JP7053133B2 - Pneumatic tires - Google Patents

Pneumatic tires Download PDF

Info

Publication number
JP7053133B2
JP7053133B2 JP2016026224A JP2016026224A JP7053133B2 JP 7053133 B2 JP7053133 B2 JP 7053133B2 JP 2016026224 A JP2016026224 A JP 2016026224A JP 2016026224 A JP2016026224 A JP 2016026224A JP 7053133 B2 JP7053133 B2 JP 7053133B2
Authority
JP
Japan
Prior art keywords
protrusion
tire
front side
side portion
top surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016026224A
Other languages
Japanese (ja)
Other versions
JP2017144797A (en
Inventor
健史 宮本
博史 名塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2016026224A priority Critical patent/JP7053133B2/en
Publication of JP2017144797A publication Critical patent/JP2017144797A/en
Application granted granted Critical
Publication of JP7053133B2 publication Critical patent/JP7053133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、空気入りタイヤに関するものである。 The present invention relates to a pneumatic tire.

特許文献1,2には、空冷のための複数の突起がタイヤサイド部に形成されたランフラットタイヤが開示されている。これらの突起は、タイヤの回転に伴うタイヤサイド部表面の空気流の乱流化を意図している。乱流化によって、タイヤサイド部表面近傍における空気流の速度勾配が大きくなり、放熱性が向上する。
Patent Documents 1 and 2 disclose a run-flat tire in which a plurality of protrusions for air cooling are formed on a tire side portion. These protrusions are intended to turbulent airflow on the surface of the tire side portion as the tire rotates. Due to the turbulence, the velocity gradient of the air flow near the surface of the tire side portion becomes large, and the heat dissipation is improved.

国際公開第WO2007/032405号International Publication No. WO2007 / 032405 国際公開第WO2008/114668号International Publication No. WO2008 / 114668

特許文献1,2には、タイヤサイド部表面近傍の空気流の乱流化以外の手法による放熱性向上は、教示されていない。 Patent Documents 1 and 2 do not teach improvement of heat dissipation by a method other than turbulence of the air flow near the surface of the tire side portion.

本発明は、空冷による放熱を効果的に促進することで、空気入りタイヤの耐久性を向上することを課題とする。 An object of the present invention is to improve the durability of a pneumatic tire by effectively promoting heat dissipation by air cooling.

本発明者は、タイヤサイド部表面近傍の空気流の速度勾配の最大化について、種々検討した。物体(例えば平板)が流体の流れの中に配置された場合、流体の粘性によって物体表面近傍では流体の速度が急激に低下することが知られている。流体の速度が急変する領域(境界層)の外側に、流体の速度が粘性の影響を受けない領域が形成される。境界層の厚さは物体の前縁から下流側に向けて増大する。物体の前縁付近の境界層は層流であるが(層流境界層)、下流側に向け、遷移領域を経て、乱流となる(乱流境界層)。本発明者は、層流境界層では乱流境界層に比べて流体の速度勾配が大きいため物体から流体への放熱効率が高いことに着目し、本発明を完成した。つまり、本発明者は、層流境界層における高い放熱性を、空気入りタイヤの空冷に適用することを着想した。本発明は、かかる新たな着想に基づく。 The present inventor has made various studies on maximizing the velocity gradient of the air flow near the surface of the tire side portion. It is known that when an object (for example, a flat plate) is placed in a fluid flow, the viscosity of the fluid causes the velocity of the fluid to drop sharply near the surface of the object. A region where the velocity of the fluid is not affected by the viscosity is formed outside the region (boundary layer) where the velocity of the fluid changes suddenly. The thickness of the boundary layer increases from the leading edge of the object toward the downstream side. The boundary layer near the leading edge of the object is a laminar flow (laminar boundary layer), but it becomes a turbulent flow toward the downstream side through a transition region (turbulent boundary layer). The present inventor has completed the present invention by paying attention to the fact that the laminar flow boundary layer has a higher fluid velocity gradient than the turbulent boundary layer, so that the heat dissipation efficiency from the object to the fluid is high. That is, the present inventor has conceived to apply high heat dissipation in the laminar boundary layer to air cooling of pneumatic tires. The present invention is based on such a new idea.

本発明は、前記課題を解決するための手段として、
タイヤサイド部の表面に突起を備え、
前記突起は、頂面と、タイヤ回転方向側の側面である前側面と、前記頂面と前記前側面とが交わる前辺部とを備え、タイヤ径方向のいずれかの位置に、タイヤ周方向への空気流れを許容する隙間を形成され、
前記突起の前辺部において前記頂面と前記前側面とがなす先端角度は、90°未満で形成され、
前記突起のタイヤ周方向の幅は、10mm以上で形成され、
前記突起の幅は、以下を満たし、

Figure 0007053133000001
R:タイヤ半径
Rp:突起上の任意の位置のタイヤ回転中心からの距離
hRp:タイヤ回転中心からの距離Rpにおける突起の幅
前記突起は、前記タイヤ径方向外側の外側突起と、前記タイヤ径方向内側の内側突起とを備え、
前記隙間は、前記外側突起と前記内側突起との間に配置されると共にタイヤ周方向に延びて直線状に形成され、
前記外側突起の前側面は、タイヤ径方向外側の部位よりもタイヤ径方向内側の部位が、前記隙間に向かって、タイヤ回転方向に対して前方側に位置するように傾斜し、
前記内側突起の前側面は、タイヤ径方向内側の部位よりもタイヤ径方向外側の部位が、前記隙間に向かって、タイヤ回転方向に対して後方側に位置するように傾斜していることを特徴とする空気入りタイヤ。 The present invention provides means for solving the above problems.
With protrusions on the surface of the tire side,
The protrusion includes a top surface, a front side surface that is a side surface on the tire rotation direction side, and a front side portion where the top surface and the front side surface intersect, and is located at any position in the tire radial direction in the tire circumferential direction. A gap is formed to allow air flow to
The tip angle between the top surface and the front surface at the front side of the protrusion is formed to be less than 90 °.
The width of the protrusion in the tire circumferential direction is formed to be 10 mm or more.
The width of the protrusion meets the following:
Figure 0007053133000001
R: Tire radius Rp: Distance from the center of rotation of the tire at an arbitrary position on the protrusion hRp: Distance from the center of rotation of the tire The width of the protrusion at Rp
The protrusion comprises a tire radial outer outer protrusion and a tire radial inner inner protrusion.
The gap is arranged between the outer protrusion and the inner protrusion, and extends in the tire circumferential direction to form a straight line.
The front surface of the outer protrusion is inclined so that the portion inside the tire radial direction is located on the front side with respect to the tire rotation direction toward the gap, rather than the portion outside the tire radial direction.
The front surface of the inner protrusion is characterized in that the portion outside the tire radial direction is inclined so as to be located on the rear side with respect to the tire rotation direction toward the gap, rather than the portion inside the tire radial direction. Pneumatic tires.

この構成により、タイヤサイド部の表面を流動する空気は、頂面に沿った第1の流れと、突起の前辺部によって前側面に沿った第2の流れと、突起に形成された隙間を通過する第3の流れとに分流される。第1の流れは、高速となった層流境界層を頂面の広い範囲で形成し、突起の放熱性を向上させる。第3の流れは、隙間を通過する際に流速が速くなり、突起の後側面側で滞留する空気溜まりを引っ張って流動させる。この結果、突起での放熱性を高める。 With this configuration, the air flowing on the surface of the tire side portion has a first flow along the top surface, a second flow along the front side surface by the front side portion of the protrusion, and a gap formed in the protrusion. It is split into a third stream that passes through. The first flow forms a high-speed laminar boundary layer over a wide area of the apex surface and improves the heat dissipation of the protrusions. In the third flow, the flow velocity becomes high as it passes through the gap, and the air pool that stays on the rear side surface side of the protrusion is pulled and flowed. As a result, the heat dissipation at the protrusions is improved.

