縮器等の配置関係を説明するための説明図である。 第3実施形態に係る空調装置の第1送風機および凝縮器等の配置関係を説明するための説明図である。 第4実施形態に係る空調装置の第1送風機および凝縮器等の配置関係を説明するための説明図である。 第5実施形態に係る空調装置の第1送風機および凝縮器等の配置関係を説明するための説明図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
又、各図における上下、左右、前後を示す矢印は、実施形態における各構成の位置関係の理解を容易にする為に、三次元空間の直交座標系(例えば、X軸、Y軸、Z軸)に対応する基準として例示したものである。従って、本発明に係る空調装置の姿勢等は、各図に示す状態に限定されるものではなく、適宜変更可能である。
(第1実施形態)
第1実施形態に係る空調装置1は、車両の車室内に配置されたシートを空調対象空間として、シートに座った乗員の快適性を高めるためのシート空調装置に用いられる。当該空調装置1は、シートの座面部と車室床面との間の小さなスペースに配置されており、シートに配置されたダクトを介して、空調風(例えば、冷風や温風)を供給することで、シートに座った乗員の快適性を高めるように構成されている。
図1~図3に示すように、第1実施形態に係る空調装置1は、蒸気圧縮式の冷凍サイクル装置20と、第1送風機30と、第2送風機31と、温風用切替部35と、冷風用切替部40とを、筐体10の内部に収容して構成されている。
従って、当該空調装置1は、第1送風機30や第2送風機31の作動による送風空気を冷凍サイクル装置20によって温度調整し、シートに配置されたダクト等を介して、シートに座った乗員に供給することができる。
先ず、筐体10の具体的な構成について、図1~図3を参照しつつ説明する。尚、図2は、図1の状態から上部カバー11を取り外した状態を示しており、図3は、図2の状態から第1送風機30及び第2送風機31を取り外した状態を示している。
当該空調装置1において、筐体10は、シートの座面部と車室床面との間に配置可能な直方体状に形成されている。図1に示すように、筐体10は、上部カバー11と、本体ケース15とにより構成されている。
上部カバー11は、筐体10の上面を構成しており、上方が開放された箱状を為す本体ケース15の開口部を閉塞するように取り付けられる。当該上部カバー11には、温風用通気口12と、冷風用通気口13と、供給口14と、排気口16が形成されている。
温風用通気口12は、上部カバー11の右側部分に開口されている。当該温風用通気口12は、後述する第1送風機30等の作動に伴い、筐体10の外部の空気(即ち、車室内の空気)を筐体10の内部に吸い込む為の通気口である。
図1~図6に示すように、筐体10の内部において、温風用通気口12の下方となる位置には、冷凍サイクル装置20の凝縮器22が配置されている。従って、温風用通気口12から吸い込まれた空気は、凝縮器22を通過する際に高圧冷媒と熱交換して加熱され、温風WAとして供給される。
冷風用通気口13は、上部カバー11の左側部分に開口されており、温風用通気口12と対称となるように配置されている。当該冷風用通気口13は、温風用通気口12と同様に、第1送風機30等の作動に伴い、筐体10の外部の空気を内部に吸い込むための通気口である。
筐体10の内部にて冷風用通気口13の下方となる位置には、冷凍サイクル装置20の蒸発器24が配置されている。従って、冷風用通気口13から吸い込まれた空気は、蒸発器24を通過する際に冷却され、冷風CAとして供給される。
そして、上部カバー11における後側中央部には、供給口14が開口されている。供給口14は、当該空調装置1にて冷凍サイクル装置20で温度調整された空調風(例えば、温風WA、冷風CA、混合風MA)を空調対象空間へ供給する為の通気口である。
尚、図示は省略するが、当該供給口14にはダクトの端部が接続されている。当該ダクトは、シートの側部等に沿って配置されており、シートにおける乗員が着席する空間へ空調風を導くように構成されている。シートにおける乗員が着席する空間は空調対象空間に相当する。
又、上部カバー11における前側中央部には、排気口16が開口されている。当該排気口16は、筐体10の内部において、冷凍サイクル装置20にて温度調整された空気のうちの一部が排気される開口部である。排気口16から吹き出された空気は、空調対象空間の外部へ送風される。
本体ケース15は、筐体10の主要部を構成しており、上方が開放された箱状に形成されている。図2~図6に示すように、本体ケース15の内部には、冷凍サイクル装置20や第1送風機30等の構成機器が配置される。
尚、図5、図6等に示すように、本体ケース15の内部には、温風側通風路17と冷風側通風路18が形成される。温風側通風路17は、凝縮器22にて加熱された温風WAが流通する通風路であり、冷風側通風路18は、蒸発器24にて冷却された冷風CAが流通する通風路である。温風側通風路17、冷風側通風路18は、何れも本体ケース15の筐体底面15Aと、構成機器との間によって構成される。
次に、空調装置1における冷凍サイクル装置20の構成について、図面を参照しつつ説明する。上述したように、冷凍サイクル装置20は、筐体10の内部に収容されており、蒸気圧縮式の冷凍サイクルを構成している。
そして、冷凍サイクル装置20は、圧縮機21と、凝縮器22と、減圧部23と、蒸発器24と、アキュムレータ25とを有している。当該冷凍サイクル装置20は、圧縮機21の作動によって冷媒を循環させることで、空調対象空間であるシート周辺へ送風される空気を冷却或いは加熱する機能を果たす。
ここで、冷凍サイクル装置20は、冷媒として、HFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(例えば、R1234yf)や自然冷媒(例えば、R744)等を採用してもよい。更に、冷媒には圧縮機21を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
圧縮機21は、冷凍サイクル装置20において、冷媒を吸入し、圧縮して吐出するものである。圧縮機21は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて駆動する電動圧縮機として構成されており、図2、図3等に示すように、本体ケース15の内部における後方側に配置されている。尚、圧縮機21の圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。
圧縮機21を構成する電動モータは、図7に示す制御部60から出力される制御信号によって、その作動(すなわち回転数)が制御される。そして、当該制御部60が電動モータの回転数を制御することによって、圧縮機21の冷媒吐出能力が変更される。
圧縮機21にて圧縮された高圧冷媒が吐出される吐出配管には、凝縮器22の流入口側が接続されている。凝縮器22は、複数のチューブ及びフィンを積層して平板状に構成された熱交換部22Aを有しており、熱交換部22Aを通過する空気と、各チューブを流れる高圧冷媒とを熱交換させる。尚、この凝縮器22の詳細な構成については後述する。
図2~図4に示すように、凝縮器22は、本体ケース15の右側に配置されており、温風用通気口12の下方に位置している。凝縮器22の熱交換部22Aは、温風用通気口12の開口面積よりも大きく形成されている。従って、温風用通気口12から吸い込まれた空気は、凝縮器22の熱交換部22Aを通過する。
即ち、凝縮器22は、圧縮機21から吐出された高温高圧の吐出冷媒と、温風用通気口12から吸い込まれた空気とを熱交換させて、空気を加熱して温風WAにすることができる。つまり、当該凝縮器22は、加熱用熱交換器として作動し、放熱器として機能する。
そして、凝縮器22の熱交換部22Aは、複数のチューブ及びフィンが伸びる方向を長手方向とする平板状に形成されている。図2~図6に示すように、当該凝縮器22は、熱交換部22Aの長手方向が空調装置1の前後方向に沿うように配置されている。
更に、図5、図6に示すように、凝縮器22は、熱交換部22Aが筐体底面15Aから予め定められた距離だけ上方に位置するように配置される。凝縮器22の下方に形成される空間は、熱交換部22Aを通過した温風WAが流通する空間であり、温風側通風路17の一部として機能する。
そして、凝縮器22の流出口側には、減圧部23が接続されている。減圧部23は、いわゆる固定絞りによって構成されており、凝縮器22から流出した冷媒を減圧させる。図4に示すように、減圧部23は、本体ケース15の内部における前側に配置されている。
尚、当該空調装置1では、減圧部23として固定絞りを用いているが、この態様に限定されるものではない。凝縮器22から流出した冷媒を減圧可能であれば、減圧部として、種々の構成を採用することができる。例えば、キャピラリーチューブを減圧部23として採用しても良いし、制御部60の制御信号により絞り開度を制御可能な膨張弁を、減圧部23に用いても良い。
減圧部23の流出口側には、蒸発器24の流入口側が接続されている。当該蒸発器24は、複数のチューブ及びフィンを積層して平板状に構成された熱交換部24Aを有しており、熱交換部24Aを通過する空気から吸熱して、各チューブを流れる低圧冷媒を蒸発させる。
図2~図4に示すように、蒸発器24は、本体ケース15の左側に配置されており、冷風用通気口13の下方に位置している。従って、当該空調装置1では、蒸発器24は、筐体10の内部において、凝縮器22に対して左右方向に間隔をあけて配置されている。
そして、蒸発器24の熱交換部24Aは、冷風用通気口13の開口面積よりも大きく形成されている。従って、冷風用通気口13から吸い込まれた空気は、蒸発器24の熱交換部24Aを通過する。
即ち、蒸発器24は、冷風用通気口13から吸い込まれた空気と、減圧部23にて減圧された低圧冷媒とを熱交換させて、空気を冷却して冷風CAにすることができる。つまり、蒸発器24は、冷却用熱交換器として作動し、吸熱器として機能する。