本発明によれば、突起の前側面の先端角度を100°以下としたので、タイヤサイド部の表面を流動する空気を、頂面に沿った第1の流れと、前側面に沿った第2の流れとに分流し、頂面での流動状態を層流境界層として流速を高め、放熱性を向上させることができる。また、第3の流れは、突起の隙間を通過する際、流速を速められるので、後側面側の空気溜まりを引っ張って流動させ、突起からの放熱性を高めることができる。 According to the present invention, since the tip angle of the front surface of the protrusion is 100 ° or less, the air flowing on the surface of the tire side portion is allowed to flow through the first flow along the top surface and the second along the front surface. It is possible to increase the flow velocity and improve the heat dissipation by dividing the flow into the flow of the above and using the flow state at the top surface as the laminar boundary layer. Further, since the flow velocity of the third flow can be increased when passing through the gap between the protrusions, the air pool on the rear side surface side can be pulled and flowed to improve the heat dissipation from the protrusions.

本発明の第1実施形態に係る空気入りタイヤの子午線半断面図。A meridian semi-cross-sectional view of a pneumatic tire according to the first embodiment of the present invention. 本発明の第1実施形態に係る空気入りタイヤの部分側面図。Partial side view of the pneumatic tire which concerns on 1st Embodiment of this invention. 図2の部分拡大図。Partially enlarged view of FIG. 突起の模式的な斜視図。Schematic perspective view of the protrusion. 突起の端面図。End view of the protrusion. 先端角度を説明するための突起の部分端面図。Partial end view of the protrusion to illustrate the tip angle. 空気流の経路を説明するための突起の平面図。Top view of the protrusions to illustrate the path of the air flow. 空気流の経路を説明するための突起の端面図。End view of a protrusion to illustrate the path of airflow. 突起及び突起間の空気流の経路を説明するための模式図。Schematic diagram for explaining the protrusion and the path of the air flow between the protrusions. 境界層を説明するための突起の端面図。End view of the protrusions to illustrate the boundary layer. 境界層を説明するための突起の端面図。End view of the protrusions to illustrate the boundary layer. 第1実施形態と異なる前辺部の傾斜角度を有する突起を備える空気入りタイヤの部分側面図。Partial side view of a pneumatic tire provided with protrusions having a front side tilt angle different from that of the first embodiment. 図12の部分拡大図。Partially enlarged view of FIG. 平面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in a plan view. 平面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in a plan view. 平面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in a plan view. 突起の配置の代案を示す図。The figure which shows the alternative of the arrangement of protrusions. 突起の配置の代案を示す図。The figure which shows the alternative of the arrangement of protrusions. 突起の配置の代案を示す図。The figure which shows the alternative of the arrangement of protrusions. 突起の配置の代案を示す図。The figure which shows the alternative of the arrangement of protrusions. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in the end view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in the end view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in the end view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in the end view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in the end view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in the end view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in the end view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in the end view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the protrusion in the end view.

以下、本発明に係る実施形態を添付図面に従って説明する。なお、以下の説明は、本質的に例示に過ぎず、本発明、その適用物、あるいは、その用途を制限することを意図するものではない。また、図面は模式的なものであり、各寸法の比率等は現実のものとは必ずしも一致していない。 Hereinafter, embodiments according to the present invention will be described with reference to the accompanying drawings. It should be noted that the following description is merely an example and is not intended to limit the present invention, its application, or its use. In addition, the drawings are schematic, and the ratios of each dimension do not always match the actual ones.

まず、本発明の実施形態の基本的構成について説明する。
図1は、ゴム製の空気入りタイヤ(以下、タイヤという)1の子午線半断面図を示す。このタイヤ1はサイズ245/40R18のランフラットタイヤである。本発明は、異なるサイズのタイヤにも適用できる。また、本発明は、ランフラットタイヤの範疇に含まれないタイヤにも適用できる。タイヤ1は、回転方向が指定されている。指定された回転方向を図3に矢印RDで示す。
First, the basic configuration of the embodiment of the present invention will be described.
FIG. 1 shows a meridian half cross section of a rubber pneumatic tire (hereinafter referred to as a tire) 1. This tire 1 is a run-flat tire of size 245 / 40R18. The present invention can also be applied to tires of different sizes. The present invention can also be applied to tires that are not included in the category of run-flat tires. The rotation direction of the tire 1 is specified. The designated rotation direction is indicated by an arrow RD in FIG.

タイヤ1は、トレッド部2、一対のタイヤサイド部3、及び一対のビード部4を備える。個々のビード部4は、タイヤサイド部3のタイヤ径方向の内側端部(トレッド部2とは反対側の端部)に設けられている。一対のビード部4間には、カーカス5が設けられている。カーカス5と、タイヤ1の最内周面のインナーライナー6との間には、補強ゴム7が配置されている。カーカス5とトレッド部2の踏面との間には、ベルト層8が設けられている。言い換えれば、トレッド部2では、カーカス5のタイヤ径方向外側にベルト層8が設けられている。 The tire 1 includes a tread portion 2, a pair of tire side portions 3, and a pair of bead portions 4. The individual bead portions 4 are provided at the inner end portion (the end portion on the side opposite to the tread portion 2) of the tire side portion 3 in the tire radial direction. A carcass 5 is provided between the pair of bead portions 4. A reinforcing rubber 7 is arranged between the carcass 5 and the inner liner 6 on the innermost peripheral surface of the tire 1. A belt layer 8 is provided between the carcass 5 and the tread of the tread portion 2. In other words, in the tread portion 2, the belt layer 8 is provided on the outer side of the carcass 5 in the tire radial direction.

図2及び図3を参照すると、タイヤサイド部3の表面には、複数の突起がタイヤ周方向に間隔をあけて設けられている。本実施形態では、これらの突起11の形状、寸法、及び姿勢は同じである。図1では、リム(図示せず)の最外周位置P1からトレッド部2のタイヤ径方向の最も外側の位置までの距離(タイヤ高さ)が符号THで示されている。突起11は、リムの最外周位置P1からタイヤ高さTHの0.05倍以上0.7倍以下の範囲に設けることができる。 Referring to FIGS. 2 and 3, a plurality of protrusions are provided on the surface of the tire side portion 3 at intervals in the tire circumferential direction. In this embodiment, the shapes, dimensions, and postures of these protrusions 11 are the same. In FIG. 1, the distance (tire height) from the outermost peripheral position P1 of the rim (not shown) to the outermost position of the tread portion 2 in the tire radial direction is indicated by the reference numeral TH. The protrusion 11 can be provided in a range of 0.05 times or more and 0.7 times or less of the tire height TH from the outermost peripheral position P1 of the rim.

本明細書では、タイヤ幅方向から見た突起11の形状に関して「平面視」又はそれに類する用号を使用する場合があり、後述する内端面15側から見た突起11の形状に関して「端面視」又はそれに類する用語を使用する場合がある。 In the present specification, "planar view" or a similar term may be used for the shape of the protrusion 11 seen from the tire width direction, and "end view" for the shape of the protrusion 11 seen from the inner end surface 15 side, which will be described later. Or similar terms may be used.

図4及び図5を参照すると、突起11は、タイヤ径方向に2分割されることにより、外径側の外側突起11Aと、内径側の内側突起11Bとが形成されている。外側突起11Aと内側突起11Bの間には隙間Gが形成され、この隙間Gにはタイヤサイド部3の表面を流動する空気(空気流)が通過するようになっている。 Referring to FIGS. 4 and 5, the protrusion 11 is divided into two in the tire radial direction to form an outer protrusion 11A on the outer diameter side and an inner protrusion 11B on the inner diameter side. A gap G is formed between the outer protrusion 11A and the inner protrusion 11B, and air (air flow) flowing on the surface of the tire side portion 3 passes through the gap G.

各突起11A,11Bは、タイヤサイド部3の表面に沿って拡がる平坦面である頂面12を備える。また、各突起11A,11Bは前側面13と後側面14とを備える。前側面13はタイヤ回転方向RDの前方側に位置し、後側面14はタイヤ回転方向RDの後方側(タイヤ回転逆方向)に位置する。さらに、各突起11A,11Bは、タイヤ径方向内側の内端面15と、タイヤ径方向外側の外端面16とを有する。後に詳述するように、本実施形態における前側面13は、タイヤサイド部3の表面及び頂面12に対して傾斜した平坦面である。本実施形態における後側面14、内端面15、及び外端面16は、タイヤサイド部3の表面に対して概ね垂直に延びる平坦面である。 Each of the protrusions 11A and 11B includes a top surface 12 which is a flat surface extending along the surface of the tire side portion 3. Further, each of the protrusions 11A and 11B includes a front side surface 13 and a rear side surface 14. The front side surface 13 is located on the front side of the tire rotation direction RD, and the rear side surface 14 is located on the rear side (reverse direction of tire rotation) of the tire rotation direction RD. Further, each of the protrusions 11A and 11B has an inner end surface 15 on the inner side in the tire radial direction and an outer end surface 16 on the outer side in the tire radial direction. As will be described in detail later, the front side surface 13 in the present embodiment is a flat surface inclined with respect to the surface surface and the top surface 12 of the tire side portion 3. The rear side surface 14, the inner end surface 15, and the outer end surface 16 in the present embodiment are flat surfaces extending substantially perpendicular to the surface of the tire side portion 3.

前辺部17は頂面12と前側面13とが互いに交わる部分であり、後辺部18は頂面12と後側面14とが互いに交わる部分である。内辺部19は頂面12と内端面15とが互いに交わる部分であり、外辺部20は頂面12と外端面16とが互いに交わる部分である。前辺部17、後辺部18、内辺部19、及び外辺部20は、本実施形態のように鋭いないしは明瞭なエッジであってもよいが、端面視で、ある程度湾曲あるいは面取りした形状を有していてもよい。本実施形態では、前辺部17、後辺部18、内辺部19、及び外辺部20の平面視での形状は、いずれも直線状である。しかし、これらの平面視での形状は、円弧及び楕円弧を含む曲線状であってもよく、複数の直線から構成された折れ線であってもよく、直線と曲線の組み合わせであってもよい。 The front side portion 17 is a portion where the top surface 12 and the front side surface 13 intersect with each other, and the rear side portion 18 is a portion where the top surface 12 and the rear side surface 14 intersect with each other. The inner side portion 19 is a portion where the apex surface 12 and the inner end surface 15 intersect with each other, and the outer side portion 20 is a portion where the apex surface 12 and the outer end surface 16 intersect with each other. The front side portion 17, the rear side portion 18, the inner side portion 19, and the outer side portion 20 may have sharp or clear edges as in the present embodiment, but have a curved or chamfered shape to some extent in end view. May have. In the present embodiment, the shapes of the front side portion 17, the rear side portion 18, the inner side portion 19, and the outer side portion 20 in a plan view are all linear. However, these shapes in a plan view may be a curved line including an arc and an elliptical arc, may be a polygonal line composed of a plurality of straight lines, or may be a combination of a straight line and a curved line.

図3を参照すると、前辺部17(前側面13)は、平面視において、前辺部17を通るタイヤ径方向に延びる直線に対して傾斜している。言い換えれば、前辺部17はタイヤ径方向に対して傾斜している。前辺部17のタイヤ径方向に対する傾斜角度a1は、前辺部17のタイヤ回転方向RDで最前方側の位置を通り、かつタイヤ径方向に延びる基準直線Lsと、前辺部17が延びる方向(本実施形態では直線である前辺部17自体)とがなす角度(平面視で時計回りを正とする)として定義される。 Referring to FIG. 3, the front side portion 17 (front side surface 13) is inclined with respect to a straight line extending in the tire radial direction passing through the front side portion 17 in a plan view. In other words, the front side portion 17 is inclined with respect to the tire radial direction. The inclination angle a1 of the front side portion 17 with respect to the tire radial direction is a reference straight line Ls that passes through the frontmost position in the tire rotation direction RD of the front side portion 17 and extends in the tire radial direction, and a direction in which the front side portion 17 extends. (In this embodiment, it is defined as an angle formed by the front side portion 17 itself which is a straight line) (clockwise is positive in a plan view).

但し、前記前辺部17(前側面13)は、平面視において直線状に傾斜しているだけでなく、湾曲していてもよく、要はタイヤ外径方向に向かってタイヤ周方向のいずれか一方に変位していればよい。 However, the front side portion 17 (front side surface 13) may be curved as well as linearly inclined in a plan view, and in short, any one of the tire circumferential directions toward the tire outer diameter direction. It suffices if it is displaced to one side.

これによれば、前辺部17で、頂面12に沿った第1の流れ(主たる空気流)と、前側面13に沿った第2の流れ(従たる空気流)とに分流することができる。つまり、タイヤサイド部3に沿った空気流れから、第2の流れを分流することができるので、頂面12に沿う第1の流れを高速の層流状態とすることができ、層流境界層LBの範囲を拡大することが可能となる。 According to this, the front side portion 17 can be divided into a first flow (main air flow) along the top surface 12 and a second flow (subordinate air flow) along the front side surface 13. can. That is, since the second flow can be diverted from the air flow along the tire side portion 3, the first flow along the top surface 12 can be in a high-speed laminar flow state, and the laminar flow boundary layer can be obtained. It is possible to expand the range of LB.

前記前側面13は、タイヤ外径方向に向かってタイヤ回転逆方向に変位するのが好ましい。 The front side surface 13 is preferably displaced in the direction opposite to the tire rotation toward the tire outer diameter direction.

これによれば、第2の流れを、タイヤの回転によってタイヤサイド部3の表面を通過する空気に作用する遠心力の方向と合致させることができる。したがって、第2の流れをより一層スムーズなものとすることができる。 According to this, the second flow can be matched with the direction of the centrifugal force acting on the air passing through the surface of the tire side portion 3 due to the rotation of the tire. Therefore, the second flow can be made smoother.

本実施形態における前辺部17は、平面視で右上がりに延びている。図12及び図13に示すように、突起11は前辺部17が平面視で右下がりに延びる形状であってもよい。本実施形態の後辺部18は、平面視で前辺部17と概ね平行に延びている。また、本実施形態の内辺部19と外辺部20は、平面視で互いに平行に延びている。 The front side portion 17 in the present embodiment extends upward to the right in a plan view. As shown in FIGS. 12 and 13, the protrusion 11 may have a shape in which the front side portion 17 extends downward to the right in a plan view. The rear side portion 18 of the present embodiment extends substantially parallel to the front side portion 17 in a plan view. Further, the inner side portion 19 and the outer side portion 20 of the present embodiment extend in parallel with each other in a plan view.

図3を参照すると、符号Rはタイヤ半径を示し、符号Rpは突起11のタイヤ径方向の任意の位置のタイヤ回転中心からの距離を示す。また、図3の符号Rpcは突起11の中心pc(例えば平面視での頂面12の図心)のタイヤ回転中心からの距離を示す。さらに、図3の符号hRpは、タイヤ径方向の任意の位置における、突起11のタイヤ周方向の寸法、すなわち突起11の幅を示す。また、図3の符号hRpcは突起の中心pcにおける、突起11の幅を示している。 Referring to FIG. 3, reference numeral R indicates a tire radius, and reference numeral Rp indicates a distance from the center of rotation of the tire at an arbitrary position in the tire radial direction of the protrusion 11. Further, the reference numeral Rpc in FIG. 3 indicates the distance from the center of rotation of the tire of the center pc of the protrusion 11 (for example, the centroid of the top surface 12 in a plan view). Further, the reference numeral hRp in FIG. 3 indicates the dimension of the protrusion 11 in the tire circumferential direction at an arbitrary position in the tire radial direction, that is, the width of the protrusion 11. Further, the reference numeral hRpc in FIG. 3 indicates the width of the protrusion 11 at the center pc of the protrusion.

図5を併せて参照すると、本実施形態では、突起11のタイヤ径方向の任意の位置における突起11の厚みtRpは一定である。つまり、突起11の厚みtRpは、突起11のタイヤ径方向で一様である。また、本実施形態では、突起11の厚みtRpは前側面13(前辺部17)から後側面14(後辺部18)まで一定である。つまり、突起11の厚みtRpは突起11のタイヤ周方向でも一様である。 With reference to FIG. 5, in the present embodiment, the thickness tRp of the protrusion 11 at an arbitrary position in the tire radial direction of the protrusion 11 is constant. That is, the thickness tRp of the protrusion 11 is uniform in the tire radial direction of the protrusion 11. Further, in the present embodiment, the thickness tRp of the protrusion 11 is constant from the front side surface 13 (front side portion 17) to the rear side surface 14 (rear side portion 18). That is, the thickness tRp of the protrusion 11 is uniform even in the tire circumferential direction of the protrusion 11.