そして、蒸発器24の熱交換部24Aは、複数のチューブ及びフィンが伸びる方向を長手方向とする平板状に形成されている。図2~図6に示すように、当該蒸発器24は、熱交換部24Aの長手方向が空調装置1の前後方向に沿うように配置されている。
図5、図6に示すように、蒸発器24は、熱交換部24Aが筐体底面15Aから予め定められた距離だけ上方に位置するように配置される。蒸発器24の下方に形成される空間は、熱交換部24Aを通過した冷風CAが流通する空間であり、冷風側通風路18の一部として機能する。
そして、蒸発器24の流出口側には、アキュムレータ25が接続されており、本体ケース15における左側後方に配置されている。当該アキュムレータ25は、蒸発器24から流出した冷媒の気液を分離して、冷凍サイクル内の余剰液相冷媒を蓄える。
当該アキュムレータ25における気相冷媒出口には、圧縮機21の吸入配管が接続されている。従って、圧縮機21には、アキュムレータ25で分離された気相冷媒が吸入配管を介して吸入される。
図2に示すように、筐体10の内部には、第1送風機30と第2送風機31が配置されている。第1送風機30は、複数枚の羽根を有する羽根車と、当該羽根車を回転させる電動モータとを有して構成された送風機である。
当該第1送風機30は、凝縮器22と蒸発器24の間における後方側に位置しており、供給口14の下方に位置している。従って、第1送風機30は、羽根車を回転させることによって、供給口14を介して、空調対象空間であるシートに対して送風することができる。すなわち、本実施形態の第1送風機30は、羽根車の回転により凝縮器20から第1送風機30に向かう空気流を生成する、いわゆる吸込式の送風機である。
そして、第2送風機31は、第1送風機30と同様に、羽根車及び電動モータを有する送風機である。図2に示すように、当該第2送風機31は、凝縮器22と蒸発器24の間において、第1送風機30の前側に隣接するように配置されている。
当該第2送風機31は、排気口16の下方に位置している。従って、当該第2送風機31は、羽根車を回転させることによって、排気口16を介して、空調対象空間の外部へ送風することができる。すなわち、本実施形態の第2送風機31は、羽根車の回転により蒸発器24から第2送風機31に向かう空気流を生成する、いわゆる吸込式の送風機である。
図3等に示すように、第1送風機30及び第2送風機31の下方には、ファン支持部55が配置されている。ファン支持部55は、凝縮器22と蒸発器24の間に配置されており、第1取付開口56と、第2取付開口57とを有している。図3~図6に示すように、ファン支持部55は、筐体10における筐体底面15Aから予め定められた高さに位置するように配置されており、凝縮器22と蒸発器24の間の空間を上下に区画している。
第1取付開口56は、第1送風機30が取り付けられる開口部であり、ファン支持部55における後方側に配置されている。一方、第2取付開口57は、第2送風機31が取り付けられる開口部であり、ファン支持部55における前方側にて、第1取付開口56に隣接するように配置されている。
従って、第1送風機30は、第1取付開口56を介して、ファン支持部55の下方の空気を吸い込み、供給口14へ供給することができる。第2送風機は、第2取付開口57を介して、ファン支持部55の下方の空気を吸い込んで、排気口16へ送風することができる。
そして、当該空調装置1における温風用切替部35及び冷風用切替部40の構成について、図面を参照しつつ説明する。
尚、図5は、図4におけるV-V断面を示しており、第1送風機30による空気(すなわち冷風CA)の流れの一例を示している。そして、図6は、図4におけるVI-VI断面を示しており、第2送風機31による空気(すなわち温風WA)の流れの一例を示している。
図3に示すように、当該空調装置1は、凝縮器22と蒸発器24の間にて、第1送風機30及び第2送風機31の下方に、温風用切替部35と、冷風用切替部40とを有している。温風用切替部35は、凝縮器22により加熱された温風WAの送風先を切り替える為の機構である。冷風用切替部40は、蒸発器24により冷却された冷風CAの送風先を切り替える為の機構である。
温風用切替部35及び冷風用切替部40は、ファン支持部55の下方に配置されたフレーム部材45、供給用スライドドア46、排気用スライドドア47、駆動モータ50等を有して構成されている。
つまり、温風用切替部35及び冷風用切替部40は、筐体10の内部において、左右両側に配置された凝縮器22と蒸発器24の間に配置されている。そして、温風用切替部35は、凝縮器22と蒸発器24の間における右側(即ち、凝縮器22に近い側)に位置しており、冷風用切替部40は、凝縮器22と蒸発器24の間における左側(即ち、蒸発器24に近い側)に配置されている。
図5、図6に示すように、フレーム部材45は、凝縮器22と蒸発器24の間にて、ファン支持部55の下方に配置されており、前後方向に沿って伸びている。当該フレーム部材45は、前後方向に垂直な断面に関して、下方に向かって膨らんだ円弧状に形成されている。
円弧状に膨らんだフレーム部材45の下端部には、区画部45Aが形成されている。区画部45Aは、フレーム部材45の下端部と筐体底面15Aの内面との間を閉塞する壁状
に形成されており、前後方向に沿って伸びている。即ち、フレーム部材45の下方の空間は、区画部45Aによって左右に区画される。
当該フレーム部材45の下方であって、区画部45Aの右側にあたる空間は、凝縮器22の下方の空間と連通し、温風側通風路17の一部を構成する。同様に、フレーム部材45の下方であって、区画部45Aの左側にあたる空間は、蒸発器24の下方の空間と連通し、冷風側通風路18の一部を構成する。
そして、フレーム部材45の前後方向中央部には、ファン支持部55とフレーム部材45の間の空間を前後に区画する区画リブが形成されている。当該区画リブの後方側の空間は、第1取付開口56に連通しており、供給口14から供給される空気が流入する供給用空間56Aとして機能する。そして、当該区画リブの前方側の空間は、第2取付開口57に連通しており、排気口16から送風される空気が流入する排気用空間57Aとして機能する。
温風用切替部35を構成する温風供給用開口36及び温風排気用開口37は、フレーム部材45における区画部45Aの右側において、前後方向に隣接するように配置されている。温風供給用開口36は、フレーム部材45における右側後方に開口形成されており、供給用空間56Aと温風側通風路17を連通している。そして、温風排気用開口37は、フレーム部材45における右側前方に開口形成されており、排気用空間57Aと温風側通風路17を連通している。
図5、図6に示すように、フレーム部材45は、左右方向中央部に向かうに伴って下方に膨らんだ円弧状に形成されており、温風供給用開口36及び温風排気用開口37は、当該フレーム部材45の右側部分に開口されている。
従って、温風供給用開口36及び温風排気用開口37の開口縁は、凝縮器22が配置されている筐体10の右側から離れる程、下方に向かう円弧を描くように形成される。つまり、温風供給用開口36及び温風排気用開口37の開口縁のうち、凝縮器22側に位置する部位は、温風供給用開口36及び温風排気用開口37を介して、区画部45A側に位置する部位に対向している。そして、凝縮器22側に位置する部位は、空調装置1の上下方向に関して、区画部45A側に位置する部位よりも上方側に位置している。
これにより、当該温風供給用開口36及び温風排気用開口37の開口面積は、温風側通風路17を左右方向(即ち、水平)に横断するように温風供給用開口36等を形成した場合の開口面積よりも大きくなる。
又、図4~図6に示すように、凝縮器22は、熱交換部22Aの長手方向が前後方向に沿うように配置されている。そして、温風用切替部35において、温風供給用開口36と温風排気用開口37は、前後方向に並んで配置されている。
この結果、当該空調装置1は、凝縮器22の熱交換部22Aを通過した空気に関し、温風供給用開口36に流入する風量と、温風排気用開口37に流入する風量の何れについても、十分に確保することができる。
そして、冷風用切替部40を構成する冷風供給用開口41及び冷風排気用開口42は、フレーム部材45における区画部45Aの左側において、前後方向に隣接するように配置されている。
冷風供給用開口41は、フレーム部材45における左側後方に開口形成されており、供給用空間56Aと冷風側通風路18とを連通している。図5に示すように、当該冷風供給用開口41は、フレーム部材45において、温風供給用開口36と左右方向に隣接している。
そして、冷風排気用開口42は、フレーム部材45における左側前方に開口形成されており、排気用空間57Aと冷風側通風路18とを連通している。図6に示すように、当該冷風排気用開口42は、フレーム部材45において、温風排気用開口37と左右方向に隣接している。
上述したように、フレーム部材45は、左右方向中央部に向かうに伴って下方に膨らんだ円弧状に形成されており、冷風供給用開口41及び冷風排気用開口42は、当該フレーム部材45の左側部分に開口されている。
従って、冷風供給用開口41及び冷風排気用開口42の開口縁は、蒸発器24が配置されている筐体10の左側から離れる程、下方に向かう円弧を描くように形成される。つまり、冷風供給用開口41及び冷風排気用開口42の開口縁のうち、蒸発器24側に位置する部位は、冷風供給用開口41及び冷風排気用開口42を介して、区画部45A側に位置する部位に対向している。そして、蒸発器24側に位置する部位は、空調装置1の上下方向に関して、区画部45A側に位置する部位よりも上方側に位置している。
これにより、当該冷風供給用開口41及び冷風排気用開口42の開口面積は、冷風側通風路18を左右方向(即ち、水平)に横断するように冷風供給用開口41等を形成した場合の開口面積よりも大きくなる。