図5及び図6を参照すると、端面視では、前辺部17において突起11の頂面12と前側面13とがある角度(先端角度a2)をなしている。本実施形態における前側面13は、頂面12と前側面13とが前辺部17に向けて間隔が狭まるテーパ形状となるような傾斜を有している。言い換えれば、前側面13の傾斜は、端面視において、前側面13の下端が前辺部17よりもタイヤ回転方向RDの後方側に位置するように設定されている。前側面13がこのような傾斜を有することで、本実施形態の突起11の先端角度a2は鋭角(45°)である。先端角度a2の具体的な定義は後述する。 Referring to FIGS. 5 and 6, in the end view, the top surface 12 of the protrusion 11 and the front side surface 13 form an angle (tip angle a2) in the front side portion 17. The front side surface 13 in the present embodiment has an inclination such that the top surface 12 and the front side surface 13 have a tapered shape in which the distance between the top surface 12 and the front side surface 13 is narrowed toward the front side portion 17. In other words, the inclination of the front side surface 13 is set so that the lower end of the front side surface 13 is located behind the front side portion 17 in the tire rotation direction RD in the end view. Since the front side surface 13 has such an inclination, the tip angle a2 of the protrusion 11 of the present embodiment is an acute angle (45 °). The specific definition of the tip angle a2 will be described later.

図7から図9を参照すると、タイヤ1を装着した車両の走行時には、矢印AF0で概念的に示すように、前辺部17側から突起11に流入する空気流がタイヤサイド部3の表面近傍に生じる。図7を参照すると、タイヤサイド部3の表面の特定の位置P2における空気流AF0は、位置P2を通るタイヤ径方向に延びる直線に対して引いた垂線(水平線Lh)に対して、ある角度(流入角度afl)を有する。本発明者が行った解析によると、タイヤサイズ245/40R18、突起11の中心Pcのタイヤ回転中心からの距離Rpcが550mm、車両の走行速度80km/hという条件下では、流入角度aflは12°である。また、走行速度が40~120km/hの範囲で変化すると、流入角度aflには±1°程度の変化がある。実際の使用時には、走行速度に加え、向かい風、車両の構造等を含む種々の要因による影響があるので、前述の条件下における流入角度aflは12±10°程度とみなせる。 Referring to FIGS. 7 to 9, when the vehicle equipped with the tire 1 is traveling, the air flow flowing into the protrusion 11 from the front side portion 17 side is near the surface of the tire side portion 3, as conceptually indicated by the arrow AF0. Occurs in. Referring to FIG. 7, the airflow AF0 at a specific position P2 on the surface of the tire side portion 3 is at a certain angle (horizontal line Lh) with respect to a perpendicular line (horizontal line Lh) drawn with respect to a straight line extending in the tire radial direction passing through the position P2. It has an inflow angle afl). According to the analysis performed by the present inventor, the inflow angle afl is 12 ° under the conditions that the tire size is 245 / 40R18, the distance Rpc from the center of rotation of the center Pc of the protrusion 11 is 550 mm, and the traveling speed of the vehicle is 80 km / h. Is. Further, when the traveling speed changes in the range of 40 to 120 km / h, the inflow angle afl changes by about ± 1 °. In actual use, the inflow angle afl under the above-mentioned conditions can be regarded as about 12 ± 10 ° because it is affected by various factors including the headwind, the structure of the vehicle, etc. in addition to the traveling speed.

引き続き図7から図9を参照すると、空気流AF1は前辺部17から突起11に流入し、この流入時に2つの空気流に分かれる。図7に最も明瞭に示すように、一方の空気流AF1は、前側面13から頂面12に乗り上がり、前辺部17から後辺部18に向けて頂面12に沿って流れる(主たる空気流:第1の流れ)。他方の空気流AF2は、前側面13に沿ってタイヤ径方向外側へ流れる(従たる空気流:第2の流れ)。図12及び図13に示すように前辺部17が平面視で右下がりの場合、空気流AF2は前側面13に沿ってタイヤ径方向内側へ流れる。 Continuing to refer to FIGS. 7 to 9, the air flow AF1 flows into the protrusion 11 from the front side portion 17, and is divided into two air flows at the time of this inflow. As most clearly shown in FIG. 7, one airflow AF1 rides on the top surface 12 from the front side surface 13 and flows along the top surface 12 from the front side portion 17 to the rear side portion 18 (main air). Flow: First flow). The other air flow AF2 flows outward in the tire radial direction along the front side surface 13 (subordinate air flow: second flow). As shown in FIGS. 12 and 13, when the front side portion 17 descends to the right in a plan view, the air flow AF2 flows inward in the tire radial direction along the front side surface 13.

図10を併せて参照すると、突起11の頂面12に沿って流れる空気流AF1は層流となっている。つまり、突起11の頂面12近傍には層流境界層LBが形成される。図10において、符号Vaは空気流AF0,空気流AF1のタイヤサイド部3の表面近傍と突起11の頂面12近傍での速度勾配を概念的に示している。層流である空気流AF2は速度勾配が大きいので、突起11の頂面12から空気流AF2へ高効率で放熱がなされる。言い換えれば、突起11の頂面12の空気流AF2が層流となることで、空冷による放熱が効果的に促進される。効果的に空冷することで、温度上昇によるタイヤ構成材料の経時的変化の促進等が抑えられ、タイヤ1の耐久性が向上する。 Referring to FIG. 10, the air flow AF1 flowing along the top surface 12 of the protrusion 11 is a laminar flow. That is, a laminar flow boundary layer LB is formed in the vicinity of the top surface 12 of the protrusion 11. In FIG. 10, reference numeral Va conceptually indicates a velocity gradient in the vicinity of the surface of the tire side portion 3 of the air flow AF0 and the airflow AF1 and in the vicinity of the top surface 12 of the protrusion 11. Since the air flow AF2, which is a laminar flow, has a large velocity gradient, heat is dissipated from the top surface 12 of the protrusion 11 to the air flow AF2 with high efficiency. In other words, the air flow AF2 on the top surface 12 of the protrusion 11 becomes a laminar flow, so that heat dissipation by air cooling is effectively promoted. By effectively air-cooling, the promotion of changes over time in the tire constituent material due to the temperature rise is suppressed, and the durability of the tire 1 is improved.

図9において矢印AF3で示すように、頂面12を通過して後辺部18から下流側へ流れる空気流(第3の流れ)は、頂面12を通過した後、タイヤサイド部3の表面に衝突して方向変換される。その結果、隣接する突起11,11間では、タイヤサイド部3の表面からの放熱が促進される。 As shown by the arrow AF3 in FIG. 9, the air flow (third flow) that passes through the top surface 12 and flows from the rear side portion 18 to the downstream side passes through the top surface 12 and then is the surface of the tire side portion 3. The direction is changed by colliding with. As a result, heat dissipation from the surface of the tire side portion 3 is promoted between the adjacent protrusions 11 and 11.

図7を参照すると、空気流AF0は、空気流AF1,AF2以外に、さらに突起11A,11Bの隙間Gを通過する空気流AF4(第4の流れ)にも分流される。空気流AF4は、隙間Gを通過することにより流速を速められる。突起11A,11Bの後側面14側は、構造上、空気溜まりが発生し、この部分の放熱性が妨げられやすい。隙間Gを流動する空気は、この空気溜まりを引っ張って流動する。この結果、突起11の後側面14での放熱性が高められる。 Referring to FIG. 7, the air flow AF0 is further divided into the air flow AF4 (fourth flow) passing through the gap G of the protrusions 11A and 11B in addition to the air flow AF1 and AF2. The flow velocity of the air flow AF4 is increased by passing through the gap G. Due to the structure, air pools are generated on the rear side surface 14 side of the protrusions 11A and 11B, and the heat dissipation of this portion is likely to be hindered. The air flowing through the gap G pulls the air pool and flows. As a result, the heat dissipation on the rear side surface 14 of the protrusion 11 is enhanced.

以上のように、本実施形態のタイヤ1では、突起11の頂面12の空気流AF1の層流化と、突起11,11間の空気流AF3の衝突と、隙間Gを流動する空気流AF4による空気溜まりの引っ張りとによってタイヤ1の放熱性を向上している。 As described above, in the tire 1 of the present embodiment, the laminar flow of the air flow AF1 on the top surface 12 of the protrusion 11, the collision of the air flow AF3 between the protrusions 11 and 11, and the air flow AF4 flowing through the gap G The heat dissipation of the tire 1 is improved by pulling the air pool.