そして、図4~図6に示すように、蒸発器24は、熱交換部24Aの長手方向が前後方向に沿うように配置されている。そして、冷風用切替部40において、冷風供給用開口41と冷風排気用開口42は、前後方向に並んで配置されている。
この結果、当該空調装置1は、蒸発器24の熱交換部24Aを通過した空気に関し、冷風供給用開口41に流入する風量と、冷風排気用開口42に流入する風量の何れについても、十分に確保することができる。
フレーム部材45の後方側には、供給用スライドドア46が移動可能に取り付けられている。当該供給用スライドドア46は、温風供給用開口36及び冷風供給用開口41の開口面積よりも大きな板状に形成されており、フレーム部材45の円弧に沿って湾曲している。
そして、当該供給用スライドドア46は、温風供給用開口36を閉塞する位置と、冷風供給用開口41を閉塞する位置との間を、フレーム部材45の円弧に沿ってスライド可能に取り付けられている。
従って、当該空調装置1は、供給用スライドドア46を移動させることで、温風供給用開口36を介して供給用空間56Aに流入する温風WAの風量と、冷風供給用開口41を介して供給用空間56Aに流入する冷風CAの風量を調整することができる。即ち、供給用スライドドア46は、供給口14から供給される空気において、温風WA及び冷風CAが占める割合を調整することができ、供給側風量調整部として機能する。
一方、フレーム部材45の前方側には、排気用スライドドア47が移動可能に取り付けられている。当該排気用スライドドア47は、温風排気用開口37及び冷風排気用開口42の開口面積よりも大きな板状に形成されており、フレーム部材45の円弧に沿って湾曲している。
そして、当該排気用スライドドア47は、温風排気用開口37を閉塞する位置と、冷風排気用開口42を閉塞する位置との間を、フレーム部材45の円弧に沿ってスライド可能に取り付けられている。
従って、当該空調装置1は、排気用スライドドア47を移動させることで、温風排気用開口37を介して排気用空間57Aに流入する温風WAの風量と、冷風排気用開口42を介して排気用空間57Aに流入する冷風CAの風量を調整することができる。即ち、排気用スライドドア47は、排気口16から送風される空気において、温風WA及び冷風CAが占める割合を調整することができ、排気側風量調整部として機能する。
図4等に示すように、筐体10の内部には、駆動モータ50が配置されている。当該駆動モータ50は、いわゆるサーボモータによって構成されており、供給用スライドドア46及び排気用スライドドア47をスライド移動させる為の駆動源として機能する。当該駆動モータ50の作動は、制御部60からの制御信号に基づいて行われる。
駆動モータ50の駆動軸には、供給用シャフト48が接続されている。当該供給用シャフト48は、駆動モータ50から前方側に向かって伸びており、2つのギヤ部48Aを有している。又、当該供給用シャフト48は、供給用スライドドア46の上方を前後方向に横断するように配置されている。
そして、供給用スライドドア46の上面には、2つの歯部46Aが左右方向に延びるように配置されている。当該供給用スライドドア46の歯部46Aは、それぞれ、供給用シャフト48のギヤ部48Aにおける歯と噛み合うように形成されている。
従って、駆動モータ50で生じた動力は、ギヤ部48Aと歯部46Aを介して、供給用スライドドア46に伝達される。即ち、当該空調装置1は、制御部60にて駆動モータ50の作動を制御することで、供給用スライドドア46を左右方向の任意の位置にスライド移動させることができる。
一方、供給用シャフト48の前方側には、排気用シャフト49が回転可能に支持されている。当該排気用シャフト49は、供給用シャフト48と平行になるように前方側に向かって伸びており、2つのギヤ部49Aを有している。
図4に示すように、供給用シャフト48の前方側の端部には、伝達ギヤ部48Bが配置されており、排気用シャフト49の後方側の端部に配置された従動ギヤ部49Bと噛み合うように構成されている。従って、駆動モータ50で生じた動力は、供給用シャフト48の回転に伴い、排気用シャフト49に伝達される。
そして、排気用スライドドア47の上面には、2つの歯部47Aが左右方向に延びるように配置されている。当該排気用スライドドア47の歯部47Aは、それぞれ、排気用シャフト49のギヤ部49Aと噛み合うように形成されている。
従って、駆動モータ50で生じた動力が、供給用シャフト48を介して伝達され、排気用シャフト49を回転させる。これにより、排気用スライドドア47は、温風排気用開口37と冷風排気用開口42の間をスライド移動する。即ち、当該空調装置1は、制御部60にて駆動モータ50の作動を制御することで、排気用スライドドア47を左右方向の任意の位置にスライド移動させることができる。
又、当該空調装置1によれば、供給用シャフト48及び排気用シャフト49を介して、駆動モータ50の動力を供給用スライドドア46と排気用スライドドア47に伝達させることで、供給用スライドドア46のスライド移動と、排気用スライドドア47のスライド移動を連動させることができる。
図8~図13に示すように、冷風排気用開口42における開口面積が増大するように、排気用スライドドア47が移動すると、供給用スライドドア46は、温風供給用開口36における開口面積が増大するように移動する。
この場合には、排気用空間57Aに流入する空気における冷風CAの風量割合が増大するとともに、供給用空間56Aに流入する空気における温風WAの風量割合が増大する。当該空調装置1は、空調対象空間に対して、暖房モードよりも低温で、冷房モードよりも高温な混合風MAを供給することができ、暖房よりのエアミックスモードを実現することができる。
又、温風排気用開口37における開口面積が増大するように、排気用スライドドア47が移動すると、供給用スライドドア46は、冷風供給用開口41における開口面積が増大するように移動する。
この場合には、排気用空間57Aに流入する空気における温風WAの風量割合が増大するとともに、供給用空間56Aに流入する空気における冷風CAの風量割合が増大する。当該空調装置1は、空調対象空間に対して、暖房モードよりも低温で、冷房モードよりも高温な混合風MAを供給することができ、冷房よりのエアミックスモードを実現することができる。
このように構成された第1実施形態に係る空調装置1によれば、冷凍サイクル装置20の凝縮器22で加熱された温風WAや、蒸発器24で冷却された冷風CAを用いて、空調対象空間であるシートに対して空調風を供給することができる。
そして、当該空調装置1によれば、温風用切替部35や冷風用切替部40の作動を制御することで、空調対象空間に対して冷風CAを供給する冷房モード、空調対象空間に対して温風WAを供給する暖房モード、冷風CA及び温風WAを混合して温度調整した混合風MAを空調対象空間に供給するエアミックスモードを実現することができる。
次に、第1実施形態に係る空調装置1における凝縮器22の詳細な構成について、図面を参照しつつ説明する。図14に示すように、凝縮器22は、いわゆるタンクアンドチューブ型の熱交換器で構成されている。したがって、凝縮器22は、冷媒が流通する複数のチューブ221と、一対のヘッダタンク222、223とを備えている。
チューブ221は、その長手方向が前後方向に一致するように、左右方向に複数本平行に積層配置されている。チューブ221における長手方向に垂直な断面の形状は、扁平な長円形状(すなわち、扁平形状)である。チューブ221は、チューブ221の外部を流れる空気の流れ方向が、当該扁平形状における長径方向と一致するように配置されている。
また、チューブ221の外表面には、伝熱部材としての波形状のフィン224が接合されている。このフィン224により、チューブ221周りを流れる空気との熱交換面積(すなわち、伝熱面積)が増大されて冷媒と空気との熱交換が促進される。
以下、チューブ221の長手方向をチューブ長手方向といい、チューブ221の積層方向をチューブ積層方向という。
上述した熱交換部22Aは、複数のチューブ221および複数のフィン224が交互に積層された積層体により構成されている。熱交換部22Aにおけるチューブ積層方向の両端部には、チューブ長手方向と略平行に延びて熱交換部22Aを補強するインサート225が設けられている。
ヘッダタンク222、223は、複数のチューブ221と連通しており、複数のチューブ221に対して冷媒の集合または分配を行う。ヘッダタンク222、223は、チューブ長手方向の両端部(本実施形態では、前後端部)に一つずつ設けられている。ヘッダタンク222、223は、チューブ長手方向と直交する方向(本実施形態では、左右方向)に延びている。
ここで、一対のヘッダタンク222、223のうち、後側に配置されるとともにチューブ221に対して冷媒の分配を行うものを、入口タンク222という。また、一対のヘッダタンク222、223のうち、前側に配置されるとともに、チューブ221から流出する冷媒の集合を行うものを、出口タンク223という。
入口タンク222には、圧縮機21から吐出された高圧冷媒を当該入口タンク222内に流入させる流入口としての冷媒入口226が設けられている。冷媒入口226は、入口タンク222におけるチューブ積層方向の一端部側(本実施形態では、右端部側)に配置されている。
出口タンク223には、冷媒を減圧部23の流入口側に流出させる流出口としての冷媒出口227が設けられている。冷媒出口227は、出口タンク223におけるチューブ積層方向の他端部側(本実施形態では、左端部側)に配置されている。
凝縮器22は、チューブ長手方向が長い矩形状に形成されている。凝縮器22の各チューブ221を流通する冷媒の流れ方向は、いずれも同一である。冷媒入口226は、チューブ221におけるチューブ長手方向の一端側に配置されている。冷媒出口227は、チューブ221におけるチューブ長手方向の他端側に配置されている。