後に詳述するように、タイヤ回転中心からの距離Rpにおける突起11の幅hRp(図3参照)は、突起11の頂面12の後辺部18まで層流境界層LBとなるように設定することが好ましい。しかし、図11に概念的に示すように、突起11の幅hRpは、突起11の頂面12の後辺部18側で、速度境界層が遷移領域TRや乱流境界層TBとなるような比較的長い寸法にすることも許容される。このような場合でも、突起11の頂面12のうち層流境界層LBが形成される領域では、大きな速度勾配により放熱性向上の利点が得られる。 As will be described in detail later, the width hRp (see FIG. 3) of the protrusion 11 at the distance Rp from the center of rotation of the tire is set so as to be the laminar boundary layer LB up to the rear side portion 18 of the top surface 12 of the protrusion 11. Is preferable. However, as conceptually shown in FIG. 11, the width hRp of the protrusion 11 is such that the velocity boundary layer becomes the transition region TR or the turbulent boundary layer TB on the rear side 18 side of the top surface 12 of the protrusion 11. Relatively long dimensions are also acceptable. Even in such a case, in the region of the top surface 12 of the protrusion 11 where the laminar flow boundary layer LB is formed, the advantage of improving heat dissipation can be obtained due to the large velocity gradient.

前述した突起11に流入した空気流AF0が空気流AF1,AF2へと分流されるためには、突起11の厚さhtp、特に前辺部17の部分における厚さhtpが突起11の幅hp(幅hpが一定でない場合は最小幅)よりも小さいことが好ましい。 In order for the air flow AF0 flowing into the protrusion 11 to be diverted into the air flows AF1 and AF2, the thickness http of the protrusion 11, particularly the thickness http at the front side portion 17, is the width hp of the protrusion 11. If the width hp is not constant, it is preferably smaller than the minimum width).

前述のように突起11へ流入する空気流AF0は流入角度aflを有する。空気流AF0が空気流AF1,AF2へと分流されるためには、平面視での突起11の前辺部17の傾斜角度a1を、前辺部17に対する空気流AF0の進入角度が90°とならないように設定する必要がある。言い換えれば、平面視において、空気流AF0に対して突起11の前辺部17を傾ける必要がある。 As described above, the air flow AF0 flowing into the protrusion 11 has an inflow angle afl. In order for the air flow AF0 to be divided into the air flows AF1 and AF2, the inclination angle a1 of the front side portion 17 of the protrusion 11 in a plan view is set to 90 ° and the approach angle of the air flow AF0 with respect to the front side portion 17 is 90 °. It is necessary to set so that it does not become. In other words, in plan view, it is necessary to incline the front side portion 17 of the protrusion 11 with respect to the air flow AF0.

図3を参照すると、前辺部17が平面視で右上がりである場合、前辺部17は、前辺部17に流入する空気流AF0に対して45°で交差するように設定するのがより好ましい。この場合、上述したように、空気流AF0の流入角度aflは12±10°程度とみなせるので、前辺部17の傾斜角度a1は、前辺部17の傾斜角度a1は以下の式(1)で規定される範囲内に設定することが好ましい。 Referring to FIG. 3, when the front side portion 17 is upward to the right in a plan view, the front side portion 17 is set to intersect the air flow AF0 flowing into the front side portion 17 at 45 °. More preferred. In this case, as described above, the inflow angle afl of the air flow AF0 can be regarded as about 12 ± 10 °. Therefore, the inclination angle a1 of the front side portion 17 and the inclination angle a1 of the front side portion 17 are the following equation (1). It is preferable to set it within the range specified in.

Figure 0007053133000002
Figure 0007053133000002

図13を参照すると、前辺部17が右下がりである場合、前辺部17の傾斜角度a1は、前辺部17に流入する空気流AF0に対して45°で交差するように設定するのが好ましく、以下の式(2)で規定される範囲内に設定することが好ましい。 Referring to FIG. 13, when the front side portion 17 is downward to the right, the inclination angle a1 of the front side portion 17 is set so as to intersect the air flow AF0 flowing into the front side portion 17 at 45 °. Is preferable, and it is preferable to set it within the range specified by the following formula (2).

Figure 0007053133000003
Figure 0007053133000003

要するに、前辺部17の傾斜角度は、式(1)又は(2)を満たすように設定することが好ましい。 In short, the inclination angle of the front side portion 17 is preferably set so as to satisfy the equation (1) or (2).

図5及び図6を参照すると、突起11へと流入する空気流AF0が空気流AF1,AF2へと適切に分流されるためには、突起11の先端角度a2は過度に大きく設定しない必要がある。具体的には、先端角度a2は100°以下に設定することが好ましい。より好ましくは、先端角度a2は90°以下であり、鋭角、つまり90°未満に設定されるのがよい。先端角度a2が過度に小さいことは、前辺部17付近における突起11の強度低下の原因となるので好ましくない。そのため、先端角度a2は、特に45°以上65°以下の範囲に設定することが好ましい。 Referring to FIGS. 5 and 6, the tip angle a2 of the protrusion 11 needs not be set excessively large in order for the air flow AF0 flowing into the protrusion 11 to be appropriately diverted to the air flows AF1 and AF2. .. Specifically, the tip angle a2 is preferably set to 100 ° or less. More preferably, the tip angle a2 is 90 ° or less, and is preferably set to an acute angle, that is, less than 90 °. It is not preferable that the tip angle a2 is excessively small because it causes a decrease in the strength of the protrusion 11 in the vicinity of the front side portion 17. Therefore, it is particularly preferable to set the tip angle a2 in the range of 45 ° or more and 65 ° or less.

図3を参照すると、タイヤ径方向の任意の位置における突起11の幅hRpが過度に狭いと、頂面12近傍の層流境界層TBによる突起11からの放熱面積が不足し、層流による放熱促進効果が十分に得られない。そのため、突起11の幅hRpは10mm以上に設定することが好ましい。 Referring to FIG. 3, if the width hRp of the protrusion 11 at an arbitrary position in the tire radial direction is excessively narrow, the heat radiation area from the protrusion 11 due to the laminar boundary layer TB near the top surface 12 is insufficient, and heat is dissipated by the laminar flow. The promotion effect is not sufficiently obtained. Therefore, it is preferable to set the width hRp of the protrusion 11 to 10 mm or more.

引き続き図3を参照すると、タイヤ径方向の任意の位置における突起11の幅hRpは、以下の式(3)を満たすように設定することが好ましい。 With reference to FIG. 3, it is preferable that the width hRp of the protrusion 11 at an arbitrary position in the tire radial direction is set so as to satisfy the following equation (3).

Figure 0007053133000004
R:タイヤ半径R
Rp:突起上の任意の位置のタイヤ回転中心からの距離
hRp:タイヤ回転中心からの距離Rpにおける突起の幅
Figure 0007053133000004
R: Tire radius R
Rp: Distance from the center of rotation of the tire at an arbitrary position on the protrusion hRp: Distance from the center of rotation of the tire Width of the protrusion at Rp

幅hRpが小さすぎると速度勾配が増大する領域を十分に確保できず十分な冷却効果が得られない。式(3)における下限値10は、層流境界層TBが得られる最小寸法に対応している。 If the width hRp is too small, a region where the velocity gradient increases cannot be sufficiently secured, and a sufficient cooling effect cannot be obtained. The lower limit value 10 in the formula (3) corresponds to the minimum dimension from which the laminar boundary layer TB can be obtained.

幅hRpが大きすぎると突起11上で速度境界層が過度に成長してしまい速度勾配が小さくなり放熱性が悪化する。式(3)における上限値50は、かかる観点から規定されている。以下、上限値を50に設定した理由を説明する。 If the width hRp is too large, the velocity boundary layer grows excessively on the protrusion 11, the velocity gradient becomes small, and the heat dissipation property deteriorates. The upper limit value 50 in the formula (3) is defined from this viewpoint. Hereinafter, the reason why the upper limit value is set to 50 will be described.