このため、凝縮器22では、冷媒が冷媒入口226から冷媒出口227に向かって一方向に直線的に流れる。すなわち、凝縮器22は、その内部で冷媒がUターンしないように構成されている。
次に、第1実施形態に係る空調装置1における凝縮器22および第1送風機30等の配置関係について、図面を参照しつつ説明する。図15は、空調装置1の上方側から見た平面視を示している。以下、空調装置1の上方側から見た平面視を、上方平面視という。
なお、図15に図示した凝縮器22や第1送風機30等の大きさを含む配置等は説明の便宜上のものであって、実際の配置を示すものではない。また、図15において、実線矢印は冷媒の流れを模式的に示しており、白抜き矢印は空気の流れを模式的に示している。
図2および図15に示すように、第1送風機30は、凝縮器22の冷媒出口227よりも冷媒入口226の近くに配置されている。すなわち、第1送風機30は、凝縮器22の冷媒流れ出口側よりも入口側の近くに配置されている。換言すると、第1送風機30は、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位にて加熱された加熱空気を送風するように配置されている。
本実施形態では、図15に示すように、上方平面視において、空調装置1の左右方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重合配置されている。すなわち、上方平面視において、空調装置1の左右方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重なるように配置されている。
具体的には、上方平面視において、空調装置1の左右方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ最上流側の部位とが重合配置されている。また、上方平面視において、空調装置1の左右方向から見たときに、第1送風機30の全体と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重合配置されている。
また、図2および図15に示すように、第2送風機31は、蒸発器24の冷媒流れ出口側よりも入口側の近くに配置されている。換言すると、第2送風機31は、蒸発器24の熱交換部24Aのうち冷媒流れ上流側の部位にて冷却された冷却空気を送風するように配置されている。
本実施形態では、図15に示すように、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ上流側の部位とが重合配置されている。すなわち、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ上流側の部位とが重なるように配置されている。
具体的には、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ最上流側の部位とが重合配置されている。また、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31の全体と、蒸発器24の熱交換部24Aのうち冷媒流れ上流側の部位とが重合配置されている。
次に、第1実施形態に係る空調装置1の制御系について、図面を参照しつつ説明する。図7に示すように、当該空調装置1は、当該空調装置1の構成機器の作動を制御する為の制御部60を有している。
制御部60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、制御部60は、そのROMに記憶された制御プログラムに基づいて各種演算処理を行い、各構成機器の作動を制御する。
制御部60の出力側には、圧縮機21と、第1送風機30と、第2送風機31と、駆動モータ50とが接続されている。従って、当該制御部60は、圧縮機21による冷媒吐出性能(例えば、冷媒圧力)や、第1送風機30の送風性能(例えば、送風量)、第2送風機31の送風性能を状況に応じて調整することができる。
又、当該制御部60は、駆動モータ50の作動を制御することで、温風用切替部35、冷風用切替部40における冷風CA、温風WAの風量バランスを調整することができる。即ち、当該制御部60は、空調装置1における運転モードを、冷房モード、暖房モード、エアミックスモードの何れかに変更することができる。
そして、制御部60の入力側には、複数種類の空調用センサ61が接続されている。空調用センサは、空調装置1の空調運転の制御に用いられる複数種類のセンサによって構成されており、圧力センサ62を含んでいる。
当該圧力センサ62は、サイクルの低圧側の冷媒圧力を検出する為の検出部であり、例えば、蒸発器24に接続された冷媒配管に配置されている。従って、当該制御部60は、圧力センサ62により検出されたサイクルの低圧側冷媒圧力の大きさに応じて、空調装置1の空調運転時における負荷の大きさを判定することができ、それに応じた制御を行うことができる。
又、空調用センサ61は、温風用通気口12、冷風用通気口13にて吸い込まれる空気の温度を検出する吸込温度センサ、凝縮器22を通過した空気(即ち、温風WA)の温度を検出する温風温度センサ、蒸発器24を通過した空気(即ち、冷風CA)の温度を検出する冷風温度センサ等を含んでいる。
尚、空調用センサ61は、例えば、サイクルの低圧側における冷媒温度を検出する温度センサ(即ち、蒸発器温度センサ)、サイクルの高圧側の冷媒圧力を検出する高圧センサ、高圧冷媒の温度を検出する温度センサを含んでいても良い。そして、制御部60の入力側に対して、空調装置1の作動を指示する為の操作パネルを接続してもよい。
上述したように、第1実施形態に係る空調装置1は、空調対象空間であるシートに対して冷風CAを供給する冷房モードを実行できる。ここで、冷房モードにおける空調装置1の作動について、図4~図6を参照しつつ説明する。
この冷房モードに際して、制御部60は、供給用スライドドア46で温風供給用開口36を閉塞すると共に、排気用スライドドア47で冷風排気用開口42を閉塞した状態に、温風用切替部35及び冷風用切替部40を制御する。つまり、図4~図6に示すように、温風用切替部35では、温風排気用開口37が全開となり、冷風用切替部40では、冷風供給用開口41が全開となる。
図5に示すように、この状態で第1送風機30を作動させると、第1送風機30は、供給用空間56Aから空気を吸い込み、供給口14を介して、空調対象空間であるシートに供給する。
上述したように、冷房モードでは、温風供給用開口36が閉塞されており、冷風供給用開口41が開放されている。従って、図5に示すように、第1送風機30は、冷風用通気口13から空気を吸い込み、蒸発器24の熱交換部24Aを通過させる。
この時、当該空気は、蒸発器24の内部を流れる低圧冷媒によって吸熱されて、冷風CAとなる。蒸発器24を通過した冷風CAは、冷風側通風路18を流通して、冷風供給用開口41から供給用空間56Aに流入する。そして、当該冷風CAは、第1送風機30により供給用空間56Aから吸い込まれ、供給口14から空調対象空間へ供給される。
尚、この冷房モードにおいては、温風供給用開口36は、供給用スライドドア46によって閉塞されている為、温風側通風路17側の空気が、第1送風機30の作動によって供給用空間56Aに吸い込まれることはない。つまり、この場合、第1送風機30により、温風用通気口12→凝縮器22→温風側通風路17→温風供給用開口36という空気の流れが生じることはない。
従って、当該空調装置1の冷房モードにおいて、冷風CAは、第1送風機30により送風される空気を、蒸発器24における低圧冷媒との熱交換で冷却して生成される。即ち、冷凍サイクル装置20の蒸発器24における冷媒の吸熱量は、第1送風機30による送風量の影響を大きく受けることになる。換言すると、当該空調装置1は、冷房モードにおいて、第1送風機30の送風量を調整することで、蒸発器24における冷媒の吸熱量を調整することができる。
又、冷房モードにおいて、第2送風機31を作動させると、第2送風機31は、その下方の排気用空間57Aから空気を吸い込み、排気口16を介して、空調対象空間の外部に送風する。
図6に示すように、冷房モードでは、温風排気用開口37が開放されており、冷風排気用開口42が閉塞されている。従って、第2送風機31は、温風用通気口12から空気を吸い込み、凝縮器22の熱交換部22Aを通過させる。
この時、当該空気は、凝縮器22を流れる高圧冷媒との熱交換によって加熱され、温風WAとなる。凝縮器22を通過した温風WAは、温風側通風路17を流通して、温風排気用開口37から排気用空間57Aに流入する。そして、当該温風WAは、第2送風機31により排気用空間57Aから吸い込まれ、排気口16から空調対象空間の外部へ送風される。
尚、この冷房モードにおいては、冷風排気用開口42は、排気用スライドドア47によって閉塞されている為、冷風側通風路18側の空気が、第2送風機31の作動によって排気用空間57Aに吸い込まれることはない。つまり、この場合、第2送風機31により、冷風用通気口13→蒸発器24→冷風側通風路18→冷風排気用開口42という空気の流れが生じることはない。
従って、当該空調装置1の冷房モードにおいて、温風WAは、第2送風機31により送風される空気を、凝縮器22における高圧冷媒の熱で加熱して生成される。即ち、冷凍サイクル装置20の凝縮器22における冷媒の放熱量は、第2送風機31による送風量の影響を大きく受けることになる。換言すると、当該空調装置1は、冷房モードにおいて、第2送風機31の送風量を調整することで、凝縮器22における冷媒の放熱量を調整することができる。
このように、当該空調装置1は、蒸発器24にて冷却された冷風CAを、第1送風機30により供給口14から空調対象空間に供給すると共に、凝縮器22で加熱された温風WAを、第2送風機31により排気口16から送風することができる。即ち、当該空調装置1は、空調対象空間であるシートに冷風CAを供給する冷房モードを実現することができる。