平板上における速度境界層の発達、すなわち層流境界層LBから乱流境界層TBへの遷移は以下の式(4)で表されることが知られている。 It is known that the development of the velocity boundary layer on the flat plate, that is, the transition from the laminar boundary layer LB to the turbulent boundary layer TB is expressed by the following equation (4).

Figure 0007053133000005
x:層流境界層から乱流境界層への遷移が生じる平板先端からの距離
U:流入速度
ν:流体の動粘性係数
Figure 0007053133000005
x: Distance from the tip of the flat plate where the transition from the laminar boundary layer to the turbulent boundary layer occurs U: Inflow velocity ν: Dynamic viscosity coefficient of the fluid

主流の乱れの影響や、遷移領域付近では境界層がある程度成長することで速度勾配が低下することを考えると、十分な冷却効果が得られるために必要な突起11の幅hRpの最大値hRp_maxは、式(4)の距離xの1/2程度と考えられる。従って、突起11の最大幅hRp_maxは、以下の式(5)で表される。 Considering the influence of mainstream turbulence and the fact that the velocity gradient decreases due to the growth of the boundary layer to some extent near the transition region, the maximum value hRp_max of the width hRp of the protrusion 11 required to obtain a sufficient cooling effect is , It is considered to be about 1/2 of the distance x in the equation (4). Therefore, the maximum width hRp_max of the protrusion 11 is expressed by the following equation (5).

Figure 0007053133000006
Figure 0007053133000006

突起11への流体の流入速度Uは、突起11のタイヤ径方向の任意の位置のタイヤ回転中心からの距離Rpとタイヤ角速度の積として表される(U=Rpω)。また、車両速度Vはタイヤ半径Rとタイヤ角速度の積として表される(V=Rω)。従って、以下の式(6)の関係が成立する。 The inflow speed U of the fluid into the protrusion 11 is expressed as the product of the distance Rp from the center of rotation of the tire at an arbitrary position in the tire radial direction of the protrusion 11 and the tire angular velocity (U = Rpω). Further, the vehicle speed V is expressed as the product of the tire radius R and the tire angular velocity (V = Rω). Therefore, the relationship of the following equation (6) is established.

Figure 0007053133000007
Figure 0007053133000007

空気の動粘性係数νについて、以下の式(7)が成立する。

Figure 0007053133000008
The following equation (7) holds for the kinematic viscosity coefficient ν of air.
Figure 0007053133000008

式(6),(7)を式(5)に代入することで、以下の式(8)が得られる。

Figure 0007053133000009
By substituting the equations (6) and (7) into the equation (5), the following equation (8) can be obtained.
Figure 0007053133000009

車両速度Vとして80km/hを想定すると、式(8)よりhRp_maxは以下となる。 Assuming that the vehicle speed V is 80 km / h, hRp_max is as follows from the equation (8).

Figure 0007053133000010
Figure 0007053133000010

タイヤ1の発熱がより顕著となる高速走行時、具体的には車両速度Vとして160km/hまでを考慮すると、式(8)よりhRp_maxは以下となる。 When traveling at high speed where the heat generation of the tire 1 becomes more remarkable, specifically considering the vehicle speed V up to 160 km / h, hRp_max is as follows from the equation (8).

Figure 0007053133000011
Figure 0007053133000011

このように、高速走行時(車両速度Vとして160km/h以下)であっても、突起11の頂面12の幅方向全体で層流境界層TBが形成されるためには、式(3)の上限値は50mmとなる。 As described above, in order to form the laminar boundary layer TB in the entire width direction of the top surface 12 of the protrusion 11 even during high-speed traveling (vehicle speed V of 160 km / h or less), the equation (3) is used. The upper limit of is 50 mm.

なお、本発明は、前記実施形態に記載された構成に限定されるものではなく、種々の変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications can be made.

また、突起11の平面視での形状は、以下の通り種々の形態を取ることができる。 Further, the shape of the protrusion 11 in a plan view can take various forms as follows.

図14Aの突起11の後辺部18は、傾斜角度の異なる2本の直線により構成された平面視での形状を有する。すなわち、後辺部18は、内辺部19との交点である角部から前辺部17側へと延びる第1後辺部18aと、この第1後辺部18aよりも前辺部17とのなす角度が小さくなった第2後辺部18bとで構成されている。突起11を2分割する隙間Gは、前辺部17のタイヤ径方向の中央部分から第2後辺部18bの途中に連通している。 The rear side portion 18 of the protrusion 11 in FIG. 14A has a shape in a plan view composed of two straight lines having different inclination angles. That is, the rear side portion 18 has a first rear side portion 18a extending from the corner portion which is an intersection with the inner side portion 19 toward the front side portion 17, and a front side portion 17 rather than the first rear side portion 18a. It is composed of a second rear side portion 18b having a small angle formed by the two. The gap G that divides the protrusion 11 into two communicates with the front side portion 17 from the central portion in the tire radial direction to the middle of the second rear side portion 18b.

図14B,14Cの突起11は、前辺部17が右上がりに延びるのに対し、後辺部18が右下がりに延びる平面視での形状を有する。特に、図14Cの突起11は、平面視での形状が等脚台形状とされている。これらの突起11を2分割する隙間Gは、タイヤ径方向のほぼ中央部に形成されている。 The protrusions 11 in FIGS. 14B and 14C have a plan view shape in which the front side portion 17 extends upward to the right and the rear side portion 18 extends downward to the right. In particular, the protrusion 11 in FIG. 14C has an isosceles trapezoidal shape in a plan view. The gap G that divides these protrusions 11 into two is formed in a substantially central portion in the tire radial direction.

図15Aでは、タイヤサイド部3の表面に、幅hRpが異なる2種類の突起11が交互に配置されている。但し、この幅hRpが異なる突起11は3種類以上とすることもできる。 In FIG. 15A, two types of protrusions 11 having different widths hRp are alternately arranged on the surface of the tire side portion 3. However, the number of protrusions 11 having different widths hRp may be three or more.

図15B,図15Cでは、タイヤサイド部3の表面に、前辺部17の傾斜角度a1が異なる2種類の突起11が交互に配置されている。図15Bでは、2種類の突起11はいずれも右上がりの前辺部17を有する。図15Cでは、2種類の突起11のうちの一方は右上がりの前辺部17を有し、他方の突起11は右下がりの前辺部17を有する。 In FIGS. 15B and 15C, two types of protrusions 11 having different inclination angles a1 of the front side portion 17 are alternately arranged on the surface of the tire side portion 3. In FIG. 15B, both of the two types of protrusions 11 have a front side portion 17 that rises to the right. In FIG. 15C, one of the two types of protrusions 11 has an upward-sloping front side portion 17, and the other protrusion 11 has a downward-sloping front side portion 17.

図15Dでは、タイヤサイド部3の表面に、タイヤ径方向の位置が異なる2種類の突起11が交互に配置されている。 In FIG. 15D, two types of protrusions 11 having different positions in the tire radial direction are alternately arranged on the surface of the tire side portion 3.

図15A~15Dでは、特に突起11に形成する隙間Gについては図示しなかったが、前記実施形態と同様に、タイヤ径方向の中央部にタイヤ周方向に延びる隙間Gがそれぞれ形成されている。図15Aの場合、特に幅hRpが異なる3種類以上の場合、幅hRpが小さい突起11には必ずしも隙間Gを形成する必要はない。 In FIGS. 15A to 15D, the gap G formed in the protrusion 11 is not particularly shown, but as in the above embodiment, the gap G extending in the tire circumferential direction is formed in the central portion in the tire radial direction. In the case of FIG. 15A, it is not always necessary to form a gap G in the protrusion 11 having a small width hRp, particularly when there are three or more types having different widths hRp.

図16Aから図16Cは、突起11の頂面12の端面視での形状の種々の代案を示す。図16Aの突起11は、端面視において翼断面形状の頂面12を有する。図16Bの突起11は、端面視において円弧状の頂面12を有する。図16Cの突起11は、端面視において翼断面形状でも円弧状でもない曲線状の頂面12を有する。 16A to 16C show various alternatives to the shape of the top surface 12 of the protrusion 11 in end-view view. The protrusion 11 in FIG. 16A has an apex surface 12 having a wing cross-sectional shape in end view. The protrusion 11 in FIG. 16B has an arcuate top surface 12 in end view. The protrusion 11 in FIG. 16C has a curved top surface 12 that is neither a wing cross-sectional shape nor an arc shape in end view.