そして、当該空調装置1によれば、冷房モードにおいて、第1送風機30の送風量を調整することで、蒸発器24における冷媒の吸熱量を調整することができ、第2送風機31の送風量を調整することで、凝縮器22における冷媒の放熱量を調整することができる。
これにより、当該空調装置1は、冷房モードに際して、凝縮器22における冷媒の放熱量と、蒸発器24における冷媒の吸熱量を適切に調整することができ、冷凍サイクル装置20をバランスさせやすく、安定して作動させることができる。
尚、冷房モードにおける第1送風機30は、空調対象空間に空調風を供給する為の供給用送風機であると同時に、冷風CAを送風する為の冷風用送風機として機能する。即ち、第1送風機30は、凝縮器22及び蒸発器24の少なくとも一方として、蒸発器24を介して空気を吸い込んでいる。
そして、この場合における第2送風機31は、空調対象空間の外部へ送風する為の排気用送風機であると同時に、温風WAを送風する為の温風用送風機として機能している。つまり、第2送風機31は、凝縮器22及び蒸発器24の少なくとも他方として、凝縮器22を介して空気を吸い込んでいる。
次に、暖房モードにおける空調装置1の作動について、図8~図10を参照しつつ説明する。暖房モードにおいて、制御部60は、供給用スライドドア46で冷風供給用開口41を閉塞すると共に、排気用スライドドア47で温風排気用開口37を閉塞した状態に、温風用切替部35及び冷風用切替部40を制御する。つまり、図8~図10に示すように、温風用切替部35では、温風供給用開口36が全開となり、冷風用切替部40では、冷風排気用開口42が全開となる。
図9に示すように、この状態で第1送風機30を作動させると、第1送風機30は、供給用空間56Aから空気を吸い込み、供給口14を介して、空調対象空間であるシートに供給する。
上述したように、暖房モードでは、冷風供給用開口41が閉塞されており、温風供給用開口36が開放されている。従って、図9に示すように、第1送風機30は、温風用通気口12から空気を吸い込み、凝縮器22の熱交換部22Aを通過させる。
この時、当該空気は、凝縮器22の内部を流れる高圧冷媒の熱によって加熱されて、温風WAとなる。凝縮器22を通過した温風WAは、温風側通風路17を流通して、温風供給用開口36から供給用空間56Aに流入する。そして、当該温風WAは、第1送風機30により供給用空間56Aから吸い込まれ、供給口14から空調対象空間へ供給される。
尚、暖房モードにおいては、冷風供給用開口41は、供給用スライドドア46によって閉塞されている為、冷風側通風路18側の空気が、第1送風機30の作動によって供給用空間56Aに吸い込まれることはない。つまり、この場合、第1送風機30により、冷風用通気口13→蒸発器24→冷風側通風路18→冷風供給用開口41という空気の流れが生じることはない。
従って、当該空調装置1の暖房モードにおいて、温風WAは、第1送風機30により送風される空気を、凝縮器22における高圧冷媒の熱で加熱して生成される。即ち、冷凍サイクル装置20の凝縮器22における冷媒の放熱量は、第1送風機30による送風量の影響を大きく受けることになる。換言すると、当該空調装置1は、暖房モードにおいて、第1送風機30の送風量を調整することで、凝縮器22における冷媒の放熱量を調整することができる。
又、暖房モードにおいて、第2送風機31を作動させると、第2送風機31は、排気用空間57Aから空気を吸い込み、排気口16を介して、空調対象空間の外部に送風する。図10に示すように、暖房モードでは、冷風排気用開口42が開放されており、温風排気用開口37が閉塞されている。従って、第2送風機31は、冷風用通気口13から空気を吸い込み、蒸発器24の熱交換部24Aを通過させる。
この場合に、当該空気は、蒸発器24を流れる低圧冷媒によって吸熱され、冷風CAとなる。蒸発器24を通過した冷風CAは、冷風側通風路18を流通して、冷風排気用開口42から排気用空間57Aに流入する。そして、当該冷風CAは、第2送風機31により排気用空間57Aから吸い込まれ、排気口16から空調対象空間の外部へ送風される。
尚、この暖房モードにおいては、温風排気用開口37は、排気用スライドドア47によって閉塞されている為、温風側通風路17側の空気が、第2送風機31の作動によって排気用空間57Aに吸い込まれることはない。つまり、この場合、第2送風機31により、温風用通気口12→凝縮器22→温風側通風路17→温風排気用開口37という空気の流れが生じることはない。
従って、当該空調装置1の暖房モードにおいて、冷風CAは、第2送風機31により送風される空気を、蒸発器24における低圧冷媒で吸熱して生成される。即ち、冷凍サイクル装置20の蒸発器24における冷媒の吸熱量は、第2送風機31による送風量の影響を大きく受けることになる。換言すると、当該空調装置1は、暖房モードにおいて、第2送風機31の送風量を調整することで、蒸発器24における冷媒の吸熱量を調整することができる。
このように、当該空調装置1は、凝縮器22にて加熱された温風WAを、第1送風機30により供給口14から空調対象空間に供給すると共に、蒸発器24で冷却された冷風CAを、第2送風機31により排気口16から送風することができる。即ち、当該空調装置1は、空調対象空間であるシートに温風WAを供給する暖房モードを実現することができる。
そして、当該空調装置1によれば、暖房モードにおいて、第1送風機30の送風量を調整することで、凝縮器22における冷媒の放熱量を調整することができ、第2送風機31の送風量を調整することで、蒸発器24における冷媒の吸熱量を調整することができる。
これにより、当該空調装置1は、暖房モードに際して、凝縮器22における冷媒の放熱量と、蒸発器24における冷媒の吸熱量を適切に調整することができ、冷凍サイクル装置20をバランスさせやすく、安定して作動させることができる。
尚、暖房モードにおける第1送風機30は、空調対象空間に空調風を供給する為の供給用送風機であると同時に、温風WAを送風する為の温風用送風機として機能する。即ち、第1送風機30は、凝縮器22及び蒸発器24の少なくとも一方として、凝縮器22を介して空気を吸い込んでいる。
そして、この場合における第2送風機31は、空調対象空間の外部へ送風する為の排気用送風機であると同時に、冷風CAを送風する為の冷風用送風機として機能している。つまり、第2送風機31は、凝縮器22及び蒸発器24の少なくとも他方として、蒸発器24を介して空気を吸い込んでいる。
続いて、エアミックスモードにおける空調装置1の作動について、図11~図13を参照しつつ説明する。エアミックスモードは、空調対象空間に対して、温風WAと冷風CAを混合した混合風MAを供給する運転モードである。
エアミックスモードでは、制御部60は、供給用スライドドア46の位置を制御して、温風供給用開口36の開口面積と冷風供給用開口41の開口面積を確保した状態にする。同時に、制御部60は、排気用スライドドア47の位置を制御して、温風排気用開口37の開口面積と冷風排気用開口42の開口面積を確保した状態にする。
図12に示すように、この状態で第1送風機30を作動させると、第1送風機30は、供給用空間56Aから空気を吸い込み、供給口14を介して、空調対象空間であるシートに供給する。
エアミックスモードでは、温風供給用開口36及び冷風供給用開口41の何れについても、開口面積が確保されている。従って、図12に示すように、第1送風機30は、温風用通気口12から空気を吸い込み、凝縮器22の熱交換部22Aを通過させると同時に、冷風用通気口13から空気を吸い込み、蒸発器24の熱交換部24Aを通過させる。
上述したように、凝縮器22を通過する空気は、凝縮器22の内部を流れる高圧冷媒の熱によって加熱されて、温風WAとなる。凝縮器22を通過した温風WAは、温風側通風路17を流通して、温風供給用開口36から供給用空間56Aに流入する。
一方、蒸発器24を通過する空気は、蒸発器24を流れる低圧冷媒により吸熱されて、冷風CAとなる。当該冷風CAは、蒸発器24から冷風側通風路18へ流出して、冷風供給用開口41から供給用空間56Aに流入する。
即ち、エアミックスモードでは、供給用空間56Aに対して、温風WAと冷風CAが流入して混合される。そして、供給用空間56Aの内部の空気は、第1送風機30により吸い込まれ、混合風MAとして、供給口14から空調対象空間へ供給される。
上述したように、供給用スライドドア46は、温風供給用開口36の開口面積及び、冷風供給用開口41の開口面積を調整する機能を有しているので、供給用空間56Aに流入する温風WA及び冷風CAの風量割合を調整することができ、混合風MAを供給口14から供給可能な状態にすることができる。
即ち、当該空調装置1は、エアミックスモードにおいて、供給用スライドドア46の位置を調整することで、空調対象空間に供給される空調風(即ち、混合風MA)の温度を適切に調整することができる。
そして、エアミックスモードにおいて、第2送風機31を作動させると、第2送風機31は、上述した冷房モード等と同様に、排気用空間57Aから空気を吸い込み、排気口16を介して、空調対象空間の外部に送風する。
図13に示すように、エアミックスモードにおいて、温風排気用開口37及び冷風排気用開口42の何れについても、開口面積が確保されている。従って、第2送風機31は、温風用通気口12から空気を吸い込み、凝縮器22の熱交換部22Aを通過させると同時に、冷風用通気口13から空気を吸い込み、蒸発器24の熱交換部24Aを通過させる。
そして、凝縮器22を通過した温風WAは、温風側通風路17を流通して、温風排気用開口37から排気用空間57Aに流入する。同様に、蒸発器24を通過した冷風CAは、冷風側通風路18を流通して、冷風排気用開口42から排気用空間57Aに流入する。
従って、エアミックスモードでは、排気用空間57Aに対しても、温風WAと冷風CAが流入して混合される。そして、排気用空間57Aの内部の空気は、第2送風機31によって吸い込まれ、混合風MAとして、排気口16から空調対象空間の外部へ送風される。
上述したように、排気用スライドドア47は、温風排気用開口37の開口面積及び、冷風排気用開口42の開口面積を調整する機能を有しているので、排気用空間57Aに流入する温風WA及び冷風CAの風量割合を調整することができ、混合風MAを排気口16から送風可能な状態にすることができる。
ここで、空調装置1において、制御部60は、空調用センサ61の圧力センサ62等で検出される空調負荷の高低に応じて、圧縮機21の作動を制御するように構成されている。従来の空調装置では、このような空調負荷が低い場合には、圧縮機21を構成する電動モータの作動と作動停止を周期的に繰り返すように制御している。
冷凍サイクル装置20においては、圧縮機21の作動によって冷媒が循環し、当該冷媒には、冷凍機油が含まれている。この為、低負荷時に、圧縮機21の作動と作動停止を周期的に繰り返すような制御を行った場合、冷媒の循環に伴って圧縮機21に戻る冷凍機油が不十分となることが想定される。
この点、当該空調装置1は、空調負荷が低負荷である場合に、図11~図13に示すようなエアミックスモードを行う。エアミックスモードで空調装置1を運転させることで、圧縮機21の電動モータの最低回転数を予め定められた基準以上に保つことができる。
つまり、当該空調装置1は、空調負荷が低負荷である場合に、エアミックスモードにすることで、冷凍サイクル装置20における冷媒の循環量を予め定められた基準以上に保つことができ、低負荷の場合であっても、圧縮機21に対する冷凍機油の戻り量(即ち、オイル戻り)を確保することができる。
又、この場合、当該空調装置1は、エアミックスモードにすることで、当該電動モータの最低回転数を予め定められた基準以上に保ちつつ、空調対象空間を空調する。つまり、当該空調装置1は、圧縮機21の電動モータの作動と作動停止を周期的に繰り返すことはなく、圧縮機21のON-OFF制御に起因する振動を低減させることができる。
以上説明したように、第1実施形態に係る空調装置1は、図1~図3に示すように、蒸気圧縮式の冷凍サイクル装置20と、第1送風機30と、第2送風機31と、温風用切替部35と、冷風用切替部40とを筐体10の内部に収容して構成されている。
図4~図6に示すように、当該空調装置1は、温風用切替部35によって、凝縮器22で加熱された温風WAを空調対象空間の外部に送風すると共に、冷風用切替部40によって、蒸発器24にて冷却された冷風CAを空調対象空間に供給することができる。即ち、当該空調装置1は、冷凍サイクル装置20等の構成機器を、筐体10の内部にコンパクトに収容した構成で、空調対象空間を冷房する冷房モードを実現することができる。
又、当該空調装置1は、図8~図10に示すように、温風用切替部35によって、凝縮器22で加熱された温風WAを空調対象空間に供給すると共に、冷風用切替部40によって、蒸発器24にて冷却された冷風を空調対象空間の外部へ送風することができる。つまり、当該空調装置1は、冷凍サイクル装置20の構成機器を、筐体10の内部にコンパクトに収容した構成で、空調対象空間を暖房する暖房モードを実現することができる。
そして、当該空調装置1によれば、第1送風機30、第2送風機31の送風能力を個別に調整することができるので、冷凍サイクル装置20の凝縮器22における冷媒の放熱量及び蒸発器24における冷媒の吸熱量を、それぞれ適切に調整することができる。この結果、当該空調装置1は、冷凍サイクル装置20をバランスさせやすく、安定して作動させることができる。
図4~図13に示すように、当該空調装置1における筐体10の内部において、第1送風機30及び第2送風機31は、送風空気の流れに関して、熱交換器(即ち、凝縮器22又は蒸発器24)の下流側に配置されている。この為、当該空調装置1によれば、筐体10の内部における第1送風機30、第2送風機31の配置に関して、設計自由度を高めることができ、空調装置1の大型化(即ち、筐体10の大型化)を抑制することができる。
そして、第1実施形態に係る空調装置1において、温風用切替部35は、図6、図9等に示すように、温風WAの流れに関して、凝縮器22よりも下流側で、第1送風機30及び第2送風機31の上流側に配置されている。又、冷風用切替部40は、図5、図10等に示すように、冷風CAの流れに関して、蒸発器24よりも下流側で、第1送風機30及び第2送風機31の上流側に配置されている。
これにより、当該空調装置1は、凝縮器22、蒸発器24、第1送風機30、第2送風機31、温風用切替部35、冷風用切替部40といった構成機器を、筐体10の内部に対してコンパクトに収容することができる。
又、図2~図6等に示すように、当該空調装置1において、凝縮器22及び蒸発器24は、筐体10の内部において、左右方向に間隔をあけて配置されている。そして、温風用切替部35は、凝縮器22と蒸発器24の間において、凝縮器22側の右側に配置されており、冷風用切替部40は、凝縮器22と蒸発器24の間において、蒸発器24側の左側に配置されている。
この結果、当該空調装置1によれば、温風用切替部35による温風WAの流れの切替および冷風用切替部40による冷風CAの流れの切替を、確実に実現すると共に、各構成機器を筐体10の内部にコンパクトに収容することができる。
図4~図6等に示すように、凝縮器22は、その熱交換部22Aの長手方向が前後方向になるように配置されている。そして、温風用切替部35は、温風供給用開口36と、温風排気用開口37とを有しており、温風供給用開口36及び温風排気用開口37は、温風側通風路17において、前後方向に並んで配置されている。
これにより、当該空調装置1によれば、凝縮器22の熱交換部22Aを通過した温風WAの流れに関して、温風供給用開口36及び温風排気用開口37を通過する際の通風抵抗を低減しつつ、それぞれを通過可能な温風WAの風量を確保することができる。
そして、蒸発器24は、その熱交換部24Aの長手方向が前後方向になるように配置されている。又、冷風用切替部40は、冷風供給用開口41と、冷風排気用開口42とを有しており、冷風供給用開口41及び冷風排気用開口42は、冷風側通風路18において、前後方向に並んで配置されている。
これにより、当該空調装置1によれば、蒸発器24の熱交換部24Aを通過した冷風CAの流れに関して、冷風供給用開口41及び冷風排気用開口42を通過する際の通風抵抗を低減しつつ、それぞれを通過可能な冷風CAの風量を確保することができる。
又、第1実施形態に係る空調装置1は、駆動モータ50の動力によってスライド移動可能に取り付けられた供給用スライドドア46及び排気用スライドドア47を有している。供給用スライドドア46は、供給口14から空調対象空間に供給される空気に関して、温風WAと冷風CAの風量割合を調整する。そして、排気用スライドドア47は、排気口16から空調対象空間の外部へ送風される空気に関して、温風WAと冷風CAの風量割合を調整する。
そして、図11~図13に示すように、当該空調装置1は、温風供給用開口36における開口面積と冷風供給用開口41における開口面積を確保した位置に、供給用スライドドア46を移動させることによって、温風WA及び冷風CAを混合した混合風MAを、供給口14から空調対象空間に供給することができる。
又、当該空調装置1は、温風排気用開口37における開口面積と冷風排気用開口42における開口面積を確保した位置に、排気用スライドドア47を移動させることで、空調対象空間の外部に対して、排気口16から混合風MAを送風することができる。
当該空調装置1は、空調負荷が低い場合に、上述した混合風MAを供給するエアミックスモードとすることで、圧縮機21の最低回転数を予め定められた基準以上に保つことができる。
これにより、当該空調装置1の冷凍サイクル装置20では、空調負荷が低い場合でも、予め定められた基準以上の冷媒が循環することになる為、圧縮機21に対するオイル戻りを確保することができる。
又、当該空調装置1によれば、空調負荷が低い場合に、図11~図13に示すようなエアミックスモードにすることで、空調負荷に応じた冷媒吐出能力となるように、圧縮機21の運転を継続させることができる。つまり、当該空調装置1は、圧縮機21の作動と作動停止を周期的に繰り返すことはない為、これに起因する振動の発生を抑制することができる。
そして、当該空調装置1において、供給用スライドドア46及び排気用スライドドア47は、駆動モータ50の動力を、供給用シャフト48及び排気用シャフト49で伝達して移動するように構成されている。即ち、排気用シャフト49を介することで、排気用スライドドア47の移動は、供給用スライドドア46の移動に連動する。
この為、排気用スライドドア47が冷風排気用開口42の開口面積を増大させるように移動する場合には、供給用スライドドア46は、これに連動して、温風供給用開口36の開口面積を増大させるように移動する。
この結果、当該空調装置1によれば、エアミックスモードにおいて、排気口16から送風される混合風MAにおける冷風CAの風量割合を増大させることに連動して、供給口14から供給される混合風MAにおける温風WAの風量割合を増大させることができる。
又、排気用スライドドア47が温風排気用開口37の開口面積を増大させるように移動する場合には、供給用スライドドア46は、これに連動して、冷風供給用開口41の開口面積を増大させるように移動する。
これにより、当該空調装置1によれば、エアミックスモードにおいて、排気口16から送風される混合風MAにおける温風WAの風量割合を増大させることに連動して、供給口14から供給される混合風MAにおける冷風CAの風量割合を増大させることができる。