図17Aから図17Dに示す突起11の前側面13は、端面視で、1個の窪み23を構成している。 The front side surface 13 of the protrusion 11 shown in FIGS. 17A to 17D constitutes one recess 23 in end view.

図17Aの突起11の前側面13は、2個の平坦面24a,24bによって構成されている。端面視では、平坦面24aは右下がりで、平坦面24bは右上がりである。これらの平坦面24a,24bによって、端面視で三角形の窪み23が形成されている。 The front side surface 13 of the protrusion 11 in FIG. 17A is composed of two flat surfaces 24a and 24b. In the end view, the flat surface 24a is downward to the right and the flat surface 24b is upward to the right. These flat surfaces 24a and 24b form a triangular depression 23 in end view.

図17Bの突起11の前側面13は、半円状の断面形状を有する曲面により構成されている。この曲面によって、端面視で半円状の窪み23が形成されている。 The front side surface 13 of the protrusion 11 in FIG. 17B is formed by a curved surface having a semicircular cross-sectional shape. Due to this curved surface, a semicircular depression 23 is formed in the end view.

図17Cの突起11の前側面13は、端面視で右下がりの平坦面25aと、円弧状の断面形状を有する曲面25bにより構成されている。平坦面25aが突起11の頂面12側に位置し、曲面25bがタイヤサイド部3の表面側に位置している。平坦面25aと曲面25bとによって、窪み23が形成されている。 The front side surface 13 of the protrusion 11 in FIG. 17C is composed of a flat surface 25a that descends to the right in view of the end face and a curved surface 25b having an arcuate cross-sectional shape. The flat surface 25a is located on the top surface 12 side of the protrusion 11, and the curved surface 25b is located on the surface side of the tire side portion 3. The recess 23 is formed by the flat surface 25a and the curved surface 25b.

図17Dの突起11の前側面13は、3個の平坦面26a,26b,26cによって構成されている。端面視では、突起11の頂面12側の平坦面26aは右下がりで、タイヤサイド部3の表面側の平坦面26cは右上がりで、中央の平坦面26bはタイヤ径方向に延びている。これらの平坦面26a~26cによって多角形状の窪み23が形成されている。 The front side surface 13 of the protrusion 11 in FIG. 17D is composed of three flat surfaces 26a, 26b, and 26c. In the end view, the flat surface 26a on the top surface 12 side of the protrusion 11 is downward to the right, the flat surface 26c on the surface side of the tire side portion 3 is upward to the right, and the central flat surface 26b extends in the tire radial direction. A polygonal depression 23 is formed by these flat surfaces 26a to 26c.

図18A及び図18Bに示す突起11の前側面13は、端面視で、タイヤ径方向に隣接した配置された2個の窪み23A,23Bを構成している。 The front side surface 13 of the protrusion 11 shown in FIGS. 18A and 18B constitutes two recesses 23A and 23B arranged adjacent to each other in the tire radial direction in the end view.

図18Aの突起11の前側面13は、4個の平坦面27a~27dによって構成されている。端面視では、突起11の頂面12側の平坦面27aは右下がりであり、タイヤサイド部3の表面に向けて、右上がりの平坦面27b、右下がりの平坦面27c、及び右上がりの平坦面27dが順に配置されている。平坦面27a,27bによって突起11の頂面12側に三角形状の断面形状を有する1個の窪み23Aが形成され、この窪み23Aのタイヤサイド部3の表面側に隣接して、同様に三角形状の断面形状を有する1個の窪み23Bが平坦面27c,27dによって形成されている。 The front side surface 13 of the protrusion 11 in FIG. 18A is composed of four flat surfaces 27a to 27d. In the end view, the flat surface 27a on the top surface 12 side of the protrusion 11 is downward-sloping, and the flat surface 27b rising to the right, the flat surface 27c falling to the right, and the flat surface rising to the right toward the surface of the tire side portion 3. The surfaces 27d are arranged in order. The flat surfaces 27a and 27b form one recess 23A having a triangular cross-sectional shape on the top surface 12 side of the protrusion 11, and the recess 23A is adjacent to the surface side of the tire side portion 3 and has a similarly triangular shape. One recess 23B having the cross-sectional shape of is formed by the flat surfaces 27c and 27d.

図18Bの突起11の前側面13は、半円状の断面形状を有する2個の曲面28a,28bによって構成されている。突起11の頂面12側の曲面28aによって、半円状の断面形状を有する1個の窪み23Aが形成され、この窪み23Aのタイヤサイド部3の表面側に隣接して、同様に半円状の断面形状を有する1個の窪み23Bが曲面28bによって形成されている。 The front side surface 13 of the protrusion 11 in FIG. 18B is composed of two curved surfaces 28a and 28b having a semicircular cross-sectional shape. The curved surface 28a on the top surface 12 side of the protrusion 11 forms one recess 23A having a semicircular cross-sectional shape, which is adjacent to the surface side of the tire side portion 3 of the recess 23A and also has a semicircular shape. One recess 23B having the cross-sectional shape of is formed by the curved surface 28b.

突起11の前側面13は、端面視で、タイヤ径方向に隣接した配置された3個以上の窪みを構成してもよい。 The front side surface 13 of the protrusion 11 may form three or more recesses arranged adjacent to each other in the tire radial direction in view of the end face.

図17Aから図18Bに示すような前側面13の窪みの形状、寸法、個数を適切に設定することで、突起11の頂面12に沿って流れる空気流AF1と、突起11の前側面13に沿って流れる空気流AF2の流量比率を調節することができる。 By appropriately setting the shape, size, and number of the recesses of the front side surface 13 as shown in FIGS. 17A to 18B, the air flow AF1 flowing along the top surface 12 of the protrusion 11 and the front side surface 13 of the protrusion 11 can be set. The flow rate ratio of the air flow AF2 flowing along the line can be adjusted.

図16Aから図16Cの頂面12の形状のうちのいずれか1個と、図17Aから図18Bの前側面13の形状のいずれかを組み合わせて1個の突起11を構成してもよい。 One protrusion 11 may be formed by combining any one of the shapes of the top surface 12 of FIGS. 16A to 16C and any of the shapes of the front side surface 13 of FIGS. 17A to 18B.

図5、図16Aから図18Bを参照すると、前辺部17において突起11の頂面12と前側面13とがなす角度、すなわち突起11の先端角度a2は、端面視において、頂面12に対応する直線Ltと、前側面13の前辺部17近傍の部分に対応する直線Lfsとがなす角度として定義される。 Referring to FIGS. 5 and 16A to 18B, the angle formed by the top surface 12 of the protrusion 11 and the front side surface 13 on the front side portion 17, that is, the tip angle a2 of the protrusion 11 corresponds to the top surface 12 in the end view. It is defined as an angle formed by the straight line Lt to be formed and the straight line Lfs corresponding to the portion near the front side portion 17 of the front side surface 13.

直線Ltは、頂面12のうち厚みtRpが最も大きい部分を通り、かつタイヤサイド部3の表面に沿って延びる直線として定義される。図5、図17Aから図18Bを参照すると、頂面12がタイヤサイド部3の表面に沿って延びる平坦面である場合、端面視において頂面12自体を延長して得られる直線が直線Ltである。図16Aから図16Cを参照すると、頂面12が曲面である場合、端面視で頂面12のうち厚みtRpが最も大きい位置P3を通り、かつタイヤサイド部3の表面に沿って延びる直線が直線Ltである。 The straight line Lt is defined as a straight line that passes through the portion of the top surface 12 having the largest thickness tRp and extends along the surface of the tire side portion 3. With reference to FIGS. 5 and 17A to 18B, when the top surface 12 is a flat surface extending along the surface of the tire side portion 3, the straight line obtained by extending the top surface 12 itself in end view is a straight line Lt. be. Referring to FIGS. 16A to 16C, when the apex surface 12 is a curved surface, a straight line extending through the position P3 having the largest thickness tRp among the apex surfaces 12 and extending along the surface of the tire side portion 3 is a straight line. It is Lt.