また、第1実施形態に係る空調装置1では、第1送風機30を、凝縮器22の冷媒流れ出口側よりも入口側の近くに配置している。これによれば、凝縮器22のうち相対的に高温となる部分において、加熱空気を熱交換させることができる。このため、凝縮器22において、高圧冷媒と加熱空気とを効率的に熱交換させることができる。したがって、冷凍サイクル装置20の熱交換器である凝縮器22における熱交換性能を向上させることができる。
より詳細には、第1送風機30を凝縮器22の冷媒流れ出口側よりも入口側の近くに配置することにより、暖房モードでは、凝縮器22のうち相対的に高温となる部分において加熱空気が加熱される。これにより、供給口14から供給される温風WAの吹出温度を効率的に上昇させることができる。
さらに、当該空調装置1によれば、凝縮器22の熱交換部22Aのうち一部分に集中して空気が流れるため、凝縮器22の有効熱交換面積が小さくなる。これにより、冷凍サイクル装置20の高圧圧力が上昇するため、供給口14から供給される温風WAの吹出温度を上昇させることができる。
一方、第1送風機30を凝縮器22の冷媒流れ出口側よりも入口側の近くに配置することにより、冷房モードでは、凝縮器22のうち空気との温度差が相対的に大きい部分において加熱空気が加熱される。このため、凝縮器22における熱交換効率が向上するので、冷凍サイクル装置20の高圧圧力を低下させることができる。これにより、冷凍サイクル装置20の成績係数(COP)を向上させることができる。
(第2実施形態)
次に、本発明の第2実施形態について図16に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、第2送風機31の配置が異なるものである。
図16に示すように、第2送風機31は、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置されている。つまり、第2送風機31は、蒸発器24の冷媒流れ出口側からの距離と、冷媒流れ入口側からの距離とが同等となる部位に配置されている。換言すると、第2送風機31は、蒸発器24の熱交換部24Aのうち冷媒流れ中央部にて冷却された冷却空気を送風するように配置されている。
本実施形態では、図16に示すように、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ中央部とが重合配置されている。すなわち、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒中央部とが重なるように配置されている。
その他の空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の空調装置1においても、第1実施形態と同様の効果を得ることができる。
さらに、本実施形態では、第2送風機31を、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置している。これによれば、蒸発器24の熱交換部24の全面に空気が流れるため、蒸発器24の有効熱交換面積が大きくなる。これにより、蒸発器24における熱交換効率が向上するので、冷凍サイクル装置20の成績係数(COP)を向上させることができる。
(第3実施形態)
次に、本発明の第3実施形態について図17に基づいて説明する。本第3実施形態は、上記第1実施形態と比較して、第1送風機30および第2送風機31の配置が異なるものである。
図17に示すように、本実施形態の空調装置1では、上方平面視において、凝縮器22と蒸発器24との間の距離が、第1送風機30の直径よりも短い。同様に、上方平面視において、凝縮器22と蒸発器24との間の距離が、第2送風機31の直径よりも短い。
このため、上方平面視において、第1送風機30および第2送風機31は、凝縮器22と蒸発器24との間に配置されていない。また、上方平面視において、空調装置1の左右方向から見たときに、第1送風機30と凝縮器22とが重合しないように配置されている。同様に、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と蒸発器24とが重合しないように配置されている。
また、上方平面視において、第1送風機30は、空調装置1の前後方向から見たときに、凝縮器22および蒸発器24のいずれとも重合しないように配置されている。同様に、第2送風機31は、空調装置1の前後方向から見たときに、凝縮器22および蒸発器24のいずれとも重合しないように配置されている。また、第1送風機30は、空調装置1の前後方向から見たときに、第2送風機31と重なるように配置されている。
具体的には、第1送風機30は、上方平面視において、凝縮器22に対して左方側かつ後方側に配置されている。すなわち、第1送風機30は、上方平面視において、凝縮器22に対して蒸発器24側、かつ、凝縮器22の冷媒流れ出口側に配置されている。
また、第2送風機31は、上方平面視において、蒸発器24に対して右方側かつ前方側に配置されている。すなわち、第2送風機31は、上方平面視において、蒸発器24に対して凝縮器22側、かつ、蒸発器24の冷媒流れ入口側に配置されている。
本実施形態では、空調装置1は、凝縮器22により加熱された温風WAを第1送風機30に導くとともに、蒸発器24により冷却された冷風CAを第2送風機31に導く壁部70を有している。隔壁70は、上方平面視において、凝縮器22の冷媒流れ出口側の端部と、蒸発器24の冷媒流れ出口側の端部とを接続するように配置されている。
その他の空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の空調装置1においても、第1実施形態と同様の効果を得ることができる。
(第4実施形態)
次に、本発明の第4実施形態について図18に基づいて説明する。本第4実施形態は、上記第1実施形態と比較して、第1送風機30および第2送風機31の配置が異なるものである。
図18に示すように、本実施形態の空調装置1では、上方平面視において、凝縮器22と蒸発器24との間の距離が、第1送風機30の直径よりも短い。同様に、上方平面視において、凝縮器22と蒸発器24との間の距離が、第2送風機31の直径よりも短い。このため、上方平面視において、第1送風機30および第2送風機31は、凝縮器22と蒸発器24との間に配置されていない。
具体的には、上方平面視において、第1送風機30は、凝縮器22の右方側に配置されている。すなわち、上方平面視において、第1送風機30は、凝縮器22に対して、蒸発器24と反対側に配置されている。
また、上方平面視において、第2送風機31は、蒸発器24の左方側に配置されている。すなわち、上方平面視において、第2送風機31は、蒸発器24に対して、凝縮器22と反対側に配置されている。
さらに、第2送風機31は、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置されている。換言すると、第2送風機31は、蒸発器24の熱交換部24Aのうち冷媒流れ中央部にて冷却された冷却空気を送風するように配置されている。本実施形態では、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ中央部とが重合配置されている。
その他の空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の空調装置1においても、第1実施形態と同様の効果を得ることができる。
さらに、本実施形態では、第2送風機31を、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置している。これによれば、蒸発器24の熱交換部24の全面に空気が流れるため、蒸発器24の有効熱交換面積が大きくなる。これにより、蒸発器24における熱交換効率が向上するので、冷凍サイクル装置20の成績係数(COP)を向上させることができる。
(第5実施形態)
次に、本発明の第5実施形態について図19に基づいて説明する。本第5実施形態は、上記第1実施形態と比較して、第1送風機30および第2送風機31の配置が異なるものである。
図19に示すように、本実施形態の空調装置1では、第1送風機30は、凝縮器22の下方側に配置されている。そして、空調装置1の上下方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重合配置されている。すなわち、空調装置1の上下方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重なるように配置されている。
具体的には、空調装置1の上下方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ最上流側の部位とが重合配置されている。また、空調装置1の上下方向から見たときに、第1送風機30の全体と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重合配置されている。
また、本実施形態の空調装置1では、第2送風機30は、蒸発器24の下方側に配置されている。そして、第2送風機31は、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置されている。換言すると、第2送風機31は、蒸発器24の熱交換部24Aのうち冷媒流れ中央部にて冷却された冷却空気を送風するように配置されている。具体的には、空調装置1の上下方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ中央部とが重合配置されている。
その他の空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の空調装置1においても、第1実施形態と同様の効果を得ることができる。
さらに、本実施形態では、第2送風機31を、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置している。これによれば、蒸発器24の熱交換部24の全面に空気が流れるため、蒸発器24の有効熱交換面積が大きくなる。これにより、蒸発器24における熱交換効率が向上するので、冷凍サイクル装置20の成績係数(COP)を向上させることができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、例えば以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。
(1)上述した実施形態では、空調装置1を、シートを空調対象空間とするシート空調装置に適用していたが、この態様に限定されるものではない。上述した空調装置1における構成機器として、冷凍サイクル装置20、第1送風機30、第2送風機31等を筐体10の内部に収容していれば、他の用途に利用するように構成することも可能である。
(2)又、上述した実施形態においては、空調装置1の筐体10を、シートの座面部と車室床面の間に配置可能な直方体状に構成していたが、この態様に限定されるものではない。筐体10の外観形状等については、状況に応じて適宜変更することが可能である。
(3)上述した実施形態において、第1送風機30、第2送風機31の送風能力は、制御部60からの制御信号により、各電動モータの回転数を変更することで調整していたが、この態様に限定されるものではない。第1送風機30と第2送風機31として、異なる性能を有する送風機を採用することで、送風能力を調整することも可能である。
(4)そして、上述した実施形態において、冷凍サイクル装置20は、アキュムレータ25を有する構成であったが、この態様に限定されるものではない。当該冷凍サイクル装置20は、少なくとも、圧縮機21、凝縮器22、減圧部23、蒸発器24を有する冷凍サイクルを構成していればよい。
(5)上述した実施形態では、第1送風機30および第2送風機31として、吸込式の送風機を採用した例について説明したが、第1送風機30および第2送風機31の構成はこれに限定されない。例えば、第1送風機30として、羽根車の回転により第1送風機30から凝縮器20に向かう空気流を生成する、いわゆる押込式の送風機を採用してもよい。同様に、第2送風機31として、羽根車の回転により第2送風機31から蒸発器240に向かう空気流を生成する、いわゆる押込式の送風機を採用してもよい。
(6)上述した実施形態においては、空調装置1を、暖房運転および冷房運転の双方を実行可能に構成していたが、この態様に限定されるものではない。例えば、空調装置1を、暖房運転専用の暖房装置として構成してもよいし、冷房運転専用の冷房装置として構成してもよい。
10 筐体
20 冷凍サイクル装置
22 凝縮器
24 蒸発器
30 第1送風機
31 第2送風機

Claims (4)

  1. 高圧冷媒を凝縮させる凝縮器(22)および低圧冷媒を蒸発させる蒸発器(24)を有する冷凍サイクル装置(20)と、
    前記凝縮器にて加熱された加熱空気を送風する第1送風機(30)と、
    前記蒸発器にて冷却された冷却空気を送風する第2送風機(31)と、
    前記冷凍サイクル装置、前記第1送風機および前記第2送風機を収容する筐体(10)と、を備え、
    前記第1送風機は、前記凝縮器の冷媒流れ出口側よりも入口側の近くに配置されており、
    前記凝縮器は、冷媒が流入する冷媒入口(226)と、前記冷媒が流出する冷媒出口(227)とを有しているとともに、前記冷媒が前記冷媒入口から前記冷媒出口に向かって一方向に流れるように構成されており、
    前記第1送風機は、前記冷媒出口よりも前記冷媒入口の近くに配置されている空調装置。
  2. 前記凝縮器は、冷媒が流通する複数のチューブ(221)を有しているとともに、前記チューブの長手方向が長い矩形状に形成されており、と、
    各前記チューブを流通する前記冷媒の流れ方向は、いずれも同一であり、
    前記冷媒入口は、前記チューブの長手方向における一端側に配置されており、
    前記冷媒出口は、前記チューブの長手方向における他端側に配置されている請求項に記載の空調装置。
  3. 前記第1送風機は、前記加熱空気を空調対象空間へ送風し、
    前記第2送風機は、前記冷却空気を前記空調対象空間の外部へ送風する請求項1または2に記載の空調装置。
  4. 前記第1送風機は、前記加熱空気を空調対象空間の外部へ送風し、
    前記第2送風機は、前記冷却空気を前記空調対象空間へ送風する請求項1または2に記載の空調装置。
JP2018089387A 2018-05-07 2018-05-07 空調装置 Active JP7059784B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018089387A JP7059784B2 (ja) 2018-05-07 2018-05-07 空調装置
PCT/JP2019/015763 WO2019216106A1 (ja) 2018-05-07 2019-04-11 空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089387A JP7059784B2 (ja) 2018-05-07 2018-05-07 空調装置

Publications (2)

Publication Number Publication Date
JP2019196846A JP2019196846A (ja) 2019-11-14
JP7059784B2 true JP7059784B2 (ja) 2022-04-26

Family

ID=68466965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089387A Active JP7059784B2 (ja) 2018-05-07 2018-05-07 空調装置

Country Status (2)

Country Link
JP (1) JP7059784B2 (ja)
WO (1) WO2019216106A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539466B (zh) * 2020-09-28 2022-09-02 Tcl空调器(中山)有限公司 导风机构和空调室内机
CN113847655B (zh) * 2021-09-23 2022-07-15 珠海格力电器股份有限公司 一种可移动新风空调及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093068A (ja) 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 熱交換装置
JP2009257740A (ja) 2008-03-25 2009-11-05 Daikin Ind Ltd 冷凍装置
JP2016137846A (ja) 2015-01-28 2016-08-04 株式会社デンソー シート及びシート送風装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093068A (ja) 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 熱交換装置
JP2009257740A (ja) 2008-03-25 2009-11-05 Daikin Ind Ltd 冷凍装置
JP2016137846A (ja) 2015-01-28 2016-08-04 株式会社デンソー シート及びシート送風装置

Also Published As

Publication number Publication date
JP2019196846A (ja) 2019-11-14
WO2019216106A1 (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
JP7298580B2 (ja) 冷凍サイクル装置
JP7059783B2 (ja) 車室用空調システム
JP6528844B2 (ja) 冷凍システム、および車載冷凍システム
CN109328288B (zh) 制冷循环装置
JP6870570B2 (ja) 車両用熱管理システム
JP6838518B2 (ja) 冷凍サイクル装置
US11338642B2 (en) Vehicle cabin air conditioning system
JP2019006373A (ja) シート空調装置
JP6760226B2 (ja) 複合型熱交換器
JP7059784B2 (ja) 空調装置
JP2012207890A (ja) 車両用冷凍サイクル装置
JP3969099B2 (ja) 車両用空調装置
JP7196658B2 (ja) 空調装置
JP6769315B2 (ja) 小型冷凍サイクル装置
JP7159856B2 (ja) 空調装置
JP2020139686A (ja) 冷凍サイクル装置
WO2019193946A1 (ja) 空調装置
JP7147228B2 (ja) 空調装置
JP6968753B2 (ja) 車両用空調装置
JP2014055735A (ja) 冷媒放熱器
JP2012172850A (ja) 冷媒放熱器
WO2019193948A1 (ja) 空調装置
JP2022149690A (ja) 冷凍サイクル装置
WO2018235551A1 (ja) シート空調装置
JP2003042575A (ja) 冷凍サイクル装置および車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R151 Written notification of patent or utility model registration

Ref document number: 7059784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151