図5、図16Aから図16Cを参照すると、前側面13が単一の平坦面から構成されている場合、端面視で前側面13自体を延長して得られる直線が直線Lfsである。図17Aから図17Dを参照すると、前側面13が単一の窪み23を構成している場合、端面視において前辺部17と窪み23の最も窪んだ位置とを接続する直線が、直線Lfsである。図18A及び図18Bを参照すると、複数(これらの例では2個)の窪み23A,23Bを構成している場合、端面視において、前辺部17と最も頂面12側に位置する窪み23Aの最も窪んだ位置とを接続する直線が、直線Lfsである。 Referring to FIGS. 5 and 16A to 16C, when the front side surface 13 is composed of a single flat surface, the straight line obtained by extending the front side surface 13 itself in end view is a straight line Lfs. Referring to FIGS. 17A to 17D, when the front side surface 13 constitutes a single recess 23, the straight line connecting the front side portion 17 and the most recessed position of the recess 23 in the end view is a straight line Lfs. be. Referring to FIGS. 18A and 18B, when a plurality of (two in these examples) recesses 23A and 23B are configured, the recesses 23A located on the front side portion 17 and the most apical surface 12 side in the end view. The straight line connecting the most recessed position is the straight line Lfs.

1 タイヤ
2 トレッド部
3 タイヤサイド部
4 ビード部
5 カーカス
6 インナーライナー
7 補強ゴム
8 ベルト層
11 突起
12 頂面
13 前側面
14 後側面
15 内端面
16 外端面
17 前辺部
18 後辺部
19 内辺部
20 外辺部
23,23A,23B 窪み
24a,24b,25a,26a~26c,27a~27d 平坦面
25b,28a,28b 曲面
RD 回転方向
P1 リムの最外周位置
P2 タイヤサイド部の表面の特定の点
P3 頂面の厚みが最も大きい位置
Ls 基準直線
Lt,Lfs 直線
Lh 水平線
AF0,AF1,AF2 空気流
Va 空気流の速度
LB 層流境界層
TR 遷移領域
TB 乱流境界層
TA 乱流の領域
G 隙間
1 Tire 2 Tread part 3 Tire side part 4 Bead part 5 Carcass 6 Inner liner 7 Reinforcing rubber 8 Belt layer 11 Protrusion 12 Top surface 13 Front side surface 14 Rear side surface 15 Inner end surface 16 Outer end surface 17 Front side 18 Rear side 19 Inside Side 20 Outer side 23, 23A, 23B Depression 24a, 24b, 25a, 26a to 26c, 27a to 27d Flat surface 25b, 28a, 28b Curved surface RD Rotation direction P1 Outermost position of rim P2 Identification of tire side surface Point P3 The position where the thickness of the top surface is the largest Ls Reference straight line Lt, Lfs straight line Lh Horizontal line AF0, AF1, AF2 Airflow Va Airflow velocity LB Layer flow boundary layer TR Transition region TB Disturbance boundary layer TA Turbulent region G gap

Claims (1)

タイヤサイド部の表面に突起を備え、
前記突起は、頂面と、タイヤ回転方向側の側面である前側面と、前記頂面と前記前側面とが交わる前辺部とを備え、タイヤ径方向のいずれかの位置に、タイヤ周方向への空気流れを許容する隙間を形成され、
前記突起の前辺部において前記頂面と前記前側面とがなす先端角度は、90°未満で形成され、
前記突起のタイヤ周方向の幅は、10mm以上で形成され、
前記突起の幅は、以下を満たし、
Figure 0007053133000012
R:タイヤ半径
Rp:突起上の任意の位置のタイヤ回転中心からの距離
hRp:タイヤ回転中心からの距離Rpにおける突起の幅
前記突起は、前記タイヤ径方向外側の外側突起と、前記タイヤ径方向内側の内側突起とを備え、
前記隙間は、前記外側突起と前記内側突起との間に配置されると共にタイヤ周方向に延びて直線状に形成され、
前記外側突起の前側面は、タイヤ径方向外側の部位よりもタイヤ径方向内側の部位が、前記隙間に向かって、タイヤ回転方向に対して前方側に位置するように傾斜し、
前記内側突起の前側面は、タイヤ径方向内側の部位よりもタイヤ径方向外側の部位が、前記隙間に向かって、タイヤ回転方向に対して後方側に位置するように傾斜していることを特徴とする空気入りタイヤ。
With protrusions on the surface of the tire side,
The protrusion includes a top surface, a front side surface that is a side surface on the tire rotation direction side, and a front side portion where the top surface and the front side surface intersect, and is located at any position in the tire radial direction in the tire circumferential direction. A gap is formed to allow air flow to
The tip angle between the top surface and the front surface at the front side of the protrusion is formed to be less than 90 °.
The width of the protrusion in the tire circumferential direction is formed to be 10 mm or more.
The width of the protrusion meets the following:
Figure 0007053133000012
R: Tire radius Rp: Distance from the center of rotation of the tire at an arbitrary position on the protrusion hRp: Distance from the center of rotation of the tire The width of the protrusion at Rp
The protrusion comprises a tire radial outer outer protrusion and a tire radial inner inner protrusion.
The gap is arranged between the outer protrusion and the inner protrusion, and extends in the tire circumferential direction to form a straight line.
The front surface of the outer protrusion is inclined so that the portion inside the tire radial direction is located on the front side with respect to the tire rotation direction toward the gap, rather than the portion outside the tire radial direction.
The front surface of the inner protrusion is characterized in that the portion outside the tire radial direction is inclined so as to be located on the rear side with respect to the tire rotation direction toward the gap, rather than the portion inside the tire radial direction. Pneumatic tires .
JP2016026224A 2016-02-15 2016-02-15 Pneumatic tires Active JP7053133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016026224A JP7053133B2 (en) 2016-02-15 2016-02-15 Pneumatic tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026224A JP7053133B2 (en) 2016-02-15 2016-02-15 Pneumatic tires

Publications (2)

Publication Number Publication Date
JP2017144797A JP2017144797A (en) 2017-08-24
JP7053133B2 true JP7053133B2 (en) 2022-04-12

Family

ID=59682804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026224A Active JP7053133B2 (en) 2016-02-15 2016-02-15 Pneumatic tires

Country Status (1)

Country Link
JP (1) JP7053133B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096879A1 (en) 2007-02-09 2008-08-14 Bridgestone Corporation Pneumatic tire
WO2008114668A1 (en) 2007-03-12 2008-09-25 Bridgestone Corporation Pneumatic tire
JP2008222006A (en) 2007-03-12 2008-09-25 Bridgestone Corp Pneumatic tire
JP2008302740A (en) 2007-06-05 2008-12-18 Bridgestone Corp Pneumatic tire
JP2013071637A (en) 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096879A1 (en) 2007-02-09 2008-08-14 Bridgestone Corporation Pneumatic tire
WO2008114668A1 (en) 2007-03-12 2008-09-25 Bridgestone Corporation Pneumatic tire
JP2008222006A (en) 2007-03-12 2008-09-25 Bridgestone Corp Pneumatic tire
JP2008302740A (en) 2007-06-05 2008-12-18 Bridgestone Corp Pneumatic tire
JP2013071637A (en) 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The Pneumatic tire

Also Published As

Publication number Publication date
JP2017144797A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP5222736B2 (en) Pneumatic tire
CN106715251B (en) The motor vehicle of front valance panel with channel shape air guiding device
JP5258210B2 (en) Pneumatic tire
JP6730042B2 (en) Pneumatic tire
JP6712146B2 (en) Pneumatic tire
JP7094071B2 (en) Pneumatic tires
JP6730041B2 (en) Pneumatic tire
JP6702749B2 (en) Pneumatic tire
JP7053133B2 (en) Pneumatic tires
JP7094073B2 (en) Pneumatic tires
JP6901827B2 (en) Pneumatic tires
JP6649109B2 (en) Pneumatic tire
JP7094072B2 (en) Pneumatic tires
JP6635818B2 (en) Pneumatic tire
JP6690958B2 (en) Pneumatic tire
JP6707359B2 (en) Pneumatic tire
JP2017144789A (en) Pneumatic tire
JP2019104360A (en) Tire for heavy load
JP2017144795A5 (en)
JP2019104359A (en) Tire for heavy load

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200901

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200908

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201204

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210622

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210824

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210924

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211012

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211102

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220222

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220329

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150